
San Jose State University
SJSU ScholarWorks

Faculty Publications Electrical Engineering

1994

Block QPSK modulation codes with two levels of
error protection
Robert H. Morelos-Zaragoza
Nara Institute of Science and Technology, robert.morelos-zaragoza@sjsu.edu

Shu Lin
University of Hawaii at Manoa

Follow this and additional works at: https://scholarworks.sjsu.edu/ee_pub

Part of the Electrical and Computer Engineering Commons

This Article is brought to you for free and open access by the Electrical Engineering at SJSU ScholarWorks. It has been accepted for inclusion in Faculty
Publications by an authorized administrator of SJSU ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

Recommended Citation
Robert H. Morelos-Zaragoza and Shu Lin. "Block QPSK modulation codes with two levels of error protection" Faculty Publications
(1994): 548-552. doi:10.1109/WNCMF.1994.529150

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fee_pub%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/ee_pub?utm_source=scholarworks.sjsu.edu%2Fee_pub%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/ee?utm_source=scholarworks.sjsu.edu%2Fee_pub%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/ee_pub?utm_source=scholarworks.sjsu.edu%2Fee_pub%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.sjsu.edu%2Fee_pub%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu


548 D 5.2 PIMRC '94 

BLOCK QPSK MODULATION CODES WITH TWO LEVELS OF 
ERROR PROTECTION 

Robert  H. Morelos-Zaragoza 
Graduate  School of Information Science 
Nara Inst. of Science and Technology 

8916-5 Takayama, Ikoma, Nara 630-01 JAPAN 
Tel: +81-7437-2-5212 Fax: +81-7437-2-5219 

Email: robert@is.aist-nara.ac.jp 

Abstract: A class of block QPSK modulation codes 
for unequal error protection (UEP) is presented. 
These codes are particularly suitable either for 
broadcast channels or for communication systems 
where parts of the  information messages are more 
important than  others. An example of the  latter 
is coded speech transmission. Not much is known 
on the  application of block UEP codes in com- 
bined coding and modulation schemes. We exhibit 
a method t o  combine binary linear UEP (LUEP) 
block codes of even length, using a Gray mapping, 
with a QPSK signal set t o  construct efficient block 
QPSK modulation codes with nonuniform error pro- 
tection capabilities for bandwidth efficient transmis- 
sion over AWGN (additive white Gaussian noise) 
and Rayleigh fading channels. 

I. INTRODUCTION 

In recent years, coded modulation schemes that of- 
fer nonuniform error protection have received consider- 
able attention. Application examples of these schemes 
are broadcast of digital high-definition television sig- 
nals [1][2], and transmission of coded speech and im- 
age [3][4][5][6]. In the former application, good receiver 
quality is required for the important data under bad 
channel conditions (e.g., distant receivers), while in the 
latter some of the source information bits are more sen- 
sitive to errors than the other bits. A code that offers 
different levels of error protection is called an unequal 
error protection (UEP) code. Linear UEP codes, or 
LUEP codes, were introduced by Masnik and Wolf [7]. 

In this work, we use binary LUEP block codes in 
conjunction with QPSK signal constellations, to obtain 
new efficient block modulation codes for unequal error 
protection. The purpose is to obtain code sequences 
associated with the most important message bits sep- 
arated by a distance greater than the minimum dis- 
tance of the modulation code. By distance we mean (1) 
squared Euclidean distance (SED) when transmission is 
over an AWGN channel, or ( 2 )  symbol and product dis- 
tances for transmission over a Rayleigh fading channel. 
We show that as a result of accomplishing the above 
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objective, with transmission over an AWGN channel 
or a Rayleigh fading channel, the most important (or 
more sensitive to  errors) message bits have a probabil- 
i ty of a bit error lower than the minimum probability 
of a bit error guaranteed by the modulation code. Sev- 
eral examples of block QPSK modulation codes with 
two levels of error protection, having the same mini- 
mum squared Euclidean distance (MSED) as that of 
optimal block QPSK modulation codes for the AWGN 
channel of the same rate and length [8], are presented. 
Because a Gray mapped QPSK signal set is used, max- 
imizing the minimum Hamming distance of the under- 
lying binary LUEP code maximizes both the MSED 
for an AWGN channel and the minimum symbol and 
product distances for a Rayleigh fading channel. 

