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Unequal Error Protection QPSK Modulation Codes 

Robert H. Morelos-Zaragoza and Shu Lin 

Department of Electrical Engineering 
University of Hawaii at Manoa 
2540 Dole Street, Holmes 483 
Honolulu, Hawaii 96822, USA 

Abstract 

Unequal error protection (UEP) codes find applica- 
tions in broadcast channels, as well as in other digital 
communication systems, where messages have differ- 
ent degrees of importance. In this paper, we use bi- 
nary linear UEP (LUEP) codes, in combination with 
a QPSK signal set and Gray mapping, to obtain new 
efficient block QPSK modulation codes with unequal 
minimum squared Euclidean distances. We give several 
examples of QPSK modulation codes that have the 
same minimum squared Euclidean distance (MSED) as 
the best QPSK modulation codes of the same rate and 
length. In the new constructions of QPSK modulation 
codes, even-length binary LUEP codes are used. Good 
LUEP codes are obtained when we combine shorter 
linear codes using either the well known lulu+?l- 
construction or the so-called construction X. Both con- 
structions have the advantage of yielding optimal or 
near optimal binary LUEP codes of short to moder- 
ate lengths, using very simple constituent codes, and 
may be used as constituent codes in the new construc- 
tions. LUEP codes lend themselves quite naturally to 
multi-stage decodings, using the decodings of compe 
nent subcodes. In this paper, we present a new subop 
timal two-stage soft-decision decoding of LUEP codes 
and apply it to LUEP QPSK modulation codes. 

1 Introduction 

There are many practical applications in which it is re- 
quired to design a code that protects messages against 
different levels of noise, or messages with different 
levels of importance over a noisy channel with the 
same level of noise power. Examples of such situ- 
ations are: broadcast channels, multi-user channels, 
computer networks, pulse coded modulation (PCM) 
systems and source coding systems, among others. 

This research was supported by the NSF under Grant NCR-88813480 and by NASA under Grant NAG 
5-931. 

Such a code is usually said to be an unequal error 
protection (UEP) code. In this paper, we propose to 
use binary linear UEP (LUEP) codes [l], in combina- 
tion with QPSK signal constellations, to obtain new 
efficient block QPSK modulation codes with unequal 
minimum squared Euclidean distances. That is, code 
sequences associated with the most important mes- 
sage bits are separated by a squared Euclidean dis- 
tance (SED) larger than the SED between code se- 
quences associated with less important message bits. 
In this paper two types of messages are considered, 
one more important than the other. Several examples 
of block LUEP QPSK modulation codes, having the 
same minimum squared Euclidean distance (MSED) 
as that of optimal QPSK modulation codes of the same 
rate and length [2-31, are presented. The paper is or- 
ganized as follows. In section 2, basic concepts and 
two constructions of LUEP codes based on specifying 
the generator matrix are presented. Section 3 deals 
with constructions of QPSK modulation codes and a 
suboptimal two-stage sofl-decision (TSSD) decoding 
of LUEP codes. An example is given which illustrates 
TSSD decoding of QPSK modulation codes. Finally, 
in section 4, conclusions on the results are presented. 

2 

When a code is used to provide multiple levels of er- 
ror protection, the conventional definition of minimum 
distance must be generalized. Since different levels of 
error protection are possible with a UEP code, a vec- 
tor of minimum distances, one for each level of error 
protection, needs to be defined. Let C be an ( n , k )  
block code (not necessarily linear) over a finite alpha- 
bet A, n 2 k. That is, C is a one-to-one mapping from 
A' to A", i.e., 

Basic concepts of LUEP codes 

~fi E A' 5 c(m) E A", 
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where Based on Cl and Cz construct the following code, 
A k = A  X A  x ... x A .  

As usual, an element m from A' is called a message, 
and an element E ( m )  from C is called a codeword. A' 
is known as the message set. Let A' be decomposed 
into the direct product of disjoint message subsets, 
A';, 1 5 i 5 e, such that 

and a message m E Ak can be expressed as 

p(C1, CZ) = { w) w = U 0 (U + V), U E c1, V E Cz} - 
k times Clearly, p(C1,Cz) is a (271, kl + kz) linear code with 

generator matrix, 

'= (  0 G z )  

d = min{2di,max{di,dz}). 

