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ABSTRACT 

ATTRIBUTE SELECTION METHODS IN ROUGH SET THEORY 

by 

Xiaohan Li 

Attribute selection for rough sets is an NP-hard problem, in which fast heuristic 

algorithms are needed to find reducts. In this project, two reduct methods for rough set 

were implemented: particle swarm optimization and Johnson’s method. Both algorithms 

were evaluated with five different benchmarks from the KEEL repository. The results 

obtained from both implementations were compared with results obtained by the 

ROSETTA software using the same benchmarks. The results show that the 

implementations achieve better correction rates than ROSETTA.  
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1 Introduction 

1.1 Project overview 

This project focuses on learning rough set theory and implementing a classifier based on 

RST. For reduct methods, two algorithms were implemented: Johnson’s algorithm and 

PSO algorithm. The proposed algorithms were evaluated by five different data sets from 

the KEEL repository, including the SSLD problem. In the evaluation, a ten-fold cross 

validation was used to minimize the side effects of choosing a training set and a test set. 

The correction rate of each run was measured as the performance of the algorithm. The 

results of my classifier (using both Johnson’s and PSO) were compared with the results 

obtained by running ROSETTA (using Johnson’s and GA) in terms of the correction rate. 

1.2 Rough set theory 

The Rough Set Theory (RST) was introduced by Z. Pawlak in 1982 as an extension of the 

traditional set theory in order to better deal with uncertain and fuzzy knowledge [1]. 

Since uncertainty and vagueness widely exist in the real world, RST has been found to be 

a powerful mathematical tool in processing real world data sets. Recently, RST has 

attracted great attention from researchers, and many applications of RST have been 

actively proposed, especially in the machine-learning domain [2, 3].   

1.3 Feature selection 

Feature selection is an important step in RST-based machine learning. While generating a 

decision rule, it is expected to contain only a subset of attributes (features) that are the 

most informative. All other attributes are removed from the rule with minimum 
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information loss [4]. The optimal solution of feature selection is a subset of features, 

called a reduct, with a minimal number of features. An exhaustive solution is to use 

boolean reasoning laws to find out all reducts, and then to choose the one with minimal 

attributes. Obviously, this only works for simple data sets. When the number of attributes 

becomes larger, the number of possible reducts is always very big. For N attributes, there 

are 2N subsets of attributes, and the exhaustive method is an NP-hard problem [5]. In 

practice, heuristic algorithms have to be considered.  

1.4 Reduct algorithms 

Johnson’s algorithm is a simple greedy reduct algorithm. The algorithm always picks the 

attribute with the maximum count of appearances in each iteration. Johnson’s algorithm 

does not guarantee finding the optimal reduct [4]. Genetic Algorithm (GA) mimics the 

behavior of natural evolution. It is a widely used heuristic algorithm for finding reducts. 

One existing implementation of the GA reduct algorithm is included in the ROSETTA 

toolkit, which is designed for analyzing tabular data within the RST framework [6]. 

Particle swarm optimization (PSO) is another heuristic algorithm inspired by the behavior 

of flying birds or fish schools. PSO finds a solution by using a swarm of particles ‘flying’ 

throughout the problem space [7]. Studies show that PSO has strong discoverability and 

often performs better than GA.  

1.5 Seven-segment LED display problem 

Seven-segment LED display (SSLD) problem is a classification problem, which comes 

from the KEEL repository [8]. I introduce the SSLD problem here in order to use it as an 
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example for introducing RST. A seven-segment light emission diode (LED) display is a 

form of electronic display devices for displaying decimal numbers. As shown in Figure 1, 

a digit is composed by seven light-emitting diodes, one for each segment. The letters A to 

G refer to pins that control the number displayed. 

 

Figure 1: The seven-segment LED display [9] 

Table 1 shows the relationship between inputs in pins A – G and the digit displayed in the 

seven-segment LED display. In this encoding, 1 represents a high electrical level and 0 

represents a low electrical level for a pin.  

Table 1: Binary encoding for digit 0 - 9 [9] 

Digit A B C D E F G 

0 1 1 1 1 1 1 0 

1 0 1 1 0 0 0 0 

2 1 1 0 1 1 0 1 

3 1 1 1 1 0 0 1 

4 0 1 1 0 0 1 1 

5 1 0 1 1 0 1 1 

6 1 0 1 1 1 1 1 

7 1 1 1 0 0 0 0 

8 1 1 1 1 1 1 1 

9 1 1 1 1 0 1 1 
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The goal of the problem is to predict which digit will be shown in the display for the 

given inputs in pins A - G. It would be an easy problem if there was no noise introduced. 

However, consider the case where the input data has a 10% probability of having one of 

its values inverted. In this case, the simple solution that uses Table 1 to translate 

encodings into digits will not work. [8] 

For example, digit 8 is encoded by 1111111 in Table 1. If the first bit is inverted (shown 

in Figure 2), the encoding will change to 0111111, and there are no matching digits in 

Table 1. 

 

Figure 2: Bit invert example 1 

 

Consider another case shown in Figure 3. Given the encoding 1111011, we cannot decide 

what the original encoding was before the bits were inverted. The digit might be 9 if no 

bit has been inverted, or 3, 5 and 8 if one bit has been inverted. 

 

 

Figure 3: Bit invert example 2 
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In the KEEL repository, there are 500 SSLD data instances that come from a laboratory. 

Table 2 shows the format of the data instances. 

 

Table 2: Format of data instances for the SSLD problem [8] 

Attribute Domain 

Led1 [0,1] 

Led2 [0,1] 

Led3 [0,1] 

Led4 [0,1] 

Led5 [0,1] 

Led6 [0,1] 

Led7 [0,1] 

Number {0,1,2,3,4,5,6,7,8,9} 

 

 

The format of the data includes eight attributes. Attributes Led1 – Led7 correspond to A 

– G in Table 1. The attribute Number corresponds to Digit in Table 1. 