11. BINARY TWO-LEVEL LUEP CODES 

Let C be an (n, k) binary linear block code. As usual, 
an element m from (0, l}k is called a message, and an 
element E ( m )  from C is called a codeword. Let the mes- 
sage space (0, l}k be decomposed into the direct prod- 
uct of two disjoint message subspaces, (0, l}ki, i = 1,2, 
such that {O,l}k = { O , l } k l  x {O,l}&a. Then a mes- 
sage can be written as m = ( m l , m 2 ) ,  m i  E (0, l}ki, 
i = 1,2. The separation vector of C is defined as the 
two-tuple S = (SI, s 2 ) ,  where 

A 
si = min{wt(c(m)) : mi # O, a E (0, ~ } ~ i } ,  

i = 1,2, where wt(x) denotes the Hamming weight 
(number of nonzero entries) of vector x. We assume 
that code C has both components of its separation vec- 
tor distinct and arranged in decreasing order, 81 > 82,  

and call ml the most important message part (or MSB) 
and mz the least important message part (or LSB). 

Code C is said to  be an (n, k )  binary two-level L UEP 
code with separation vector S = (81, s 2 ) ,  for the message 
space {0,1}~1 x {0,1}~2. In terms of levels of error cor- 
rection, Ici information bits can be successfully decoded 
in the presence of up to  [(si - 1)/2J random errors, 
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FIGURE 1: A GRAY MAPPED QPSK SIGNAL SET. 

i = 1,2 [7], where 1x1 denotes the largest integer less 
than or equal to x. 

Fori = 1,2, let Ci be an (n ,  hi, di) binary linear code. 
For two binary vectors U = (210, u1, - e ,  u,-1) and 0 = 
(vo,v1, * - , vn-l), define the concatenation operation 
U O P W  

A 
U 0 0  = (uo,u1, * * ,U,-l,WO, v1, * * * ,  v,-1). 

Then the following code, based on C1 and C2, 

p(C1,C2) = {w : w = v o ( a + o ) ,  a E c1,o E CZ}, 

is a (2n,kl + k2) binary linear code. This combina- 
tion of linear codes is a modified version of the well 
known ltilii + 01 construction [9], and it can be shown 
(see [9]) that the minimum distance of code p(C1, C2) 

is d = min{2d2,max{dl,d2}}. The following result is 
known [lo]: 
Theorem: Suppose dl > 2 4 .  Then p(C1, C2) is a bi- 
nary (2n, kl + Ic2) two-level LUEP code with separa- 
tion vector B = (91, sa), for the message space (0, l}kl x 
{O,l}kz,  where 

s1 = min{max(dl,dz},dl} = d l ,  and 

8 2  = min(2d2, max{dl,dz)} = 2d2. 

111. LUEP QPSK MODULATION CODES 

In a (unit energy) QPSK signal constellation with 
Gray mapping between 2-bit labels and signal points, 
as illustrated in Figure 1, the squared Euclidean dis- 
tance (SED) between signal points is proportional to 
the Hamming distance between the corresponding la- 
bels. For example, in Figure 1, the Hamming distance 
between the label (00) of signal point “0” and the label 
(01) of signal point “1” is equal to 1, while the SED 
between these signal points is 2. All adjacent signal 

points have labels separated by a Hamming distance of 
1 and are separated by an SED of 2, while opposite sig- 
nal points (e.g., “0” and “2”) have labels separated by 
a Hamming distance of 2 and are at an SED of 4 from 
each other. This QPSK signal constellation is said to 
form a second-order Hamming space (111. By mapping 
2-bit symbols onto signal points in a QPSK signal set, 
via Gray mapping, we may combine (2n, k l  + Ic2) bi- 
nary 2-level LUEP codes with QPSK modulation to  
construct a block coded modulation system with two 
levels of error protection as follows: 

Let Ct, be a (2n, kl + k2) binary LUEP code with 
separation vector s = ( ~ 1 , s ~ )  for the message space 
{O,l}&l x {O,l}ka.  Let S denote the QPSK signal 
set depicted in Figure 1 and use the following (Gray) 
mapping M between 2-bit symbols and S: M(O0) = 0, 
M(01) = 1, M(11) = 2 and M(10) = 3. Let 

Then C = M(Cb) is a 2-level LUEP QPSK block mod- 
ulation code of length n, dimension k, rate R = k/2n 
(bits/dimension), and squared Euclidean separation 
vector [12] 

S S E D  = (291,282). 

In conventional coded modulation for an AWGN chan- 
nel, the asymptotic coding gain G is a function of the 
minimum squared Euclidean distance (MSED) and the 
rate of a modulation code. For high signal-to-noise ra- 
tios (SNR), G equals the ratio of the MSED of the coded 
system to the MSED of an uncoded system transmitting 
at the same rate (number of bits per signal). Accord- 
ingly, for each component of S ~ E D  above, we may de- 
fine an asymptotic coding gain component. For QPSK 
modulation over AWGN channels at high SNR, we de- 
fine the asymptotic coding gain vector of C as 

= (Gl,G2), 

where, for i = 1,2 ,  

Gi = 1 0 1 0 g ~ ~  [ 2si ] (dB). 
4 sin2 (7r/2R) 

We note that, as in the case of conventional uni- 
form error protection coded modulation systems, the 
above asymptotic coding gains can only be reached with 
maximum-likelihood soft-decision decoding. 

