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ABSTRACT

PREDICTING PRODUCT REVIEW HELPFULNESS USING MACHINE 

LEARNING AND SPECIALIZED CLASSIFICATION MODELS

by Scott Bolter

!

! In this paper we focus on automatically classifying product reviews as either 

helpful or unhelpful using machine learning techniques, namely, SVM classifiers. Using 

LIBSVM and a set of Amazon product reviews from 25 product categories, we train 

models for each category to determine if a review will be helpful or unhelpful. Previous 

work has focused on training one classifier for all reviews in the data set, but we 

hypothesize that a distinct model for each of the 25 product types available in the review 

dataset will improve the accuracy of classification. 

! Furthermore, we develop a framework to inform authors on the fly if their review 

is predicted to be of great use (helpful) to other readers, with the assumption that 

authors are more likely to rethink their review post and amend it to be of maximum utility 

to other readers when given some feedback on whether or not it will be found helpful or 

unhelpful.

! Using past research as a baseline, we find that specialized SVM classifiers 

outperform higher level models of review helpfulness prediction.
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Introduction

! An increasingly prevalent trend in the sale of goods is the shift to e-commerce, or 

online shopping. Numerous, if not most, traditional “brick and mortar” stores have online 

shops where consumers can place orders of many of the same products they would find 

at the physical store locations. As this trend continues (often to the disdain of in-store 

workers), these locations have become simple “showrooms” where customers can see 

and touch the product, but actually plan to order it online where it may be cheaper, more 

varied in size or color, or simply more convenient to have shipped rather than brought 

home. Aside from convenience and competition, the largest benefit to customers is 

arguably the availability of firsthand reviews and feedback from other shoppers. “What 

do the reviews say?” and “How many stars did it get?” are questions that online 

consumers factor in to their purchasing decisions. In addition to the customer benefit, 

companies making the products being sold also benefit from online availability of such 

reviews. They can incorporate the feedback of their customers into future product 

iterations with the end goal of increasing sales. For these reasons, it is of high 

importance to strive for the best quality and most accurate reviews. One way to judge 

quality and accurate reviews is by their helpfulness to other readers, which is where this 

project focuses.

! Currently, one of the most popular multi-category online shop is Amazon.com. 

With many products in many different departments, it has become a hugely popular 

option for online shoppers. This popularity increases the number of customer reviews 

which in turn adds to the siteʼs utility. Aside from a “star rating” from 1 to 5, customers 

can also submit textual feedback and product accounts, made available on the 
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productʼs page on Amazon.com. Next to each review are three simple user-interface 

elements: a label, “Was this review helpful to you?”, and two buttons, “Yes” and “No”. It 

is this mechanism that allows users to vote up or down the helpfulness of a product 

review. The website then allows customers to sort reviews by their voted helpfulness 

(the siteʼs default review ordering) or temporally. While providing an excellent option for 

customers to filter out “good” and “bad” reviews, the problem with this system is the 

necessity of participation from review readers and the possibility that reviews that were 

not voted on or were authored so long ago they are not high up in the ordering of 

reviews. This means that helpful reviews would likely not be seen by customers unless 

they enumerated through a potentially very large set of other reviews.

! To mitigate the issues mentioned above, this project develops a machine learning 

technique to automatically classify product reviews as either helpful or unhelpful, without 

the need for voting. This is done using Support Vector Machine (SVM) classifiers, with 

two end goals: to automatically classify reviews using only the review text and to 

provide a framework for classifying input text on-the-fly that informs review authors that 

their review is likely to be seen as either helpful or unhelpful. Our hypothesis is that if 

users are made aware of their reviewʼs predicted utility (or lack thereof) at the time they 

author it, they are more likely to correct or augment their reviews which will increase 

their helpfulness.

SVM Classifiers

! Support Vector Machine classification is a type of supervised machine learning 

technique. The difference between a supervised versus an unsupervised machine 
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learning technique lies in the data used to create the classifier (model). In a supervised 

learning environment, the classifier is taught using data that has already been 

determined to reside in a specific class. The model is created to then predict which 

class a datum resides in based on the attributes of that datum. On the other hand, for 

unsupervised learning, commonalities between the dataʼs attributes are used to cluster 

them into like groups, with no predetermined classification [13].

! Using selected features of the data, an SVM classifier attempts to create a 

hyperplane that accurately divides the data into distinct classes. While this hyperplane 

could be imagined in many dimensions, for visualization purposes, it is simplest to 

visualize this in two dimensions, demonstrated by Figure 1 below.
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Here, the plane divides circles and squares into separate classes. When testing new 

data, any data point that is above the plane would be classified as a circle, with anything 

below the plane classified as a square [7].

! While this is very simple to see in a cartesian plot of data, the same technique 

can be applied to problems with many dimensions. In the case of textual-based 

document classification, vectors are constructed using the documentʼs inclusion of 

words in a global dictionary. The global dictionary is a collection of each unique word 

used in all of the training documents. We can then construct vector representations of 

each of the training documents using the indexes of the elements of the global 

dictionary and either a ʻ1ʼ for that index if the training document includes the word at that 

index, and a ʻ0ʼ otherwise. See Figure 2 below for a simple example.
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Here we have two documents. Document 1 pertains to music, while Document 2 

pertains to a painting. The global dictionary is an array of all words used in both 

documents. Each training vector is a representation of the document with a 1 placed in 

the index corresponding to the wordʼs index in the global dictionary if present in the 

document, and 0 placed in the index of all words in the global dictionary that are not in 

the document. Note that the global dictionary contains only one ʻtheʼ since it is a 

collection of the unique words. Using this technique, each word in the global dictionary 

is considered a “feature” of the document. Comparing the features of every document 

against those used for training where the class is known informs the classifier about 

which class the document belongs to. In the figure above, for example, after training an 

SVM classifier, the document, “the notes were loud” would be predicted as music 

because the features of the document more closely match those of the training set (in 

this case, only Document 1) that were known to be pertaining to music [7].

