
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2014

Bayesian Classification Using Probabilistic
Graphical Models
Mehal Patel
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Patel, Mehal, "Bayesian Classification Using Probabilistic Graphical Models" (2014). Master's Projects. 353.
DOI: https://doi.org/10.31979/etd.7pra-hgks
https://scholarworks.sjsu.edu/etd_projects/353

CORE Metadata, citation and similar papers at core.ac.uk

Provided by SJSU ScholarWorks

https://core.ac.uk/display/70408774?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F353&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F353&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F353&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F353&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F353&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/353?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F353&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Bayesian Classification Using Probabilistic Graphical Models

A Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

-

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Mehal Patel

May 2014

2

© 2014

Mehal Patel

ALL RIGHTS RESERVED

3

The Designated Project Committee Approves the Project Titled

Bayesian Classification Using Probabilistic Graphical Models

by

Mehal Patel

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

May 2014

--

Dr. Sami Khuri, Department of Computer Science Date

--

Dr. Mark Stamp, Department of Computer Science Date

--

Dr. Chris Tseng, Department of Computer Science Date

APPROVED FOR THE UNIVERSITY

 --

Associate Dean Office of Graduate Studies and Research Date

4

ABSTRACT

Bayesian Classification Using Probabilistic Graphical Models

By Mehal Patel

Bayesian Classifiers are used to classify unseen observations to one of the probable class

category (also called class labels). Classification applications have one or more features and one or more

class variables. Naïve Bayes Classifier is one of the simplest classifier used in practice. Though Naïve

Bayes Classifier performs well in practice (in terms of its prediction accuracy), it assumes strong

independence among features given class variable. Naïve Bayes assumption may reduce prediction

accuracy when two or more features are dependent given class variable. In order to improve prediction

accuracy, we can relax Naïve Bayes assumption and allow dependencies among features given class

variable. Capturing feature dependencies more likely improves prediction accuracy for classification

applications in which two (or more) features have some correlation given class variable. The purpose of

this project is to exploit these feature dependencies to improve prediction by discovering them from

input data. Probabilistic Graphical Model concepts are used to learn Bayesian Classifiers effectively and

efficiently.

5

ACKNOWLEDGEMENTS

 I take this opportunity to express my sincere gratitude to my project advisor, Dr. Sami Khuri for

his guidance, support and constant encouragement throughout this project. The project has helped me

improve my technical skills. I would like to thank my committee members, Dr. Mark Stamp and Dr. Chris

Tseng, for their time and effort. Finally, I would also like to thank Natalia Khuri and Dr. Fernando Lobo

for their invaluable insights and suggestions.

6

TABLE OF CONTENTS

CHAPTER 1

 Introduction ………. 10

CHAPTER 2

 Probabilistic Graphical Models ……………………………………………………………………………………… 12

 2.1 Introduction ……………………………………………………………………………………………………… 12

 2.2 Background ……………………………………………………………………………………………………… 13

 2.3 Constructing the Model ..……………………………..……………………………………………………. 16

 2.4 Inference using the Model …………………………….……………………………………………………. 22

CHAPTER 3

 Naïve Bayes Classifier ……………………………………………………………………………………………………. 23

 3.1 Model for Naïve Bayes Classifier …………………………………..…………………………………… 23

 3.2 Learning in Naïve Bayes Classifier …………………………………………………………………….. 25

 3.3 Inference in Naïve Bayes Classifier ……………………………………………………………………. 26

 3.4 Advantages ……………………………………………………………………………………………………….. 27

 3.5 Disadvantages …………………………………………………………………………………………………... 28

CHAPTER 4

 Entropy and Mutual Information …………………………………………………………………………………. 30

 4.1 Introduction ……………………………………………………………………………………………………… 30

 4.2 Entropy ………. 30

7

 4.3 Mutual Information ……………………………………………………………………………………………. 32

CHAPTER 5

 Limited Dependence Classifier ………………………………………………………………………………………… 34

 5.1 Motivation …… 34

 5.2 Algorithm ……………………………………………………………………………………………………….. 35

 5.3 Constructing Model for Limited Dependence Classifier ……………….……………………….. 36

 5.4 Inference in Limited Dependence Classifier ………………………………………………………… 37

 5.5 Advantages …… 38

 5.6 Disadvantages …………………………………………………………………………………………………… 38

CHAPTER 6

 Implementation ………………………………………………………………………….………………………………….. 40

 6.1 Functionalities …………………………………………………………………………………………………… 40

CHAPTER 7

 Datasets and Results ………………………………………………………………………………………………………. 48

 7.1 Datasets ……….. 48

 7.2 Benchmark Results ………….………………………………………………………………………………. 53

 7.3 Analysis ……….. 55

 7.4 Summary and Future work ………………………………………………………………………………… 59

REFERENCES ……….. 60

8

LIST OF FIGURES

Figure 1 Joint probability distribution for student example …………………………………………. 15

Figure 2 Probabilistic Graphical Model for extended-student-example …..…………………….. 18

Figure 3 Probabilistic Graphical Model for Naïve Bayes Classifier …………………………………… 25

Figure 4 Algorithm to find additional dependencies …………………………………………………… 35

Figure 5 Header part of an example arff file ………………………………………………………………. 41

Figure 6 Data part of an example arff file …………………………………………………………………… 42

Figure 7 Flow chart diagram for functionalities provided by implementation …………………. 46

Figure 8 Running time (CPU time) comparison for Bayesian Classifiers ………..………………… 55

9

LIST OF TABLES

Table 1 Classification accuracy (%) for various classification algorithms …………………………….. 53

10

CHAPTER 1

Introduction

Classification is a problem in which the end goal is to classify unseen observations to one of the

class category. Classification systems (applications) have one or more features (or attributes). An

observation includes a particular assignment to each of these features. A feature, separate from all

other features is called as class variable and contains one or more categories. An observation can only

belong to one of these class categories. A computer program which classifies Electronic-mails to one of

the two categories – spam or not-spam – is an example of classification system. This system may contain

a set of features such as email-sender, email-domain and number-of-recipients. An unseen observation

with some value assigned to each feature could lend itself to either spam or not-spam class category.

There are several approaches to classification including probabilistic approach. Naïve Bayes

Classifier is one of the widely used classifier in practice and it is based on the probabilistic approach.

Naïve Bayes Classifier attempts to classify new observations to one of the class category based on the

prior knowledge (known in terms of probabilities) about classification system. It uses Bayes theorem and

makes strong assumption about features being independent of one another given class variable. In the

case of Electronic-mail Classification example, Naïve Bayes assumption would mean that once we know

about an email being a spam-email (class variable), knowledge about email-sender does not provide any

additional information which is relevant towards learning more about the email-domain. Though Naïve

Bayes assumption may not hold true for every application, it makes this strong independence

assumption for the purpose of classification. Naïve Bayes Classifier has good classification accuracy for

the systems in which features are independent given class variable compared to for the systems in

which features are strongly (or at least loosely) correlated given class variable. Dependencies among

features reduce classification accuracy.

11

A better approach – Limited Dependence Bayesian Classifier [2] - is to consider additional

dependencies among features while classifying unseen observations. This project aims at exploiting

these additional feature dependencies to improve classification accuracy and to compare results with

Naïve Bayes Classifier. We use Naïve Bayes Classifier accuracy as benchmark. Both algorithms, Naïve

Bayes Classifier and Limited Dependence Classifier are implemented in Java. They were tested on

classification datasets with independent features given class variable and datasets with dependent

features given class variable.

 The rest of this work is organized in the following fashion. Chapter 2 introduces Probabilistic

Graphical Models, a framework which combines uncertainty and complexity to compactly represent

high dimensional probability distributions of complex systems. In chapter 3, we discuss Naïve Bayes

Classifier, a simple probabilistic classifier. Chapter 4 introduces the concepts of Entropy and Mutual

Information. In chapter 5, we discuss Limited Dependence Bayesian Classifier which builds Probabilistic

Graphical Models by using the concepts explained in Chapter 4. Chapter 6 focuses on the

implementation details of the Naïve Bayes and the Limited Dependence Classifier. Lastly, in chapter 7,

we look at various datasets and results to compare and contrast the Naïve Bayes and the Limited

Dependence Bayesian Classifier.

12

CHAPTER 2

Probabilistic Graphical Models

2.1 Introduction

Probabilistic Graphical Model is a framework which deals with uncertainty and complexity (using

probability theory and graph theory) of a complex system. We construct Probabilistic Graphical Model

(or just Model) for a system for which we would like to reason about what might be true under

uncertainty (using probability theory), possibly given observation for various parts of the system and

prior knowledge about the system. Probabilistic Graphical Model reduces complexity of any complex

system by considering dependencies and independencies among various parts of the system (called

features). These dependencies are shown by directed or undirected graph structure. Probability theory

takes these dependencies and independencies into consideration during Model construction, inference

and learning. We will see later how exploiting independencies makes our Model modular where

different independent parts of the system interact using the theory of probability.