In Table 1 we list some block QPSK modulation 
codes with two levels of error protection. Some of the 
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TABLE 1 
SOME LUEP QPSK MODULATION CODES 

2n k kj. ka SI S a  R GI Gz 
10 5 1 4 5 4 1/2 3.98 3.01 * 
10 8 1 7 3 2 4/5 3.06 1.30 
12 6 1 5 6 4 1/2 4.77 3.01 * 
12 6 2 4 5 4 1/2 3.98 3.01 
12 9 1 8 4 2 3/4 3.96 0.95 
12 10 1 9 3 2 5/6 3.32 1.56 
14 7 1 6 7 4 1/2 5.44 3.01 * 
14 7 4 3 5 4 1/2 3.98 3.01 
14 8 1 7 5 4 4/7 4.07 3.10 
14 11 1 10 4 2 11/14 4.21 1.20 
14 11 4 7 3 2 11/14 2.96 1.20 

codes in Table 1 have the same minimum squared Eu- 
clidean distance as that of optimal block QPSK modu- 
lation codes for an AWGN channel with the same rate 
and length [13], and provide additional coding gain 
(smaller probability of bit error) for the kl most im- 
portant message bits. These codes are labeled * in Ta- 
ble l and are obtained from the modified version of the 
lnln + VI construction discussed in section 11. Other 
codes in Table 1 are taken from [14]. It is interesting to 
note [15] that optimal block QPSK modulation codes 
with the same parameters as those found by Sayegh [8] 
[13], lengths n = 5 to n = 10, can be obtained from the 
modified lfilfi + iil construction combined with Gray la- 
beled QPSK signal sets. 

In a Rayleigh fading channel, the error performance 
of a modulation code at  high SNR is dominated by its 
minimum symbol and product distances as well as its 
number of nearest neighbors [16][17]. (At low SNR, 
the MSED also plays a role in the error performance.) 
For i = 1 ,2 ,  let si denote the i-th separation vector 
component of the underlying binary LUEP code, Cb, 
used in this section. With a Gray mapped QPSK sig- 
nal set, an LUEP QPSK modulation code C = M(Cb) 
has minimum symbol distance between code sequences 
associanted with ki message bits equal to  S,,i[C] = si 
and minimum product distance A,,i[C] = u*i,  where 
U is the minimum Euclidean distance between ponts 
in the QPSK signal set. (For the signal set depicted 
in Figure 1, a = a.) Therefore, good binary LUEP 
codes designed for the Hamming metric map onto good 
LUEP QPSK modulation codes for a fading channel. 

Example: Let C1 be a (8,1,8) repetition code and 
Cz be a (8 ,7 ,2 )  parity check code. Then applying 
the modified version of the Iulu + construction ex- 
plained in section 11, we obtain a (16,8) LUEP code 

1 1  

... 

... 
1 1 

FIGURE 2: TRELLIS DIAGRAM FOR AN LUEP QPSK 
MODULATION CODE. 

cb with separation vector S = (8,4),  for the message 
space (0 ,  l}' x (0, l}7. Gray mapping 2-bit symbols 
onto QPSK signals results in a block QPSK modula- 
tion code with two levels of error protection, M(Ca), 
of length 8, rate R = 1/2 (bits/dim) and squared Eu- 
clidean separation vector S ~ E D  = (16,8).  The refer- 
ence uncoded system is BPSK, which has an MSED of 
4. It follows that the asymptotic coding gain vector 
for this two-level LUEP QPSK block modulation code 
is G = (6.02,3.01). In other words, 12.5% of the infor- 
mation is transmitted practically error free, while the 
remaining 87.5% of the information is provided with a 
coding gain of 3 dB with respect to  uncoded BPSK. A 
trellis diagram for M(Cb) has 4 states and 8 sections, 
with the structure indicated in Figure 2. (See also [15]). 

