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ABSTRACT

GEOLOGIC AND GEOTECHNICAL CHARACTERIZATION FOR

LIQUEFACTION-INDUCED DEFORMATION

By Anne M. Rosinski

The focus of this research is to provide a geotechnical and geologic
characterization of the tectonically active northern Santa Clara Valley, California.
This characterization is combined with new models for predicting strain to
develop 1:24,000-scale hazard maps based on laboratory testing and improved
understanding of processes that affect prediction of surface deformation resulting
from liquefaction.

Qualitative geologic information and quantitative geotechnical boring log
information are linked together; each layer in each boring is assigned a geologic
map unit designation thereby, expanding the description of each geologic unit to
include quantifiable geotechnical characteristics. Maps produced in this study
group geologic map units with similar amounts of estimated volumetric and shear
strain. The maps produced in this study reveal that late Holocene deposits are
likely to experience the greatest liquefaction-induced strain, whereas older
deposits are likely to experience significantly less horizontal and vertical strain in

future earthquakes.
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INTRODUCTION

Purpose of Study

Geotechnical and geologic characterization of sedimentary deposits in the
northern Santa Clara Valley, California is the goal of this research. Interpretation
of the Holocene-late Pleistocene boundary in the subsurface and
characterization of sediment in the Santa Clara Valley is conducted and used to
produce regional (1:24,000-scale) hazard maps based on predicted surface
deformation resulting from liquefaction. Any attempt to produce maps of future
liquefaction-induced deformation must take into account the nature and variability
of geologic deposits in the area to be mapped. This task is complicated by the
limited subsurface data (geotechnical boring logs) that are generally available in
most areas. In this study, 668 boring logs are used to characterize the geology
of the northern Santa Clara Valley (Plate 1). Maps of liquefaction-induced
deformation based upon the geotechnical and geologic characterization of the
sediment in the northern Santa Clara Valley can be used to supplement classical
liguefaction susceptibility or liquefaction potential maps. In addition, deformation
potential maps may provide information to serve emergency response planning,
mitigation prioritization, and assessments of vuinerability of lifeline systems.

In the past, predictions of liquefaction potential have identified areas
expected to experience earthquake-induced ground failure such as the maps

showing Zones of Required Investigation for Liquefaction produced by the



California Geological Survey (CGS). Construction on artificial fill over San
Francisco Bay mud (afbm) in the Marina district in San Francisco resulted in
tremendous structural damage and the loss of several lives following the 1989
Loma Prieta earthquake (Harris and Egan 1992), and this damage is an
illustration of liquefaction-induced ground failure. Although the cause of ground
deformation was well understood, predictions of estimated amounts of ground

deformation were not available at the time of the earthquake.

Geologic and Geotechnical Characterization of Holocene to Late Pleistocene

Sedimentary Deposits

Knowledge of the distribution of layered cohesionless sediment deposits
such as gravel, sand, and silt is an important element for mapping the
liquefaction hazard in a given area (Martin and Lew 1999). Most liquefaction-
hazard maps are based on an evaluation of sediment type and the likelihood that
materials will liquefy, or that liquefaction will be “triggered” during future
earthquakes. Typically, categories of very high to low or very low are assigned to
each Quaternary geologic map polygon. Deviations from a one-to-one
correspondence between Quaternary map unit and liquefaction susceptibility
category are typically based on differences across the region in depth to ground
water and expected levels of earthquake ground shaking (Knudsen et al. 2004).
Geotechnical information is collected during sub-surface investigations for

liquefaction analysis using the Simplified Seed Procedure (Seed and Idriss 1971)



and plotted on a map. The final stage of the mapping process involves
comparing the results of the susceptibility analysis with the outcome of the
triggering analysis performed on the geotechnical boring data. Saturated,
liquefiable sediments deposited in areas where ground shaking is expected from
earthquakes on nearby active faults are mapped as areas with the potential for
liquefaction.

The susceptibility of a soil to liquefaction is commonly examined in the
context of a criteria matrix that accounts for the qualitative characteristics of a soil
such as age of the deposit and environment of deposition. Descriptive features
of the sediment, such as patrticle size, which may be unique to a particular
setting, can be used as keys to recognize liquefaction susceptibility in other
similar environments. In addition, quantifiable geotechnical characteristics such
as density and grain size distribution are reviewed. The range of values for
quantitative characteristics for which liquefaction is known to occur can be
established and used as a basis for comparison with measurement of
quantitative data collected from other sites.

When a geologic investigation is carried out, the study of the geologic
environment is conducted independently of the measurement of the geotechnical
parameters. Geotechnical parameters are considered in relation to the Unified
Soils Classification System (USCS) designation assigned to the layer in which
the measurement was taken. The USCS only describes the physical properties

of each layer and considers each layer as existing independently of the layers



above and below it. It is common in geologic investigations that, after the
geotechnical properties have been measured, the data are analyzed using the
Simplified Seed Procedure (Seed and Idriss 1971). As a consequence, the
geotechnical properties become separated from geologic context responsible for
their development.

The goal of this research is to combine both types of data to take
advantage of both the qualitative and quantitative factors that contribute to
liquefaction susceptibility in order to develop a more detailed picture of the
liquefaction-induced deformation potential of the region. In this study, 668 boring
logs and recent Quaternary mapping by Witter et al. (2006) are used to
characterize the geology of the northern Santa Clara Valley. Qualitative geologic
information and quantitative geotechnical boring log information are linked
together; each layer in each boring is assigned a geoiogic map unit designation,
thereby expanding the description of each geologic unit, and the quantifiable
geotechnical characteristics are further inferred to apply to every occurrence of

each geologic unit even where not tested by borings.

Liguefaction-Induced Deformation Hazard Analysis

Advance knowledge of where liquefaction-induced ground deformation is
likely to occur may provide an opportunity to retrofit structures prior to a
damaging, large-scale earthquake (Fig. 1). Most previous efforts to map

potential liquefaction-induced deformation on a regional scale have been based



on predictions of lateral spread displacements (e.g. Youd and Jones 1993). To
formulate a more compiete picture of hazards due to liquefaction-induced ground

deformation, the geologic characterization developed in this research may in the

Figure 1. "Loma Prieta, California, Earthquake October 17, 1989. Structures damaged in
the Marina District of San Francisco. The first story of this three-story building was damaged
because of liquefaction; the second story collapsed. What is seen is the third story.” Figure 24B,
U.S. Geological Survey Circular 1045. Image file:
htmilib/batch88/batch88j/batch88z/batch88/pla00049.ipg

future be used in combination with new models for predicting liquefaction-
induced strain (Wu 2002; Wu and Seed 2004) to develop regional maps of

liquefaction-induced volumetric and shear strain (Knudsen et al. 2004).



BACKGROUND

Previous Studies

This research follows earlier research conducted for the City of San Jose
by Cooper, Clark & Associates (1974) and Falls (1988). In addition to data
collected by the California Geological Survey, the present research uses the
same data from the city of San Jose used by both Cooper, Clark & Associates
and Falls, and relies on the Simplified Seed procedure (Seed and Idriss 1971) to
analyze the data to determine where liquefaction is likely to occur. Cooper, Clark
& Associates and Falls both estimated liquefaction potential based upon analysis
of factors contributing to liquefaction susceptibility combined with an investigation
of opportunity for the material in each individual boring to liquefy. The present
study estimates liquefaction potential using the Simplified Seed procedure (Seed
and ldriss 1971) to calculate the soil resistance to liquefaction (Cyclic Resisting
Ratio, CRR) which is then compared to calculated earthquake driving forces
(Cyclic Stress Ratio, CSR). Like the report produced for the City of San Jose by
Cooper, Clark & Associates, the present research includes maps showing the
distribution and potential for earthquake-induced ground failure. However, the
hazard maps produced by Cooper, Clark & Associates are based on qualitative
data, namely the susceptibility ranking of each geologic map unit, and not on

quantitative analysis of liquefaction-induced deformation performed for specific



bore hole locations. In addition, the boundaries on the maps produced by

Cooper, Clark & Associates do not follow geologic contacts.

Liguefaction

Estimates of liquefaction potential are the result of analysis of a
combination of factors (CGS 1997). In arder for liquefaction to occur,
susceptible, saturated, unconsolidated, granular material must be present (CGS
1997). In addition, opportunity, i.e. cyclic loading from a nearby active fauit
source (fauits that have ruptured in the last 11,000 years; CGS 2007 ) must be
possible. The result of cyclic loading of saturated, unconsolidated, granular
material can be the fluidization of sediment. When earthquake shaking occurs,
grains shift into a denser configuration by rearranging to fill in void spaces, which
may be occupied by water. As the volume of void space available for water to
occupy decreases, water pressure increases. As densification continues, pore
space decreases to the point that water pressure rapidly passes a critical
threshold and water is expelled from the void spaces. As water is expelled, it
forces sediment grains apart, resulting in liquefaction.

Regional geology and depositional environment influence the
development of characteristics of a particular sedimentary deposit. In fluvial
environments for example, uplift and erosion contribute source material that is
deposited downstream, and the type of unconsolidated granular material in

sediment plays a key role in liquefaction. Sphericity and roundness affect the



efficiency of grain packing, which in turn influences the volume of void space that
can be occupied by water. Composition of the material influences whether or not
the soil will behave plastically. Clay-sized quartz particles are liquefiable
because they are non-plastic and under earthquake loading wili behave as a
cohesionless material (Seed et al. 2003; Boulanger and ldriss 2006). Gravelly
soil, although liable to liquefy, generally has larger pore spaces and therefore is
better able to attenuate pore pressure. In addition, due to the energy required to
transport larger particles, gravelly material, unlike finer-grained material, tends

not to be deposited loosely (Seed et al. 2003).

Study Area

The study area, located in the southern San Francisco Bay region of
northern California, includes approximately 390 square kilometers in the northern
Santa Clara Valley (Plate 1). The study area includes the Milpitas, San Jose
East, San Jose West and portions of Calaveras Reservoir 7.5-minute
quadrangles. The majority of the study area is heavily urbanized. The City of
San Jose covers a large percentage of northern Santa Clara Valley, and portions
of the cities of Alviso, Campbell, Los Gatos, Milpitas, Santa Clara, Saratoga, and
Sunnyvale are also included.

The northern end of the study area along the margin of San Francisco Bay
is occupied by salt evaporation ponds and associated levees. The San Jose

International Airport is located in the north-central part of the study area.



Numerous fluvial systems flow through the northern Santa Clara Valley. The two
largest systems are Guadalupe River and Coyote Creek. Guadalupe River is
supplied by Saratoga, San Tomas Aquinas, Calabazas and Los Gatos creeks, all
of which originate outside the study area in the Santa Cruz Mountains to the
west. Coyote Creek is supplied by Berryessa, Penitencia, Tularcitos, Scott,
Arroyo de los Coches, Piedmont, Calara, Migueiita, Silver, Babb and Thompson
creeks, all of which originate in the Diablo Range to the east (Plate 1).

