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ABSTRACT

Metamorphic Detection Using Function Call Graph Analysis

by Prasad Deshpande

Well-designed metamorphic malware can evade many commonly used malware

detection techniques including signature scanning. In this research, we consider a

score based on function call graph analysis. We test this score on several challenging

classes of metamorphic malware and we show that the resulting detection rates yield

an improvement over previous research.
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CHAPTER 1

Introduction

Attack and defense are two important topics of discussion in the field of computer

security. With the popularity of Internet, number of malicious software have been in-

creased drastically. According to Symantec’s Annual Security Report in 2011, unique

variants of malware have been increased from 286 million to 403 million as compared

to 2010 [30]. In 2011, Symantec has blocked more than 5.5 billion attacks [30].

Malware is a software designed for performing malicious activity [19]. Malware

are written to perform activities like system crash, collection of sensitive data. There

are different types of malware which include trojan horse, worm, logic bomb, back

door, rabbit and spyware [2]. Some viruses require user permissions to execute while

others don’t [10]. In this paper, we used the term virus and malware interchangeably.

Code obfuscation is used to obscure the information so that others could not find

its true meaning [17]. Virus writers invented different code obfuscation techniques.

One of the well known techniques is metamorphism. Metamorphic copies of same soft-

ware are structurally different, but their functionality remains the same [24]. To make

metamorphic virus generation faster and easier, attackers wrote different metamor-

phic generators and distributed them so that novice virus writers can create viruses

which are hard to detect. Due to this, large number of new malware threats have

been introduced in recent years. Some of the notable metamorphic generators include

1. NGVCK (Next Generation Virus Creation Kit) [35]

2. MPCGEN (Mass Code Generator) [36]
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3. G2 (Second generation virus generator) [37]

4. VCL32 (Virus Creation Lab for Win32) [1]

5. MetaPhor [33]

6. NRLG (NuKE’s Random Life Generator) [35]

7. NEG (NoMercy Excel Generator) [35]

Traditionally signature based technique is used for malware detection [2]. This

technique extracts common byte pattern from various malware samples and it only

works well for known malware. However, in case of metamorphic malware no common

signature is extracted which makes the malware hard to detect.

Function call graph is widely used in malware detection [3, 17, 24]. Bilar pro-

posed a mechanism to generate call graph to detect malware [3]. Shang et al. proposed

an algorithm to determine similarity between function call graphs [24]. Karnik and

Goswami used cosine similarity metric to obtain overall similarity between two mal-

ware [11]. Christodorescu et al. proposed a mining algorithm to construct the graph

via dynamic analysis [7].

The rest of the paper is organized as follows. Chapter 2 provides evolution and

background on different types of malware and their detection techniques. Chapter 3

gives details about different types of metamorphic techniques. In Chapter 4, we

discussed our implementation technique. Chapter 5 presents our experimental results.

Chapter 6 provides conclusion and possible future work.
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CHAPTER 2

Malware

Malware is a software which performs malicious activity [2]. An antivirus is a

software used to detect malware. Once a malware is detected, appropriate action

(such as removing it from the system, quarantine) is taken by an antivirus. To make

the detection harder, malware use code obfuscation techniques. The most commonly

used obfuscation techniques are encryption, polymorphism and metamorphism [2]. In

this chapter, we briefly discuss these obfuscation techniques along with some malware

detection techniques.

2.1 Malware Types

Different types of malware include virus, worm, back door, spyware, logic bomb

and rabbit [2]. Out of that there are two main types of malware depending on their

ability to spread infection, virus and worm. Depending on their concealment strate-

gies, viruses are divided in categories like encrypted, stealth, oligomorphic, polymor-

phic, metamorphic and strong encryption [2]. Some of these strategies are discussed

in following subsections.

2.1.1 Virus

Virus is a type of malware that replicates by inserting copies of itself (possibly

modified) into other computer programs, data files, or the boot sector of the hard

drive. The affected areas are then said to be infected [2]. For example, a virus can

insert itself into a spreadsheet program. When user opens a spreadsheet, virus gets

executed along with spreadsheet program. Then it performs required infection, may
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change its appearance and attach itself to other programs [15]. Following subsection

describes different types of viruses.