The challenges of solving the SSLD problem include: 

● It is unknown why the inputs were inverted. It might be caused by unstable 

voltage, environment temperature, or other reasons.  

● The known information about the problem is limited. The KEEL dataset only 

includes inputs and output, without providing other information.  

The SSLD problem is a classification problem in machine learning. Machine learning 

studies how to automatically learn to make accurate predictions based on observations of 
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labeled training examples [10]. To solve a classification problem, a machine-learning 

algorithm is used to generate rules by processing a labeled training set, and then it uses 

these rules to classify unseen objects into a given set of categories. Figure 4 shows the 

workflow of solving a classification problem. 

 

 

Figure 4: The workflow of solving a classification problem [10] 

 

The rest of this work is divided into the following chapters. Chapter 2 introduces the 

fundamentals of rough set theory. Chapter 3 discusses the implementation of the rough 

set classifier. Chapter 4 discusses the principles and implementations of the reduct 

algorithms. Chapter 5 compares the experimental results and concludes the article.   
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2 Preliminary of rough set theory 

2.1 Information system 

An information system is a table with observations (called objects) as rows, features 

(called attributes) as columns and discrete values as entries. The information system is 

denoted as I = (U,A) where U is the universe and non-empty set of objects in the table, 

and A denotes the collection of attributes that are used to describe objects. There are two 

kinds of attributes: conditional attributes and decisional attributes. Note that A = C ∪ D. 

The decisional attributes D determine which class an object belongs to. The conditional 

attributes C are all other attributes except decisional attributes. [7, 11] 

For the SSLD problem, Table 3 is an information system, which includes 8 objects. Led1, 

Led2, Led3, Led4, Led5, Led6, Led7 and Number are 8 attributes of the information 

system. Led1 - Led7 are conditional attributes, and Number is a decisional attribute. 

Table 3: Information system example 

Object Led1 Led2 Led3 Led4 Led5 Led6 Led7 Number 

O1 1 1 1 0 0 1 0 7 

O2 1 0 1 1 1 0 0 1 

O3 0 0 1 1 0 0 0 3 

O4 1 0 1 1 1 1 1 2 

O5 1 0 1 1 1 1 1 3 

O6 1 0 1 1 1 1 1 8 

O7 1 1 1 0 1 1 0 0 

O8 1 1 1 0 1 1 0 9 
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2.2 Indiscernible relation and equivalence class 

For any subset of attributes P   ⊆   A and subset of objects X   ⊆   U, the indiscernible 

relation is defined as [7]: 

IND(P)   =    {(x, y)   ∈   U  |  ∀a   ∈   P, a(x)   =   a(y)}                             (1) 

If only considering a subset of attributes P but not considering other attributes, two 

objects might be indiscernible with each other, then we say they are indiscernible. The 

equivalence class of IND(P) is denoted as [x]p, which means that ∀y   ∈    [x]p  , (x, y) are 

indiscernible to each other. [7]  

For the example in Table 3, if only considering conditional attributes (Led1 - Led7), then 

{O4, O5, O6} is an equivalence class and {O7, O8} is another equivalence class, because 

O4, O5 and O6 are indiscernible from each other, and O7 and O8 are indiscernible from 

each other. Table 4 is a full list of equivalence classes. 

 

Table 4: Equivalence class examples 

Equivalence class Encoding (Led1 – Led7) Number 

E1 = {O1} 1110010 {7} 

E2 = {O2} 1011100 {1} 

E3 = {O3} 0011000 {3} 

E4 = {O4, O5, O6} 1011111 {2, 3, 8} 

E5 = {O7, O8} 1110110 {0, 9} 
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2.3 Lower and upper approximation 

Based on the definition of an indiscernible relation and an equivalence class, lower and 

upper approximations are defined as [7]: 

PX   =    {x   ∈   U  |  [x]p   ⊆   X}                                                  (2) 

PX   =    {x   ∈   U  |  [x]p   ∩   X   ≠   ∅}                                          (3) 

 where 𝑃𝑋 denotes the lower approximation and PX denotes the upper approximation. 

Pawlak defines a rough set as a pair of lower approximation and upper approximation [7]. 

 

 

Figure 5: A representation of the rough set [11] 

 

Figure 5 gives a representation of the concept of a rough set. In the figure, the squares 

denote equivalence classes, and the ellipse denotes the target set X. Since objects 

belonging to the same equivalence class are indiscernible from each other, equivalence 

classes are the smallest granularity in the information system. Obviously, based on the 

equivalence classes (the squares), we cannot exactly define the ellipse. RST solves this 

problem by defining a pair of approximations, the lower approximation (dark grey) and 
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the upper approximation (dark and light grey) [11]. The lower approximation includes all 

equivalence classes that are entirely included by the ellipse, while the upper 

approximation includes all equivalence classes in the lower approximation and those that 

are partly inside the ellipse. The figure shows that a rough set contains all the information 

based on the known attributes.  

Decision class 3 in Table 4, for example, can be defined by a lower approximation {E3} 

and an upper approximation {E3, E4}. 

2.4 Discernibility matrix 

The discernibility matrix is a |U|  ×  |U|matrix with entries defined as [4]: 

cij   =    {a   ∈   C  |  a(xi)   ≠   a(xj)}  i, j     =   1, . . . , |U|                                (4) 

The cij contains attributes whose values are different between object i and object j. For 

the equivalence classes in Table 4, one can build the discernibility matrix given in Table 

5. 

Table 5: Discernibility matrix example 

 E1 E2 E3 E4 E5 

E1 ∅     

E2 Led2, Led4, 
Led5, Led6 

∅    

E3 Led1, Led2, 
Led4, Led6 

Led1, Led5 ∅   

E4 Led2, Led4, 
Led5, Led7 

Led6, Led7 Led1, Led5, 
Led6, Led7 

∅  

E5 Led5 Led2, Led4, 
Led6 

Led1, Led2, 
Led4, Led5, 

Led6 

Led2, Led4, 
Led7 

∅ 
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The discernibility matrix specifies attributes that are discerning different equivalence 

classes. In the example 

● Item (E2, E2) is empty, because equivalence class E2 cannot be discerned from 

itself. 