Six major freeways and several smaller arterial roadways cross the study
area. Northwest-trending U.S. Highway 101 (Bayshore Freeway) connects the
northern Santa Clara Valley to the San Francisco Peninsula, and northeast-
trending Interstate 680 closely parallels the foothills of the Diablo Range and
connects the northern Santa Clara Valley to major cities along the east side of
San Francisco Bay. State Highway 17/ Interstate 880 extends southward in the
western portion of the study area. Trending roughly east-west, State Highway

237 and Interstate 280 span the northern portion of the study area.

Geologic and Geomorphic Setting

The northwest-trending, northern Santa Clara Valley, part of the Coast
Range geomorphic province, is situated between the Santa Cruz Mountains to
the west outside the study area and the Diablo Range to the east. Outside of the
study area, the northern Santa Clara Valley is bordered on the west by the San

Andreas fault, and within the study area, on the east by the Hayward and
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Calaveras faults. There are 27, primarily non-marine, Quaternary and pre-
Quaternary bedrock map units in the northern Santa Clara Valley study area
(Table 1 and Plate 1). The margins of the northern Santa Clara Valley are
asymmetrically framed by broad alluvial fans that slope gently northward toward
San Francisco Bay. Along the west and southwest sides of the valley, at the base
of the Santa Cruz Mountains, latest Pleistocene alluvial fans (Qpf) are overlain by
thin Holocene alluvial fan deposits (Qhf) (Witter et al. 2006). Along the east and
northeast sides of the valley, at the base of the Diablo Range, latest Pleistocene
(Qpf) and Holocene alluvial fans (Qhf) are smaller than fans on the west side of
the valley, and only minor ievees (Qhl) have developed. Holocene alluvial fans
generally are composed of poorly sorted mixtures of gravel, sand, silt, and clay.
At the upstream end of the alluvial fans, where gradients are steeper, fan
deposits typically are composed of coarse-grained material (Qhf), and grade into
finer-grained material (Qhff) downstream. Where the fans terminate at the edge
of San Francisco Bay, fine-grained material transitions into Holocene fine grained
alluvial fan-estuarine complex deposits (Qhfe), Holocene San Francisco Bay Mud
(Qhbm) and artificial fill (af) over Bay Mud (afbm). Down the northwest-trending
axis of the valley, both Guadalupe River and Coyote Creek contain Holocene
stream channel deposits (Qhc), and artificial channel (ac) deposits, and are
flanked by Holocene alluvial fan levee deposits (Qhl) and Holocene stream
terrace deposits (Qht). Artificial fill (af) is associated with large-scale

transportation infrastructure, including highways and raiiroads, such as the
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TABLE 1. QUATERNARY GEOLOGIC MAP UNITS (Modified
from Knudsen et al. 2000)

Environment of Environment of
deposition deposition
Modern
af Adtificial fill gq Gravel quarry
afom  Adtificial fill over Bay Mud ac  Atificial stream channel
alf Artificial fill, levee Qhc Modern stream channel
Latest Holocene
Qhfy  Alluvial fan Qhty Stream terrace
Qhly  Alluvial fan levee
Holocene
Qhbm San Francisco Bay mud Qhff Aliuvial fan, fine facies
Qhb  Basin Qhl  Alluvial fan levee
deposits
Qhfe  Fine grained alluvial fan- Qht Stream terrace
estuarine complex
Qhf Alluvial fan Qha Alluvium, undifferentiated
Latest Pleistocene to Holocene
Qf Alluvial fan Qt  Stream terrace
Ql Alluviai fan levee Qa Alluvium, undifferentiated
Latest Pleistocene
Qpb  Basin Qpa Alluvium, undifferentiated

Qpf Alluvial fan
Early to late Pleistocene

Qof Alluvial fan Qoa Alluvium, undifferentiated
Pre-Quaterna
br Bedrock

interchange for U.S. Route 101 with Interstate Routes 280 and 680 near the
center of the study area.

Bedrock geology in the vicinity of the study area is divided into individual,
fault-bounded structural blocks recognized on the basis of differing stratigraphic
sequences and geologic histories (Wentworth et al. 1999). Rocks from the Siiver
Creek, Alum Rock and Mt. Hamilton blocks are within the four quadrangles
included in the study area. At the southeastern end of the study area, rocks of
the Franciscan Compiex (KJf) are juxtaposed against Jurassic rocks of the Coast
Range Ophiolite (Jsp) along a low-angle thrust fault in the Silver Creek structural

block (Wentworth et al. 1999). Rocks of the Silver Creek block are found along
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the hills drained by Silver Creek and in the vicinity of Yerba Buena Ridge. The
Alum Rock block, composed of Jurassic to Quaternary age rocks, is exposed
along the eastern margin of the northern Santa Clara Valley. The Alum Rock
block is separated from the Mt. Hamilton block to the east by the Calaveras fault
and from the Silver Creek block to the south by a concealed fault (Wentworth et
al. 1999). Cretaceous and Jurassic rocks of the Eastern Belt of the Franciscan

Complex are exposed in the northeast portion of the study area.

Seismicity

The study area is the northern Santa Clara Valley. The San Andreas fault
system lies to the west just outside the study area, and the Calaveras and the
southern end of the Hayward fault systems are mapped in the north east margins
of the study area (Plate 1). Among the more significant historic earthquakes in
the region are the M7.0 Hayward earthquake of October 21, 1868 (Berkeley
Seismological Laboratory, http://seismo.berkeley.edu/fag/1868_0.html), the M7.9
San Francisco earthquake of April 18, 1906, and the Mw 6.9 Loma Prieta
earthquake of October 17, 1989. Each of these earthquakes caused
liguefaction-induced ground failure(s) in the northern Santa Clara Valley.

The level of seismic excitation used for this study is the level of peak
ground acceleration (PGA) with a 10% probability of being exceeded over a 50-
year period. The statewide probabilistic seismic hazard analysis (Peterson et al.

1996) indicates that peak ground accelerations with a 10% probability of being
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exceeded in 50 years are expected to range from about 0.5 g near the margin of
San Francisco Bay to about 0.8 g in the foothills of the Diablo Range at the
northeast corner of the study area (Peterson et al. 1996). Deaggregation of the
seismic hazard model yields the magnitude and distance of the earthquake that
contributes most to the probabilistic estimate of ground motion at a particular
location. The deaggregation indicates that the seismic hazard in the southwest
part of the study area is dominated by a Mw7.9 earthquake on the San Andreas
fault at a distance ranging from about 18 to 24 km (CGS 2002). The seismic
hazard in the northeast part of the study area is dominated by a My7.1
earthquake on the Hayward fault at a distance ranging from about 2 to 7 km
(CGS 2001). The hazard in the southeast part of the map area is dominated by a
Mw6.4 earthquake on the southeast extension of the Hayward fauit system at a

distance of about 7 km (CGS 2000).

Subsidence

Subsidence due to ground-water withdrawal is well documented in the
northern Santa Clara Valley. The alluvial fill in the northern Santa Clara Valley
consists primarily of Pliocene to Holocene deposits up to approximately 300 m
thick, with sand and gravel more prevalent on alluvial fans that line the margins,
transitioning to silt and clay toward the San Francisco Bay (Poland 1984). In the
early part of the iast century, ground-water withdrawal was primarily for

agricultural use; however, by the middle of the last century agriculture in the
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valley declined while urban development increased the demand on municipal
water supplies (Poland 1971). As ground-water levels decreased, the effective
overburden pressure on the water-bearing sediments increased, causing
compaction and land subsidence. Most of the subsidence in the northern Santa
Clara Valley was accommodated by compaction of fine grained sediment
(Ingebritsen and Jones 1999).

Between approximately 1915 and 1967, as much as 2.4 m of subsidence
occurred, and overall, approximately 260 km? subsided more than 1 m within
the limits of the study area (Poland 1984) (Fig. 2). Careful monitoring and
management of the basin, including importation of surface water, has led to the
recovery of small amounts of subsidence. The Santa Clara Valley Water District
has observed an increasing number of artesian wells, which reflects rising
ground-water levels (Seena Hoose, SCVWD, oral communication 2000).
Within the study area, historical ground water levels range from less than
approximately 3.5 m below land surface near the San Francisco Bay to
approximately 10-25 m throughout the rest of the study area (CGS 2004). As
ground-water levels rise, vertical effective stress is reduced, causing regional
uplift (Schmidt and Birgmann 2002). InSAR time-series data record net uplift
in the study area averaging approximately 15-20 mm and as high as
approximately 40 mm on the east side of the south end of Coyote Creek
between 1992 and 1998 (Schmidt and Birgmann 2002). The InSAR data also

show that uplift in
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the Santa Clara Valley is a seasonal phenomenon (Schmidt and Biirgmann

2002).

Historical Liquefaction

Ground failure associated with the 1868 Hayward, 1906 San Francisco,
and 1989 Loma Prieta earthquakes includes sand boils, disturbed wells,
settlement, lateral spread, stream-bank failure and ground cracks (Youd and
Hoose 1978). The majority of ground-failure phenomena observed in the study
area caused by the 1868, 1906 and 1989 earthquakes is concentrated in the
northern half of the study area near the margin of the San Francisco Bay, where
ground water levels are typically within 3-4 m of ground surface (Plate 2).

Ground failure associated with the 1868 Hayward earthquake includes
lateral spreading and sand boils. Lateral spreading was observed at station 149
(Knudsen et al. 2000) (Plate 2). Accounts of lateral spread describe the banks of
Coyote Creek being “shaken together” and cracks with water pouring out along
the bay side of the creek (Youd and Hoose 1978). Sand boils were observed at
station 149 as well (Knudsen et al. 2000). Reports of sand boils relate that
cracks flowed with water for 48 hours following the earthquake, and water
spurted “...to the height of several feet” (Youd and Hoose 1978).

Reported ground failure associated with the 1906 San Francisco
earthquake was more varied and more widespread than that associated with the

1868 Hayward earthquake, and included stream bank land sliding, lateral
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spreading, ground settlement, ground cracks, sand boils and disturbed wells.
Lateral spread was observed at stations 148, 149, 150 and 155 (Knudsen et al.
2000). Reports of lateral spread at station 148 relate that “...two rows of trees in
an orchard had parted off and slid into the slough” (Youd and Hoose 1978). At
station 149, reports of lateral spread include descriptions of a bridge that “...was
shifted on its concrete supports, the two ends moving in opposite directions” and
“...cracks on both sides of the Coyote River at intervals all the way to San Jose”
(Youd and Hoose 1978). At station 150, it was reported that fissures were
observed near a ranch house and that .3 m (1 foot) of “downthrow” was
measured on the east side of the fracture (Youd and Hoose 1978). Finally, at
station 155, it was reported that “heave of the land” occurred “in a northwesterly
direction 1.3 m (4 feet) from its original position” (Youd and Hoose 1978).
Ground settlement as a result of the 1906 San Francisco earthquake was
documented at stations 148, 149, 150, 151 and 152 (Knudsen et al. 2000). At
station 148, settlement was observed along the train tracks leading out of the
north end of the town of Alviso, and a well casing was driven out of the ground
(Youd and Hoose 1978). At station 149, reports of ground settlement describe
the west side of a 3.7-m-diameter pool being lifted higher than the east side of
the pool (Youd and Hoose 1978). Details of settlement are sparse for stations
150 and 151; however, it was documented that at these stations a ranch house

settled slightly on its northwest side, and that there was a “slump in soft ground”
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respectively (Youd and Hoose 1978). Finally, at station 152, settlement occurred
in front of the principal hotel in Alviso (Youd and Hoose 1978).