2.1.1.1 Encrypted Virus

One of the simplest ways to hide virus signature is encryption.Virus body is en-

crypted with different key so that no common signature is identified [23]. The simplest

way to perform encryption is XORing virus body with a key. Virus has to decrypt

itself before the execution and hence decryption routine exists in the virus. Cascade

was the first DOS virus that implemented encryption [31]. Detection of such virus

is possible without decrypting virus body. The decryptor routine remains common

across all the generation of virus, so it is used as signature in virus definition [8].

Figure 1 shows before and after decryption status of encrypted virus.

Figure 1: Encrypted virus before and after decryption.

2.1.1.2 Polymorphic Virus

Polymorphic virus overcomes the drawback of constant decryption routine. It

can create endless number of different decryption routines. Since the decryption

routine along with the virus body varies from generation to generation, no common

signature is identified [15]. Win95/Marburg and Win95/HPS were the first viruses

that used 32-bit polymorphic engines [31]. Virus like Win32/Coke used multiple layer

of encryption [31].
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Code emulation can be used to detect polymorphic malware [22]. Virus code

is executed in a virtual machine which leads to its decryption. Since all variants

carry same virus body, once the virus is decrypted, it can be used as a signature for

detection of other variants [20].

2.1.1.3 Metamorphic Virus

Metamorphic virus consists of an important part called mutation engine [18].

Instead of using encryption and decryption routine, entire body of a virus is changed

using mutation engine while keeping the functionality intact. Mutation engine can

be a part of a virus body or it can be separate from virus [33]. If mutation engine

is a part of virus body, it needs to be morphed. This places restriction on the level

of metamorphism that can be achieved. On the other hand, if mutation engine is

separate from virus body, high degree of metamorphism can be achieved as muta-

tion engine need not be morphed [34, 39]. We explained some of the metamorphic

techniques in Chapter 3. Figure 2 shows different generations of the metamorphic

virus.

2.1.2 Worms

Worms are self replicating malware. They are standalone [19]. Unlike viruses,

worms intentionally spread themselves from one computer to other across the network.

Viruses require human interaction (such as program execution) to spread, but worms

don’t. Like viruses, worms rely on obfuscation techniques (such as metamorphism,

polymorphism) to hide their presence.

Due to less human interaction, worms spread much faster as compared to viruses.

For example, Melissa worm spreads very quickly as compared to other viruses [29].
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Figure 2: Multiple shapes of a metamorphic virus body [14]

2.2 Detection Techniques

With the increase in number of malware, its detection technique has been evolved.

Some detection techniques rely on static analysis while others depend on dynamic

analysis. This section describes virus detection mechanisms used in an anti-virus

software.

2.2.1 Signature Based Detection

Signature based detection is most commonly used malware detection technique.

It involves searching for a known pattern (called as signature) in an executable.

Antivirus software maintains large database consisting of unique signature for each

virus [2]. When scanner scans an executable, it compares signature of the executable

with the database and if any match is found, executable is considered to be infected.

Signature based detection scheme is accurate, simple and fast [27]. The drawback
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of this technique is that it requires up-to-date malware signature database. Also it

cannot detect new virus because the signature of such virus is not present in the

database. Simple obfuscation techniques like metamorphism, polymorphism can be

used to evade signature based detection [20].

2.2.2 Anomaly Based Detection

In anomaly based detection, static and dynamic heuristics are used to detect

malware. Static heuristic looks for suspicious structure like undocumented API calls,

decryption loops [2, 38]. Dynamic heuristic such as code emulation analyzes suspicious

activity of a program at runtime [38]. There are two phases in this technique -

training and detection. In training, scanner is trained to learn characteristics of

normal and malicious program. In detection phase, it detects malicious program

based on information gathered in the training phase [33]. Compared to signature

based detection, anomaly based detection technique does a better job in detecting

new virus. However, it has high number of false positives and false negatives [10].