! Given the simple example above, one might notice that the two documents, 

known to be in different classes, contain common words, or, features. One can see that 

“the” and “were” are in both documents. These features do not add any benefit to our 

model because they offer no information gain since their presence in a test document 

could mean the document belongs to either class. For this reason, we ignore them. 

These common words have no weight at all. They are known as “stop words”. To keep 

them from corrupting the model, the training routine is supplied with a set of stop words 

and each of them is filtered out from the training documents and global dictionary. The 

following figure shows what our example looks like after pruning common stop words.
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Note that our global dictionary now contains words that have self-contained meanings 

more closely identifiable with the two classes as opposed to less meaningful words like 

“the”, “and”, and “were”. Also note that, while “and” was not common amongst both 

documents, it was still removed as it is common enough to warrant membership of our 

stop word list [1].

! Lastly, and perhaps less of an obvious gain in our example, is word stemming. 

One might wonder about the different permutations of a word. For example, “played” is 

in our global dictionary, but what about “play”, “plays”, “playing”, “player”, “players”, etc. 

6



Should not each of these words be associated with music rather than painting? To 

accomplish this, we employ another technique, known as “word-stemming” when 

training our SVM classifier. This is a simple matter of reducing every word to its root so 

that all permutations of the word will map to the same feature in the global dictionary. 

Figure 4 shows what our global dictionary will look like once every word is stemmed. 

The stemming of the documentsʼ features is omitted as they are subsets of the global 

dictionary.

As can be seen by “plai” in index 3 of the new global dictionary, the stemmed words are 

not necessarily defined words in the traditional sense of language. As long as the 

stemming of all permutations results in this same root, the model can be trained with 

this word as a feature.

! SVM classifiers generally have a proven track record of success in document 

analysis and classification, especially in problems with a small number of target classes. 
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While there is empirical evidence in some research where some preprocessing has a 

negative effect on accuracy [2], when augmented with the two preprocessing 

techniques outlined above, stop word removal and word stemming, the accuracy of 

SVM classifiers typically improves, as we see in this project. In this research, the class 

of a document (review) is either helpful or unhelpful, and several studies indicate that 

SVM classifiers are effective in the problem space of product review classification.

Previous Work

! As the prevalence of online shopping and product reviews have increased, so too 

has the interest in generating the best set of reviews to interested parties: customers, 

vendors, and producers of the goods being sold. Customers rely on this data to make 

purchasing decisions. Vendors recognize that the more robust their collection of product 

reviews, the more traffic will filter through their site, thus yielding a beneficial cycle of 

more customers leaving more product reviews. Finally, producers of the goods being 

sold can use these product reviews to inform design decisions and future product 

direction to ultimately appeal to more customers, essentially using the reviews to 

continue doing what customers favored, and alter areas where the products were 

reviewed poorly.

! Blitzer et al [3] procured a dataset of Amazon.com product reviews from 25 

different product categories. It has been used by several other studies and is used in 

this research. Their original research focused on detecting the sentiment, or general 

emotions, of the review to classify positive versus negative experiences with the 

product. This mirrors the aim of our research as they used features of the review other 
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than the actual product rating given by the reviewer to detect a positive (high) or 

negative (low) rating. Here, we use features other than the helpful or unhelpful votes 

that a review receives to ultimately determine if it would be found as helpful or not to 

other readers.

! Kim et al [8] presented research in which SVM regression was employed to 

determine which features of the reviews from an Amazon.com dataset yielded 

themselves to helpfulness predictions. These features included the review length, 

unigrams (each word of the review text taken as a distinct feature, as we have done in 

this research), and the product ratings.

! While the most commonly known form of spam is unwanted electronic mail, 

product review spam is also prevalent amongst online shopping review forums. This can 

take the form of unrelated links, advertising mixed into product review text, or false 

reviews, perhaps used to artificially increase the rating of a product. Lau et al [9] 

employed text mining and probabilistic language modeling to detect spam amongst 

review sets. 

! Liu et al [10] offered research on detecting low-quality reviews using different 

types of biases, suggesting methods to simply strip these reviews from the available set 

yielding a ground-truth opinion of the specific product being reviewed.

! Hong et al [6] developed an Automatic Helpfulness Voting, coined “AHV”, system 

by building a ranking SVM classifier to assign a score to each of the reviews being 

tested and rank them in order of helpfulness. They built upon earlier successes with 

SVM classification by attempting to learn user preferences within their models. These 

include information needs fulfilled by product reviews, the credibility of reviews, and 
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each reviewsʼ consistency with the mainstream opinion of the product. They find that 

when including these aspects, AHV performance is improved.

! Here, we attempt to further the successes of SVM classification by using trained 

models for detecting helpful versus unhelpful reviews. By training multiple classifiers for 

the multiple product categories, we aim to improve accuracy predictions and believe 

that, intuitively, many models that have increased specificity should yield more accurate 

results. By developing an application to efficiently train, test, and store these classifiers, 

we gain the benefit of model multiplicity, effectively drilling down from a high-level model 

for a set “product reviews” to a more refined model for reviews of a specific product type 

such as “camera and photo”. 