The 1906 San Francisco earthquake caused sand boils to occur at
numerous locations, including stations 148, 149, 150, 151 and 153. (Knudsen et
al. 2000). A report of sand boils for station 148 notes that “cracks formed from
which muddy and sandy water flowed” (Youd and Hoose 1978). A report of sand
boils associated with station 149 notes that “water flowed from cracks in the yard
and piled up sand .15 m (6 inches) on both sides” and alsc record “many
craterlets of sand” (Youd and Hoose 1978). Further, a report of sand boils
associated with station 150 recounts that “considerable sand was brought up by
water flowing from the cracks” in an orchard (Youd and Hoose 1978). At station
151, it was reported that “cracks in the vicinity of Milpitas flowed artesian water
for 48 hours after the shock” (Youd and Hoose 1978). Finally, at station 153, a
report of sand boils describes water spouting into the air “to the height of several
feet” (Youd and Hoose 1978).

Miscellaneous effects of ground failure associated with the 1906 San
Francisco earthquake include reports of disturbed wells at stations 148, 155 and
158 (Knudsen et al. 2000). The report of a disturbed well at station 148 records
that prior to the earthquake the well in question “required a wind-mill to pump the
water. At the time of the earthquake the casing was driven .6 m (2 feet) out of
the ground, wrecking the pump, and since that time the well has been flowing

under a heavy pressure” (Youd and Hoose 1978). At station 155, it was reported
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that, “On the farm of Mr. Fox, 4.8 km (3 mi.) north of San Jose, the water pipe of
an artesian well was broken off 18.2 m (60 ft.) below the surface and carried by
the heave of the land in a northwesterly direction 1.3 m (4 ft.) from its original
position” (Youd and Hoose 1978). Finally, at station 158, “water and mud in
many instances are reported as having spurted from the artesian wells, but in a
few days they resumed their normal condition” (Youd and Hoose 1978).

Ground failure associated with the Loma Prieta earthquake of 1989 was
limited in scope compared to the earthquakes of 1868 and 1906; however, lateral
spread and settlement were observed. At station 51E, south of San Jose
Municipal Airport, “minor lateral spreading” and settlement caused “minor
cracking” along a frontage road (Seed and Harder 1990). In addition, at station
51D approximately 1 km north of San Jose Municipal Airport, “minor settlement”
of a tower foundation was observed (Seed and Harder 1990). Finally, settiement
was observed at station 51B in Alviso in the approach fills of the Gold Street
Bridge (Tinsley et al. 1998).

The absence of ground failure in areas that are susceptibie to liquefaction
is also important because, among other reasons, non-failure can provide
information about shaking intensity. Reports of the absence of ground failure
associated with the 1906 earthquake in the study area are recorded for stations
156 and 157 (Knudsen et al. 2000). No ground failure was reported at station
156 “between Coyote Creek and the mountains” (Youd and Hoose 1978). At

station 157, south of State Highway 280 in the vicinity of W. William Street, no
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damage was reported at San Jose Water Works or the city's gas mains (Youd
and Hoose 1978). Further, following the 1989 Loma Prieta earthquake at station
51C, the absence of liquefaction was reported “from the shoreline of the bay to
State Highway 237" (Tinsley et al. 1998) where numerous instances had been
reported following the 1868 and 1906 earthquakes at station 149 (Youd and

Hoose 1978).
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METHODS

Data from geotechnical boring logs were used to characterize the
geotechnical properties of the geologic units mapped in the northern Santa Clara
Valley for the purpose of evaluating the liquefaction-induced ground deformation
hazard of each geologic unit. All of the layers in each boring log were reviewed,
and each layer was assigned to a geologic map unit. While completing this task,
particular attention was paid to identifying a change with depth in the measurable
geotechnical properties of sediment. After each layer in each boring was
assigned a geologic map unit, liquefaction potential analysis was performed on
each of the layers in each boring. Liquefaction potential analysis for each layer
was calculated deterministically using the methods of Youd et al. (2001) and
probabilistically using the methods originally developed by Seed and Idriss
(1971) and modified by Seed et al. (2003). The liquefaction analysis was carried
out using a program developed by the California Geological Survey
(Unpublished). Finally, using the Cyclic Stress Ratio (CSR) and corrected
penetration test resuits produced by the liquefaction analysis, post-liquefaction
deformation potential analysis was performed on all saturated layers composed
of liquefiable textures for which penetration test data are available, and the total
amount of potential volumetric and shear strain for each boring was summed
using the methods of Wu et al. 2004 (volumetric strain) and Wu 2002 (shear

strain).
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These geotechnical properties infer the position and shape of a three-
dimensional surface at shallow depth that can be broadly characterized as a
boundary between shallower low-density materials and deeper higher-density
materials. In many areas, this surface probably coincides with the top of the
Pleistocene section, i.e., with a specific stratigraphic surface. However, in other
areas evidence indicates that the density boundary does not coincide with the top
of the Pleistocene. The focus of this paper is the density boundary defined by
geotechnical properties, but for convenience the boundary is often referred to as

the top of the Pleistocene.

Data Collection

To assess the potential for liquefaction-induced ground failure, an
understanding of this area’s late Quaternary history and deposits was developed
by interpreting logs of geotechnical borings and relating the stratigraphy depicted
in the borings to geologic map units. The information coliected and used to
interpret the geologic setting in this project includes: (a) detailed Quaternary
geological map for the northern Santa Clara Valley area produced at 1:24,000
scale by Witter et al. (2006), (b) 668 geotechnical borings, (c) probabilistic
earthquake shaking information, and (d) ground-water levels. Data used in this
study are from the Milpitas, Calaveras Reservoir, San Jose East and Szn Jose
West 7.5-minute quadrangles (Plate 1). The boring data were collected from

local government files and entered into a Geographic Information System during
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previous seismic hazard mapping efforts conducted by the California Geological
Survey (http://gmw.consrv.ca.gov/shmp/index.htm).

The boring logs collected for this study range in depth from 3.1 to 45.7 m
(10 to 150 feet), with 40% reaching a depth of 12.2 m (40 feet) or more. Ina
study like this in which only existing geotechnical borings are used, the quality of
the borehole data varies. The logs should provide thorough documentation of
how and where each boring was advanced. Of primary importance on the boring
log is the penetration test data, which are standard data needed when calculating
liquefaction potential. Laboratory studies of texture, grain-size distribution and
fines content (FC) provide information needed in several of the methods used to
estimate liquefaction-induced deformation. Data are stored in a database
according to whether the information was measured, calculated or assigned for a

sample or layer, or summed for the boring as a whole (Appendix 1).

Assignment of Geologic Map Units to Each Boring Layer

Layers in each boring were assigned to a geologic map unit based on both
the descriptive geologic characteristics and the geotechnical properties of the
material encountered and recorded on individual boring logs. Effort was first
placed on determining whether layers are Pleistocene or Holocene in age. The
Pleistocene surface is important because most researchers believe that sediment
greater than 11,000 years old is unlikely to liquefy.

The study area includes two major drainages discharging into the San
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Francisco Bay and is characterized by unconsolidated sedimentary deposits that
are highly variable, both vertically and laterally, over short distances. Because
the data used in this study consist of boring logs collected from a variety of
outside sources, and no new data were collected, dating of samples was not
possible. Further, no attempt was made to locate age-dated soil samples from
outside sources. Logs collected for this study are from borings distributed
randomly across the study area, and the separation between borings is large
(typically >300 m) compared to layer thickness (85% < 3 m thick), making it
difficult to correlate discontinuous layers between borings.

ideally, the same class of data would be available for every layer in every
boring. But, because the same data were not available for every layer in every
boring, the most important type of information reviewed was the penetration test
data, because it may be used as a proxy for the density of the layer. Contrasts in
penetration resistance are particularly important for identifying the boundary
between the Holocene and latest Pleistocene. As sediment ages and becomes
more lithified, the density of the sediment increases, and the increase in density
is reflected in a higher penetration resistance (Powers et al. 1992; Hitchcock and
Helley 2000, 2003).

Penetration resistance aiso was reviewed in the context of the lithologic
description recorded for each layer. Lithologic descriptions that include words

” o«

such as “organics,” “roots,” or “carbonaceous” may also indicate the presence of

a buried late Pleistocene soil horizon. As sea level rose at the end of the latest
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Pleistocene the depositional environment of the northern Santa Clara Valley
changed. In the study area the change in depositionai environment is preserved
in some borings as a textural change at the inferred boundary between the late
Pleistocene and Holocene (Hitchcock and Helley 2000, 2003). Other
researchers have interpreted the “top of Pleistocene” to represent a former land
surface that existed prior to the rise of seawater through the Golden Gate at the
beginning of the Holocene (Helley and Lajoie 1979; Atwater, Hedel and Helley
1977).

In the northern Santa Clara Valley, repeated fluctuations in the depth of
groungwater due to the influence of the nearby San Francisco Bay may cause
sediment to consolidate, resulting in higher penetration resistance.

In some borings, it is easier to discriminate one geologic unit from another
based upon the texture of the sediment layers sampled in the boring. For
instance, silt (ML) is a fine-grained material that is a component of many of the
geologic units found in the map area, such as Holocene alluvial fan levee
deposits (Qhl) and Holocene alluvial fan deposits (Qhf). Each geologic map unit
represents a different depositional environment; however, silt contained in
different units may be described on different boring logs using similar terms such
as “fine, brown, medium stiff, moist”. By carefully reviewing the textural
composition of a given layer in the context of the other layers in the boring in
which it is sampled as well as in the context of surrounding borings, it may be

possible to discern the geologic setting in which the sediment was deposited, and
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ultimately, the geologic unit to which the sediment belongs. Table 2 lists criteria
that are compared to assign layers to specific geologic units. It is important to
note that some of the descriptive characteristics listed in Table 2 may not be
noted in the description of every sediment layer on a boring log; however, several
layers together may display a combination of characteristics that make it possible

to interpret the geologic setting for a series of layers.

TABLE 2. CRITERIA FOR ASSIGNING LAYERS TO GEOLOGIC MAP UNITS (Clahan et al. 2002)

Are there features that suggest the presence of a soil (rootlets, caliche, and pedogenesis)?
Are there regionally correlatable discontinuities?

Is there a change in penetration resistance within/between layers in borings?

Are regionally identifiable units (e.g. Merritt Sand, Bay Mud) present?