● Item (E2, E3) is Led1 and Led5 because by comparing equivalence class E2 and 

E3, only conditional attributes Led1 and Led5 are different. 

● Not all entries need to be filled because the matrix is symmetrical.  

2.5 Discernibility function 

Discernibility function is a boolean function constructed for each equivalence class. This 

function is true for all attribute combinations that discern this object from other objects 

with a different decision [11]. A discernibility function fD  of m  boolean variables 

(a1∗, . . . , am∗ ), corresponding to attributes (a1, . . . , am), is defined as [4]: 

fD(a1∗, . . . , am∗ )   =  ∧ {∨ cij∗   |  1   ≤     j   ≤   i   ≤    |U|, cij   ≠   ∅}  where  cij∗   =    {a∗  |  a   ∈      cij}  (5)  

For example, according to Table 5, discernibility function fE1 that distinguishes E1 from 

all the other equivalence classes is 

fE1= (Led2 ∨ Led4 ∨ Led5 ∨ Led6) ∧ (Led1 ∨ Led2 ∨ Led4 ∨ Led6) ∧ (Led2 ∨ Led4 ∨ 

Led5 ∨ Led7) ∧ (Led5). 

2.6 Reduct 

A reduct is the minimal subset of attributes that enables the same discernibility as the 

whole set of attributes [12]. For a discernibility function, since attributes in a reduct 

already contain all the information, all other attributes can be removed without losing any 
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information. One way to produce a reduct is to change the discernibility function from 

conjunctive normal form to disjunctive normal form [13]. 

For example: 

fE1  = (Led2 ∨ Led4 ∨ Led5 ∨ Led6) ∧ (Led1 ∨ Led2 ∨ Led4 ∨ Led6) ∧ (Led2 ∨ Led4 ∨ 

Led5 ∨ Led7) ∧ (Led5)  

= (Led1 ∨ Led2 ∨ Led4 ∨ Led6) ∧ (Led5) 

= (Led1 ∧ Led5) ∨ (Led2 ∧ Led5) ∨ (Led4 ∧ Led5) ∨ (Led5 ∧ Led6) 

Therefore, the four reducts of fE1 are {Led1, Led5}, {Led2, Led5}, {Led4, Led5}, {Led5, 

Led6}, which are subsets of disjunctive normal form with minimum subsets. 

2.7 Decision rules 

Consider an information system I = (U,A) and A = C ∪ D. Every x   ∈   U determines a 

sequence of c1(x), . . . , cn(x), d1(x), . . . , dm(x)   where {c1, . . . , cn}   =   C and {d1, . . . , dm} =

  D  is called decision rules induced by x  and denoted by 

c1(x), . . . , cn(x)   →   d1(x), . . . , dm(x). The number supportx(C,D)   =    |C  (x)   ∩   D  (x)| is 

called the support of the decisional rule. The support  is a widely used quality measure for 

rules. [14] 

In the SSLD example, according to the formula and Table 4, a decision rule induced by 

equivalence class E1 should be 

IF Led1 = 1 and Led2 = 1 and Led3 = 1 and Led4 = 0 and Led5 = 0 and Led6 = 1 and 

Led7 = 0 THEN Number = 7 

We can safely remove attributes that are not included in the reduct because a reduct has 



18 

the same discernibility as the original attribute set. For example, if the reduct is {Led1, 

Led5}, then the decision rule can be changed to  

IF Led1 = 1 and Led5 = 0 THEN Number = 7 

that contains the same information as the original rule.  

The next chapter elaborates on the implementation of the rough set classifier.  
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3 Implementation of classifier 

3.1 Workflow 

The overall workflow of using the rough set theory to solve the SSLD problem or other 

classification problems contains three main steps: data import, rule generation, and 

classification, as shown in Figure 6. The inputs of the algorithm are a training set and a 

test set, while the outputs of the algorithm are the predicted classes for the test set. 

  

Figure 6: Workflow for the classifier 

 

In Figure 6, the process is repeated ten times because we use the ten-fold cross validation 

to minimize the side effects of choosing the training set and the test set. For each 

iteration, 90% of objects in the data set are used as the training set, and 10% are used as 

the test set. Since the KEEL repository already includes the ten-fold data set, there is no 
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need to divide it in the implementation.  

3.2 Data import 

In this step the classifier imports the training set and the test set from a file system into 

memory, and then generates equivalence classes for the training set. Each data set file in 

the KEEL repository has the following metadata [8]: 

@relation: Name of the data set 

@attribute: Description of an attribute (one for each attribute) 

@inputs: List with the names of the input attributes 

@output: Name of the output attribute 

@data: Starting tag of the data 

One requirement of the classifier is that the classifier should be able to work on multiple 

datasets, which means the classifier should not be designed to solve a particular problem. 

Information provided by the metadata is a key factor to make a general classifier 

possible. In fact, the classifier can get all the information needed to process the data set 

by parsing the metadata. For example, the data set files of the SSLD problem have the 

following metadata: 

@relation led7digit 

@attribute Led1 real [0.0, 1.0] 

@attribute Led2 real [0.0, 1.0] 

@attribute Led3 real [0.0, 1.0] 

@attribute Led4 real [0.0, 1.0] 

@attribute Led5 real [0.0, 1.0] 
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@attribute Led6 real [0.0, 1.0] 

@attribute Led7 real [0.0, 1.0] 

@attribute Number {0,1,2,3,4,5,6,7,8,9} 

@inputs Led1, Led2, Led3, Led4, Led5, Led6, Led7 

@outputs Number 

@data 

0.000000, 1.000000, 1.000000, 0.000000, 1.000000, 1.000000, 1.000000, 0 

1.000000, 1.000000, 1.000000, 0.000000, 0.000000, 1.000000, 1.000000, 0 

1.000000, 1.000000, 1.000000, 0.000000, 1.000000, 1.000000, 1.000000, 0 

1.000000, 1.000000, 1.000000, 0.000000, 1.000000, 1.000000, 1.000000, 0 

0.000000, 0.000000, 1.000000, 0.000000, 0.000000, 1.000000, 0.000000, 1 

… 

Note that in the example 

● The @attribute tag indicating Led1 - Led7 are real values and Number is an 

integer. The classifier knows how to store and to compare the values of two 

attributes through the types of attributes. 