Probabilistic Graphical Model is widely used in systems where we want to answer questions

with more than one possible answer (or outcome). This is possible with a Probabilistic Graphical Model

due to its ability to deal with uncertainty and complexity in a manageable manner. Diagnostic Systems,

Information Extraction, Computer Vision, Speech Recognition and Classification are but a few

applications (or systems) where they are used extensively. Speech Recognition systems need to output

one word for a given input, assuming that the given input was a single spoken word. Humans are good

at dealing with uncertainty. They use their prior experience and/or knowledge about a system for which

they are asked to reason. Prior experience and/or knowledge helps them void many possible outcomes

but one, which has a high degree of certainty (or belief) compared to other outcomes. For example, a

person can figure out a partially heard word based on the construction and overall meaning conveyed

13

by the sentence spoken by another person. Humans take similar approaches to make inference in other

domains. Computer systems can replace the need of human (expert) if we enable computer systems to

take similar approaches to infer and to reach conclusions. Probabilistic Graphical Model is a framework

which attempts to generalize this approach which requires prior knowledge and/or experience about a

system (i.e. learning about the system).

Bayesian Classification methods are based on the fundamental principles of Probabilistic

Graphical Model. The attempt at classifying given observation to one of the class category uses

Probabilistic Graphical Model constructed and trained from input data. Such classification systems have

one or more features and their interaction is captured in a graph by considering dependencies (or

independencies) present among these features. A graph also serves as user interface for application

users. These inter-related features (except class variable) contribute towards reasoning (in our case,

classification) task handled by probability theory. These two aspects deal with uncertainty and

complexity of the system under consideration.

2.2 Background

Features: Systems often have various aspects which contribute towards reasoning (in our case,

classification) task. These individual aspects take different values, either discrete or continuous. In the

case of Electronic-mail Classification example, number-of-recipients might take continuous integer

values ranging from 1 to 1000. Number-of-recipients is one aspect for Electronic-mail Classification

application. Other aspects such as email-sender and email-domain take one or more discrete or

continuous values. As mentioned earlier, class variable is also considered as an aspect of the given

system but is considered entirely different from other aspects or features of the system.

14

The Probabilistic Graphical Model uses probability theory to attach probability to each class

category and helps in determining their likelihood during inference. We first look at some important

fundamentals of probability theory before we see how uncertainty and complexity are handled by

Probabilistic Graphical Models.

Probability: Probability of an outcome defines the degree of confidence with which it might occur. The

degree of confidence can come from belief about the possibility with which an outcome occurs and

might be based on our prior experience and/or knowledge about the outcome and/or the environment

in which they occur.

Probability Distribution: Probability distribution over a set of outcomes assigns likelihood to each

outcome. Probability distribution for set of outcomes should sum to 1.

Conditional Probability: Theory of conditional probability defines probability distribution over an

outcome α which is observed only after another outcome β occurs. It gives us likelihood of outcome α

given that we already have observed outcome β. This can be represented as,

P(α | β) = P(α & β) / P(β) 2.1

Chain Rule of Conditional Probability: From eq. 2.1 we can see that P(α & β) = P(β) * P(α | β). This is

known as the chain rule of conditional probability where we derive explicit joint probability distribution

over all outcomes (α and β) by combining several conditional probability distributions over a smaller

space. In other words, explicit joint probability distribution over all outcomes is equivalent to the

probability of the first outcome multiplied by the probability of the second outcome given first outcome

multiplied by the probability of the third outcome given first and second outcome and so on.

Bayes’ Rule: Rewriting eq. 2.1 we get, P(β | α) * P(α) = P(α | β) * P(β). We can derive inverse

probabilities using Bayes’ rule [3]. See eq. 2.2.

15

P(β | α) = (P(α | β) * P(β)) / P(α) 2.2

Eq. 2.2 can be interpreted as follows: If we know the probability of α given β, the prior probability of β

and the prior probability of α (marginal probabilities), we can derive the inverse probability – probability

of β given the probability of α.

Joint Probability Distribution: Let us consider the student-example shown in Figure 1 [1]. The given

system contains three features: Intelligence (I) of a student, Difficulty (D) of a course and Grade (G) of a

student. Intelligence and Difficulty take two discrete values (i
0
 & i

1
 and d

0
 & d

1
 respectively for low &

high intelligence and easy & hard class) while Grade takes three values (g
1
, g

2
 and g

3
 for Grade A, B and

C, respectively). The joint probability distribution for this example has 12 possible combinations. This

joint probability distribution can be calculated using the chain rule of conditional probability (eq. 2.1).

Figure 1 specifies the explicit joint probability distribution.

Figure 1 Joint probability distribution for student example [1]

16

As stated earlier, all features (except for class variable) of the given system contribute towards

inference task. Inference uses theory of conditional probability to classify given observation with some

value assigned to each feature. Since Probabilistic Graphical Model is based on the principles of

probability theory, joint probability space over all these features is required to be calculated. Joint

probability distribution over some set of features represents their joint product over all possible

combinations for the values they take and assigns probability value to each. One such simple inference

query we may ask here is the probability of a Highly Intelligent (i
1
) student getting Grade A (g

1
) in a Hard

(d
1
) class, referred to as P(I = i

1
, D = d

1
, G = g

1
). This probability can be calculated by first using the chain

rule of conditional probability to construct joint probability distribution followed by looking up the

combination {i
1
, d

1
, g

1
}. We can see that even for such simple inference query we first have to

determine explicit joint probability distribution before we can derive probability. As the number of

features and their values increase, determining explicit joint probability distribution becomes quite

complex and expensive. Next, we see how we reduce the complexity associated with constructing a joint

probability distribution (Model) as well as how we use this Model effectively for inference.

2.3 Constructing the Model

Independent Parameters: The number of independent parameters for any explicit joint probability

distribution is one less than the total number of possible combinations of that joint probability

distribution. The number of independent parameters is an important property which affects the

complexity of the results obtained with Probabilistic Graphical Models. For the student example, the

total number of independent parameters is 11 (value of 12th parameter is determined by summing over

11 independent parameters).

17

Fewer number of independent parameters guarantees efficient computational complexity. Since

inference task requires constructing joint probability space, it is convenient to have fewer independent

parameters. As an example, consider a system with N features each taking two discrete values. The joint

probability distribution in this case has (2
N

 – 1) independent parameters. Because of its exponential

space, larger N would require large number of independent parameters. Exponential runtime complexity

is bad for computation. A system with just 20 binary discrete features will require 1,048,575

independent parameters to obtain joint probability space.

Computing joint probability distribution over exponential number of independent parameters

already seems impractical. Probabilistic Graphical Model provides a framework which encodes such

complex and costly to compute high-dimensional probability distribution in a compact manner. Here, we

exploit independencies present among features to reduce the complexity and describe them compactly

using Probabilistic Graphical Model. This Model can then be used effectively for learning and inference.

2.3.1 Dealing with Complexity

 Probabilistic Graphical Model uses graph representation (directed or un-directed) to compactly

represent a joint probability space which often gets complex with increased computational complexity

as number of features increase. Fewer features, each with large number of values also contribute

towards increased complexity and computational cost.

 A graph has a set of nodes and edges. Nodes in a graph correspond to features while arcs

represent interaction between pair of nodes (dependency). Lack of arc between pair of nodes

represents no interaction or dependence. A graph can be a directed graph (Bayesian Network) or an

undirected graph (Markov Networks). Classification applications often use directed graphs.

18

Let us consider extended-student-example of Figure 2 [1] which adds two more features to

earlier mentioned student-example of Figure 1. We borrow Intelligence, Grade and Difficulty from

student-example and add two more features, SAT Score (S) of a student and Letter of Recommendation

(L) that students get from class teacher. SAT Score takes two values (s
0
 & s

1
 for low and high SAT score)

and Letter of Recommendation takes two values (l
0
 & l

1
 for low and high quality of Letter of

Recommendation). If we assume certain independencies among these features, we can represent

Probabilistic Graphical Model for extended-student-example as shown in Figure 2.

Figure 2 Probabilistic Graphical Model for extended-student-example [1]

Upon careful observation, we note that not every pair of features is connected (probabilistic

independence). Difficulty and Intelligence does not depend on any other feature while Grade depends

only on Intelligence and Difficulty, SAT score depends only on Intelligence and Letter of

recommendation depends only on Grade.