Does the color change (mottling, oxidation at the Top of Pleistocene)?

Does the texture change (grain size, gradation, sorting) laterally and/or vertically?

For example, in boring 000051_00142 (Appendix 1), layers 1 through 4 are
composed primarily of silt, clay, and fine-grained sand, and are interpreted as
geologic unit Holocene alluvial fan levee deposits (Qhl). According to Helley and
Wesling, (1989) “levee deposits are loose, moderately to weli sorted sand, silt
and clay.” In contrast, although the textures of layers 5 through 8 in boring
000051_00142 are similar to the textures of layers 1 through 4 (sand, silt and
clay), layer 8 contains gravel, and the descriptions for layers 5 and 8 include

modifying phrases such as “discontinuous sand lenses” and “interbedded
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streaks of sand” respectively. Layers 5 through 8 in boring 000051_00142 are
interpreted as geologic unit Holocene alluvial fan deposits (Qhf) rather than Qhi
because according to Witter et al. (2006), Qhf consists of “sand, gravel, silt and
clay, and is moderately to poorly sorted, and moderately to poorly bedded.” The
subtle change in the textural composition and continuity of bedding between
layers 1 through 4 and layers 5 through 8 is interpreted to be the result of a
change in depositional environment, and therefore layers 1 through 4 are
interpreted as belonging to a different geologic map unit than layers 5 through 8.
Due to the paucity of useful descriptive terminoiogy on boring logs, it is
difficult to differentiate among Holocene or latest Pleistocene sub-units in most
cases. In many cases the shallowest sub-surface layers are assigned to the
geologic map unit mapped at the ground surface on the Quaternary map
produced by Witter et al. (2006). However, in some borings an effort was made
to identify sub-units for subsurface layers. In addition to the criteria listed in Table
2, for borings advanced into artificial fill, levee deposits (alf), the elevation of the
top of the levee was compared to the elevation of the natural ground surface
adjacent to the artificial levee. All layers in the boring with appropriate physical
properties and with elevation equal to or below the elevation of the natural
ground surface, but above the layers identified as Pleistocene (where present),
were assigned to the geologic map unit upon which the levee was constructed.
In addition, an effort was made to recognize borings where the geologic

unit assigned to the uppermost layer in a boring was different from the geologic
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unit(s) assigned to underlying layers in the same boring, especially for borings
located near a geologic contact. Because it is common for sedimentary layers of
adjacent geologic units to interfinger, an attempt was made to determine whether
subsurface layers in borings near geologic contacts should be assigned to the
geologic unit mapped at the surface of the boring, or assigned to the geologic
unit in contact with the geologic unit mapped at the surface of the boring. The
boring log was reviewed and differences in the characteristics of sedimentary
layers including penetration resistance, color, grain size, and lithology were used
to determine to which geologic unit a layer should be assigned. For example,
boring 2009B1 (Plate 1) near the intersection of Senter Road and Phelan Avenue
on the San Jose East quadrangle, is located near the geologic contact between
Holocene stream terrace deposits (Qht) and Holocene alluvial fan levee deposits
(Qhl). Layers 1 (clay) and 2 (poorly sorted sand) are interpreted to belong to
geologic map unit Qht, the unit mapped at the surface on the Quaternary
geologic map used for this project, whereas layers 3 through 6 (silt, clay, silty
sand, and clay respectively) are interpreted to belong to geologic map unit Qhl.
Witter et al. (2006) describe Qht deposits as including sand, gravel, silt, and
minor clay. However, Helley and Wesling (1989) describe Qhl deposits as
including moderately to well-sorted sand, silt, and clay. Layers 2 through 6 are
described as fine-grained silty sand, silt, or clay with no mention of coarser

material.
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The following criteria were used as keys to identify layers of different ages
in the northern Santa Clara Valley:

Modern

Where not specifically noted on boring logs, artificial fill deposits (af),
artificial fill over Bay Mud (afbm), and artificial fill, levee (alf) are identified
where the layer description on the boring log indicates the presence of
man-made historical debris such as bits of glass or broken concrete
typically in a well-sorted matrix (Witter et al. 2006). Commonly, modern
deposits are tan to light brown (Witter et al. 2006). In addition, the location
of the boring may help identify the presence of fill deposits. Large-scale
infrastructure such as bridges and major highways commonly require
placement of fill during construction, and therefore, borings in the vicinity
of infrastructure often encounter fill deposits. Layers that are not
composed of fill but are considered Modern, including artificial stream
channel (ac) and modern stream channel (Qhc), are most easily identified
based upon their geographic location in existing streams. The median
penetration resistance was calculated for each of the geologic map units
and the median penetration resistance of all the Modern deposits in the
northern Santa Clara Valley ranged from 6 to 11 blows per foot.

Latest Holocene

Youngest Holocene deposits are typically unconsolidated, very loose to
loose granular deposits, or very soft to soft, fine-grained deposits (Witter
et al. 2006). Youngest Holocene deposits are most easily identified based
upon their geographic location adjacent to existing streams. Layers that
are identified as Youngest Holocene include alluviai fan (Qhfy), alluvial fan
levee (Qhly), and stream terrace (Qhty) deposits. The median penetration
resistance was calculated for each of the geologic map units and the
median penetration resistance of all the Holocene deposits in the northern
Santa Clara Valley ranged from 6 to 11 blows per foot.

Holocene

Holocene deposits tend to be slightly consolidated clay, silt, and fine sand,
as well as mixtures of slightly consolidated sand, silt and clay (Witter et al.
2008). Holocene deposits are most easily identified based upon their
geographic location in the distal areas of active fans and downstream
portions of active fluvial systems. Layers identified as Holocene include
San Francisco Bay mud (Qhbm), basin (Qhb), and stream terrace (Qht)
deposits, and deposits associated with alluvial fan environments including
fine grained alluvial fan estuarine complex (Qhfe), alluvial fan (Qhf),
alluvial fan fine facies (Qhff), and alluvial fan levee (Qhl) deposits. The
median penetration resistance was calculated for each of the geologic
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map units and the median penetration resistance of all the Holocene
deposits in the northern Santa Clara Valley ranged from 4 to 25 blows per
foot.

Pleistocene

Pleistocene deposits of a given texture, such as silt, have a higher density
than those of the same texture in a younger deposit. Pleistocene deposits
are typically mapped at the surface in the proximal portions of alluvial fans
located along the margins of the Santa Clara Valley, and are commonly
dissected by Holocene stream channels. It is not uncommon to note a
coarsening-upward sequence in Pleistocene sediment within a single
boring, although the coarsening-upward sequence, if present, may be
subtle, such as a transition from clay to sandy silt. Where only a single
source is contributing sediment to a portion of the study area it may be
possible to discern a sediment sequence or layer that marks the change
from latest Pleistocene to Holocene. Because there are many source
areas contributing sediment to the northern Santa Clara Valley,
particularly toward the downstream axis of the study area, unique
sedimentary sequences, if present, are most likely to be observed in
borings at the margins of the valley where streams from single source
areas emanate from the base of either the Santa Cruz Mountains on the
western margin of the valley, or along the base of the Diablo Range on the
eastern margin of the valley. Sediment from a single source may be
identified by the consistent use of descriptive terminology such as “gray-
brown silty gravel” regardless of when or by whom the subsurface
investigation was conducted. Layers identified as Pleistocene include late
Pleistocene to Holocene alluvial fan (Qf), Late Pleistocene to Holocene
alluvial fan levee (Ql), Late Pleistocene to Holocene stream terrace (Qt),
Late Pleistocene to Holocene alluvium, undifferentiated (Qa), Late
Pleistocene basin (Qpb), alluvial fan (Qpf), Late Pleistocene alluvium,
undifferentiated (Qpa), Early to middle Pleistocene undifferentiated
alluvium (Qoa) and Early to middle Pleistocene alluvial fan (Qof). The
median penetration resistance was calculated for each of the geologic
map units and the median penetration resistance of all the latest
Pleistocene sediment in the northern Santa Clara Valley ranged from 8 to
28 blows per foot.

Cross sections were constructed after each layer was initially assigned to
a geologic map unit. Borings were critically reviewed in the context of
surrounding borings, with particular attention paid to differences in density as

measured by blow count values and lateral and vertical textural changes
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observed in layers at similar depths, and in some cases, the name of the
geologic map unit assigned to a particular layer was revised. Plate 3 is a cross
section constructed along the northern edge of the study area. The process of
scrutinizing layer descriptions in the context of layers in surrounding borings as
they appear on cross sections and then revising the name of the geologic unit
assigned to each layer was repeated numerous times. Cross sections were
constructed both parallel and normal to the northwest-trending axis of the study
area. Borings that appear on more than one cross section were reviewed to
ensure consistency in assignment.

On Plate 3, the top of Pleistocene is depicted as a solid line through the
top of the shallowest layer identified as latest Pleistocene and as a queried
dashed line at the estimated depth of the top-of-Pleistocene surface through
borings in which Pleistocene is uncertain or not identified. For exampie, at the
east end of the cross section in Plate 3, the top-of-Pleistocene surface is
identified in borings 000057_00138 and 000057_00121, but not in boring
000057_00140. The surface is projected through the middle of layer 3 in boring
000057_00140 because that is the expected depth based on the known depth to
Pleistocene in the adjacent borings. For shallow borings, such as those at the
west end of the cross section, the top-of-Pleistocene surface is projected as a
queried dashed line below the boring at the depth at which Pleistocene might ve
expected.

The top-of-Pleistocene surface may be identified based upon different
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criteria in different borings. In boring 000057_00100 on Plate 3, it is inferred
based on an increase in penetration resistance and a coarsening-upwards
sequence of layers 8, 7, and 6, recorded as a change from clay in layer 8 to sand
in overlying layers 6 and 7. In contrast, for boring 000057_00139, the top-of-
Pleistocene surface is inferred from an increase in penetration resistance with
depth for layers with the same USCS classification. Clay layer 3 in boring
000057_00139 has penetration resistance values of 39 and 33 blows per foot;
however, clay layer 5 in the same boring has a penetration resistance of 61

blows per foot, and the log states that the sediment is “very hard below 7 feet.”
Further, it should be noted that the characteristics that are used to identify the
top-of-Pleistocene surface in the northern Santa Clara Valiey may not be valid for
other regions of the valley or elsewhere. The characteristics that are used to
identify the top-of-Pleistocene surface may vary from region to region based on
factors such as number and type of source areas, regional tectonics, climate, and
depositional environment.

After each layer was assigned to a geologic map unit, a contour map
showing the elevation of the top of the Pleistocene was constructed. The
contours on the map were constructed through the elevation of the top of the
uppermost layer in each boring identified as latest Pleistocene. The contour map
was reviewed to make sure that the surface depicted by the map was consistent
with a land surface that would be expected to develop during a period of low sea

level. Remnants of Pleistocene fans exposed along the margins of the present-
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day northern Santa Clara Valley were compared to the contour surface
constructed using the elevations of the top of the Pleistocene as interpreted from
boring logs. The exposed surfaces of Pleistocene fans are places where the
elevation of the top of the Pleistocene is known with confidence and can be used
as control points when constructing a contour. In particular, borings that caused
contour lines to be deflected or drawn in a manner inconsistent with the expected
land surface were reviewed and reinterpreted in the context of surrounding
borings, and the emerging contour surface of the elevation of the top of
Pleistocene was subsequently revised.