GI GI 

The minimum distance of p(C1, Cz) is [8] 

Ak = A'' x At' x . . . x A'', 

m = (m,,mz,..*,mf), mi E A k ' ,  1 5 i 5 e, 
where each m i  is called the i-lh message part, 
15 i _< e. The separation vector of C is defined as 
the &tuple S = (s~,sz,...,st), where 

si e min{d(E(m), ~'(m')) : 

mi # mi, mi,fi~i E A"), 1 5 i 5 e, 
where d ( X ,  X') denotes the Hamming distance between 
X and X' in A". Assume that C has all the compo- 
nents of its separation vector distinct and arranged in 
decreasing order, i.e., 

s1 > SZ > ... > S f ,  

so that C is an (n, k) block code of minimum distance 
Q. Code C is said to be an (n, k) [-level LTEP code 
with separation vector 

for the message set A'] x A'z x . . . x A". This work 
concentrates on linear block multi-level error correct- 
ing codes. That is, A is taken to be the Galois field 
GF(q)  of q elements, where q is a power of a prime 
number. For a linear multi-level error correcting code, 
or LUEP code, denoted C, each element of the sepa- 
ration vector is given by 

si = min{wt(c(m)) : mi # 0, mi E GF(q)"} ,  

C is said to be an (n, k) !-level LUEP code, with sepa- 
ration vector S = (SI ,  s2,. . . , s t ) ,  for the message space 

GF(q)'l x G F ( Q ) ' ~  x . . . x GF(q)".  

S =  (Sl,SZ,.'.,St), 

A 

11 i 5 e. (1) 

2.1 LUEP codes specified by their generator 
ma t r ix  

In this section, constructions of LUEP codes by ap- 
pending (or time sharing) cosets of subcodes in linear 
codes are presented. These constructions may be used 
to obtain constituent binary LUEP codes which, in 
conjunction with QPSK signals, yield efficient LUEP 
QPSK modulation codes (see section 3). 

2.1.1 
For i = 1,2, let C; be an (n, hi, d i )  linear code with 
generator matrix G;. Define the append operation be- 
tween two vectors 

U = ( U O ,  ul , .  . . , u ~ - ~ )  and V = ( V O ,  V I , .  . . , ~ " - 1 )  

The lfilti + PI construction 

as 
A 

U0 V = (.U, til ,  " ' ,  U,,-l ,  VO,  W l ,  " ' (  t L 1 ) .  

Theorem 1: p(C1,Cz) is a 2-level LUEP code with 
separation vector s = (sl,sZ), for the message space 
(0, 1}'1 x (0, 1}k2, where 

s1 2 min{2dl, max(d1, d z ) } ,  and 

sz 2 min{max{dl, d z } ,  d z }  = d z .  
A A  Proof: See [7]. 

2.1.2 Construct ion X [4] 

For i = 1 , 2 , 3 ,  let Ci denote a linear (ni, k;, d i )  binary 
code. Assume C3 C C,, so that k3 5 kz and d3 >_ dz. 
Let Cx be the linear code whose generator matrix is 

where GI ,  [G:G;lT and G3 are the generator ma- 
trices of C1, CZ and C, respectively (Note that 
it is required that k1 = 122 - k3). Then C,y is an 
( n l  + 713, kl + k3) linear code with minimum distance 
dx = min{d3, dl + dz) [SI. This method of combin- 
ing shorter linear codes to obtain a linear code with 
increased length and minimum distance is known as 
Construction X ,  and can be viewed as a generalization 
of the /filii + 1) construction. By an argument similar 
to that used to prove Theorem 1, we can prove the 
following result: 

Theorem 2: Cx is a 2-level LUEP code with sepa- 
ration vector S = (51, sZ), for the message space M = 
(0, l}kl x (0, 11'3, where 

si >_ di + dz, and 

3 LUEP QPSK modulat ion codes 

In this section, we present a method of combining bi- 
nary two-level LUEP codes and QPSK modulation to 
achieve coded modulation schemes that offer two val- 
ues of minimum squared Euclidean distance, one for 
each message part to be protected. In this way, the 
most important message part will be mapped into code 
sequences with a larger squared Euclidean distance be- 
tween them than that corresponding to the less impor- 
tant message part. If data transmission is performed 
over an additive white Gaussian noise (AWGN) chan- 
nel, and the channel code is selected properly (i.e., 
efficient soft-decision decoding and small number of 
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nearest neighbors), then at  high signal-tenoise ra- 
tios, we will have a smaller probability of bit error 
for the most important message part than for the rest 
of the message. To achieve the performance promised 
by a given minimum squared Euclidean distance, we 
present a new suboptimal two-stage soft-decision de- 
coding of two-level LUEP codes, that uses their trellis 
structure. 