If we were to consider full dependencies among these features, every feature would have an arc

to every other feature (without loops). This means that the explicit joint probability distribution would

still require maximum possible number of independent parameters (one less than the total possible

combinations). But, by considering independencies we remove unwanted arcs (interactions) between

certain pair of features which reduces the complexity associated with constructing joint probability

19

distribution. Let us first construct explicit joint probability distribution for extended-student-example

with full feature dependencies using the chain rule of conditional probability (eq. 2.1) as shown in

eq. 2.3.

P(D, I, G, S, L) = P(D) * P(I |D) * P(G | I, D) * P(S | G, I, D) * P(L | S, G, I, D) 2.3

Here, the joint probability distribution with full feature dependencies requires 47 independent

parameters as it has 48 entries (2*2*2*2*3 = 48, each feature except Grade takes two discrete values

and Grade takes 3 discrete values). However, by capturing independencies we reduce the total number

of independent parameters to 15. Here is how: We have five probability distributions (referred to as

factors) which if multiplied together will generate the same probability distribution as that of explicit

joint probability distribution. Based on above assumed independencies, these five factors are: P(I), P(D),

P(G | I, D), P(S | I) and P(L | G). The first two factors P(I) and P(D) are binomial probability distributions

and require one independent parameter. Third factor P(G | I, D) has four multinomial distributions over

S and I. This requires two independent parameters for each multinomial distribution. The Fourth factor

P(S | I) has two binomial probability distributions over two values of I. Each of these requires one

independent parameter. The last factor P(L | G) has three binomial distributions over three values of G

with one independent parameter for each binomial distribution. This gives us a total number of

independent parameters equal to 15.

Factor is a function, which takes one or more features as arguments and returns a value of every

possible combination for values that supplied features take. Formally, “a Factor φ (X1,X2...,Xn) is a

function where φ : Value (x1,x2...,xn) φ  R and scope = {X1,X2...,Xn}” [1]. (For the rest of the

discussion features are represented using ‘upper case’ English letter while their values are represented

using ‘lower case’ English letter.)

20

Any inference query can now be answered using these individual factors where each factor

encodes dependencies only among features they care about. Interaction among these factors is handled

by joint probability distribution of these factors. Joint probability distribution for extended-student-

example can now be rewritten as:

P(D, I, G, S, L) = P(D) * P(I) * P(G | I, D) * P(S | I) * P(L | G) 2.4

Eq. 2.4 is called chain rule for Bayesian Network. If we compare chain rule for Bayesian

Network with chain rule of conditional probability (eq. 2.3), we can see that conditional independence

removes unwanted feature independencies from probability distribution. Consider an example where

we assume that SAT Score depends only on students’ Intelligence. According to conditional

independence if (X⊥Y | Z) then P(X | Z, Y) = P(X |Z). Applying conditional independence of type

(S⊥G, D | I) to P(S | I, G, D), we get P(S | I, G, D) = P(S | I). Similarly we can reduce P(I |D), P(G | I, D) and

P(L | S, G, I, D) to P(I), P(G | I, D) and P(L |G) respectively. This gives us joint distribution similar to eq.

2.4.

This small example showed us how conditional independence can construct explicit joint

probability distribution with fewer independent parameters. More generally, any system with N binary

features, where each feature has at most K parents (dependencies) has N*2
k
 independent parameters

[1] as opposed to 2
N

 – 1 independent parameters for explicit joint probability distribution. As N

increases, reduction in number of independent parameters make significant difference in obtaining

compact representation of resulting Probabilistic Graphical Model. A joint probability of all features

taking some value can now be calculated by multiplying probabilities from required factors where each

factor has conditional probability distribution for group of features. P(G = g
1
, D = d

1
, I = i

1
) can now be

21

calculated using three factors P(I), P(D) and P(G | I, D) which omits the need of constructing the explicit

joint probability distribution. Much more complex inference queries can also be answered efficiently

using this compact form of joint probability distribution.

Graph in Probabilistic Graphical Model is perceived from two different perspectives:

Perspective 1 (What it shows): “A graph represents set of independencies that holds in a distribution”

[1].

Given a graph representing a complex probability distribution space, we can read

independencies from the graph that underlying probability distribution holds. These independencies are

conditional independencies where one feature is independent of all other features except their

descendents given its parents. They are represented as (X ⊥ Y | Z). Extended-student-example had

several such conditional independencies. We assumed that SAT Score (S) is independent of all other

features if we have evidence about Intelligence (I). This conveys that if we already know Student’s

Intelligence, Difficulty and/or Grade does not provide any additional information to reason about

student’s SAT Score.

Perspective - 2 (Reason we use it) – “A graph is a data structure which compactly represents high-

dimensional probability distribution.”*1+

On the other hand, a graph is a data structure which encodes high-dimensional probability

distribution in a compact manner, using smaller size factors. Exploiting conditional independence

reduces the number of independent parameters by breaking down the distribution into a number of

factors where each factor has a subset of features. Each factor’s joint probability space is much smaller

as compared to the joint space of explicit joint probability distribution.

22

Bayesian Classifiers benefits from the fact that exploiting conditional independence among

features gives us a compact Model. Compact Model helps with effective inference and Model learning.

2.3.2 Dealing with Uncertainty

The second aspect of Probabilistic Graphical Model deals with uncertainty. Real world

applications often have more than one possible outcome for given set of inputs. Classification systems

often contain at least two or more class categories to which we wish to classify set of unseen

observations. We consider all possible class categories during classification and attach a probability to

each of them to determine their likelihood with respect to given set of observed inputs.

2.4 Inference using the Model

The kind of questions we are interested in asking from a Probabilistic Graphical Model

constructed for classification systems are answered based on the theory of conditional probability. A

system for Electronic-mail classification takes as input email address of email-sender, number-of-

recipients and email-domain of the email-sender. Together, all three inputs become our observation and

we try to question as follows: “Given an observation about email-sender, email-domain and number-of-

recipients; what is the probability of email being spam?” Here, we use the chain rule for Bayesian

Network (eq. 2.4) and Bayes’ theorem (eq. 2.2) to derive probability values. More detailed explanation is

given in subsequent chapters.

We decide one class category based on some criteria after we compute the posterior probability

of each class category (i.e. spam & not-spam). We use Maximum a Posteriori estimation technique to

pick the most probable class category among all categories (to be covered in chapter 3).

 In the following chapter, we study how to construct, learn and infer from Probabilistic Graphical

Models for Naïve Bayes Classifier.

23

CHAPTER 3

Naïve Bayes Classifier

3.1 Model for Naïve Bayes Classifier

Naïve Bayes Classifier is considered as a restrictive classifier as it does not allow any feature

dependencies given class variable. This project focuses on classification problems involving only one

class variable.

If two features are independent, learning about one feature doesn’t affect the belief about

other. Two features are considered independent if their joint probability distribution satisfies conditions

given by eq. 3.1.

P(α, β) = P(α) * P(β)

P(α | β) = P(α) 3.1

Similarly, we define conditional independence where two features become independent given

the third feature. Earlier we saw that (S ⊥ G | I), where SAT Score and Grade each depends on student’s

Intelligence. Knowing about SAT Score does not add any new information to what we already have

gathered about Grade after knowing Intelligence. More generally, conditional independence should

satisfy condition of eq. 3.2.

P(α | β, γ) = P(α | β), where (α ⊥ γ | β) 3.2

In Naïve Bayes Classifier, all features are assumed to be independent of one another given class

variable. If the given system has N features X1, X2, X3…XN and class variable C, conditional independence

in Naïve Bayes Classifier is represented by:

24

For i, j in 1…N, (Xi ⊥ Xj | C), i!=j 3.3

In the presence of strong independence assumption, each feature (Xi’s) contributes

independently towards the probability of some observation falling into one of the class category.

Probabilistic Graphical Model for Naïve Bayes Classifier can now be constructed by considering

conditional independencies of eq. 3.3. We start with explicit joint probability distribution and convert it

to Probabilistic Graphical Model as shown next.

Explicit joint probability distribution for X1, X2, X3…XN and class variable C can be written as

follows using the chain rule of conditional probability.

P(C, X1, X2, X3…XN) = P(C) * P(X1 | C) * P(X2 |C, X1) * P(X3 | C, X1, X2) ... * P(XN |C, X1, X2, X3 … XN-1)

 3.4

If we consider conditional independencies of eq. 3.3, probability distribution of the form

P(XN | C, X1, X2, X3…XN) reduces to P(XN | C) since XN is considered independent of all other features

given class variable. Applying this reduction on all applicable factors in eq. 3.4 gives us the following

compact form of the joint probability distribution where we have N factors for each feature and one

marginal distribution for class variable.