During the late Pleistocene, sea level is interpreted to have been as much
as 130 m below the current level, resulting in a prolonged period of subaerial
exposure, weathering and consolidation (Helley and Lajoie 1979). As sea level
dropped, the center of the basin that was once filled with water became exposed.
The period at the end of the Pleistocene when sediment was exposed allowed for
the development of a distinct pedogenic horizon that has been identified in
excavations by Hitchcock and Helley (2003) as defined by a marked increase in

density as well as identifiable changes in color and texture.

Liquefaction Analysis

To perform liquefaction analysis, information from individual boring logs
was entered into a database without modification (whenever possible). However

in some cases, professional judgment was necessary to clarify information
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recorded on the log. In particular, the quality of the standard penetration test
(SPT) varies considerably from one boring and operator to the next. Non-SPT
values add additional variation to liquefaction analysis. Recorded blow counts for
non-SPT sampling, where the sampler diameter, hammer weight, drop distance,
and energy delivery differ from those specified for an SPT are converted to SPT-
equivalent blow count values, when appropriate.

To characterize the quality of each SPT value, each penetration test
compiled in the database was ranked from 1 to 29 (CGS unpublished) based
upon how closely the sampling matches ASTM D1586-99 standards (ASTM
1999) and whether or not the recorded blow counts can reasonably approximate
those of an SPT. For example, a penetration test for which the diameter of the
sampler is not known is assigned a quality ranking of 13 if the blow counts have
been converted to the SPT equivalent. Penetration tests with a quality ranking
lower than 12 were not used (Appendix 2) (CGS unpublished). Where no
analysis of laboratory fines content is provided for layers with liquefiable textures,
a default (fc) for liquefiable materials was assigned based upon the Unified Soil
Classification System (USCS) designation for the layer (Table 3). Similarly, if unit
weight data are not provided on the boring logs, then values for each layer based
on the layer’s soil type must be assumed (Appendix 3) (CGS unpublished). The
actual and converted SPT blow counts are normalized using a common
reference effective overburden pressure of 1 atmosphere (approximately 1 ton

per square foot), and a hammer efficiency of 60% using a method described by
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Seed and Idriss (1971, 1982, with updates by Seed, Idriss and Arango 1983,
1985; Seed and De Alba 1986; and Seed and Harder 1990) and updated

according to the

TABLE 3. FINES CONTENT (FC) ASSIGNED TO SAMPLES WITH LIQUEFIABLE TEXTURES FOR WHICH NO
TEXTURAL DATA WERE PROVIDED ON BORING LOGS (Knudsen et al. 2004)

Curve used in FC used in

triggering (Ni)soes |
evaluation®  calculation *

Standard/conforming USCS categories

GW, GP, SW, SP SD 25
GW-GM, GW-GC, GP-GC, SW-SM, SW-SC, SP-SM, SP-SC SM 8.5
GM, SM SM 24
GC-GM, SC-sM ML 30
GC, SC, ML ML 35
Qther non-USCS cateqories found on boring logs

GP-SP, GW-GP, SW-SP “cobbles & boulders”, “gravel”, “gravel and sand”, “sand” sD 25
“artificial fill", “soil" SM 12
GP-SM, SM-SP SM 14
SC-SP, SC-GP SM 19
GM-SM, “alluvium”, “loess” SM 24
ML-SM, SM-SC ML 30
ML-CL, SC-CL, SC-ML, SM-CL, SM-ML ML 35

T curve assigned for use in Simplified Procedure triggering analysis (SD- 5%, SM - 15%, ML - 35% fines content)
$ fines content in percent assigned (when no laboratory textural data are available) for use in calcutating (N1)so.cs
§ soil descriptions found on boring logs that do not conform with USCS categories; these categories are not
recommended for use in logging borings

recommendations of Youd et al. (2001) and Seed et al. (2003). This normalized
blow count is referred to as (N1)so. Some of the methods for evaluating the
susceptibility of deposits to liquefaction and the potential for deformation include
adjusting the (N1)go value for the fines content of the sample; this adjusted “clean-
sand equivalent” value is referred to as (N+)go, cs. Finally, the liquefaction
potential of each layer in every boring is evaluated deterministically using the
methods of Youd et al. (2001) and probabilistically using the methods of Seed et
al. (2003).

The deterministic model proposed by Seed et al. (1984, 1985) uses SPT-

based correlations. With minor modifications proposed by the NCEER Working
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Group (NCEER 1997; Youd et al. 2001), this correlation is one of the most widely
accepted correlations that is still used in practice (Fig. 3) (Cetin et al. 2004).
Figure 3 shows the relationship between the standard penetration test (N+)eo
measured for a soil, with respect to intensity of cyclic loading, expressed as a
magnitude-weighted equivalent uniform cyclic stress ratio (CSRe,) approximating
earthquakes with magnitudes of 7.5 (Cetin et al. 2004).

The cyclic stress ratio for a soil layer is calculated by using the equation

developed by Seed and ldriss (1971).

CSR = .65(amax/g) (Ovo/ O'vo) T4 (equation 1)

CSR = Cyclic Stress Ratio

amax = Peak horizontal ground acceleration

g = acceleration of gravity

Oy = vertical overburden stress

O'vo= vertical overburden stress minus pore pressure

rs = non-linear shear mass participation factor minus stress reduction

coefficient to account for flexibility in the soil

Peak horizontal ground acceleration (amayx) is derived from the statewide
probabilistic seismic hazard evaluation released cooperatively by the California
Department of Conservation, California Geological Survey, and the U.S.
Geological Survey (Petersen et al. 1996).

In contrast, probabilistic models include data from a growing set of field
observed liquefaction case history data from earthquakes that have occurred

since 1984 (Seed et al. 2003). The term probabilistic refers to “triggering” of

liquefaction, not the consequences (resulting from deformation). Probabilistic
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Figure 3. Deterministic correlation for evaluation of liquefaction potential.
The chart shows CRR curves for clean sand (5% fines), silty sand (15% fines), and
silt (35% fines). Given a corrected blow count value [(N)so] from a valid penetration
test and the fines content of the soil, the CRR value is read off the y-axis (Seed et
al. 1984; Youd et al. 2001).
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charts (Fig. 4) commonly are plotted with the deterministic curves derived by

Seed et al. (1984) from Figure 3.

PL
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Youc. 213, (1838
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Figure 4. Probabilistic correlation for evaluation of liquefaction
potential (Youd et al. 1997). This chart shows probability of
liquefaction curves plotted in same space as deterministic correlations
of Seed et al. (1984).
To use the chart in Figure 3, the corrected SPT value is plotted in the CSR
- (N1)so space and then the results are reviewed to see whether the point falls to
the left or right of the appropriate empirically determined curve. The liquefaction

curves are calibrated for liquefiabie textures that describe clean sand (5% fines),

silty sands (15% fines) and silt (35% fines). Similarly, to use the chart in Figure 4
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the corrected SPT values are piotted in the CSR - (N¢)so space and then the
results are reviewed to see whether the point falls to the left or right of the
appropriate curve denoting probability of liquefaction. The Factor of Safety
against liquefaction (FS), an estimate of whether liquefaction will occur, is the
ratio of a soil's resistance to liquefaction (CRR), to the cyclic seismic loading

imposed on the soil (CSR) (Seed and ldriss 1982):

Factor of Safety = CRR/CSR (equation 2)

The CGS liquefaction analysis program calculates a FS for each geotechnical
sample where blow counts were collected. Typically, multiple samples are
collected for each borehole. The program then independently calculates a FS for
each non-clay layer that includes at least one penetration test using the minimum
(N1)s0 value for that layer. The minimum FS value of the layers penetrated by the
borehole is used to evaluate the liquefaction potential for each borehole location.
The reliability of FS values varies according to the quality of the geotechnical
data (CGS 2006).

The liquefaction potential index (LPI) defined by Iwasaki et al. (1982)
provides an estimate of the severity of liquefaction at a specific location. The
purpose is not to predict the occurrence of liquefaction, but rather to indicate the
potential for ground failure manifested by occurrences of sand boils or other

similar phenomena as a result of liquefaction. The LPI calculation takes into
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account the thickness of the liquefied layer, the proximity of the liquefied layer to
the ground surface, and the degree to which the Factor of Safety for a particular
boring is less than 1.0 (lwasaki et al. 1982). The calculation requires a maximum
depth of 20 m. LPI values calculated for borings that penetrate the subsurface to

a depth shallower than the required depth are considered minimum values.

Deformation Analysis For Level-Ground Conditions

Two classes of methods for estimating quantities of post-liquefaction
ground deformation, both of which are typically used in site investigations, not in
regional mapping, are (1) empirical predictions of lateral spread displacements,
and (2) predictions of volumetric and shear strains (Knudsen et al. 2004) (Fig. 5).
This study deals only with predictions of volumetric and shear strain, which can
be predicted using either semi-empirical formulations or numerical simulations.
Semi-empirical methods for predicting shear and volumetric strain are based on
a growing set of laboratory data and improved understanding of processes; some
of these methods have been calibrated against the growing database of historical
ground failure case histories. Probabilistic liquefaction triggering analysis and
analysis of volumetric strain for non-saturated soils also may be incorporated into
these methods. The major disadvantages of applying the semi-empirical
methods to estimate shear and volumetric strain are that these methods require

detailed geotechnical data (for best results laboratory data
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Figure 5. Methods of predicting liquefaction-induced deformation (Knudsen et al.,

2004)

are used) that can be expensive to collect (Knudsen et al. 2004).

The methods of Wu (2002), Wu and Seed (2004), and Wu et al. (2003)

are based on laboratory testing, specifically cyclic simple shear testing of

undrained samples of fully saturated sand. Wu (2002) conducted tests using
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Monterey No. 0/30 sand, with strain measured at 15 cycles (approximating an M

7.5 earthquake), pressures of 40kPa, 80kPa, and 180kPa, and relative densities

ranging from 35% to 80%. The results of the testing show that measured strain

(for level ground conditions) falls within the ranges predicted by the limiting strain

charts formulated by Tokimatsu and Seed (1987). Among the benefits of this

method is that, in addition to providing an estimate of probability of liquefaction

(Pu), it includes updates to previously developed tools including a new nonlinear
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shear mass participation factor (Ry) and new fines correction factor (Cgines)
(Knudsen et al. 2004).