Review Helpfulness Prediction With Specialized 
Models

Intuitive Idea

! As mentioned above, SVM classification has shown to be a well-performing tool 

for classifying product reviews. As with this research, Hong et al and Kim et al, both 

presented SVM classification results on sets of Amazon.com product reviews. While 

their datasets certainly used reviews from various product types, the models trained 

were trained using reviews from the entire set. In this project, we hypothesize that 

accuracy could be improved if many models were trained amongst each product type 

available, thereby creating “specialized models”. The intuitive idea lies in the inherent 

differences of a global dictionary between each product type. For example, the terms 

“size” and “fit” might be very important when determining the helpfulness of a review of 
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a pair of denim jeans, but are likely offer no information gain when dealing with reviews 

of something like a laptop. Similarly, including “RAM” and “CPU” in a global dictionary 

would only serve to pollute a classifier attempting to predict the utility of clothing 

reviews. With more refined global dictionaries and specific features of helpful or 

unhelpful reviews for a given product type, accuracy should increase because there are 

smaller instances of noise or corruption while training the models.

! Pairing these specialized classifiers with persistent storage, we also present a 

framework for testing reviews prior to submission with the assumption that authors will 

be more likely to submit reviews that are more helpful if they are presented with the 

prediction of helpfulness at the time they submit them. Each of our 25 product types can 

store any number of classifiers. Each classifier has an accuracy associated with it. The 

classifier with the highest accuracy will be used to predict the helpfulness of a new 

review of a product in that product type. This is outlined further in later sections.

Dataset

! Our dataset was obtained from the research done by Blitzer et al [3]. These 

authors made it available for download at http://www.cs.jhu.edu/~mdredze/datasets/

sentiment/. The data is entitled “Multi-Domain Sentiment Dataset” and this research 

makes use of version 2.0. It is a collection of Amazon.com product reviews pulled from 

multiple product categories (domains). Some product types, such as books and DVDs, 

have hundreds of thousands of product reviews while others, such as musical 

instruments may have only a few hundred. Table 1 below outlines the dataset at the 

level of category and count.
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Table 1 - Multi-Domain Sentiment Dataset Count

Product Category Number of Reviews
apparel 9252

automotive 736

baby 4256

beauty 2884

books 975194

camera & photo 7408

cell phones & service 1023

computer & video games 2771

dvd 124438

electronics 23009

gourmet food 1575

grocery 2632

health & personal care 7225

jewelry & watches 1981

kitchen & housewares 19856

magazines 4191

music 174180

musical instruments 332

office products 431

outdoor living 1599

software 2390

sports & outdoors 5728

tools & hardware 112

toys & games 13147

video 36180
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!

! Each product category is represented in this dataset in an XML file containing all 

reviews for that category. Each review in the file is represented between <review> and 

</review> tags. All reviews have the attributes listed in Table 2 below.

Table 2 - Review Attributes

Attribute Name
product_name

product_type

helpful

rating

title

date

reviewer

review_text

!

! One early decision in this project was to use a MySQL database to store the 

review information rather than flat files. This was done for several reasons. The first, 

and most practical, was for ease of organization and auditing. Opening even one 

product categoryʼs review set, even with a lightweight editor such as vi, proves very 

taxing on a computer. An early lesson was to turn off XML syntax highlighting when 

dealing with files of such magnitude. Simply loading all the data into memory when 

opening the XML file could take minutes for categories such as books and DVDs. 

Searching for a specific string was also very slow to complete. Aside from alleviating the 

frustrations of dealing with very large flat files, a MySQL database offers simplicity, 
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scalability, stable performance, and flexibility when considering programming options for 

library plugins in various languages.

! However, for some of the challenges mentioned above, converting the XML files 

into a MySQL database proved non-trivial. Nokogiri (http://nokogiri.org/) was used to 

parse the XML files. This is a plugin, or “gem”, for the Ruby programming language. It 

has excellent support for parsing both HTML and XML using XPATH and CSS3 

Selector. While this library is useful for opening an XML document and parsing its 

contents, we ran into the same problem of memory constrains. Note that some of the 

product categories contain hundreds of thousands of reviews, each with the attributes 

listed above, yielding very large files. For example, the XML file containing all book 

reviews in this dataset is 1.3 gigabytes. Parsing this file in one shot proves taxing for 

even machines with respectable computing power. To mitigate this challenge, we 

employ a “divide and conquer” approach. Constructing a relatively simple shell script, 

divider.sh, we are able to specify the number of reviews we wish to have in a single file 

and the original XML file name as arguments and divide the product reviews for each 

category into several files, making them much more manageable for our parser. As 

outlined later, modifications to our file importer were made to allow specifying a directory  

which contains all of the files for a given product category rather than a single, much 

larger, XML file. From here, all reviews are able to be parsed and inserted into a 

MySQL table.

Application
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! Aside from using Ruby and Nokogiri to parse the review XML files into our 

MySQL database, the implementation of the rest of the application was done with Ruby. 