P(C, X1, X2, X3…XN) = P(C) * P(X1 | C) * P(X2 |C) * P(X3 | C) * P(X4 | C) ... * P(XN|C)

 = P(C) * ∏ P(Xi | C), 1 ≤ i ≤ N 3.5

The above Probabilistic Model can be encoded using Directed Acyclic Graph (Bayesian Network)

as shown in Figure 3 [1]. Each feature is only dependent on one other feature – class variable.

25

Figure 3 Probabilistic Graphical Model for Naïve Bayes Classifier [1]

This new compact Model with conditional independence significantly reduces the total number

of independent parameters. This compact representation is less expressive compared to the explicit

joint probability distribution as we consider features to be independent of one another given class

variable.

We also get modular architecture by exploiting conditional independence [1]. Probabilistic

Graphical Model allows addition of new features without significant changes to existing Model. Suppose

we wish to add an N+1th feature to some existing Model with N features and class variable C. We only

need to add one additional factor, P(XN+1 | C) to construct the expanded joint probability distribution.

This does not require any changes to the other factors already constructed in eq. 3.5. On the other hand,

the addition of one or more features in the explicit joint probability distribution requires re-writing of

the entire joint distribution.

3.2 Learning in Naïve Bayes Classifier

Learning with respect to Classification corresponds to known structure and complete Data [1].

Known structure refers to known dependencies (or independencies) present in the given system.

Complete data refers to the set of input data in which each observation contains some assignment to all

features and class variable (with occasional missing values for some features and/or class variable). We

26

already know the structure of Probabilistic Graphical Model for Naïve Bayes Classifier as we restrict

feature dependencies given class variable, which gives us Model structure shown in Figure 3 (or eq. 3.5).

Once the Model is constructed, we learn the Model from input data. Model learning populates

conditional probability distribution of each factor. For Naïve Bayes Classifier, probabilities in all factors

P(Xi |C) and marginal distribution P(C) for class variable C are populated using input data (training data).

3.3 Inference in Naïve Bayes Classifier

Since our goal is to classify unseen observations to one of the class category, we use

Probabilistic Graphical Model learned from training data. As explained earlier, Naïve Bayes assumption

indicates that each feature contributes independently when classifying observations to one of the class

category. This indicates that we compute posterior probability of each feature individually since their

interaction is restricted. We use Bayes’ theorem (eq. 2.2) to compute posterior probability for each

feature.

P(C = c | X1 = x1) = {P(C = c) * P(X1 = x1 | C = c)} / P(X1 = x1)

P(C = c | X2 = x2) = {P(C = c) * P(X2 = x2 | C = c)} / P(X2 = x2)

P(C = c | X3 = x3) = {P(C = c) * P(X3 = x3 | C = c)} / P(X3 = x3)

 …….

P(C = c | XN = xn) = {P(C = c) * P(XN = xn | C = c)} / P(XN = xn)

In order to obtain posterior probability for (C = c), we multiply the above computed posterior

probabilities. Similarly, we compute posterior probability for each class category {c1, c2, c3 … cn}.

However, this approach is not correct since observations contain all features (we do not consider class

variable) and we need to consider all these features at the same time during classification even though

27

they are considered independent given class variable. We use eq. 3.5 and extended form of Bayes’

theorem as we shall now see.

The extended form of Bayes’ theorem is given by:

P(C | X1, X2, X3 … XN) = P(C, X1, X2, X3 … XN) / P(X1, X2, X3 … XN) 3.6

From eq. 3.5 we have,

P(C, X1, X2, X3…XN) = P(C) * P(X1 | C) * P(X2 |C) * P(X3 | C) * P(X4 | C) ... * P(XN|C) 3.7

Using eq. 3.7 in 3.6 we get,

P(C | X1, X2, X3 … XN) = P(C) * P(X1 | C) * P(X2 |C) * P(X3 | C) * P(X4 | C) ... * P(XN|C) / P(X1, X2, X3 … XN)

 3.8

Eq. 3.8 gives us the posterior probability for class variable which considers all features of an

observation at the same time. We compute posterior probability for each class category using eq. 3.8.

Classification Result = argMaxC P(C | X1, X2, X3 … XN) 3.9

where argMaxC = Maximum a Posteriori

Decision rule of eq. 3.9 selects class category with maximum posterior probability by considering

only the numerator term of P(C | X1, X2, X3 … XN) since the denominator (P(X1, X2, X3 … XN)) is the same

irrespective of class category. This is essentially the class category to which Naïve Bayes classifies the

given observation.

3.4 Advantages

Naïve Bayes Classifier has less computing overhead due to its restrictive assumption. Each

feature is bound to have only one dependency with class variable which gives us very simple

Probabilistic Graphical Model. Moreover, Naïve Bayes assumption reduces the number of independent

parameters which makes learning and inference tractable and less complicated as mentioned earlier.

28

Naïve Bayes Classifier can perform quite well even with small datasets. Since we are not

capturing any dependencies among features, Model can be learnt easily and efficiently from small

datasets. For example, consider a system with two features A and B (and class variable C) which takes 2

and 3 discrete values, respectively. Suppose, consider that A and B is independent given class variable. In

order to learn factors P(A | C) and P(B | C) in our Model, we require that A and B’s each discrete value

appears in at least one observation that is classified to each class category. This is highly probable with

small datasets. Now suppose that B depends on A (as well as on class variable). Our Model captures

their interaction in factor P(B | A, C). P(B | A, C) is a conditional probability distribution and has all

possible combinations from the joint probability space of A, B and C. However, these combinations are

in a different form where for each combination from A and C’s joint probability space, one probability

value is assigned to each value of B. In order to learn our Model from data, we at least need one

observation for each combination from the joint probability space of A, B and C. Small datasets do not

guarantee that every combination is present in the training dataset and as a result Model may not be

learnt efficiently. As the number of features in a conditional probability table increases, the efficiency of

Model learning decreases.

3.5 Disadvantages

Strong independence assumption in Naïve Bayes Classifier makes classification accuracy

(defined in chapter 6) less accurate compared to the accuracy had there been a consideration of

dependence among features (given that features are indeed dependent). Naïve Bayes Classifier

sometimes over-estimates classification results. This happens because two (or more) dependent

features are considered independent given class variable where each contributes independently during

classification. Eq. 3.5 multiplies these probabilities which over counts probabilities from dependent

29

features and over-estimates the observation’s actual class category (which reduces resulting probability

value). This may lead to poor classification accuracy.

Naïve Bayes Classifier performs poor when the number of features increases as well as when

features have dependencies. In order to improve classification accuracy for systems where features

have dependencies, we need to capture their interaction in our Model. We might argue that capturing

these additional dependencies may increase complexity. However, as noted before, Probabilistic

Graphical Model helps manage complexity by breaking down the system into one or more independent

factors.

Chapter 4 and chapter 5 investigate how we might determine additional dependencies

(separate from dependencies with class variable) for classification systems and for the construction of

our Model considering these dependencies.

30

CHAPTER 4

Entropy and Mutual Information

4.1 Introduction

Probabilistic Graphical Model is a framework which generalizes Model construction, learning

and inference. Similarly, we need to devise an approach which can generalize discovery of additional

dependencies among features to improve upon the Naïve Bayes Classifiers’ classification accuracy.

The correlation between two or more features can be determined using the concept of Entropy

and Mutual Information. The concept of Mutual Information is based on the notion of Entropy. We first

consider the definition of Entropy followed by Mutual Information. This becomes the basis for the

discussion of chapter 5.

4.2 Entropy

“Entropy of a feature (or random variable) is a function which attempts to characterize

unpredictability of a feature”[5]. Entropy is also the measure for the amount of information that can be

learned on an average from one instance of a given feature. Feature X with one bit of entropy needs on

an average one bit to represent one instance. Entropy is measured in bits, nats or bans (logarithmic base

2, e and 10, respectively).

Deterministic features have zero entropy as entropy measures amount of uncertainty with

which they take some value. The entropy of feature X is calculated using eq. 4.1 and is always non-

negative.

H(X) = P(X) * log2 (1 / P(X)), for all values x in X 4.1

The entropy of a feature does not depend on the values it take but on the probability

distribution of its values. Consider example 4.1 and 4.2 to get a better understanding of entropy.

31

Example 4.1:

Consider feature X with two discrete values {0, 1} and two observations {0, 1}. Assume that the

probability distribution for X as P(X = 0) = 1/2 = 0.5 and P(X = 1) = 1/2 = 0.5. Applying eq. 4.1 we get,

H(X) = P(X = 0) * log2 (1 / P(X = 0)) + P(X = 1) * log2 (1 / P(X = 1))

 = 0.5 * log2 (1 / 0.5) + 0.5 * log2 (1 / 0.5)

 = 0.5 * log2 (2) + 0.5 * log2 (2)

 = 1 bit

The entropy of feature X is 1 bit. With 1 bit of entropy we can learn 1 bit of information about feature X.