There are four steps required to apply the method of Wu (2002) and Wu et
al. (2003): (1) evaluate liquefaction susceptibility for each saturated layer as
described earlier in this section; (2) use the values of (N)so, s and CSR
estimated in step one in conjunction with a new family of curves (Fig. 6) to
estimate the post-liquefaction recensolidation volumetric strain (settlement) of
each saturated, liquefiable layer; (3) calculate volumetric compression of non-
saturated sandy layers according to the procedures of Tokimatsu and Seed
(1987); and (4) sum the volumetric changes of all saturated and unsaturated soil
layers. The new procedure was shown by Wu and Seed (2004) to perform well
for a suite of field performance case histories with small to moderate ground
settlements.

Wu (2002) also proposed a new pragmatic chart (Fig. 7) for prediction of
limiting shear strain (displacement). This chart, however, is preliminary because
it has yet to be thoroughly calibrated against field performance case histories, so
it may be updated or modified in the future.

The methods for estimating volumetric strain yield results that can be
thought of as “predicted” or as “within-a-factor-of-two,” whereas the relationships
used to estimate future shear strain should be thought of as “limiting” or

“potential” values (Knudsen et al. 2004). Because shear strain amplitude
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continues to accumulate in liquefied sands under constant shear load conditions,
liquefaction-induced shear strain is uniquely defined by selection of a pre-
determined number of cycles (Knudsen et al. 2004). For the Wu (2002) method,
liquefaction-induced limiting shear strain is defined as the single amplitude shear
strain at the 15" loading cycle, which is the approximate number of uniform
loading cycles in a typical My 7.5 earthquake.

Finally, the potential volumetric and shear strain that can be expected in
deposits from different geologic environments and of different ages is
characterized using the results of the post-liquefaction deformation analysis. The
predicted strain of individual geologic map units is estimated by multiplying the
calculated strain (for each combination of CSR and corrected penetration
resistance) by the thickness of each layer containing saturated sediment with
liquefiable textures and then summing the calculated deformation amounts for all
of the layers for each map unit.

Deformation potential calculations are carried out only for layers with
liquefiable textures (Table 3) and are then summed over the entire length of the
boring. A value of zero is assigned to a layer for which either (1) the particular
combination of N-value and CSR for that layer does not result in measurable
strain, or (2) the particular combination of N-value and CSR for the layer results
in measurable strain but the liquefiable textures in the layer are not saturated.
The depths to first-encountered unconfined ground water were plotted onto a

map of the project area and contoured to constrain the estimate of historically
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shallowest ground water. An anticipated high ground-water level is estimated
based on historical ground-water data. In areas where ground water is either
currently near-surface or could return to near-surface levels within a land-use
planning interval of 50 years, CGS constructs regional contour maps that depict
these levels (CGS 2006). A null value means that either no liquefiable textures
are present and/or that no penetration test data are available, and therefore
strain could not be calculated. Thus, where data are not available, calculated

values must be considered minima.
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RESULTS

Each layer in each of the 668 boring logs was assigned to Quaternary
map units and used to characterize the geology of the northern Santa Clara
Valley and interpret the Holocene-late Pleistocene boundary in the subsurface.
The geotechnical data were grouped and analyzed with respect to the geologic
map unit to which each layer was assigned, and with respect to the age of the
geologic unit mapped at the surface of each boring.

Trends in the data revealed during the analysis, such as an increase or
decrease in a given geotechnical parameter interpreted as the result of an
increase or decrease in the age of sediment, are used to validate the methods
used in this project. For instance, penetration resistance is expected to increase
as a result of increasing age because the sediment has been subjected to
consolidation for a onger period of time. If the results of the analysis do not
conform to the expected outcome, it may be an indication that errors were made
in the interpretation and assignment of the layers in the borings to a particular
geologic map unit.

A range of geotechnical parameters is recorded and calculated for each of
the layers within each boring and for the boring as a whole. The liquefaction
potential of each layer is evaluated deterministically using the methods of Youd
et al. (2001) and probabilistically using the methods of Seed et al. (2003). Other

parameters calculated for each layer include factor of safety (FS) and probability
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of liquefaction (P.). Parameters calculated for each boring include the thickness
of sediment with liquefiable textures, the thickness of saturated liquefiable
sediment, and the liquefaction potential index (LPI). The results of the various
analyses are used to create maps of liquefaction-induced deformation based
upon the geotechnical and geologic characterization of the sediments in the

northern Santa Clara Valley.

Nearest Neighbor Statistics

A geostatistical approach is adopted to evaluate the variability in sediment
properties from boring to boring. Figure 8 uses the T1s parameter, a parameter
introduced by Youd, Hansen and Bartlett (2002) and Bardet et al. (2002) in their
lateral spread predictive models, to describe the thickness of saturated sediment
with liquefiable textures and penetration resistance values of less than 15. In a
setting with “layer cake” geology, T1s values should be similar from boring to
boring. Figure 8 shows that 900 m is the maximum distance for which there is a
relationship between adjacent borings (in the T1s parameter) (Knudsen et al.
2004). However, the median separation distance between any two borings in the
study area is approximately 1,044 m. This means that caution is warranted for
estimates of geotechnical and geologic properties made for areas that are more
than 900 m from the nearest boring and between borings more than 900 m apart.

The conclusion that can be drawn from this information is that a greater density
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of borings would improve understanding of the geologic variability in this area

(Knudsen et al. 2004).

Semi-variogram
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Figure 8. Nearest neighbor semi-variogram. Semi variance is a measure of the degree
of spatial dependence between samples (Clark and Harper 2000). A semi-variogram meastures
the variance between data as a function of distance. The maximum separation distance for
borings in the study area for which there is a relationship between adjacent borings is
approximately 900 m (Knudsen et al. 2004).

Pleistocene Surface Elevation Map (Interpreted)

As mentioned at the outset of the Methods section, the geotechnical

properties of materials in the borings were used to infer a three-dimensional
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surface that broadly defines a boundary based on density differences. For the
purposes of this study, that surface is generally interpreted as the Holocene-
Pieistocene boundary (Plate 4). However, evidence indicates that the two
surfaces do not coincide in some areas. In any event, for the purposes of
liquefaction hazard mapping, it is more important to identify the change in the
geotechnical properties of sediment than the age of sediment.

It was possible to identify a change in the measurable geotechnical
properties of sediment such as penetration resistance in 215 of 668 borings used
in this study. Approximately 272 borings penetrate to significant depths in the
center of the valley where the Pleistocene surface is deepest, so contours in the
center of the valley are constructed with much less confidence than those near
the valley edges. It appears that during the late Pleistocene a significant volume
of the Santa Clara Valley was drained by one primary source oriented roughly
parallel to the present day location of Coyote Creek, or that two large streams
were flowing parallel and in close proximity to one another like Guadalupe River
and Coyote Creek are today.

Mapping the elevation at which the change in the penetration resistance of
sediment occurs results in the depiction of a surface that is a reasonable
representation of a natural land surface. The surface depicted on the map
suggests an environment where the land surface was stable for a period of time
long enough for it to begin to be incised by numerous small drainages, and

depicts a surface that closely resembles the topography of the modern land
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surface. Dates obtained for sediment in eight deep wells in the northern Santa
Ciara Valley collected by Carl Wentworth and John Tinsley of the USGS indicate
that the elevation of the top of Pleistocene based on dates is somewhat lower
than the surface depicted on Plate 4 (Carl Wentworth oral communication 2007)
indicating imperfect correlation of geotechnical and stratigraphic boundaries.
Wentwaorth (oral communication 2007) notes that “the latest pulse of
sedimentation started before the end of the Pleistocene, and therefore, one may

argue that the geotechnical boundary coincides with the top of the Pleistocene”.

Liquefiable Textures

Table 4 shows that for many of the geologic map units fewer than half of

TABLE 4. PERCENTAGE OF EACH GEOLOGIC MAP UNIT
WITH TEXTURES THAT ARE POTENTIALLY LIQUEFIABLE

Number of layers Layer thickness
Geolegic  # of % of iayers  Cumulative % of total with
map unit lfayers  with thickness of liquefiable

liquefiable all layers (m) textures
texture (%)

af 223 26 329 14
alf 11 55 21 57
Qhe 20 65 53 55
Qhfy 46 22 78 13
Qhly 169 37 323 28
Qhty 87 44 129 31
Qhbm 29 7 51 9
Qhb 17 18 35 7
Qhfe 103 31 160 18
Qhf 1700 47 2925 42
Qhff 267 14 488 10
Qhi 357 53 611 48
Qht 8 88 8 92
Qf 116 46 415 37
Qi 12 50 17 39
Qt 2 100 2 100
Qpf 561 59 1304 58

See Table 1 for geologic map unit definitions, units are listed in
order of increasing age
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the sediment layers described on the compiled boring logs are coarse enough to
liquefy. Calculations of liquefaction-induced strain are made only for the layers
with granular textures (thus not USCS classes CL, CH, MH, ML-CL, OH, OL, Pt)
because fine-grained soils are not expected to liquefy. Map units that are
expected to be fine grained (e.g. Qhb — Holocene basin deposits, Qhff -
Holocene alluvial fan, fine facies, Qhbm — Holocene Bay mud) all consist of more

than 80 to 85% fine sediment.

(N1)eo.cs_Factor of Safety, and Cyclic Resistance Ratio

Table 5 shows several trends are evident. (1) (N1)socs values for sediment
with liquefiable textures are generally low; in most cases the median values are
less than 15, a value previous researchers have considered an upper bound for
sediment likely to experience large-scale liqguefaction-related deformation. (2)
The method of Youd et al. (2001) results in median (N1)eo cs Values that tend to be
2 to 3 blows/ft higher than the values calculated using the method of Seed et al.
(2003). The methods of Youd et al. (2001) and Seed et al. (2003) are identical
except in the input value for the non-linear shear mass patrticipation factor
(r4). The non-linear shear mass participation factor is used to account for the fact
that a column of soil does not act like a rigid body, so the peak shear stress
calculated using equation 1 decreases with depth (Cetin and Seed 2000). The
stress reduction coefficient rq is a function of site stratigraphy, soil properties, and
the characteristics of the "input" motions (excitations). By definition, it has a value

of 1.0 at the ground surface (Cetin and Seed 2000). The methods of Seed et al.