2.2.3 Hidden Markov Model Based Detection

Hidden Markov Model (HMM) is a relatively new detection technique. Significant

research has been done on Hidden Markov Model to detect metamorphic virus [1, 15,

40]. HMM is a probabilistic model and can be viewed as a machine learning technique.

The notations used in HMM are shown in Table 3 [28]. A generic Hidden Markov

Model is explained in Figure 3 where Xt and Ot represents hidden state sequence and

observation respectively. The Markov process is determined by the current state and

the A matrix. We are able to observe Ot which are related to the state of the Markov

process by the matrix B.
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Table 1: HMM Notations [28]

Symbol Description
T Length of the observed sequence
N Number of states in the model
M Number of distinct observation symbols
O Observation sequence (O0,O1, . . . ,OT−1)
A State transition probability matrix
B Observation probability distribution matrix
π Initial state distribution matrix

Figure 3: Generic Hidden Markov Model [28]

Research shows that HMMs are used in speech recognition [21] and software

piracy detection [12]. There are two phases in HMM - training and detection. HMM

is trained on input data and a training model is constructed. This training model is

used to determine whether new observations are similar to the training model. Opcode

sequence is extracted from same virus family and it is used to train HMM. Example of

an extracted opcodes is shown in Figure 4. A long observation sequence is generated

by concatenating opcode sequences from all virus files within same family [33]. Then

this concatenated sequence is used to train HMM which is then used to detect and

differentiate malware and benign files [15, 26, 40].
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Figure 4: Example of extracted opcode
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CHAPTER 3

Metamorphic Techniques

As mentioned in Chapter 2, the important part of metamorphic malware is a

mutation engine. Mutation engine is capable of generating large number of differ-

ent generations of virus whose functionality remains the same. Code obfuscation

depends on program data and control flow [4, 41]. Data flow obfuscation consists of

instruction substitution, dead code insertion, instruction permutation while control

flow obfuscation consists of changing the control flow [4]. Virus writers employ differ-

ent obfuscation techniques to avoid the detection of metamorphic virus. This chapter

explains some of those techniques in detail.

3.1 Register Swap

Register swap is one of the simplest metamorphic technique. It changes regis-

ter operand with an equivalent register without changing the opcode. Hence opcode

sequence remains the same. The RegSwap metamorphic virus used register swap

technique [6]. It used various registers in each generation without changing the func-

tionality. Table 2 shows code fragment from some generation of W95/RegSwap virus.

3.2 Subroutine Permutation

Subroutine Permutation technique achieves code obfuscation by rearranging sub-

routines from generation to generation. If there are n subroutines then there will be

n! generations. Viruses like BadBoy, W32/Ghost implemented this technique [6].

BadBoy has 8 subroutines, so it can create 8! = 40320 generations. Figure 5 shows

an example of BadBoy with 8 subroutines.
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Table 2: Two generations of RegSwap [6]

a)
pop edx

mov edi, 0004h

mov esi, ebp

mov eax, 000Ch

add edx, 0088h

mov ebx, [edx]

mov [esi+eax*4+00001118], ebx

b)
pop eax

mov ebx, 0004h

mov edx, ebp

mov edi, 000Ch

add eax, 0088h

mov esi, [eax]

mov [edx+edi*4+00001118], esi

Figure 5: Subroutine Permutation [6]
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3.3 Dead Code Insertion

Dead code instructions may or may not get executed. In any case, it has no

effect on the functionality of the program. Table 3 shows some kinds of dead code

insertions.

Table 3: Example of dead code [31]

Instruction Description
add Reg,0 Add value 0 to register

mov Reg,Reg Transfer register value to itself
or Reg, 0 Logical OR operation of register with 0

NOP No operation

None of the below mentioned instructions in Table 3 change the value of the

register. Dead code insertion is useful in evading malware detection which is based

on statistical properties of the program. Dead code can create an unlimited number

of virus copies. Dead code insertion technique is used in virus like Win95/Zperm [6]

and metamorphic worm implemented in [26].