3.1 Constructions via Gray mapping 

In a QPSK signal constellation with Gray mapping be- 
tween labels and signal points, the squared Euclidean 
distance between signal points is twice the Hamming 
distance between the corresponding labels. We say 
that this QPSK signal constellation forms a second- 
order Hamming space [6]. By mapping 2-bit sym- 
bols into signal points in a QPSK signal set, via Gray 
mapping, we can combine (2n, IC1 + L z )  2-level LUEP 
codes and QPSK modulation to achieve a block coded 
modulation system that offers two values of minimum 
squared Euclidean distances, one for each message 
part. Some of the resulting LUEP QPSK block mod- 
ulation codes have the same minimum squared Eu- 
clidean distance as optimal QPSK block modulation 
codes with the same rate and length [2-31, while offer- 
ing in addition a larger minimum squared Euclidean 
distance between code sequences associated with most 
important message parts. The proposed construction 
is as follows: 

Let cb be a (271, kl + kz) binary LUEP code with 
separation vector 5 = (SI, SZ) for the message space 
{O, l}k l  x (0, l}ka. Consider a QPSK signal set S with 
the Gray mapping M between 2-bit symbols and S, 

00 H O  
01 H 1 
11 H 2  
10 - 3  

Then C = M(Cb) is a 2-level LUEP QPSK block mod- 
ulation code of length n, dimension IC, rate R = k/2n 
(bits/dimension), and squared Euclidean separation 
vector 

S S E D  = (291,2SZ). 
In conventional coded modulation, given the mini- 
mum squared Euclidean distance (MSED) and rate of 
a modulation code, an asymptotic coding gain G is de- 
fined for an AWGN channel. For high signal-to-noise 
ratios, G equals the ratio of the MSED of the coded 
system to the MSED of an uncoded system transmit- 
ting at the same rate (number of bits per signal). Ac- 
cordingly, for each component of S S E D  we may define 
an asymptotic coding gain. In this work, we define an 
asymptotic coding gain vector as 

where, for i = 1,2, 

Gi = 10log1, [ 2si ] (dB) 
4sin2 (r/2R) 

~ 
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Note that, as in the case of conventional coded mod- 
ulation systems, these asymptotic coding gains can 
only be reached if maximum-likelihood soft-decision 
decoding is available. To illustrate this construction 
method, in Table 1 some LUEP BPSK block modula- 
tion codes are listed. Some codes in Table 1 have the 
same minimum squared Euclidean distance as that of 
optimal block QPSK modulation codes with the same 
rate and length [2], and provide additional coding gain 
(or, equivalently, smaller probability of bit error) for 
the kl most important message bits. In Table 1, codes 
labeled with * are LUEP QPSK modulation codes ob- 
tained from the Iiilii + tl construction. Other codes 
are taken from [9]. It is interesting to note that a l l o p  
timal block QPSK modulation codes found by Sayegh 
[2-31, of lengths 5 to 10, can be obtained from the 
[filii +VI construction combined with Gray mapped 
QPSK signal sets. All of these codes are actually 
LUEP QPSK modulation codes, and this appears to 
be the first time that this fact has been pointed out. 

3.2 Two-stage soft-decision decoding 

Let C be an (n,IC) two-level LUEP code with 
separation vector (SI, s2) for the message space 
{ O ,  l}kl x {0,1}k2. Then C can be represented as the 
direct sum of subcodes C1 and CZ, C = C1@ CZ, Le, 