Specifically, Ruby on Rails, an object-oriented language with a framework for quickly 

setting up a skeleton of a web application, complete with drivers for connecting to 

MySQL. The application is named RHP, for Review Helpfulness Predictor. It handles 

everything from importing files or directories of files into the database, displaying each 

review and its attributes in a web browser, setting parameters for training a model, 

training and saving the SVM classifier, testing each classifier, and reloading classifiers 

from persistent storage to train a single user-entered review (one that is not in the 

database), providing on-the-fly feedback of a userʼs reviewʼs helpfulness.

Design

Architecture

! As a framework, Ruby on Rails lends itself to development of a Model View 

Controller (MVC) application. This design pattern is appropriate for RHP for several 

reasons. A graphical component, able to display results of tests and statistics about our 

classifiers is desired simply for ease of use. However, there are different ways we wish 

to display the the models (from here on, in this section “models” will refer to the M of 

MVC, and classifiers will be used to refer to our machine learners to avoid confusion) of 

our application, whether they are reviews, product categories, or classifiers. The MVC 

design pattern is excellent at accomplishing this feat as we can reflect changes to our 

models across several views, in the case of Rails, web pages. Each view gives us a 
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different angle and context about the models, but no view has to be updated 

independently as a change in the model is reflected everywhere in the MVC 

architecture. Additionally, this architecture allowed the implementation to evolve over 

time as we discover new uses, attributes, or functions for the models. For example, 

throughout testing, there were instances where we wished views to display integer 

counts of how many reviews of a specific product type where voted as helpful, how 

many voted as unhelpful, and how many were not voted on at all by Amazon.com users. 

This can be calculated from the reviews table query based on the product type, but 

once it was clear this data was a common need, our product type model was updated 

with new attributes (columns in the MySQL table) such as helpful_total and 

unhelpful_total. After this change, these attributes only needed to be calculated once, 

and could then be accessed in constant time from several different views. Figures 5 and 

6 below outline the MVC architecture in UML specific to two of the main models of the 

application.
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Figure	 5:	 Review	 MVC
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Figure	 6:	 Classifier	 MVC

! Both models above inherit from the ActiveRecord base class. In Ruby on Rails, 

this class abstracts interactions with a SQL database. For example, rather than using a 

SELECT statement with a LIMIT of 1 to obtain the first review from the reviews table of 

the MySQL database, one can simply call Review.first and the Review class will 

make use of ActiveRecordʼs methods to perform the SQL statement behind the scenes, 

simplifying functions requiring access to the database. Similarly, each of the models has 

a dedicated controller which inherits from ApplicationController. This parent class 

abstracts the methods necessary to handle RESTful calls, URLs forwarded by the web 

server to the controllers which contain GET and POST methods along with parameters. 

Parsing these parameters, forwarding to the appropriate method, and redirecting to the 
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requested views is all abstracted by this parent class, allowing both ReviewsController 

and ClassifiersController to remain succinct and clear classes in the application with 

added functionality specific to their respective models and views.

Classes

! The applicationʼs models are constructed with two primary relationships, 

association and aggregation. While the product type model is not mentioned in the MVC  

architectures above because there are no views or a controller associated with it, it is 

still one of the three main models of the application. In Rails, these relationships are 

easily maintained using metadata in each of the modelʼs class files. The metadata is a 

tag in the form of has_many (aggregation) and belongs_to (association). Each of 

these flags are followed by the name of the model to which this class either has many of 

or belongs to. These allow quick access to instances of the aggregating or associating 

classes from the aggregated or associated class. For instance, a review belongs to a 

product type and a product type has many reviews. So in our review class, stipulating at 

the top of the class file, belongs_to :product_type, allows all instances of the 

review class to quickly access the product type to which it belongs using the dot 

operator. For example, some_review.product_type will yield the instance of the 

product type class to which some_review belongs. The following diagram in Figure 7 

illustrates these relationships in UML.
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Figure	 7:	 Model	 Relationships

! As the UML diagram shows, both reviews and classifiers belong to only one 

product type, but reviews also belong to a plurality of classifiers. Of course, each 

classifier uses only reviews that are from its same product type, but we can train 

multiple classifiers for a single product type and each classifier might contain 

overlapping sets of reviews used in other classifiers with the same product type for 

training or testing.

! While not used throughout the entire application, the file upload model is an 

important part when compiling a product typeʼs review set. We can append to this 

review set by importing many files, hence the product typeʼs class aggregation of file 
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uploads. When uploading XML files containing reviews, however, all reviews are 

separated into distinct product type files, thus any upload belongs to only one product 

type, supporting reviews from multiple product types is not explicitly supported. The 

upload controller allows us to either process reviews from many XML files in a specified 

directory, or process each XML file individually. We further abstract the Nokogiri parser 

mentioned above into a function to retrieve the contents of a given XML node. As we 

process a file, a new review instance is created whenever we encounter encompassing 

<review>...</review> tags. Each attribute inside these tags is a node that must be 

processed and saved into a column of the record in the reviews database table.

! The final class diagram, though simple, outlines the members doing the bulk of 

the work in the application. Although the file parsing and review organization into distinct 

product types and models is important, with nothing further, we would essentially have 

only built an Amazon.com review browser for 25 different product categories. Gorgeous 

though it is, there is no added utility over the Amazon.com website itself. Figure 8 

displays the methods and relationships between the core functionalities of the web 

application.
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Figure	 8:	 Core	 Functionality	 Classes
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! It should be mentioned that both the classifier model and the review model 

contain additional attributes, but as they are either unused (in the case of the additional 

data contained in each reviewʼs XML nodes) or used only for housekeeping or helpers 

in the application (in the case of counts stored in the classifier model), they are omitted 

in this diagram. As can be seen from Figure 8, the review model is not modified after 

importing and organizing reviews into the database, but simply acted upon as core data. 