3.4 Instruction Substitution

In Instruction Substitution, an instruction or group of instructions is substi-

tuted by another equivalent instruction or group of instructions. For example, the

instruction xor eax, eax will be replaced by sub eax, eax. Both instructions zero

contents of eax register but they use different opcodes. Instruction substitution is

a powerful technique to evade signature based detection. However it is difficult to

implement. Instruction substitution technique is used in W32/MetaPhor virus [6]

and metamorphic worm implemented in [26].
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3.5 Transposition

Transposition reorders instruction sequence without changing the overall func-

tionality of the program. If two instructions are independent of each other then their

order can be changed. For example :

1. mul Op1 Op2

2. mul Op3 Op4

Since these instructions are not dependent on each other, we can swap their order

without affecting functionality of the code.

1. mul Op3 Op4

2. mul Op1 Op2

Similar technique is applied on group of instructions which are independent. This

technique helps to evade signature based detection as order of execution is different.

3.6 Formal Grammar Mutation

Classic morphing engines can be considered as nondeterministic automata, since

transitions are possible from every symbol to every other symbol [42]. A symbol is

considered as a set of all possible instructions. In morphing engine, any instruction

can be followed by any other instruction. By formalizing mutation techniques, we

can apply formal grammar rules and create malicious copies with large amount of

variation [33]. Figure 6 shows a simple polymorphic decryptor template and its two

mutations using the formal grammar shown in Figure 7. With this decryptor template

and formal grammar combination, it is possible to generate 960 decryptors [42].

13



Figure 6: A simple polymorphic decryptor and two variants [42]

Figure 7: Formal grammar for decryptor mutation [42]

3.7 Host Code Mutation

Some viruses mutate the code of host along with its own code in new genera-

tion [13]. This is done by executing random code morphing routine. Win95/Bistro

14



virus uses host code emulation technique. The code morphing routine of Bistro uses

morphing techniques like dead code insertion, instruction substitution, transposition

etc. Win95/Bistro can be hard to repair, because the entry point of an application

can be changed [32].

3.8 Code Integration

Win95/Zmist virus implemented code integration technique. Zmist virus decom-

piles portable executable(PE) file to their smallest element, insert itself into code of

PE file, regenerate code and data references and recompile the executable [31]. Due to

this, Zmist integrate itself perfectly in an application and becomes hard to detect [31]
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CHAPTER 4

Design and implementation

In this chapter we discuss the previous work on malware detection using function

call graph analysis technique. Then we explain an algorithm to determine similarity

between malware variants using the same technique.

4.1 Previous work

Traditional malware detection techniques depend on byte pattern or signature of

the virus. The signature based detection ignores high level functionality of the virus.

This technique can be easily defeated using obfuscation methods seen in Chapter 3.

Function call graph technique relies on high level structure of the virus such as basic

blocks and function calls [17]. Once call graph is created it can be treated as a

malware signature and can be used to detect its variants.

The function call graph is created from the disassembled code of a malware ex-

ecutable where vertices represent functions in the program and edges represent the

caller-callee relationship between functions [17]. Then caller-callee relation, opera-

tional code and graph coloring techniques are combined to measure similarity be-

tween variants of known malware samples. A function call graph describes overall

characteristics of a malware. Thus finding similarity between malware is equivalent

to finding similarity between graphs. Ming et al. explained a technique to deter-

mine a similarity between two malware variants using function call graph [17]. Their

technique was tested on malicious software such as virus, backdoor, worms.

We implemented a similar technique and tested it on metamorphic generators

16



like NGVCK and MWOR. MWOR is a metamorphic worm generator that carries its

own metamorphic engine. We used this technique to find similarity between malware

variants as well as to differentiate malware and benign samples. Our testing results

are explained in Chapter 5.

4.2 Overview of the function call graph

This section explain definition of function call graph and terminologies used in

the paper. Then we explain function call graph construction technique.