Example 4.2:

Consider feature X with one discrete value {0} and two observations {0, 0}. The probability

distribution for X is P(X = 0) = 2/2 = 1. Applying eq. 4.1 we get,

H(X) = P(X = 0) * log2 (1 / P(X = 0))

 = 1 * log2 (1 / 1)

 = 1 * log2 1

 = 0 bit

The entropy of feature X is 0 bit. Since feature X takes exactly one kind of discrete value, it is

deterministic in nature. We can be certain about the value feature X takes, all the time.

Similar to the concept of conditional probability, conditional entropy measures the amount of

information needed to describe feature Y given that another feature X is observed [7]. The conditional

entropy of feature Y given feature X can be calculated using eq. 4.2.

H(Y | X) = P(X, Y) * log2 (1 / P(Y | X)), for all values x, y in X, Y 4.2

32

As an example, consider two features X and Y taking the following values with the following set of

observations.

Feature X: {A, B}

Feature Y: {A, B}

Observations: {AA, AB, BA, BB} (in the form {XY})

In order to calculate H(Y | X) we consider all possible combinations of X and Y and apply eq. 4.2. We get,

H(Y | X) = H(Y = A | X = A) + H(Y = B | X = A) + H(Y = A | X = B) + H(Y = B | X = B)

 = – P(Y = A, X = A) * log2 (P(Y = A | X=A)) – P(Y = B, X = A) * log2 (P(Y = B | X = A)) –

P(Y = A, X = B) * log2 (P(Y = A | X = B)) – P(Y = B, X = B) * log2 (P(Y = B | X = B))

 = – 0.25 * log2(0.5) – 0.25 * log2(0.5) – 0.25 * log2(0.5) – 0.25 * log2(0.5)

 = 0.25 + 0.25 + 0.25 + 0.25

 = 1 bit

We can derive one bit of information about Y (A or B) when we know the value of X. However, X

and Y in this example are independent of each other and their self-entropy is also 1 bit.

4.3 Mutual Information

Using the definition of entropy and conditional entropy, we can calculate the amount of

information shared between two features. I(X, Y) represents mutual information between X and Y. By

definition,

I(X ; Y) = H(X) – H(X | Y)

 = H(X) + H (Y) – H(X, Y)

 = P(X, Y) * log2(P(X, Y) / {P(X) * P(Y)}), for all values x, y in X, Y 4.4

We subtract the amount of uncertainty that remains about X after knowing Y from the amount of

uncertainty about X.

Mutual information between two features X and Y is zero if they are independent. It is between

0 and 1 if X and Y are correlated. The higher the correlation the higher the value of mutual information.

33

Mutual information between two features X and Y is 1 if the knowledge about feature X can tell us

exactly about feature Y or vice versa.

Consider an example with two features X and Y as below:

X takes two discrete values {A1, B1}
Y takes two discrete values {A2, B2}
Observations = {A1A2, A1B2, B1A2, B1B2} (in the form {XY})

Using eq. 4.4 for all combinations of X and Y we derive I(X ; Y) = 0 bits. Since X and Y are

independent, they do not share any information. Here, probability of A1 given A2 (or B2) is the same as

the probability of B1 given A2 (or B2). However, adding one more observation {A1A2}, I(X ; Y) increases

to 0.019 bits. The probability with which {A1A2} and {B1A2} occurs is no more equal when we add new

observation {A1A2} which increases the probability of {A1A2}. This makes the two features dependent

with some correlation.

Similar to the definition of conditional entropy, conditional mutual information tells us the

amount of information shared between two features X and Y given that we know feature Z. Conditional

mutual information for three features X, Y and Z can be calculated using eq. 4.5.

I(X ; Y | Z) = H(X | Z) – H(X | Y, Z) 4.5

 Next, in chapter 5 we study an algorithm to find feature dependencies based on the concepts

discussed in this chapter.

34

CHAPTER 5

Limited Dependence Classifier

5.1 Motivation

Since the Naïve Bayes Classifier does not allow dependencies among features, it does not reflect

dependencies in classification results. We thus apply the concept of mutual information to identify

additional dependencies among features. We choose the best pair of dependent features based on

some criteria (mentioned later) and consider them while constructing Probabilistic Graphical Model.

There are two extremes to classification applications with respect to allowable dependencies. At

one extreme we have Naïve Bayes Classifier on the principles of no additional dependencies except for

those among each feature and class variable. At the other end we have the General Bayesian Classifier

with full degree (every possible pair is connected) of dependencies. The explicit probability distribution

for General Bayesian Classifier has a class variable as a parent for every other feature. The first feature is

a parent of every other feature except for the class variable. The second feature is a parent of every

other feature except for the first feature and the class variable and so on. One way of selecting features

as parents of other features can be based on topological ordering. There cannot be dependencies in

both directions for any pair of features since a Bayesian Network is an acyclic dependency graph.

Limited Dependence Bayesian Classifier [2] discovers feature dependencies using mutual

information and uses that information to construct Probabilistic Graphical Model. It limits each feature

to take a maximum of K parents excluding the class variable. Parameter K can take value anywhere

between two extremes (no dependence of Naïve Bayesian Network to full dependence of General

Bayesian Network). Making K equal to zero gives us Naïve Bayes Classifier while making K equal to N-1

gives us the General Bayesian Classifier given that there are N features.

35

5.2 Algorithm

Figure 4 [2] shows the pseudo code for discovering additional dependencies in any system. The

algorithm takes as input a dataset consisting of pre-classified observations and a parameter K and

outputs Probabilistic Graphical Model. We assume that given system has N features X1, X2, X3 … XN and a

class variable C. All features are assumed to be discrete in nature (more details in chapter 6).

Figure 4 Algorithm to find additional dependencies [2]

5.2.1 Algorithm Analysis

The algorithm in Figure 4 computes the mutual information of the form I(Xi ; C) (eq. 4.4) for

each feature Xi and class variable C. It also computes conditional mutual information of the form

I(Xi ; Xj | C) (eq. 4.5) for each pair of features Xi and Xj given class variable C. Additional dependencies are

then determined considering the following fact: When classifying any observation to one of the class

category, feature(s) having high mutual information (I(Xi ; C)) with class variable C more likely provides

strong evidence for probable class category compared to the feature(s) having low mutual information

36

(I(Xi ; C)) with class variable. Thus, the algorithm in Figure 4 (step 5.1) selects features one by one in

decreasing order of their mutual information with class variable C.

After selecting closely dependent feature with class variable in each iteration, we look at

amount of information shared between the selected feature and other features given class variable

(I(Xi ; Xj | C)). The higher the mutual information between the two features given class variable (eq. 4.5),

the more likely they are to have strong dependency. We select K (parameter K as explained earlier) such

features among all other features for the selected feature, which has the highest value for I(Xi ; Xj | C).

Since we already have the mutual information of the form I(Xi ; Xj | C) for each pair of features (step 2),

we can determine K eligible features (Xj’s) for selected feature Xi. These set of K features and Xi more

likely provide strong evidence than the left over Xj’s (with lower mutual information with Xi) and Xi while

classifying any observation. This step is carried out in step 5.4.

The set of K new features becomes parents of the selected feature (class variable is a default

parent of each feature). These steps are repeated for each Xi which gives us new dependencies for each

feature. The number of dependencies for each feature ranges from 0 to K depending upon how much or

how less information they share with class variable C, respectively.

Since we give preference to features that share the most with class variable, we capture at least

a few important dependencies (if any). The algorithm does not introduce any loops while adding

additional feature dependencies.

5.3 Constructing Model for Limited Dependence Classifier

We can construct Model for Limited Dependence Classifier by considering the following

dependencies of eq. 5.1.

37

P(C, X1, X2, X3 … XN) = P(C) * ∏ P(Xi | Par(Xi)) 5.1

where 1 ≤ i ≤ N and Par(Xi) = Parents of Xi

Learning the Model in Limited Dependence Classifier is the same as we saw with the Naïve

Bayes Classifier. We have N factors of the form P(Xi | Par(Xi)), where Par(Xi) represents parents of Xi.

Depending upon the value of parameter K, each feature has 0 to K parents in addition to class variable.

Unlike Naïve Bayes Classifiers’ Probabilistic Graphical Model, Limited Dependence Classifier has

different Probabilistic Graphical Model for each classification system.

5.4 Inference in Limited Dependence Classifier

Classifying an observation from learnt Model involves computing posterior probability for each

class category as we saw with the Naïve Bayes Classifier. We use the following equation to calculate the

posterior probability.