● The @inputs tag indicates the consequence of the attributes in each row of the 

data file. In the example Led1, Led2, Led3, Led4, Led5, Led6, Led7, the first 

value in a row of data is for the attribute Led1, and the second value belongs to 

the attribute Led2, and so on.  

● The @outputs tag indicates that Number is a decisional attribute. Therefore, the 

classifier knows it should compare the Number when it wants to see if two objects 
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belong to the same class.  

● The @data tag indicates the end of metadata. The classifier knows it is time to 

read data rows after this tag.  

● The rest of the file contains the objects in the data set, in which one object is 

represented by a row, with a comma separating two consecutive values. 

After the data sets are imported, the classifier generates equivalence classes. As discussed 

before, an equivalence class represents a group of training instances that are indiscernible 

from their conditional attributes. Equivalence classes are generated by merging training 

instances having the same conditional attributes.  

3.3 Generation of rules 

In this step, the classifier first produces discernibility functions for equivalence classes. 

Second, it simplifies discernibility functions and generates reducts. Finally, the classifier 

generates IF-THEN rules and measures the support of each decision rule. However, 

finding a reduct is time consuming for complex data sets. In order to accelerate the 

processing time, the classifier uses parallel computation to split the workload among 

multiple CPUs. Technically, this is achieved by using multiple threads. Modern operating 

systems allocate long running, CPU-intensive threads into different CPUs if multiple 

CPUs or multiple cores are available in the system. The classifier uses a thread pool to 

manage threads. A thread pool consists of multiple work threads, and a new task will be 

assigned to a free thread in the pool. If there is no free thread in the pool, which means 

the resources are already fully utilized, then new tasks must wait until one thread 

becomes available. When a thread finishes its work, the thread pool assigns a new task to 
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it instead of destroying it. This reduces the overhead for destroying and creating threads. 

The number of threads in the pool is the same as the number of CPUs in the system. 

Ideally, if the number of threads in the pool is N, then the parallel version runs N times 

faster than one thread version. On my laptop, the parallel version runs eight threads at the 

same time. Figure 7 shows that the CPU usage is 789.8%, which means the 8 cores in the 

system are almost fully utilized. 

Figure 7: The CPU usage when parallelization is enabled 

 

Figure 8 shows the CPU usage where the parallelization setting was disabled. For the 

same task, the CPU usage is 104.6% in Figure 8, which means that only one core is 

working, and all other cores are in the idle state. 
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Figure 8: The CPU usage when parallelization is disabled 

 

3.4 Classification 

Classification is the process of reading conditional attributes and predicting the value of 

decisional attributes by using rules. In this step, the test set is used to measure the 

classification performance of our algorithms. At first we assume the test object’s decision 

class is unknown. The test object is then compared to the IF-part of each rule. If it is 

matched, the THEN-part of the rule votes what decision class the object belongs to. The 

class of the object is assigned based on the highest number of votes, also known as the 

majority vote.   

For example, consider we have three rules as shown in Table 6 and a test object shown in 

Table 7. 
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Table 6: Rule examples 

Name  Rule Support 

R1 IF Led1 (1) AND Led2 (1) AND Led3 (1) AND Led4 (0) 
AND Led5 (1) THEN Number (0) OR Number (9) 

15, 3 

R2 IF Led1 (1) AND Led2 (1) AND Led3 (1) AND Led4 (0) 
AND Led7 (0) THEN Number (7) 

2 

R3 IF Led1 (1) AND Led2 (1) AND Led3 (1) AND Led5 (1) 
AND Led7 (0) THEN Number (8) 

2 

 

 

Table 7: Test object example 

Conditional Attributes 
(Led1 - Led7) 

Number 

1110110 Unknown 

 

This test object matches with all three rules (R1-R3) in Table 6. R1 casts 15 votes to the 

number 0 and casts 3 votes to the number 9. R2 casts 2 votes to the number 7. R3 casts 2 

votes to the number 8.  

 

Table 8: Number of votes 

Number Votes 

0 15 

7 2 

8 2 

9 3 
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Since the number 0 receives the highest votes (shown in Table 8), the classifier predicts 

the output is the number 0 for this test object.  

The ten-fold cross validation is used to better utilize observations. Figure 9 is a graphical 

representation of the ten-fold cross validation, where each column indicates one iteration 

of training and classification. In the ten-fold method, the data set is randomly divided into 

ten subsets (already done by the KEEL repository). In the first iteration, the first subset is 

used as the test set, and the remaining nine are used to derive the rules. Then, in the 

second iteration, subset number 2 is used as the test set and so on. This process is 

repeated ten times. 

 

 

Figure 9: Ten-fold cross validation [11] 

 

The performance of the algorithm is measured using correction rates of classification 

results.  For each output, the correction rate is the fraction of instances correctly classified 
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in all ten folds. 

3.5 Graphical user interface 

In this project, the rough set classifier is implemented using the Java programming 

language. The graphical user interface (GUI) is shown in Figure 10. 