This diagram also shows a function, MarkEligibleReviews. The explanation of the 

ins and outs of this method are covered in a later section, but for now, it can be noted 

that after MarkEligibleReviews is executed on a set of reviews, those reviews are 

then ready for classifier training and testing.

!

Deployment and Schema

! Thus far, we have identified the methods used to pull Amazon.com reviews from 

the Multi-Sentiment Dataset XML files into a MySQL database accessed by RHP, a 

Ruby on Rails application, defined the overarching design pattern comprising the web 

application, and outlined the relationships amongst application models. Lastly, we 

present RHPʼs deployment and database schema. The database contains three tables, 

classifiers, product_types, and reviews. Figure 9 illustrates the deployment of the 

application. Figure 10 presents the columns of each table.
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Figure	 9:	 Application	 Deployment
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Figure	 10:	 Database	 Schema

	 	 classifiers:
field type description

id int unique identifier

name string unique string based on the 
creation time, used for naming 
the persistent file names

model_path string full path to file storing the SVM 
classifier model data

accuracy float running average accuracy for all 
tests run

product_type_id int foreign key into the product_types 
table

created_at date time creation timestamp

updated_at date time last updated timestamp

dictionary_path string full path to file storing the global 
dictionary for this classifier

using_stopwords boolean boolean value stating whether or 
not stop words were removed 
from the global dictionary and 
training set

helpful_count int how may reviews used in the 
training set are helpful

unhelpful_count int how may reviews used in the 
training set are unhelpful

train_size int size of the training set

test_size int size of the test set

train_set_ids text list of all review IDs used to train 
this classifier

num_tests int running count of how many tests 
have been executed
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	 product_types:
field type description

id int unique identifier

name string name of the product type

created_at date time creation timestamp

updated_at date time last updated timestamp

total int total number of reviews in this product 
type

helpful_total int total number of helpful reviews in this 
product type

unhelpful_total int total number of unhelpful reviews in this 
product type

eligible_count int total number of reviews eligible for 
training and testing use (flagged by 
MarkEligibleReviews function)

	 reviews:
field type description

id int unique identifier

product_name string name of the product being reviews

product_type_id int foreign key into product_types table

helpful string helpfulness voting string (ie: “4 of 5”)

rating decimal this reviewʼs star rating for the product 
(1-5)

title string title of the review

date date time time stamp of when the review was 
created

reviewer string username of the Amazon user authoring 
the review

review_text text the complete review authored by the 
user

created_at date time time stamp of when the review was 
imported into database

updated_at date time time stamp of when the review was 
updated in database

is_helpful boolean flag to mark if more people voting on 
this review found it to be helpful than 
unhelpful

is_unhelpful boolean flag to mark if more people voting on 
this review found it to be unhelpful than 
helpful

degree double degree of agreement on helpfulness

use_for_train boolean flag to mark if the review is eligible for 
training and testing
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! As Figures 9 and 10 show, most of the work is done by the controllers and the 

models. The lightweight Rails server handles request forwarding, RESTful calls, and 

routing to the to the controllers, which interact with the models directly, and then render 

the views back to the browser in HTML.

! The majority of the fields in the reviews table come from the XML nodes of the 

original data (outlined in Table 2) converted directly into MySQL data by our parser after 

files have been uploaded for processing. However, to aid in the simplicity of building the 

classifiers as well as the web page views, several columns were added to the database. 

Namely, the three boolean fields, use_for_train, is_helpful, and is_unhelpful 

were created for these reasons. As the names of the latter two suggest, these booleans 

are simply to very quickly determine if a review has more helpful than unhelpful votes or 

vice versa. Reviews that were not voted on will have both of these set to false. The third 

boolean column, use_for_train is explained in the next section.

Algorithms
! This section outlines the algorithms used to take the review data we already have 

in the database, organize and partition it to choose training and testing sets, train SVM 

classifiers, and test and gather results. While the specific product type is not defined 

here, the steps are applicable to all product types in the dataset, with a few caveats that 

are explained in the results section.

Review Eligibility
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! As mentioned above, we have added some utility columns to the core data in the 

reviews table. In the research done by both Kim et al [8] and Hong et al [6] the authors 

set a “voting rate” of 0.6 to draw a boundary between helpful and unhelpful reviews, 

labeling the reviews that had been voted on beforehand, and then testing their 

classifiers on the entire dataset. We take a somewhat different approach and introduce 

the idea of review eligibility when compiling our training and testing sets. Eligibility is 

determined by the use_for_train column which is flagged as true or false using 

Algorithm 1 below.