P(C | X1, X2, X3…XN) = P(C, X1, X2, X3…XN) / P(X1, X2, X3 … XN) 5.2

Using eq. 5.1 in eq. 5.2 we get,

P(C | X1, X2, X3…XN) = P(C) * ∏ P(Xi | Par(Xi)) / P(X1, X2, X3 … XN), 1 ≤ i ≤ N 5.3

Applying eq. 5.3 to each class category and neglecting the term in the denominator (it is same

irrespective of class category) we get the most probable class category using the following criteria (same

as eq. 3.9):

Classification Result = argMaxC P(C | X1, X2, X3 … XN) 5.4

where argMaxC = Maximum a Posteriori

Similar to the Naïve Bayes Classifier, Limited Dependence Classifier also reduces the number of

independent parameters. However, the number of independent parameters increases with the value of

parameter K. For K = N-1 (including class variable), the number of independent parameters becomes

38

equal to the number of independent parameters of explicit joint probability distribution (since each

possible pair is connected).

5.5 Advantages

Limited Dependence Classifier improves the classification accuracy for systems with dependent

features. If the features are indeed independent, the accuracy of Limited Dependence Classifier falls

back to that of the Naïve Bayes Classifier. Chapter 7 covers more details about the classification accuracy

of the Limited Dependence Classifier.

We notice that almost all datasets (having actual feature dependencies) have only low-order

dependencies where each feature depends only on a small number of other features (K < 4) as we

analyze classification results later in chapter 7. This limits the total number of independent parameters

required for constructing explicit joint probability distribution and we still benefit from the compact

representation of the resulting Probabilistic Graphical Model.

5.6 Disadvantages

The algorithm in Figure 4 needs to calculate the mutual information of the form I(Xi ; C) and I(Xi ;

Xj | C) before it determines additional dependencies. Computing I(Xi ; C) takes linear time Θ(N)

proportional to the number of features. The class conditional mutual information is required to be

calculated for each pair of features (total (N*N-1)/2 pairs) and runs in Θ(N2) time. Together they take

Θ(N) + Θ(N2) time. Hence, the running time complexity for constructing the Model increases as the

number of features increases. The situation gets worse when the given system has not many useful

dependencies among features which at the end gives the classification accuracy similar to that of the

Naïve Bayes Classifier.

39

In the next chapter, we study the implementation details for the Naïve Bayes Classifier and the

Limited Dependence Classifier.

40

CHAPTER 6

Implementation

The Naïve Bayes Classifier as well as the Limited Dependence Classifier are written in Java. The

following functionalities are provided by the implementation.

6.1 Functionalities

1. Reading data from source file (requires them to be in ARFF format)

2. Pre processing of data

3. K-fold cross validation and classification accuracy

4. Determining dependencies (Model construction)

5. Learning the Model

6. Model validation

These functionalities are written in separate java classes. Next, we cover the important

implementation details of the above functionalities.

6.1.1 Reading Data from Source File

Input data is read from the given source file and is initially stored in a data structure of type

Linked List of String Array. A collection of type Linked List provides the ability to access rows by their

index. Later, (during pre-processing of source data) data is saved from two different perspectives: row

oriented data and column oriented data. This setting provides easy access to entire row values

(observations) and to entire feature values (columns).

6.1.2 Pre Processing of Source Data

 Pre processing of data includes reading input header, handling missing data, discretizing

features with continuous values and converting data into a different format (row and column oriented).

41

6.1.2.1 Reading Header

 Datasets used in the project are available in arff format. Arff file contains two sections: header

part and data part. Header contains information such as name of the relation (type of dataset), list of

features (called as attributes in arff file), their types (categorical or continuous) and range. Header of an

example arff file for the Iris dataset is shown in Figure 5 [12].

Figure 5 Header part of an example arff file [12]

 The input header routine reads the header and extracts all features (including class variable),

their types (continuous or discrete) and range. If any feature has continuous range of type Integer and if

the width of the range is ≤ 5, it is considered as discrete feature during further processing. This setting

avoids unnecessary discretization of such features having integer values (which can be thought of as

discrete values).

 The data part of arff file contains set of pre-classified observations. Each observation has a value

assigned (comma separated) to each feature including class variable, where the order of their

appearance follows the order with which they are defined in the header part. Figure 6 [12] shows the

data part of the Iris dataset for the header shown in Figure 5. Here, each row corresponds to

observations while each column in each row corresponds to the features and the values they take. The

class variable always appears as a last column.

42

Figure 6 Data part of an example arff file [12]

 After extracting the header, data is saved in to a format suitable for various classification

operations. These operations require data to be accessed from two different perspectives: access

observations and access features. One data structure holds data row by row (observations) which makes

it a convenient choice for operations such as handling missing data and testing the Model, while the

other data structure holds data feature by feature (columns) which makes it a convenient choice for

operations such as discretization, handling missing data and learning the Model.

6.1.2.2 Discretization of Features with Continuous Values

 Classification datasets includes features with discrete and/or continuous values. Features with

continuous values are discretized using the unsupervised equal-width binning approach [15]. A

continuous range is divided into three equal sized bins (category). Bin size of 3 is applicable to all

continuous features irrespective of their continuous range. Continuous features are scanned for column

by column and each value is replaced by the bin (category) value they fall in. If any feature has missing

values, they are omitted during discretization and are handled by ‘Handling missing data’ routine. The

three new categories are designated by “_1”, “_2” and “_3” during further processing.

6.1.2.3 Handling Missing Data

 Observations often have unobserved values for one or more features. Missing values are

indicated by special characters (“?” and “<null>” in datasets from KEEL [10]). In order to replace missing

43

values, all observations are checked, one by one (rows). Any observation with missing values greater

than or equal to 30% of the total value (total attributes in dataset) is removed from further

consideration. Next, every feature (including the class variable) is scanned for missing values (columns).

Each feature takes values from their set of values (discrete range). Any feature with missing values

greater than 30% of the total value (number of total observations) is removed entirely from further

consideration; otherwise the missing values are replaced by the most frequently occurred value of that

feature.

 Scanning features for missing values does not allow us to correlate missing values with the other

features’ missing values. Scanning observations for missing values first, followed by features allows us

to look at missing values in any observation in an entire. This helps in ignoring observations which may

reduce classification accuracy due to artificially substituted values in more number of features.

6.1.3 K- Fold Cross Validation and Classification Accuracy

 Both Classifiers are validated using the 10-fold cross validation technique [11]. This technique

repeatedly divides entire input data into two parts: training data and testing data. One such division

gives us one fold. 10 folds (training and testing data) are formed from the input data, such that each

observation becomes the part of test data exactly once in one of the fold. Observations from the input

data are distributed randomly to the training and testing data of each fold (with no overlap across folds

for the test data). During each fold, the training data is used to learn the Model while the testing data is

used to validate the learnt Model.

 During each fold, observations in test data are classified based on learnt Model and results

(misclassified observations) are aggregated from previous fold. Classification accuracy is calculated using

the following formula [9] and is reported (in percentage) at the end of the 10-fold cross validation.

44

Classification Accuracy =
number of correctly classified instances

total number of classifications

 The standard deviation of misclassified observations from each fold is also reported at the end

of 10-fold cross validation. This allows us to study the variation from the average of misclassified

observations.

6.1.4 Determining Dependencies (Model Construction)

 Naïve Bayes dependencies are quite straight forward and do not change from application to

application. Each feature depends only on the class variable. On the other hand, dependencies for

Limited Dependence Classifier are application specific and are determined using the algorithm

mentioned in Chapter 5. These dependencies are considered during learning and testing of constructed

Model in each fold.

6.1.5 Learning the Model

 Learning the Model requires information about feature dependencies as well as training data.

We use the same Model during each fold. As each fold has different training data, the learnt Model in

each fold differs. Both classifiers learn their Model using this functionality.

 Learning the Model requires populating conditional probability tables for each feature.

Conditional probability tables have all possible combinations listed for values that features’ parents take

and for each such combination a probability value is assigned to each value that the feature takes. These

probability values are determined from the training data. We use Laplace correction [13] to avoid zero

posterior probabilities.

45

6.1.6. Model Validation

 Testing the Model requires information about feature dependencies as well as the testing data.

For each observation in the test data, the posterior probability for each class category is determined.

Here, we sum over the logarithm of the class variable’s marginal probability and each factor probability

(P(Xi | Par(Xi)) instead of multiplication over these probabilities. This avoids integer underflow, as eq. 3.9

and eq. 5.4 multiplies these probabilities and gets smaller and smaller with each multiplication. The

Model validation returns the number of incorrectly classified instances by comparing each classification

result with the actual result from the test data.

 Figure 7 presents a flow chart diagram for functionalities mentioned in section 6.1. The flow of

Figure 7 is applicable to both Classifier algorithms.

46

Figure 7 Flow chart diagram for the functionalities provided by the implementation

47

Next, in chapter 7 we look at the classification results for several datasets and compare and

contrast the Naïve Bayes and the Limited Dependence Classifier.