 

 

Figure 10: The GUI of the classifier 

 

The function of each control in the GUI is 

● KEEL Dataset Name:  Input the name of the data set to process. Five data sets 

have already been integrated in the project, and they are ‘led7digit’, ‘tic-tac-toe’, 

‘breast,’ ‘german’ and ‘zoo’. 

● Algorithm: Select the algorithm. Available algorithms are Johnson and PSO. 

● Parallelization: Set the parallelization setting on or off. 

● Progress bar: Show the progress for processing each fold. 

● Process: Click the button to start processing the data set. 
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The outputs will be shown in a separate command line window, or a console tab in 

Eclipse. 

The next chapter begins by introducing Johnson’s algorithm and the PSO algorithm, and 

then it discusses how to use these algorithms to solve the reduct problem. 
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4 Reduct algorithms 

4.1 Johnson’s algorithm 

Johnson’s algorithm is a heuristic algorithm using a greedy technique. The idea of 

Johnson’s algorithm is that it always selects the attribute most frequently occurring in the 

clause. The algorithm is described as follows: 

JOHNSON (V, f) 
{ 

V: set of attributes 
f: a discernibility function 
S ← ∅; //current reduct candidate 
while (f  ≠ ∅) 
{ 

bCount = 0; //max count so far 
for each( x ∈ V ) 
{ 
 /* 
 * count(x, f) returns number of x in f 
 */ 

c = count (x, f); 
if (c > bCount) 
{ 
 bCount = c; 
 bAttr ← x; 
} 

} 
S ← S ∪ bAttr; 
/* 
* removeAttr(f, bAttr) removes all clauses in f containing bAttr  
*/ 
f ← removeAttr(f, bAttr); 

} 
return S; 

} 
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Johnson’s algorithm starts by setting S, the current reduct candidate, to an empty set. 

Then, the algorithm counts the appearance of each attribute within the clauses. The 

attribute with the highest count is added into S, and all clauses in f containing this 

attribute are removed from the discernibility function. The algorithm continues until all 

clauses are removed from the discernibility function, the algorithm then returns S as a 

reduct. [4] 

For example, the steps of getting the reduct of f = (Led2 ∨ Led4 ∨ Led6) ∧ (Led1 ∨ Led2 

∨ Led4 ∨ Led6) ∧ (Led2 ∨ Led5 ∨ Led7) ∧ (Led5) are: 

1. Count the appearance of the attributes, Led1 = 1, Led2 = 3, Led4 = 2, Led5 = 2, 

Led6 = 2, Led7 = 1.  

2. Led2 is the most frequently occurring attribute, so it adds Led2 into S. The 

classifier removes all clauses containing Led2 from f. After this step, f = Led5 

and S = {Led2}.  

3. Count the appearance of attributes in f  and it finds that Led5 is the most 

frequently occurring attribute. Then, remove all clauses containing Led5. After 

this step, f becomes ∅ and S = {Led2, Led5}.  

4. The algorithm finishes because f = ∅, and we get reduct Led2 ∧ Led5. 

In Johnson’s algorithm, the attribute that appears more frequently is considered to be the 

most significant. Even though this is not true in all cases, Johnson’s algorithm generally 

finds out a solution close to the optimal [4]. 
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4.2 Particle swarm optimization  

Particle Swarm Optimization (PSO) is a creative heuristic searching algorithm developed 

in 1995 by Kennedy and Eberhart [15]. It is inspired by the behavior of flying birds or 

fish schools. In PSO, a swarm of particles ‘fly’ throughout the problem space to find the 

best solution [7]. A particle has a position and a velocity, which are randomly assigned 

when it is created. Each particle keeps track of the best location it has been in so far, 

denoted as pbest.  All particles also share a value named gbest, meaning the global best 

value. For each iteration, particles adjust their velocities according to formula 6 [16]: 

vid   =   w   ∙   vid   +   c1    ∙   rand1   ∙   (pbestid   −   xid)   +   c2    ∙   rand2   ∙   (gbestd   −   xid)      (6) 

where  

● d   =   1, 2  …   N. N equals the dimension of searching space 

● vid is the particle’s velocity in dimension d 

●   xid is the particle’s position for dimension d 

● pbestid is the  particle’s individual best position in dimension d 

● gbestd is the global best in dimension d 

● w is inertia weight 

●   c1 and   c2 are acceleration factors 

● rand1 and rand2 are two random numbers with range [0, 1] 

The particle’s new location xid is defined as given by equation [16]: 

xid   =   xid   +   vid                                                             (7) 

There are three parts in formula 6, which determine the new velocity of a particle. These 

three parts correspond to inertia, individual thinking and group communication in the real 
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world [17]. The w, c1  and c2  are three constant coefficients for these three parts. A 

maximum velocity Vmax defines the maximum velocity allowed. If the new velocity is 

faster than Vmax, it should be reduced to Vmax. To measure the location of a particle, a 

predefined fitness function is used to calculate how good the position is. The pseudo code 

of PSO algorithm is as follows [17]: 

PSO (S, N) 
{ 

S: the size of swarm 
N: iteration number 
 
gbest = 0, iter = 0; 
gbestPos; //position of gbest 
/* 
generate particles, randomly set their positions and velocities 
*/ 
particles ← generateParticles (S) ;  
while (iter < N) 
{ 

for each (part in particles)  
{ 

/* 
*  calculate the fitness function for part 
*/ 
fitness = calculateFitness(part); 
if (fitness > part.best)  
{ 

 part.best = fitness; 
 part.bestPos ← part.x; 

} 
if (fitness > gbest) 
{ 

gbest = fitness;  
gbestPos ←  part.x; 

} 
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/* 
* update particles 
* w, c1, c2 are constants 
* rand1() and rand2() are two random generator in the range [0, 1] 
*/ 
 part.v ← w ∙ part.v + c1 ∙ rand1() ∙ ( part.best  - part.x) + c2 ∙ 
rand2() ∙ (gbest  - part.x); 
if (part.v > Vmax) 
{ 
  part.v ← Vmax; 