Algorithm	 1:	 Marking	 Review	 Eligibility

1 def mark_eligible_reviews( id )

2  for each r in all reviews with product_type_id = id

3   if r.helpful_votes < ( r.total_votes / 2 ) //unhelpful

4    r.degree = ( r.total_votes - r.helpful_votes) / r.total_votes

5   else //helpful

6    r.degree = r.helpful_votes / r.total_votes

7   end if

8   if r.degree > 0.7 && r.total_votes > 3

9    r.use_for_train = true

10   else

11    r.use_for_train = false

12   end if

13   r.save //persist to database

14  end for

15 end
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! This algorithm is run as a preprocessor step prior to training the classifiers. It is 

initiated with the click of a button located on the page where reviews are indexed 

according to product type. Once this button is clicked and this algorithm completes, we 

are left with a new partitioning of the product typeʼs reviews. Where previously there 

were helpful, unhelpful, and reviews that had no votes, the review set is now organized 

as reviews with no votes, reviews with votes but without the required degree of 

agreement on their utility (helpful or unhelpful votes are too low or without a clear 

winner), and lastly, with a subset of reviews that are candidates for training and testing 

the classifiers. Note that in line 8, we stipulate that the degree of agreement on a 

reviewʼs utility (as voted by actual Amazon.com users) must be above 70 percent. This 

means that a review where 3 of 5 people found it to be helpful would be discarded as 

ineligible for classifier training because 40 percent of the users that took the time to vote 

found the review to be unhelpful. We also impose a minimum on the number of votes 

the review received. This criteria differs from past research as the above example 

review would simply be counted as helpful and used in the model. Our thinking is that 

reviews with a stronger degree of agreement, be it on the reviewʼs helpfulness or 

uselessness, will better inform our model during training and increase classification 

accuracy.

Selecting Training and Testing Sets

! When using supervised learning to train models, it is important to select an 

appropriate training set. Ideally, this subset of data should be representative of the 

whole dataset to maximize the accuracy of the model. Initially, our algorithm was very 
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naive, selecting the training data from the database in the order that it was stored. For 

example, a request for 100 reviews in the training set and 50 reviews in the testing set 

would return the first 100 reviews that were eligible (as ordered by the id field of the 

reviews table, the unique, primary key) as the training set and then the next 50 eligible 

reviews as the testing set. This imposed a dependency on how the reviews were loaded 

into the database, as the reviews with lower primary key identifiers were favored in the 

training and testing of the model, which introduced problems. For example, if the first 99 

eligible reviews happened to be helpful and the next 51 were unhelpful, our model 

would be plagued with overfitting and results would be unreliable. To mitigate this, next 

we tried to shape the query based on the product typeʼs overall ratio of helpful to 

unhelpful reviews. For example, if there were 4,000 unhelpful reviews and 6,000 helpful 

reviews of grocery items, a request for the training set of size 100 reviews would return 

the first 40 unhelpful reviews and the first 60 helpful reviews. This approach is still 

problematic as it continues to favor one sector of the dataset.

! The final implementation employs randomization to select a training and test set. 

This approach is outlined in Algorithm 2 below.

Algorithm	 2:	 Selecting	 Training	 and	 Testing	 Sets

1 def generate_sets( train_size, test_size, id )

2  all_eligible_reviews <= get all reviews from database with
                         product_type_id = id &&
                         use_for_train = true

3  i = 0, train_reviews = {}

4  while i < train_size

5   random_review = all_eligible_reviews.sample
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6   train_reviews.add( random_review )

7   i = i + 1

8   eligible_reviews.delete( random_review )

9  end while

10  j = 0, test_reviews = {}

11  while j < test_size

12   random_review = all_eligible_reviews.sample

13   test_reviews.add( random_review )

14   j = j + 1

15   eligible_reviews.delete( random_review )

16  end while

17 end

! Here we employ the boolean flag use_for_train that was set in Algorithm 1 to 

obtain an entire set of all reviews of this product type that can be used for training and 

testing. Next, we make use of Rubyʼs sample method (lines 5 and 12), applicable to 

any collection of objects. This affords us the ability to pull an object, a review in our 

case, from the array using randomly generated indices. By deleting this review from the 

set of eligible reviews, we shrink this array each time we build up our training and 

testing sets, ensuring that we avoid duplicate entries in these collections. Note that this 

randomization yields the added benefit of a built-in adherence to the ratio of helpful to 

unhelpful reviews in the original dataset. Since we are randomly selecting each review 

for the training and testing sets, the probability that this selection is either helpful or 

unhelpful mirrors the entire datasetʼs overall statistics of helpful and unhelpful reviews.
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Building a Classifier

! The training of a model in machine learning can be simplified into three entities: 

input (training data), learning process, and output (a model ready to accept data for 

classification). The previous section explains how we derive the first entity. Below, 

Algorithm 3 outlines how we use the second entity, the learning process, to output the 

model.

Algorithm	 3:	 Training	 SVM	 Classifier

1 def train_classifier( training_set, use_stopwords )

2  documents = {}

3  for each r in training_set

4   if r.is_helpful

5    documents.add( [ 1, r.review_text ] )

6   else

7    documents.add( [ 0, r.review_text ] )

8   end if

9  end for

10  global_dictionary  = all unique words in all of documents

11  global_dictionary = global_dictionary stripped of punctuation

12  if use_stopwords = true

13   read each stop word from stopwords file and delete from global
  dictionary

14  end if

15  stem all words in global dictionary

16  training_vectors = {}

17  for each d in documents
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18   strip out punctuation of d

19   training_vectors.add( d.label, features vector )

20  end for

21  problem = new LIBSVM problem

22  parameter = new LIBSVM parameter //using proven defaults

23  parameter.cache_size = 1

24  parameter.eps = 0.001

25  parameter.c = 10

26  problem.set_examples( training_vectors )

27  model = LIBVM::Model.train( problem, parameter )

28 end

! At the end of Algorithm 3, we have a model that is ready to accept and classify 

reviews from the test set. This algorithm relies heavily on an implementation of LIBSVM 

installed as a Ruby plugin. LIBSVM is an effective and efficient implementation of SVM 

classification. It was developed by Chih-Chung Chang and Chih-Jen Lin [7]. The web 

page, http://www.csie.ntu.edu.tw/~cjlin/libsvm/, offers extensive information about this 

software and links to other language plugins. The Ruby plugin used, rb-lisvm, available 

at https://github.com/febeling/rb-libsvm, is a Ruby binding to this LIBSVM software. In 

addition to LIBSVM, we also employ a word stemming plugin from Roman Shterenzon, 

fast-stemmer. It is available at https://github.com/romanbsd/fast-stemmer. This allows us 

to efficiently stem words in our global dictionary and each training document.