48

CHAPTER 7

Datasets and Results

 The datasets used in this project are taken from KEEL data repository [10] which contains many

types of classification datasets. I have taken “standard classification datasets” in which datasets have

one or more features and only one class variable. In the next section, I describe each dataset.

7.1 Datasets

1) Titanic dataset

Type Titanic dataset

Description Contains observations about Titanic accident. Each observation
outputs if a passenger survived or not

Features 3 discrete features

Class variable Class (has 2 categories)

Total observations 2201

Training data size 1980

Test data size 221

Missing values No

2) Iris dataset

Type Iris dataset

Description Contains observations for Iris plant which are categorized into 3
types of Iris plant

Features 4 continuous features

Class variable Class (has 3 categories)

Total observations 150

Training data size 135

Test data size 15

Missing values No

49

3) Car dataset

Type Car dataset

Description Contains observations which evaluates car model to one of the
class category

Features 6 discrete features

Class variable Acceptability (has 4 categories)

Total observations 1728

Training data size 1555

Test data size 173

Missing values No

4) Led7 dataset

Type Led7 dataset

Description Contains observations for 7-segment LED display which outputs
digit (displayed on LED) as class category

Features 7 discrete features

Class variable Class (has 10 categories for 10 digits)

Total observations 500

Training data size 450

Test data size 50

Missing values No

5) Nursery dataset

Type Nursery dataset

Description Contains observations which ranks nursery schools to one of the
five class categories

Features 8 discrete features

Class variable Class (has 5 categories)

Total observations 12690

Training data size 11421

Test data size 1269

Missing values No

50

6) Breast dataset

Type Breast dataset

Description Contains observations for breast cancer, which categorizes
observations into two class categories

Features 9 discrete features

Class variable Class (has 2 categories)

Total observations 286

Training data size 257

Test data size 29

Missing values No

7) Glass dataset

Type Glass dataset

Description Contains observations to categorize types of glass to one of the 7
categories based on their oxide content

Features 9 continuous features

Class variable Class (has 7 categories)

Total observations 214

Training data size 192

Test data size 22

Missing values No

8) Tic-Tac-Toe dataset

Type Tic-Tac-Toe dataset

Description Contains observations which outputs win or lose for tic-tac-toe
game. Observations include set of possible board configuration at
the end of tic-tac-toe game. (‘X’ player always plays first)

Features 9 discrete features

Class variable Class (has 2 categories)

Total observations 958

Training data size 862

Test data size 96

Missing values No

51

9) Magic dataset

Type Magic dataset

Description Contains observations which discriminate images generated by
gamma from the images generated by Hadron initiated in the
upper atmosphere.

Features 10 continuous features

Class variable Class (has 2 categories)

Total observations 19020

Training data size 17118

Test data size 1902

Missing values No

10) Australian dataset

Type Australian dataset

Description Contains observations for Credit card applications which were
either approved or denied

Features 6 discrete and 8 continuous features

Class variable Class (has 2 categories)

Total observations 690

Training data size 621

Test data size 69

Missing values No

11) Zoo dataset

Type Zoo dataset

Description Contains observations which classifies given animal to one of the 7
class of animal

Features 16 discrete features

Class variable Class (has 7 categories)

Total observations 101

Training data size 90

Test data size 11

Missing values No

52

12) Chess dataset

Type Chess dataset

Description Contains observations which represents chess end game where a
pawn on a7 is one square away from queening and determines if
White player can win or not

Features 36 discrete features

Class variable Class (has 2 categories)

Total observations 3196

Training data size 2876

Test data size 320

Missing values No

13) Splice dataset

Type Splice dataset

Description Contains observations which recognizes exon/intron boundary or
intron/exon boundary in DNA sequence

Features 60 discrete features

Class variable Class (has 3 categories)

Total observations 3190

Training data size 2871

Test data size 319

Missing values No

53

7.2 Benchmark Results

 Table 1 compares the classification accuracy (% of correctly classified observations) between the

Naïve Bayes Classifier (implemented by me), Limited Dependence Classifier (implemented by me) and

Naïve Bayes Classifier of WEKA machine learning software [14] for 13 datasets (We consider Naïve Bayes

Classifier accuracy as benchmark). The project has focused more on datasets with discrete features than

continuous since continuous features lose some information when discretized using the unsupervised

equal-width binning approach. Datasets are specified in ascending order of total features. The number

in brackets shows the standard deviation for misclassified observations of each fold during 10-fold cross

validation. The type of each dataset appears in the table (discrete, continuous or mix). Magic dataset

has not been tested (indicated by “–“ in Table 1) for K > 2 as it calls for higher CPU time with no

difference in classification accuracy from the lower values of K.

Table 1: Classification accuracy (%) for various classification algorithms

 Standard ML
Package

Implementation of this project

Dataset
(type)

Naïve Bayes
Classifier
(WEKA)

Naïve Bayes
Classifier
(Java)

Limited Dependence Classifier (Java)

K = 0 K = 1 K = 2 K = 3 K = 4

Titanic
(discrete)

77.60 77.60

(±6.17)

77.60

(±6.88)

78.32

(±5.27)

78.32

(±5.45)

NA NA

Iris
(continuous)

94.67 94.67

(±0.74)

94

(±0.94)

95.33

(±1.00)

97.33

(±0.66)

96.66

(±0.67)

NA

Car
(discrete)

85.53 85.24

(±2.94)

85.93

(±5.64)

93.46

(±2.9)

95.71

(±3.26)

97.22

(±2.74)

95.54

(±2.45)

Led7
(discrete)

73.2 73.6

(±3.20)

73.0

(±2.53)

73.8

(±2.69)

73.0

(±2.83)

73.2

(±2.90)

73.2

(±2.9)

54

Nursery
(discrete)

90.25 90.30

(±10.8)

90.21

(±11.16)

92.67

(±6.60)

95.26

(±6.05)

96.33

(±8.21)

96.24

(±4.92)

Breast
(discrete)

73.42 72.37

(±3.20)

73.07

(±2.60)

72.07

(±2.56)

71.32

(±2.02)

71.38

(±1.24)

70.33

(±2.37)

Glass
(continuous)

71.49 62.61

(±2.60)

60.74

(±1.8)

61.51

(±1.41)

65.42

(±2.00)

65.42

(±1.28)

64.01

(±1.79)

Tic-Tac-Toe
(discrete)

69.62 69.83

(±4.80)

69.31

(±4.88)

74

(±3.36)

77.13

(±4.39)

77.45

(±2.37)

75.15

(±4.74)

Magic
(continuous)

72.68 75.16

(±14.08)

75.23

(±17.51)

76.52

(±11.06)

76.25

(±19.06)

- -

Australian
(mix)

85.21 86.95

 (±2.60)

86.95

(±2.89)

86.23

(±1.43)

86.23

(±3.17)

85.79

(±3.99)

86.66

(±1.88)

Zoo
(discrete)

93.06 95

(±0.48)

95.04

(±0.80)

98.01

(±0.4)

99.00

(±0.3)

96.03

(±0.91)

97.02

(±0.45)

Chess
(discrete)

87.89 87.54

(±5.74)

87.7

(±5.88)

93.11

(±4.24)

94.64

(±4.76)

94.83

(±4.45)

94.27

(±5.78)

Splice
(discrete)

95.54 95.29

(±4.83)

95.51

(±4.28)

95.07

(±3.15)

94.13

(±4.76)

93.74

(±5.01)

92.57

(±3.99)

Note: Implementation of this project and WEKA uses different discretization technique for handling

continuous features. This is the possible reason for which Naïve Bayes Classifier in WEKA gives higher

classification accuracy for the Glass dataset.

55

 Figure 8 shows chart for comparison of running time (CPU time) for Naïve Bayes and Limited

Dependence Classifier. The chart is plotted in ascending order of number of observations. The number

of observations and number of features is shown in brackets for each dataset.

Figure 8 Running time (CPU time) comparison for Bayesian Classifiers

7.3 Analysis

7.3.1 Analysis of Classification Accuracy

 We noted earlier that Limited Dependence Classifier improves classification accuracy or it gives

at least the same result as with the Naïve Bayes Classifier. Table 1 confirms that the addition of feature

dependencies improves accuracy in datasets such as Car, Iris, Tic-tac-toe, Zoo, Glass, Nursery and Chess

while it gave similar classification accuracy for datasets such as Titanic, Magic, Breast, Australian, Led7

and Splice. The Naïve Bayes Classifier and the Limited Dependent Classifier (with K = 0) accuracies are

the same for Titanic, Magic, Breast, Australian, Led7 and Splice datasets. Led7 and Splice are two well

known datasets with known independencies among the features given the class variable. The Naïve

56

Bayes Classifier of WEKA machine learning software also gave similar classification accuracy as Naïve

Bayes Classifier of this project.