   } 
 part.x ←  part.x +  part.v; 

} 
iter = iter + 1; 

 } 
 
return gbestPos; 

} 
 

4.3 Solving reduct problem using PSO  

In order to use the PSO to solve reduct problems, we should map concepts of the reduct 

to corresponding concepts in PSO. These concepts include: 

● Encoding of position 

● Representation of velocity 

● Position update 

● Selection of constants 

● Fitness function 

In the implementation, the position of particles is represented as a binary array. In the 

binary array, the value 1 means the corresponding attribute is selected, and 0 means the 
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attribute is not selected [17]. PSO was originally designed to work within continuous 

searching space. In order to solve discrete problems, Kennedy and Eberhart [18] 

introduced a binary PSO version. In binary PSO, the velocity of a particle is a float 

number calculated using formula 6. Note that for a binary array, pbestid, gbestid and xid 

are either 0 or 1, and no other values are allowed. The position is updated according to 

formula 7 and formula 8. 

If  rand()   <   sig  (vid)  then  xid   =   1, else    xid   =   0                                (8) 

where rand() generates a random number in the range [0, 1], and sig is a sigmoid 

function, which is defined by formula 9 [7]: 

sig  (vid)   = 1
1  !  e!vid

                                                     (9) 

In my implementation, swarm size is set to 20, max iteration is set to 50, w is set to 

0.7298, c1 = c2 = 1.49618 and Vmax = 6.0. See [7, 18]. The fitness function is defined by 

formulas 10, 11 and 12: 

fitness   =   α   ∙   fa +   β   ∙   fb                                              (10) 

  fa = |T|
  |M|  

                                                            (11) 

  fb =   |C|  !  |R|  
|C|

                                                      (12) 

where 

● α and β are significances of two factors, α  +   β   =   1 

● |R| is the number of 1 in the position.  
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● |C| is the total number of attributes. 

● |T| is the number of clauses that are covered. 

● |M| is the total number of clauses in discernibility function 

A reduct should have two features: 1) it should have the same discernibility as the whole 

set of attributes; 2) it should be the minimal subset of attributes. The fitness function also 

includes two factors fa and fb, which correspond to these two features. α and β define the 

significance of these two factors. In theory, α is more important than β because we do not 

want to remove attributes that are essential. But how much more important is α than β? In 

this work, we performed experiments to find out an appropriate pair of α and β values. 

The experiment contains a series of tests, in which α was set to 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 

0.7, 0.8, 0.9, 1.0 respectively. Five datasets from KEEL were processed to test which one 

has the best correction rates. The experiment result is shown in Figure 11. 

 

Figure 11: Average correction rates for different α 
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Figure 11 shows that, on average, the correction rate increases according to the increase 

of α up to 0.9. After 0.9, the correction rate drops. The experiment shows that α = 0.9 is 

an appropriate value.  

In the next chapter, we evaluate the effectiveness of these two reduct algorithms with 

benchmarks from the KEEL repository. And we compare my results with results obtained 

by the ROSETTA software using the same benchmarks. 
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5 Experimental result and discussion 

Two reduct algorithms, PSO and Johnson’s algorithm, are implemented and tested using 

five data sets from the KEEL repository. The test results are compared in terms of the 

correction rates of ten-fold cross validation results. The same data sets have also been 

processed by using GA and Johnson’s algorithm included in ROSETTA toolkit so that 

we can compare my results with the results of the existing package. 

5.1 The led7digit data set 

The aim of this data set is to determine what digit is displayed at the 7-segment display 

according to inputs. Inputs are 7 boolean attributes, one for each segment. If no noise is 

introduced, the problem is easy. In this case, the input data has a 10% probability of 

having one of its values inverted. Figure 12 shows the general information about the 

led7digit data set. [8] 

 

 

Figure 12: General information about the led7digit data set [8] 
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Table 9 shows the ten-fold cross validation results for the four reduct algorithms. The 

results are shown as the classification correction rates of the classifier using the reduct. 

 

Table 9: Correction rates for the led7digit data set  

FOLD Johnson's PSO GA  
(ROSETTA) 

Johnson's 
(ROSETTA) 

1 66.0% 68.0% 68.0% 68.0% 

2 68.0% 66.0% 66.0% 66.0% 

3 74.0% 74.0% 74.0% 74.0% 

4 68.0% 70.0% 66.0% 68.0% 

5 72.0% 72.0% 74.0% 72.0% 

6 76.0% 74.0% 68.0% 68.0% 

7 64.0% 64.0% 64.0% 64.0% 

8 74.0% 74.0% 72.0% 74.0% 

9 68.0% 68.0% 68.0% 68.0% 

10 66.0% 66.0% 66.0% 66.0% 

Average 69.6% 69.6% 68.6% 68.8% 

 

As can be seen from Table 9, my Johnson’s algorithm and PSO algorithm got highest 

correction rate (69.6%). Johnson’s algorithm in ROSETTA got 68.8%, which is slightly 

better than GA (68.6%).  

5.2 The tic-tac-toe dataset 

This data set includes possible board configurations at the end of a tic-tac-toe game. The 

target is to predict if player x will win the game. The general information about the tic-
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tac-toe data set is shown in Figure 13. [8] 

 

Figure 13: General information about the tic-tac-toe data set [8] 

Table 10 shows the test results for the tic-tac-toe data set. 

Table 10: Test results for the tic-tac-toe data set  

FOLD Johnson's PSO GA 
(ROSETTA) 

Johnson's 
(ROSETTA) 

1 87.4% 96.8% 73.7% 77.9% 

2 88.4% 100.0% 60.0% 50.5% 

3 88.5% 100.0% 85.4% 82.3% 

4 86.5% 93.8% 56.3% 57.3% 

5 85.4% 100.0% 65.6% 58.3% 

6 96.9% 100.0% 64.6% 65.6% 

7 86.5% 100.0% 61.5% 59.4% 

8 88.5% 99.0% 66.7% 64.6% 

9 79.2% 95.8% 67.7% 68.8% 

10 89.6% 100.0% 90.6% 91.7% 

Average 87.7% 98.5% 69.2% 67.6% 

 



40 

The results show that PSO got the highest average correction rate (98.5%), which is much 

better than my Johnson’s algorithm (87.7%). GA got 69.2%, which is also better than 

Johnson’s algorithm in ROSETTA (67.6%).  