C = {c = E l  + E2 : C l  E C1 and E Cz}, 
where CZ is an (n, kz, s2) subcode which contains all 
codewords of minimum weight of C ,  and C1 is an 
(n, k1, SI) subcode spanned by a system of coset r e p  
resentatives of Cz in C. Let Ti be a trellis diagram for 
subcode Ci of C ,  i = 1,2. Then a trellis diagram of C 
can be expressed as the direct product of TI and 7'2, 
T = T1 @ 2'2. That is, states in T are pairs (SI, SZ), 
where si is a state in T,, for i = 1,2. The pair (SI, s2) 

is joined to all pairs ( s ; ,  si), in such a way that, for 
i = 1,2, si is joined to si in Ti [ll]. Viterbi maximum 
likelihood decoding algorithm can then be applied to 
T to estimate the most likely codeword of C using soft 
decisions. To reduce the number of computations in 
soft-decision decoding of a modulation code, a tech- 
nique called rnultr-stage decoding is usually employed. 
The proposed suboptimal two-stage soft-decision de- 
coding for two-level LUEP codes is as follows: 

1. Using soft-decisions (squared Euclidean dis- 
tance) and the Viterbi algorithm, determine the 
closest path E l  in TI to the received sequence. At 
this decoding stage, the most significant message 
part is decoded. 

2. Using soft-decisions and the Viterbi algorithm, 
determine the closest path E2 in E l  + T' to the re- 
ceived sequence, to estimate the less significant 
message part. Here E1 +Tz indicates that the 
branch metrics of E l ,  obtained in the first decod- 
ing stage, are used at  each decoding step of the 
Viterbi algorithm operating on trellis Tz. 

This two-stage soft-decision decoding is well known [2], 
[5], [lo], [I l l ,  [12]. However, thisappears to be the first 
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time that multi-stage soft-decision decoding has been 
used for unequal error protection purposes. Although 
at  each stage the decoding is maximum-likelihood, the 
multi-stage soft-decision decoding method described 
above is suboptimal. At each decoding stage, the most 
likely path is estimated using only part (Ti) of the trel- 
lis T of C. This suboptimal multi-stage soft-decision 
decoding also increases the effective number of nearest 
neighbors, but this results in only a fraction of a dB 
in overall coding gain degradation [2], [lo], [ll], [12]. 

4 Conclusions 

In this paper, we have introduced a new construction 
of QPSK block modulation codes for unequal error 
protection. These codes offer two values of minimum 
squared Euclidean distance (MSED), one for each mes- 
sage part. That is, code sequences associated with the 
most important message part are separated by a larger 
MSED. When these sequences are transmitted over an 
AWGN channel, a larger MSED translates into having 
a lower probability of error for the most important 
message symbols. 
We used Gray mapping on a QPSK signal set to o b  
tain a second order Hamming space in which (an, IC) 
LUEP codes with separation vector I = (SI, s2) are 
mapped into (n,k) LUEP QPSK modulation codes 
with squared Euclidean separation S s f i ~  = (2sl,2s*). 
We have introduced a new suboptimal twestage soft- 
decision decoding for LUEP codes and shown its a g  
plication in decoding LUEP QPSK modulation codes. 
Numerical results indicate that besides the well known 
penalty of a few tenths of a dB in overall coding gain, 
there is a larger cost to pay in coding gain for the most 
important message part, although this coding gain is 
still considerably larger than the overall coding gain. 
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Table 1: Some LUEP QPSK block modulation codes 

2n k kl kz s1 s2 R (bits/dim) GI (dB) G2 (dB) 
4 2 1 1 3 2  1 I 2  1.76 0.00 
8 5 1 4 4 2  $8 3.28 0.27 

2.03 0.27 
2.71 0.95 
3.98 3.01 * 

0.64 10 7 1 6  4 2 7/10 3.65 
1 0 7 4 3 3 2  7/10 2.40 0.64 

3.06 1.30 
4.77 3.01 * 
3.98 3.01 
3.96 0.95 

0.95 2.71 
1.56 3.32 

5.44 
3.98 3.01 
4.07 3.10 

1.20 14 11 1 10 4 2 11/14 4.21 

14 12 1 11 3 2 617 3.51 1.75 

8 5 4 1 3 2  5/8 
8 6 1 5 3 2  314 
10 5 1 4  5 4 112 

10 8 1 7  3 2 415 
12 6 1 5  6 4 112 
12 6 2 4 5 4 112 
1 2 9 1 8 4 2  314 
12 9 4 5 3 2 314 

14 7 1 6  7 4 112 
14 7 4 3 5 4 112 
1 4 8 1 7 5 4  417 

14 11 4 7 3 2 11/14 2.96 1.20 

3.01 * 1 2 1 0 1  9 3 2 516 

* = LUEP QPSK code based on the lfilii + VI construction. 
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