 The Limited Dependence Classifier algorithm captures dependencies among features, if present.

Their interaction helps during classification of an observation where these dependencies provide

combined evidence for that observations’ probable class category unlike with Naïve Bayes Classifier,

where their evidence is counted individually which over-estimates the classification results (as explained

in chapter 3). This is the reason for which it increases classification accuracy.

 However, we can also argue why Limited Dependence Classifier with K > 0 has similar results as

with the Naïve Bayes Classifier for datasets with no feature dependencies even if we force additional

feature dependencies through the algorithm? When we force select one or more features as parent

features for some feature (in fact they are not dependent), their interaction does not (significantly)

provide any additional information to what they provide individually about the probable class category.

This holds true due to the conditional independence theory where if (X⊥Y|Z) then P(X | Z, Y) = P(X | Z).

If a subset of features are independent given the class variable, their combined contribution is as good

as their individual contribution in which case, these independent features (which were considered

dependent) contribute individually and the classification accuracy matches with the Naïve Bayes

Classifier.

 Led7 is a perfect example that supports the above argument. Led7 dataset has 7 features for

each line segment of LED display (LED display has 7 segments to show digit between 0 and 9). Their

output gives us a digit between 0 and 9 (class variable). If we were to consider any 2 segments of LED

display as dependent, given the class variable, one segment will not provide any additional information

about the other when conditioned on class variable. Alternatively, if one knows the digit (class variable)

57

displayed on LED, one can exactly tell which segments would be ON. Hence, once one knows which digit

(class variable) is displayed; knowledge about one segment being ON or OFF does not provide any

additional knowledge about other segment being ON or OFF. The displayed digit (class variable) provides

enough information about the status of all segments. Thus, any level of dependence does not affect

classification accuracy, as can be seen in Table 1 for the Led7 dataset.

7.3.2 Analysis of Variation in Classification Accuracy with Parameter K

The classification accuracy for Limited Dependence Classifier gets stable after K ≥ 3 for most

datasets, as we can see from Table 1. Interaction between a feature and its parents is captured in the

conditional probability table. Conditional probability tables contain one row for each possible

combination for values that features’ parents take and one column per value of dependent feature. The

joint probability space increases with the total number of parents. This requires that the training data

contain all possible combinations at least once. Since we use Laplace correction to avoid zero posterior

probabilities, we assign equal probabilities to the values that dependent feature takes if the training

data does not contain any combination. Features with low mutual information value with the class

variable are considered only after features with high mutual information value with the class variable, as

can be seen in the algorithm of Figure 4 (step 5.1). This implies, features with low mutual information

value with the class variable have more potential to get more number of parents (step 5.4). It also

implies that features having high mutual information value with the class variable have considerably less

number of parents, even with higher K. The features with high mutual information with the class

variable have more influence in classification of an observation than the features with low mutual

information with the class variable. The increase in classification accuracy for lower values of K (< 3)

suggests that such datasets have low-order dependencies given the class variable. Also, classification

accuracy does not vary much when K is set to ≥ 5.

58

7.3.3 Running Time Analysis

 We can see from Figure 8 that Naïve Bayes Classifier requires less computing overhead

compared to Limited Dependence Classifier with K = 2. This happens because Limited Dependence

Classifier has an overhead of discovering additional dependencies from input data. Limited Dependence

Classifier requires even more CPU time when K is set to greater or equal to four for datasets such as

Chess, Nursery, Splice and Magic.

59

7.4 Summary and Future Work

Naïve Bayes Classifier and Limited Dependence Classifier have their advantages and

disadvantages. The choice of a classifier for any system depends on its characteristics. Both classifiers

have similar classification accuracy when the given system has a lack of feature dependencies given class

variable. However, Limited Dependence Classifier outperforms Naïve Bayes Classifier when the given

system has some correlation among the features when conditioned on class variable. Naïve Bayes

Classifier is an ideal choice for systems in which dependency among features can be neglected. In such

cases, choosing Naïve Bayes Classifier over Limited Dependence Classifier omits the overhead of

discovering additional feature dependencies which at the end may not be worth the effort. On the other

hand, Limited Dependence Classifier is ideal for systems in which interaction among features cannot be

neglected. Their interaction is a key component in getting better classification accuracy. However one

should be careful while choosing Limited Dependence Classifier as it takes quadratic time - Θ(N
2
)

(especially for systems with a large number of features) for discovering additional dependencies. In such

cases, it is better to first check the classification accuracy using the Naïve Bayes Classifier.

Different supervised discretization methods can be tried instead of unsupervised equal-width

binning discretization method used in this project. Both classifiers gave poor classification results for the

Glass dataset when compared to Naïve Bayes Classifier of WEKA. Supervised discretization might help to

better correlate discretized continuous features in conditional probabilities such as factor P(Xi | C) or

during the calculation of mutual information of the form I(Xi ; C) or I(Xi ; Xj | C).

60

REFERENCES

[1] Daphne Koller, Nir Friedman. Probabilistic Graphical Models: Principles and Techniques. ISBN 978-0-

262-01319-2, 2010.

[2] Mehran Sahami. 1996 “Learning Limited Dependence Bayesian Classifiers”. Retrieved December 25,

2013, from http://dbpubs.stanford.edu:8091/diglib/pub/reports/kdd96-learn-bn.pdf

*3+ Kevin Murphy. “A Brief Introduction to Bayes’ Rule”. Retrieved February 10, 2014 from

http://www.cs.ubc.ca/~murphyk/Bayes/bayesrule.html

*4+ Ron Zacharski. “A Programmer’s Guide to Data Mining”. Retrieved February 15, 2014 from

http://guidetodatamining.com/

[5] Eric G. Learned-Miller. Entropy and Mutual Information. Retrieved February 22, 2014 from

http://people.cs.umass.edu/~elm/Teaching/Docs/mutInf.pdf

[6] Mai Vu. Entropy and Mutual Information. Retrieved March 2, 2014 from

http://www.info612.ece.mcgill.ca/lecture_02.pdf

[7] Conditional Entropy. Retrieved March 2, 2014 from

http://en.wikipedia.org/wiki/Conditional_entropy

[8] Attribute-Relation file format (ARFF). University of Waikato. Retrieved March 15, 2014 from

http://www.cs.waikato.ac.nz/ml/weka/arff.html

*9+ Ravi Mukkamala. “Evaluating a Classification model – What does precision and recall tell me?”

Retrieved March 27, 2014 from

http://www.cs.odu.edu/~mukka/cs495s13/Lecturenotes/Chapter5/recallprecision.pdf

http://dbpubs.stanford.edu:8091/diglib/pub/reports/kdd96-learn-bn.pdf
http://www.cs.ubc.ca/~murphyk/Bayes/bayesrule.html
http://guidetodatamining.com/
http://people.cs.umass.edu/~elm/Teaching/Docs/mutInf.pdf
http://www.info612.ece.mcgill.ca/lecture_02.pdf
http://en.wikipedia.org/wiki/Conditional_entropy
http://www.cs.waikato.ac.nz/ml/weka/arff.html
http://www.cs.odu.edu/~mukka/cs495s13/Lecturenotes/Chapter5/recallprecision.pdf

61

[10] KEEL datasets. Retrieved March 5, 2014 from http://sci2s.ugr.es/keel/category.php?cat=clas

[11] K-fold cross validation. Retrieved March 10, 2014 from

http://www.csie.ntu.edu.tw/~b92109/course/Machine%20Learning/Cross-Validation.pdf

[12] Iris plants data set. KEEL data repository. Retrieved March 5, 2014 from

http://sci2s.ugr.es/keel/dataset.php?cod=18

*13+ Naïve Bayes’ Classifier and Laplace correction. Retrieved March 7, 2014 from

http://cis.poly.edu/~mleung/FRE7851/f07/naiveBayesianClassifier.pdf

[14] WEKA: Data mining software in Java. Retrieved March 25, 2014 from

http://www.cs.waikato.ac.nz/ml/weka/

http://sci2s.ugr.es/keel/category.php?cat=clas
http://www.csie.ntu.edu.tw/~b92109/course/Machine%20Learning/Cross-Validation.pdf
http://sci2s.ugr.es/keel/dataset.php?cod=18
http://cis.poly.edu/~mleung/FRE7851/f07/naiveBayesianClassifier.pdf
http://www.cs.waikato.ac.nz/ml/weka/

	San Jose State University
	SJSU ScholarWorks
	Spring 2014

	Bayesian Classification Using Probabilistic Graphical Models
	Mehal Patel
	Recommended Citation

	tmp.1400651710.pdf.MlT50