5.3 The breast dataset 

This data set is about breast cancer. The objects include 9 conditional attributes, and 

some are linear and some are nominal. The data set includes 201 objects of one class and 

85 objects of another class. The general information about the breast data set is shown in 

Figure 14. [8] 

 

 

Figure 14: General information about the breast data set [8] 

 

Table 11 contains the test results for the breast data set. The results in Table 11 show the 

same pattern as the test results of tic-tac-toe data set. That is: PSO (70.3%) is better than 

my Johnson’s algorithm (68.8%); GA (69.2%) is better than Johnson’s algorithm in 

ROSETTA (67.2%). 
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Table 11: Test results for the breast data set  

FOLD Johnson's PSO GA 
(ROSETTA) 

Johnson's 
(ROSETTA) 

1 75.0% 75.0% 67.9% 67.9% 

2 67.9% 71.4% 65.5% 69.0% 

3 66.7% 70.4% 57.1% 57.1% 

4 56.7% 53.3% 75.0% 71.4% 

5 62.1% 69.0% 83.3% 63.3% 

6 74.1% 81.5% 56.7% 66.7% 

7 66.7% 74.1% 82.1% 71.4% 

8 75.0% 64.3% 71.4% 64.3% 

9 73.1% 73.1% 65.5% 62.1% 

10 70.4% 70.4% 67.9% 78.6% 

Average 68.8% 70.3% 69.2% 67.2% 

 

 

5.4 The german dataset 

This data set comes from Statlog German Credit Data about bank customers and their 

bank accounts. The aim is to classify the customer as good or bad. The general 

information about the german data set is shown in Figure 15. [8] 
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Figure 15: General information about the german data set [8] 

 

Table 12 contains the test results for the german data set. 

Table 12: Test results for the german data set  

FOLD Johnson's PSO GA 
(ROSETTA) 

Johnson's 
(ROSETTA) 

1 65.0% 71.0% 67.0% 65.0% 

2 70.0% 70.0% 69.0% 70.0% 

3 69.0% 69.0% 70.0% 69.0% 

4 68.0% 66.0% 68.0% 68.0% 

5 73.0% 74.0% 72.0% 74.0% 

6 68.0% 66.0% 69.0% 68.0% 

7 67.0% 67.0% 70.0% 66.0% 

8 69.0% 69.0% 69.0% 70.0% 

9 66.0% 73.0% 70.0% 65.0% 

10 69.0% 67.0% 68.0% 71.0% 

Average 68.4% 69.2% 69.2% 68.6% 
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As shown in Table 12, PSO and GA got the highest correction rate (69.2%). My 

Johnson’s algorithm got 68.4%, and Johnson’s algorithm in ROSETTA got 68.6%. 

5.5 The zoo dataset 

This is a simple data set used to classify animals in seven predefined classes (mammals, 

birds and so on). Most of the attributes are boolean values. The general information about 

the zoo data set is shown in Figure 16. [8] 

 

 

Figure 16: General information about the zoo data set [8] 

 

Table 13 contains the test results for the zoo data set. For this data set, Johnson’s 

algorithm in ROSETTA got the highest correction rate (97.7%). My PSO got 96.7%, 

which is better than my Johnson’s (95.7%). GA got the worst correction rate (95.2%). 
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Table 13: Test results for the zoo data set  

FOLD Johnson's PSO GA 
(ROSETTA) 

Johnson's 
(ROSETTA) 

1 83.3% 100.0% 91.7% 100.0% 

2 100.0% 100.0% 100.0% 100.0% 

3 100.0% 100.0% 100.0% 100.0% 

4 100.0% 100.0% 100.0% 100.0% 

5 90.0% 90.0% 90.0% 90.0% 

6 100.0% 100.0% 100.0% 100.0% 

7 90.0% 90.0% 90.0% 100.0% 

8 93.3% 86.7% 80.0% 86.7% 

9 100.0% 100.0% 100.0% 100.0% 

10 100.0% 100.0% 100.0% 100.0% 

Average 95.7% 96.7% 95.2% 97.7% 

 

 

5.6 Summary for the correction rates 

Table 14 is a summary of the test results for five individual data sets, shown as the 

average correction rates for classifiers using these four algorithms. 
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Table 14: Summary for the results of five data sets 

Data set Johnson's PSO GA 
(ROSETTA) 

Johnson's 
(ROSETTA) 

led7digit 
instance: 500 
attribute: 7 

decision class: 10 

69.6% 69.6% 68.6% 68.8% 

tic-tac-toe 
instance: 958 
attribute: 9 

decision class: 2 

87.7% 98.5% 69.2% 67.6% 

breast 
instance: 286 
attribute: 9 

decision class: 2 

68.8% 70.3% 69.2% 67.2% 

german 
instance: 1000 
attribute: 20 

decision class: 2 

68.4% 69.2% 69.2% 68.6% 

zoo 
instance: 101 
attribute: 16 

decision class: 7 

95.7% 96.7% 95.2% 97.7% 

Average 78.0% 80.9% 74.3% 74.0% 

 

Upon comparing the results obtained by the four algorithms, one can conclude that the 

differences between them are pretty small. On average, the lowest correction rate is 

74.0% and the highest is 80.9%. By comparing the result of my Johnson’s algorithm and 

ROSETTA’s Johnson’s algorithm, my implementation got better results for three data 

sets and got worse results for two data sets. On average, the correction rate of my 