(2003) use improved correlations for estimation of ry as calculated by Cetin and
Seed (2000). Cetin and Seed (2000) performed 2,153 seismic site response
analyses to examine the change in r4for a range of site conditions and ground

motion excitation characteristics (Seed et al. 2003). Cetin and Seed (2000)
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found that the ry suggested by Seed and Idriss (1971) (and used by Youd et al.,

TABLE 5. FINES CORRECTED PENETRATION RESISTANCE,
FACTOR OF SAFETY AND CYCLIC RESISTANCE RATIO
(SUMMARIZED BY LAYER FOR ALL GEOLOGIC MAP

UNITS)
Factor of
Penetration Resistance Safety (only Cyclic Resistance
(N1)so.cs liquefiable  Ratio (CRR)
textures)
All textures  Only
(including liquefiable
fines) textures
- 3 ® s c
c - - — (=}
= o 3 (Y @ 'ﬁ
2 I I B ;
s B2 Z 32 T, b
? SE6-2 S0P - 5. § §
S 588325385838 3% %
§ SESES s ESc iR R s
af 48 10.413.163 119 42 0.7 0.3 0.27 0.15 0.29
alf 5 63 9875 85 5 0.202 0.120.09 0.05
Qhe 11 11.2116100 11.2 11 0.5 0.4 0.360.23 0.36
Qhfy 7 111148100 111 7 06 0.4 0.160.17 0.04
Qhly 54 65 95 95 65 5% 04 0.3 0.210.17 0.19
Qhty 28 7.0 94 100 7.0 27 0.3 0.2 0.200.15 0.18
Qhbm 1 85 1210 na na na na na na na
Qhb 4 62 97 50 79 4 0202 0.150.15 na
Qhfe 15 48 7.9 100 48 15 0.2 0.2 0.180.12 0.24
Qhf 598 11.214289 11.6 55305 0.3 0.350.20 0.33
Qhff 35 8.7 12355 95 31 0.4 0.3 0.240.18 0.24
Qhl 137 10.313.890 10.3 13504 0.3 0.270.17 0.27
Qht 4 289311100 253 4 1.0 1.2 1.001.00 na
Qf 41 10.813.6100 10.8 40 0.4 0.3 0.230.22 0.17
Qt 4 85 121100 85 4 0.2 0.2 0.150.14
Qt 2 263288100 263 2 07 07 na na na
Qpf 227 19.221593 19.8 22209 0.7 0.560.35 0.39

See Table 1 for unit definitions. Units are fisted in order of

increasing age. Textures that are not subject to fiquefaction
include CL, CH, MH, ML-CL, OH, OL, Pt.
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2001) underestimates the degree to which ry may vary with changes in site
conditions and ground motion characteristics, and results in overestimates of rg
between depths of 10 and 50 feet, the depth range for which liquefaction
potential is calculated (Seed et al. 2003). It is likely that the difference in ry
values accounts for the difference in corrected blow count values. (3) The
median factor of safety (FS) value for most geologic map units is much less than
1. Where the FS value is less than 1, layers with potentially liquefiable textures
are prone to liquefaction when subjected to a level of shaking that has only a
10% probability of being exceeded in 50 years. However, it is important to
remember that a significant fraction of the sediment in the study area is
composed of fine-grained materials — materials that are too fine to be likely to
liquefy. For instance, Table 5 shows that the median FS value for latest
Holocene alluvial fan deposits (Qhfy) is 0.17. However, Table 4 shows that only
22% out of a total of 46 layers, and only 13% out of the total thickness of 78
meters of sediment, are composed of liquefiable textures. This means that
although the composition of Qhfy includes sediment that is liquefiable, the
relative abundance of the liquefiable fraction of Qhfy is low.

Figure 9 summarizes some of the geologic characteristics of the
liquefiable deposits found in the study area. Because geologic characteristics
are often complex and difficult to model, data distributions are frequently non-
ideal, although some interpretation is possible. Figure 9 illustrates a range of

measured penetration resistance values for layers as grouped according to age
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for latest Holocene (Qhfy, Qhly, Qhty, and Qhfe), Holocene (Qhb, Qhc, Qhf, Qhff,

Qhl, and Qht) and latest Pleistocene (Qf, QI, Qt, and Qpf) ages. The x axis
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Figure 8. Histograms of penetration resistance (by layer, only liquefiable textures are
included). From a. Latest Holocene [number of layers = 98, mean=11.5, median=8.9]; b.
Holocene deposits [number of layers = 693, mean=17.7, median=14.1]; and c. Latest Pleistocene
deposits [number of layers = 255, mean=28, median=23].

records the minimum penetration resistance of each layer, and the y axis records
the number of layers for each (N1)so value. Late Pleistocene layers (Fig. 9c) have
the highest penetration resistance, with a median value of 23, followed by
Holocene (Fig. 9b) layers with a median value of 14.1, and latest Holocene
deposits (Fig. 9a) with a median value of 8.9. The overall increase in density
with increasing age of the deposit is likely a reflection of the fact that older
deposits have been subjected to compaction and iithification processes longer.
Plate 5 shows histograms of all penetration resistance measurements
(from layers with liquefiable textures) collected for this research. Each layer has
been assigned a geologic map unit based on interpretation of the stratigraphy

depicted in the boring logs as described above. The histograms for map units for
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which there are a sufficient number of samples (e.g. Qhly, Qhfe, Qhf, Qhi)
suggest that (N+)so,cs populations are not normally distributed, but are more likely
to be log-normally distributed. There appears to be a general trend of increasing
penetration resistance with increasing age of deposits, as observed in Table 5. A
“box and whisker” plot of these same data (Fig. 10) shows that the properties of
the map units overlap. The results depicted on Figure 10 underscore an
important point: if the methods used in this research are to be applied in other
geographic regions, the minimum number of borings necessary to produce
meaningful results will vary based upon the complexity of the geology of the

region under investigation.

Liquefaction Potential index

LPI has been calculated for all borings in the study area with saturated,
loose, granuiar deposits for which penetration test data are available. Figure 11
shows that many geologic map units have calculated median LPI values in the
range of 10 to 15. Toprak and Holzer (2001) found that the surface manifestation
of liquefaction-induced deformation is 93% for LPI values of near 15 and 58% for
values near 5. Because sediment becomes increasingly resistant to liquefaction
with age, LPI should decrease with increasing age. However, calculated LPi
values for Holocene and late Pleistocene deposits in this study do not follow the
expected trend. The reason for this difference may be that the LPI parameter

expresses only the probability of surface manifestations of liquefaction and not
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Figure 10. Box and whisker plot of fines corrected penetration resistance
measurements for every layer in the project geotechnical boring database. The length of
the box shows inter-quartile range (the median of the upper part of the data minus the
median of the lower part of the data) and larger box lengths indicate greater variability in
the data set; the line through the box shows the median value. The “whiskers” show the
overall range of the data. Outliers in the data set are represented by stars at either end
of the whiskers. Geologic map units are listed in order of increasing age from left to right.
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Figure 11. Liquefaction Potential Index calculated for borings aggregated to the
representative age of the majority of deposits (Holocene or Late Pleistocene) in the boring;
Holocene deposits [number of borings = 269, median = 9.6], Late Pleistocene deposits [number
of borings = 59, median = 10.4].

magnitudes of deformation. Toprak and Holzer (2003) noted that pockets of
potentially liquefiable material that are not laterally continuous might yield a high
LP1 value but no surface manifestations of liquefaction, whereas a thin but widely
distributed potentially liquefiable layer that is deeply buried might yield a low LPI
yet produce significant liquefaction-related surface features. Sedimentary
deposits in the northern Santa Clara Valley are highly variable both laterally and
vertically over a short distance. It is possible that sediment that is identified as
late Pleistocene contains discontinuous lenses of potentially liquefiable material,
that are not likely to produce deformation features at the ground surface.
Deviation from expected results may also be due to the fact that not all of
the borings in this study reach the minimum required depth of 20 m (lwasaki et

al.1982) and/or that more data are needed.
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Estimating Strain for Each Geologic Map Unit

Table 6 summarizes data generated by the methods of Wu et al. (2004)
(volumetric strain) and Wu (2002) (limiting shear strain) liquefaction-induced
ground deformation models used in this study. The table shows strain

calculations for borings grouped according to surficial geologic map unit.

TABLE 6. CALCULATED VOLUMETRIC AND LIMITING SHEAR STRAIN ALONG WITH SETTLEMENT AND
HORIZONTAL DISPLACEMENT FOR BORINGS INITIATED IN EACH GEQLOGIC MAP UNIT

Volumetric strain (%) Settlement (meters) Shear strain (%) Displacement (meters)

# 1] med o M med o V] med o o med ¢}
afbm 6 45 438 0.6 0.1 0.1 0.1 42.1 43.0 54 1.2 1.0 0.7
alf 24 3.1 3.0 1.7 0.1 0.1 0.2 26.5 27.1 16.8 1.0 0.5 1.3
ac 2 2.7 2.7 0.9 0.2 02 0.1 26.8 26.8 9.0 1.9 1.9 1.5
Qhc 3 1.0 0.5 1.3 0.0 0.0 0.1 79 00 13.7 04 0.0 0.6
Qhfy 21 3.1 3.0 1.4 0.1 0.1 0.1 286 27.2 15.6 0.9 0.7 0.7
Qhly 28 2.7 29 1.6 0.1 0.1 0.1 249 242 17.7 1.1 0.8 1.2
Qhty 18 3.2 3.2 1.3 0.1 0.1 0.1 30.0 27.5 16.0 09 0.8 0.7
Qhfe 11 4.2 4.1 2.0 0.2 0.1 0.2 338 303 15.1 16 1.1 1.4
Qhf 183 1.4 0.8 1.7 0.0 0.0 0.1 11.7 0.6 16.3 03 0.0 0.8
Qhff 72 2.2 21 1.6 0.1 0.0 0.1 18.9 14.7 16.8 0.5 0.3 0.7
Qht a7 24 26 1.8 0.1 0.0 0.1 21.7 208 17.9 0.6 0.4 0.7
Qht 4 23 23 1.5 02 0.2 0.1 20.1 193 15.4 16 1.5 1.5
Qf 6 1.2 1.3 0.8 0.0 0.0 00 53 6.1 4.8 0.1 0.0 0.1
Qt 1 0.9 - - 0.1 - - 10 - - 0.2 - -
Qpf 23 0.2 0.0 0.4 0.0 0.0 00 05 00 1.3 0.0 0.0 0.1

“Predicted” volumetric strain is calculated and shown here using the Wu et al. (2004) approach. This method assumes
nearly level ground and, based on comparison with case studies yields estimates that should be within a factor of two of
future settlement.

See Table 1 for listing of names of geologic map units.

“Limiting” shear strain is calculated and shown here using the preliminary correlations by Wu (2002). This method
assumes nearly level ground and yields estimates that should be considered maxima.
# - number of borings; 4 mean; med - median; o - standard deviation.

To estimate amounts of volumetric strain or limiting shear strain, the
calculated strain is multiplied by the thickness of saturated sediment with
potentially liquefiable textures. Table 6 reveals that there is an inverse
correlation between the age of the deposit mapped at the ground surface and
estimated strain — generally, the younger the deposit the larger the estimated

strain. The younger deposits (e.g. the late Holocene units Qhfy, Qhly, Qhty and
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Qhfe) generally are less dense and thus more susceptible to liquefaction
triggering and the subsequent deformation. As noted in the methods section, the
methods for estimating volumetric strain yield results that can be thought of as
“predicted” or as “within-a-factor-of-two,” whereas the relationships used to
estimate future shear strain should be thought of as “limiting” or “potential”
values.