! After organizing our documents into a set of training vectors mapped against 

each feature (word) in our global dictionary, we use the LIBSVM class to train the 
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model. The training function accepts the vectors and a parameter object as input. The 

parameter object stipulates important details about the SVM classifier. These details are 

explained in depth by Chang et al [7] and this algorithm adopts the parameters that 

have been proven to work well in similar classification problems.

! While not shown in the algorithm, it is worth mentioning that the LIBSVM model 

contains a method to save its data to a file. This, coupled with our implementation to 

save the global dictionary used to train the model, allows the application to easily reload 

any trained classifier for future testing.

Testing a Classifier

! With the models trained and saved as outlined in Algorithm 3, we can load and 

feed in a test set to observe the classifierʼs accuracy. In machine learning, to predict 

accuracy of a model, the test set must be comprised of data with known classes. That 

is, our reviews in the test set are reviews that have already been voted to be either 

helpful or unhelpful. Recall from Algorithm 2 that we employ the same flag used for 

marking training reviews as eligible to create a pool of eligible test reviews. Algorithm 4 

describes how classifiers are tested.

Algorithm	 4:	 Testing	 SVM	 Classifier

1 def test_classifier( classifier_id, test_set )

2  helpful_total = unhelpful_total = 
 helpful_correct = unhelpful_correct =
 correct = incorrect = total = 0

3  c = Classifier.find( classifier_id )

4  dictionary = File.read( c.dictionary_path )
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5  model = LIBSVM::Model.load( c.model_path )

6  for each r in test_set

7   actual = -1

8   if r.is_helpful

9    actual = 1

10    helpful_total += 1

11   else

12    actual = 0

13    unhelpful_total += 1

14   end if

15   if actual != -1

16    strip out punctuation of r

17    r_features = vector created by checking stemmed words of
                r.review_text against model dictionary

18    prediction = model.predict(LIBSVM::Node.features(r_features))

19    if prediction == actual

20     correct += 1

21     if actual == 1

22      helpful_correct += 1

23     else

24      unhelpful_correct += 1

25     end if

26    else

27     incorrect += 1

28    end if

29    total += 1

30   end if
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31  end for

32  computer new average accuracy for c

33  c.save

34  return results of testing

35 end

! This algorithm is fairly straightforward, with the main point being the comparison 

of the modelʼs prediction of the review against the known class (helpful or unhelpful) of 

the review. Also of note is the responsibility of a classifier to keep track of its accuracy. 

This allows us to create competing classifiers for the same product category to track 

which is the best performing. Tracking the classifier with the highest accuracy affords 

the application the ability to chooses which classifier is to be used to predict the utility of 

a review that is entered on-the-fly by a user, explained in the next section. Lastly we are 

returning the results of testing to the applicationʼs classifier controller, to render a view 

with the results presented on a web page. 

Predicting a Single Review

! While the testing algorithm (Algorithm 4) above encompasses predicting a single 

review as well (executed with a user-entered review as the sole member of the 

test_set), we explain this framework explicitly as, to our knowledge, it has yet to be 

suggested in previous work. The screen shot in Figure 10 shows what an indexing of 

classifiers page looks like for the “camera and photo” product type.
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Figure	 11:	 Classifier	 Index	 for	 Product	 Type

! The green table holds information about only one of three classifiers that have 

been trained for this product category. Indeed, there are two others below that are not 

shown, one of which is the most accurate, with an accuracy of 89.09%. Although we 
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have built in links to use each of the classifiers to predict a single, user-entered review, 

the link at the top automatically uses the classifier with the highest accuracy. The 

process is shown in Figure 11 below.

Figure	 12:	 Predicting	 a	 Single	 New	 Review

! As this review is concerned only with the vendor and the shipping satisfaction of 

the author, we would suspect it would have little utility to other readers looking for 

information about the product itself. Our classifierʼs prediction agrees, marking this 

38



review as unhelpful. While simple in nature, we believe that this framework could be 

implemented in online shopping websites and would help users to author higher quality 

reviews.

Results
! Both Kim et al [8] and Hong et al [6] also used the Multi-Domain Sentiment 

Dataset from Blitzer et al [3] for results testing, but as the latter research outperformed 

the former, we use the results of Hong et al as a baseline for our comparison. Table 3 

presents the results of past research.

Table 3 - Past Research Classifier Accuracy

Research Accuracy (%)
Kim 61.29

Liu 62.85

Hong 69.62

! While each evolution of this research has improved classification accuracy, all 

research thus far has, to our knowledge, focused on lumped-together product type 

reviews. As shown in Table 4 by the accuracies of our best classifiers for each product 

type, there are gains to be had by specializing the models for specific partitions of the 

review dataset.
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Table 4 - Specialized Review Helpfulness Predictor Results

Product Category Best Accuracy (%)

apparel 90.82

automotive 81.82

baby 92.0

beauty 93.55

books 81.91

camera & photo 89.09

cell phones & service 85.0

computer & video games 90.55

dvd 79.18

electronics 86.73

gourmet food 90.73

grocery 88.36

health & personal care 90.55

jewelry & watches 89.0

kitchen & housewares 93.45

magazines 85.82

music 77.0

musical instruments 93.82

office products 95.0

outdoor living 90.82

software 85.91

sports & outdoors 89.36

tools & hardware 100.0

toys & games 90.18

video 80.64

!