Johnson’s implementation is 78.0%, which is better than ROSETTA’s Johnson’s 

algorithm (74.0%). Note that other factors in the rough set framework might also affect 
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the correction rate, and a higher correction rate does not mean my Johnson’s algorithm is 

better than ROSETTA’s. But this at least shows my implementation of the rough set 

framework and Johnson’s algorithm are correct and produce reasonable results. By 

comparing the test results of my PSO and my Johnson’s algorithm, PSO always got equal 

or better results. On average, PSO got 80.9% in correction rate, while my Johnson’s 

algorithm got 78.0%. By comparing ROSETTA’s GA and ROSETTA’s Johnson’s 

algorithm, GA got 74.3% on average correction rate, which is slightly better than 

ROSETTA’s Johnson’s algorithm (74.0%). Regarding the results of GA and PSO, PSO is 

equal or better than GA in all data sets.  

5.7 Speed comparison 

In this part, I compare the running time of my PSO and my Johnson’s algorithm. I do not 

measure algorithms in ROSETTA because there is no easy way to calculate the running 

time for ROSETTA. The results are tested on a MacBook Pro with 2.3 GHz Intel Core i7 

CPU and 8GB memory. The operating system is OS X 10.9.2. The running time is shown 

in Table 15. 

 

Table 15: Running time comparison, Johnson’s vs PSO 

Algorithm led7digit 
(ms) 

tic-tac-toe 
(ms) 

breast 
(ms) 

german 
(ms) 

zoo 
(ms) 

Johnson's 121 1509 178 2987 50 

PSO 2426 67081 7673 107033 2127 

Ratio 20.05 44.45 43.11 35.83 42.54 
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The result shows that Johnson’s algorithm is much better with respect to processing time. 

For these five data sets, Johnson’s algorithm is about 20 - 45 times faster than PSO. The 

time complexity of Johnson’s algorithm is O(N2M2) where N is the number of attributes, 

and M is the number of objects in the training set. PSO is O(SI ∙ N2M2) where S is the 

number of particles, and I is the number of iterations. As S and I are constants, the time 

complexity of two algorithms are all O(N2M2). PSO is slower than Johnson’s algorithm 

because Johnson’s algorithm has a much smaller constant factor. From the test results, we 

can find that the ratios do not change as much as the complexities of data sets vary. This 

supports my conclusion that two algorithms are in the same order. 

5.8 Parallelization performance comparison 

As previously discussed, parallel computing can improve performance. This section 

compares the difference in performance between parallelization enabled and disabled. 

Table 16 shows the different processing times of my PSO classifier when parallelization 

is enabled or disabled. The results were tested on a MacBook Pro with 2.3 GHz Intel 

Core i7 CPU and 8GB memory. The operating system is OS X 10.9.2. The different 

running times are shown in Table 16. 

Table 16: Parallelization performance for PSO 

Parallelization led7digit  
(ms) 

tic-tac-toe  
(ms) 

breast  
(ms) 

german  
(ms) 

zoo  
(ms) 

Disabled 2426 67081 7673 107033 2127 

Enable 651 15936 1665 25485 471 

Ratio 3.73 4.21 4.61 4.20 4.52 
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The CPU of the test machine includes 4 cores, and each core can run two threads at the 

same time. So in theory, it can run 8 threads at the same time. The test results show it is 

about 3 times faster after the parallelization option is enabled. Since parallelization 

involves some overheads and part of the work does not run in parallel, this seems to be a 

reasonable result.  

Table 17 shows the different processing times of my Johnson’s classifier when 

parallelization is enabled or disabled.  

 

Table 17: Parallelization performance for Johnson’s 

Parallelization led7digit 
(ms) 

tic-tac-toe 
(ms) 

breast 
(ms) 

german 
(ms) 

zoo 
(ms) 

Disabled 121 1509 178 2987 50 

Enabled 109 1522 170 3015 56 

Ratio 0.90 1.01 0.96 1.01 1.12 

 

 

The results show a different pattern than the previous one. The performances are almost 

the same whether parallelization is enabled or disabled. In some cases, the performances 

even become worse when parallelization is enabled. This is expected, because Johnson’s 

reduct algorithm is very fast, and the overhead of parallelization might be bigger than its 

benefit.  

5.9 Conclusion and possible directions for future research 

In this work, I used rough set theory to solve the SSLD problem and other classification 
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problems. The results show that rough set theory is a powerful tool for solving 

classification problems. Two reduct algorithms, PSO and Johnson’s algorithm, are 

studied, implemented and tested. Among PSO, GA and Johnson’s algorithm, Johnson’s 

algorithm is the fastest reduct algorithm. It does not guarantee finding a shortest reduct, 

but normally finds a solution close to the optimal one. Johnson’s algorithm guarantees the 

discernibility, which means the rules generated from the reducts keep all information in 

the training set. The test results show that Johnson’s correction rate is slightly lower than 

GA and PSO but not by much. The disadvantage of Johnson’s algorithm is that there is 

no easy way to improve the output quality, because it does not have any parameter to 

adjust. Compared to Johnson’s algorithm, PSO is slower and does not guarantee the 

discernibility. Instead, my implementation of PSO introduces two factors, α and β, to 

balance the output’s discernibility and length. Since different problems have different 

emphases on these two factors, PSO can adapt to different problems by changing α and β. 

For example, the classifier uses a lower α in image recognition problems with acceptable 

detail loss. PSO is also easily improved by increasing swarm size and iterations. 

Obviously, this will increase the running time at the same time. These kinds of 

adjustments make PSO quite a flexible algorithm. Our tests show PSO works better than 

GA and Johnson’s algorithm, and this result is achieved by a relatively small swarm size 

(20) and iterations (50). A possible future research direction could be to optimize the 

PSO algorithm by adjusting parameters such as α, β, c1, c2, w, swarm size and iteration 

count. 
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