The median strain values for each geclogic map unit are grouped into five
categories (ranging from Very Low to High) according to the median strain value
for all borings that penetrate a given geologic unit at the ground surface. Plates
6 and 7 show where these units occur at the land surface. The colored dots on
each map represent the locations of borings for which strain was calculated,
where the color of each dot correlates to the total amount of strain for all layers
composed of saturated, liquefiable textures summed for the entire length of each
boring. The higher values of both volumetric and shear strain tend to be located
adjacent to Guadalupe River and Coyote Creek (the two largest water courses in
the study area), and where these water courses discharge into the San Francisco
Bay. Areas adjacent to active water courses where thick accumulations of loose,
saturated and granular material are more susceptible to liquefaction (Witter et al.
2006) appear to have a correspondingly higher susceptibility to liquefaction-
induced strain. In contrast, older sediment that has been subjected to

consolidation over a longer period of time is less susceptible to liquefaction
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(Witter et al. 2006) and appears to have a correspondingly lower susceptibility to
liguefaction-induced strain.

On Plates 6 and 7, the geologic map unit artificial fill over Bay Mud (afbm)
is assigned to the category with the highest median strain value. Clay is not
considered a liquefiable texture because cohesive fines such as clays (a primary
component of mud) do not liquefy during undrained cyclic loading, i.e.,
earthquake shaking (Boulanger and Idriss 2004). However, because fill
associated with afbm is less likely to be engineered and in many locations was
dredged from sandy areas (Witter et al. 2006), even though the unit includes a
high percentage of clay, the liquefaction susceptibility of afbm is considered Very
High and the potential for liquefaction-induced strain for afbm is likely to be high
as weli.

Strain resuits summed for all saturated, liquefiable textures for which
penetration test data are available in each boring suggest that for borings near
Guadalupe River and Coyote Creek there is limited agreement between the
amount of volumetric or limiting shear strain per boring and median strain value
for the geologic map unit in which the boring is located. However, overall it
appears that borings located near Guadalupe River and Coyote Creek tend to
have the highest strain values (categories High, Moderate-High, and Moderate)
regardless of whether or not the amount of strain for an individual boring falls into
the same strain category as the map unit in which it is located.

Figures 12 and 13 show the number of individual borings assigned to each
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strain category that plot in the correspondingly colored polygon representing the
same amount of deformation on the strain maps. Of the 668 borings reviewed
for this research, percent strain was summed for 489 borings that record
penetration test data and contain layers composed of saturated, iiquefiable
textures. Figures 12 and 13 show that a small number of the borings plot within
the map polygon that represents the same strain category. Figures 14 and 15
show the percent of borings that plot within the map polygon that represents the
same strain category, as well as the percent of borings that piot within the
polygon with the next higher and lower strain category. The relatively low
correlation between mapped strain category and the strain category for each
individual boring is most likely due to the fact that sedimentary deposits in the
map area vary vertically and laterally over a short distance. Variability in
distribution of sedimentary deposits results in variation in susceptibility to
liquefaction, and subsequent liquefaction-induced strain.

The purpose of this study is to try to understand how well the range of
variability in strain that is likely to occur within a given geologic map unit may be
predicted by the environment in which the sediment was deposited. For instance,
distal fan areas such as Holocene alluvial fan, fine facies (Qhff) are typically low-
energy environments characterized by deposition of fine sediments such as silts
and clays. The relative percent of silt and clay sampled in multiple boring

advanced into Qhff sediment may vary. One boring may include a larger
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Figure 12: Histogram showing the number of borings that plot in the
map polygon with the corresponding volumetric strain (%). The color noted on
the x axis corresponds to the strain category for the dots and the shaded
polygons on the map.
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map.
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Figure 14: Histogram showing the percent of borings that plot in the
map polygon with the corresponding volumetric strain (%) as well as the
polygon with the next higher and lower volumetric strain category. The color
noted on the x axis corresponds to the strain category for the dots and the
shaded polygons on the map.
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Figure 15: Histogram showing the percent of borings that plot in the
map polygon with the corresponding shear strain (%) as well as the polygon
with the next higher and lower shear strain category. The color noted on the x
axis corresponds to the strain category for the dots and the shaded polygons on
the map.

percentage of silt and therefore be relatively more susceptible to liquefaction and
likely to experience a relatively greater amount of strain compared to other
nearby borings in Qhff with more clay. However, even though the liquefaction
susceptibility and subsequent strain may vary for adjacent borings, overall the
range of variability will be limited because the type of sediment deposited in Qhff
is limited by the low-energy depositional processes that operate in that

environment. Geotechnical data recorded on boring logs such as penetration
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resistance provide quantifiable data that can be used to calculate liquefaction
potential and the potential for liquefaction-induced strain. Grouping the geologic
map units according to the median strain value for all of the borings that
penetrate that unit allows for the production of a regional-scale map that
illustrates characteristic liquefaction-induced strain based on specific geologic
environment. The boundaries of the strain polygons correspond to boundaries of
geologic map units, and Plates 6 and 7 show that environments with the highest
predicted amounts of strain are nearest to higher-energy stream environments

where young, loose, coarser-grained sediments are deposited.

Observed vs. Predicted Deformation

Because it was not possible to calibrate deformation predicted by this
study using primary data (in-situ measurements from preserved historical ground
failure features), an attempt to calibrate results using descriptions of historical
ground failure from the 1868 Hayward, 1906 San Francisco and 1989 Loma
Prieta earthquakes was conducted instead. Accounts of ground deformation
compiled by Youd and Hoose (1978) include descriptions with quantified
estimates of ground failure.

An attempt was made to compare the amounts of liquefaction-induced
ground deformation predicted using data compiled in this study with measured
amounts of historical deformation within the study area caused by the 1868, 1906

and 1989 earthquakes. In the fall of 2003, William Lettis and Associates, Inc.
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excavated a 93-m-long trench at Cilker Orchards, just west of Coyote Creek,
approximately 4 km south of San Francisco Bay (Thompson et al. 2004). The
purpose of their study was to investigate whether lateral spreads occur
repeatedly in the same location. Youd and Hoose (1978) compiled several
accounts of lateral spread adjacent, and in close proximity, to Coyote Creek in
the vicinity of the trench, including fissures, offset rows of trees in the adjacent
orchards, and settlement caused by both the 1868 Hayward and 1906 San
Francisco earthquakes. Unfortunately reconstruction of a levee adjacent to
Coyote Creek in 1993 made it impossible to locate a trench in the area where the
majority of ground failure features were reported. Only two small sand dikes (3-5
mm wide) were visible in the trench, and they did not provide enough information
to calibrate the results of this study.

These written accounts were reviewed and a table containing an estimate
of the type of ground failure to occur at each site (displacement or settlement)
and the amount of deformation that occurred at each site was compiled
(Appendix 4). After each site was located, the estimated amount of predicted
ground failure was compared to the observed amount of ground failure within
each geologic map unit. For settlement, the predicted amount exceeds the
observed amount of ground failure, while for displacement the observed amounts
of ground failure are somewhat higher than predicted. Although there are many
reports of earthquake-induced ground failure foliowing the 1906 earthquake,

some features are not well documented. Youd and Hoose caution that “most
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post-earthquake investigative efforts were applied to assessing the extent of
structural and other damage or tracing out ruptured faults; hence notations
concerning ground failures are commonly of incidental nature,” e.g., no
distinction is made between ground failures due to liquefaction and those caused

by deformation of soft clay.
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CONCLUSIONS

The surface elevation of the boundary that is interpreted as the top of the
Pleistocene shows a central topographic low aligned down the center of the
northern Santa Clara Valley that corresponds to the present-day location of
Guadalupe River and Coyote Creek. Identification of this paleo-land surface is
accomplished through an iterative process that includes collecting and reviewing
geotechnical data recorded on boring logs and constructing cross sections
through the study area. The most important type of information reviewed was the
penetration test data because it may be used as a proxy for the density of the
layer. As sediment ages and lithifies, its density and penetration resistance
increase. The top of the Pleistocene was inferred from penetration test data,
laboratory test results including grain size analysis, moisture content, and dry
density, and descriptive comments that mention changes in color, lateral and
vertical textural changes, or presence of organic matter. All borings that
contained layers interpreted as Pleistocene were plotted and a contour map was
constructed. Borings that caused contour lines to be deflected or drawn in a
manner inconsistent with the expected land surface were reviewed and
reinterpreted in the context of surrounding borings, and the emerging contour
surface of the elevation of the top of Pleistocene was subsequently revised. The
contours delineating the center of the northern Santa Clara Valley are

constructed with much less confidence than those along the margins of the
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valley. Holocene sediment increases in thickness both toward the center of the
northern Santa Clara Valley and downstream. Most of the geotechnical borings
used in this study are not deep enough to penetrate the Pleistocene surface in
the center of the study area.

The following conclusions are reached about sediment layers described in
geotechnical boring logs collected in the northern Santa Clara Valley: 1) fewer
than half of the sediment layers described are coarse enough to liquefy, whether
analyzed by the total number of layers or the total boring length assigned to each
map unit, 2) the median corrected penetration resistance ((N1)so.cs)) Value for
sediment with liquefiable textures in most cases is less than 15, a value previous
researchers have considered an upper bound for sediment likely to experience
large-scale liquefaction-related deformation; 3) the method of Youd et al. (2001)
results in median (N1)so.cs values that tend to be 2 to 3 blows/ft higher than the
values calculated using the method of Seed et al. (2003); 4) where the Factor of
Safety value is less than 1, layers with granular textures are prone to liquefaction
when subjected to a level of shaking that has only a 10% probability of being
exceeded in 50 years, although a high percentage of the sediment in the study
area consists of fine-grained materials that probably are too fine to liquefy; 5)
liquefaction potential index values for younger deposits tend to be lower than for
older deposits; and 6) the maximum distance for which there is a relationship
between adjacent borings is approximately 900 m, while the median separation

distance between any two borings in the study area is approximately 1,044 m,
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indicating that additional data are required to adequately characterize geologic
variability in the northern Santa Clara Valley.

Because the descriptions for sediment layers con boring logs often lack
sufficient detail, it is often not possible to distinguish sub-units for sub-surface
layers. For the purposes of liquefaction and liquefaction-induced deformation
analysis it is sufficient to identify the paleo-land surface boundary, or the depth at
which the sediments are sufficiently dense that they will not liquefy.

The northern Santa Clara Valley is characterized by the highly variable
nature of its late Quaternary geology. This variability makes it difficult to
differentiate areas likely to experience large liquefaction-related deformation from
areas with less hazard. Resolution of this problem might occur with the
acquisition of additional geotechnical boring data. The data available for this
project (668 boring logs) do not include a uniform number of borings from every
potentially liquefiable geologic map unit. Geotechnical data recorded on boring
logs such as penetration resistance, fines content, or USCS classification provide
quantifiable data that can be used to calculate liqguefaction potential and the
potential for liquefaction-induced strain. Grouping the geologic map units
according to the median strain value for all of the borings that penetrate that unit
allows for the production of a regional-scale map that illustrates characteristic

liqguefaction-induced strain based on specific geologic environment.
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