! For each product type, we have trained three classifiers with training set sizes of 

100, 300, and 600 product reviews wherever possible. As the table shows, our 
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accuracies for the Amazon.com product reviews are considerably higher than previous 

work, with some caveats. In the “tools & hardware” category, for example, only 40 

reviews met our criteria for training and testing eligibility. Among these, only a small 

number were voted unhelpful. Whereas most product types have classifiers with a 

minimum training size of 100 reviews, here we are only able to train the model with 20 

reviews, leaving 20 for testing. This results in overfitting our model and without a wide 

array of test reviews available, the accuracy is artificially high. While this anomaly is 

present in a few other product types that are less popular areas for consumer interest 

on Amazon.com, this artificially high accuracy seems to be the exception. Even the 

most popular categories such as books, DVDs, and music, all have classifiers that 

perform quite well in comparison to past research. It is also clear that the most specific 

product categories tend to have the higher accuracies. For example, while the camera 

and photo product type could actually be considered “electronics” and lumped into this 

product type, the fact that it is separate and houses distinct, more specific reviews, 

lends itself to RHPʼs specialized models. This is what one would expect as the 

dictionary for electronics is far broader than any sub-category of electronic products 

might be, thus increasing the challenge of accurate classification.

Conclusions
! In this research we incorporated a dataset from XML into a more manageable 

and efficient format in a MySQL database. Using queues from past research, we 

pursued Support Vector Machines as an avenue for machine learning to automatically 

predict review helpfulness. Using Ruby on Rails, employing a Model-View-Controller 
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architecture, and an implementation of LIBSVM, we built the Review Helpfulness 

Predictor (RHP) web application with functionality to train and test models, and predict 

single product reviews as either helpful or unhelpful. As proven by our results, our 

hypothesis of creating specialized machine learners to increase performance on a 

partitioned dataset is an effective way to classify product reviews. Aside from these 

improved results, we also offer a framework for selecting and employing a classifier to 

perform on-the-fly classification of product reviews entered by customers, with the end 

goal of improving review quality to the benefit of customers, online vendors, and 

manufacturers.

Future Work and Direction
! As our hypothesis appears valid, we see no reason why machine learners should 

not be even further specialized by partitioning the product types further. Given adequate 

numbers of reviews for single products, it is not inconceivable to have a classifier 

trained specifically for one popular product sold. We also suspect that incorporating 

more words into a single feature (using bigrams, trigrams, quadgrams, etc.) during 

training, rather than treating each word as a distinct feature might have a positive effect 

on performance. For example, we treating the presence of “focal length” as one feature 

in a ʻcamera and photoʼ review rather than “focal” and “length” as distinct features.

MAKifiers

! As part of a further analysis of the relationship between kinds of product reviews 

used for training versus the kind of product review we are predicting as helpful or 

unhelpful, we have created an additional model type, the MAKifier (Many Applicable 
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Kinds) classifier. As opposed to the classifier model, a MAKifier can have many kinds of 

product reviews used for the training set, and is used to predict the helpfulness of 

reviews from one kind of product. This affords us a sliding scale from a highly 

specialized machine learner to the type of classifier used by previous research (one 

classifier for all kinds of product reviews). Our preliminary testing included using all 25 

product types to train a model and then test it against only ʻcamera and photoʼ reviews. 

Not surprisingly, this yielded an accuracy close to, but slightly less, than previous 

research, 60.7%. We also tested ʻcamera and photoʼ reviews against classifiers that 

were trained with fairly unrelated kinds of products, ʻbabyʼ, ʻdvdʼ, ʻoffice productsʼ, 

ʻbeautyʼ, ʻmagazinesʼ, and ʻhealth and personal careʼ. These tests yielded accuracies of 

52% and 55%, only slightly higher than simple chance. One interesting observation from 

early MAKifier testing was the improved accuracy when training reviews are used from 

a kind of product that is similar to the one used for testing. For example, when a learner 

was trained with ʻdvdʼ and ʻvideoʼ reviews and was tested against ʻbookʼ reviews, the 

accuracy was significantly higher at 68% as opposed to testing ʻbookʼ reviews against 

ʻapparelʼ, ʻautomotiveʼ, and ʻkitchen and housewaresʼ reviews, where accuracy was only   

51%. We suspect this is due to the common elements of reviews from ʻdvdʼ, ʻvideoʼ, and 

ʻbooksʼ such as story, emotion evocation, and prose commentary. This warrants further 

research to extrapolate indicators of similarities between different kinds of products, as 

well as the relationship between the number of product types used for training a model 

versus the number of product types used for testing.

! Lastly, we believe that the interface for predicting a single review and reporting 

the predicted helpfulness to the author could benefit from added details. For example, 
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rather than simply stating whether their review looks to be either helpful or unhelpful to 

other readers, enhancing the feedback to include specific content that could be added 

or improved upon would ultimately guide the author toward creating a review of higher 

quality and helpfulness.
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