This LUEP QPSK block modulation code compares 
well with a uniform error protection trellis modulation 
(TCM) code based on a binary convolutional code of the 
same rate and number of trellis diagram states: A rate 
1/2 TCM code with constraint length 2 (4-state trellis 
diagram) and Gray mapped QPSK, achieves an asymp- 
totic coding gain of 3.97 dB over uncoded BPSK. Code 
M(Cb) also compares favorably with a time-sharing 
coding scheme that uses two separate binary linear 
block codes to  provide the same levels of error protec- 
tion: To provide an asymptotic coding gain of 6 dB 
for 1 bit and of 3 dB for 7 bits, an (8,1,8) repetition 
code (or 4 QPSK signal transmissions) and a (12 ,7 ,4)  
linear code (or 6 QPSK signal transmissions) may be 
used. This results in a (20,8) binary LUEP code with 
the same separation vector and message space that re- 
quires 4 more redundant bits (or 2 more QPSK signal 
transmissions). AA 

The above example can be generalized as follows: 
Let Cl be a binary (n, 1, n) repetition code and C, 
be a binary (n, n - 1,2)  panty check code. Apply- 
ing the construction method outlined in section I1 
we obtain a (2n,n) binary two-level LUEP code 
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TABLE 2 
EXPECTED CODING GAINS OF SOME LUEP QPSK 
MODULATION CODES OVER AN AWGN CHANNEL 

MSB 4.62 6.03 5.84 

Ca = p(C1, C2)  with separation vector B = (n, 4), for 
the message space {O,l}' x {O,l}n-l. Using a Gray 
mapped QPSK signal set we obtain an LUEP QPSK 
modulation code M(Cb) of length n, rate R = 1/2 
(bitsldim), and squared Euclidean separation vector 
S ~ E D  = (2n,8). Thus the asymptotic coding gain vec- 
tor is G = (lO1oglo n - 3.01,3.01). 

Figures 3 and 4 show computer simulation results 
on the error performance of LUEP QPSK modulation 
codes M(Cb) of lengths 8, 16 and 32, based on the 
above construction. The vertical scale is the proba- 
bility of a bit error, P,, while the horizontal scale is 
the energy per bit-to-noise ratio, Eb/No.  Simulations 
were performed using the Viterbi algorithm with soft 
decisions and a trellis diagram for M(Cb) having the 
structure shown in Figure 2. As can be seen from these 
graphs, the construction improves from length n = 8 to 
n = 16, but then deteriorates at length n = 32. This 
is because of a larger number of nearest neighbors, or 
error coeficient, for the most important message part: 
The error coefficient (also called path multiplicity) for 
codewords associated with the most important message 
part (MSB) is NI = 2n-1, while the error coefficient for 
codewords associated with the least important message 
part (LSB) is N2 = ( y ) .  As a result, the expected cod- 
ing gain for the most important message bits will be re- 
duced considerably as the length n increases. For short 
lengths (5 5 n 5 10) however, these codes are optimal 
block QPSK modulation codes, as pointed out before. 

Table 2 lists the values of expected coding gains for 
n = 8,16,32, using the well known Forney's rule [18] 
which states that the coding loss at a bit error probabil- 
ity of over an AWGN channel is 0.210g2(Nc/Nu), 
where N ,  is the error coefficient of the modulation code 
and Nu is the error coefficient of the uncoded system, 
which in this case is BPSK, with Nu = 1. As an ex- 
ample, for n = 32, the asymptotic coding gain vec- 
tor is G = (12.04,3.01), while the error coefficients are 
Nl = 231 and N 2  = 496. The coding loss due to these 
error coefficients is 6.2 dB for the MSB and 1.79 dB 
for the LSB, which accounts for the computer simula- 
tion results shown in Figure 3. Also note that because 

\ 

\ 1 

FIGURE 3: ERROR PERFORMANCE OF LUEP QPSK 
MODULATION CODES OVER AN AWGN CHANNEL. 

a Gray mapped QPSK signal constellation is used, the 
effect of the error coefficients on the error performance 
for a Rayleigh fading channel is similar, as shown in 
Figure 4. 

IV. CONCLUSIONS 

We presented block QPSK modulation codes with 
two levels of error protection. We used Gray label- 
ing of QPSK signals to map binary (2n,k) LUEP 
codes, with separation vector B = (81, sz), onto two- 
level LUEP QPSK block modulation codes of length 
n, rate k / 2 n  (bitsldimension) and squared Euclidean 
separation S ~ E D  = (2~1,262). These codes have two 
values of minimum squared Euclidean distance, or min- 
imum symbol and product distances, between code se- 
quences of QPSK signals. For short lengths, the result- 
ing two-level LUEP QPSK block modulation codes for 
the AWGN channel are optimal in the sense of having 
the same parameters as the best block QPSK modu- 
lation codes [13]. Simulation results show that these 
codes achieve good error performance on a Rayleigh 
fading channel, while at the same time have an ex- 
tremely simple trellis structure and thus low decoding 
complexity. We expect these codes to be used in a p  
plications where an embedded QPSK signal set is used, 
and a simple yet efficient block coded modulation sys- 
tem with two values of error protection is desired. 
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