4.2.1 Defining the function call graph

Function call graph G = (V,E) consists of vertices V and edges E where vertices

represent functions and edges represent relationship between functions [17]. In an

executable, functions are classified in two types as local functions and external func-

tions. Local functions are written to perform specific task. External functions are

system or library functions. In our experiment, local function starts with sub xxxxxx

proc near and ends with sub xxxxxx endp where sub xxxxxx represents name of

the function. Local functions carry different names in different programs even though

their functionality is same. However, name of the external function is consistent in

different programs.

4.2.2 Construction of function call graph

As a first step, a malware sample is disassembled using IDA Pro. Then we obtain

the assembly code where all function names are labeled. Figure 8 shows snapshot of

one function in NGVCK virus after its disassembly. It also shows attributes of the

function added as vertex of the graph.
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Figure 8: A function from NGVCK virus

Then function call graph is built from assembly code. Figure 9 shows part of

a function call graph for MWOR virus. As shown in Figure 9, the graph consists

of local functions with the name pattern as sub xxxxxx and external function like

dlopen. Note that local function can call external functions but external functions

cannot call local functions.

Breadth First Search (BFS) and Depth First Search (DFS) techniques are used

in graph construction depending on the requirement. In the BFS technique, you start

from first level nodes (root nodes) and continue scanning second level nodes and so

on. In our technique we first go through all the entry point functions in a program

and then traverse non - entry point functions called from each entry point functions.

That means, entry point functions are at first level in the graph and non - entry

point functions start from second level of the graph. Hence, in our technique Breadth
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Figure 9: Part of the function call graph in MWOR virus

First Search approach is suitable for construction of the graph. The algorithm uses

caller-callee relationship starting from the entry point function [24]. The algorithm

starts with entry point functions and traverses each function’s instruction sequence

to determine subroutine calls. Once all functions are processed, the function call

graph is generated. Table 4 describes an algorithm used to generate the function

call graph. First of all, algorithm traverses assembly code and determines function

boundaries. All non - entry functions are stored in Functionset and all entry func-

tions are stored in EntryFunctionSet. Then FunctionQueue is initialized with entry

functions. While queue is not empty, the algorithm dequeues from the front of the

queue, stores the vertex in tailVertex and treats it as a caller. Then tailVertex

is inserted in the graph and its enqueFlag is set to true, to make sure that the same

vertex is not enqueued again. Then the algorithm traverses instruction sequence of

tailVertex and determines its callee set.

Once the callee set is acquired, it is traversed one by one and stored in

headVertex. For each headVertex, it is checked whether the graph has an edge

from tailVertex to headVertex. If there is an edge then caller’s out-degree and
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callee’s in-degree is increased by one. Else, headVertex and its corresponding edge

with tailVertex is inserted into graph. At the end, if enqueFlag of headVertex is

not true, then it is set to true and headVertex is inserted at the end of the queue.

The time complexity of this algorithm is O(|V | ∗ |E|) where V is the total number of

vertices and E is the total number of edges [24].

4.3 Function Call Graph Similarity

Once function call graphs are constructed then similarity between two malware

variants is determined by checking similarity between two graphs. The vertices of the

graph are constructed from functions in the assembly code. Hence to find out similar-

ity between two graphs we have to determine similar vertices in the graphs. Finding

similar vertices in the graph is equivalent to finding similar function pairs in two mal-

ware variants. The function matching based on string pattern is not useful because

it can be easily defeated using different code obfuscation techniques. The external

functions are easier to match as compared to local functions. The external functions

are matched using their symbolic names. The local functions are not matched using

symbolic names because two identical local functions from two different malware vari-

ants have different names [17]. Also virus writer uses obfuscation techniques like dead

code insertion, simple substitution to avoid detection. We propose a technique based

on the opcode sequence and graph coloring mechanism to find similar local functions.

This section explains algorithms used to match external and local functions.

4.3.1 Matching External Functions

External functions are provided by the operating system. They are also called as

atomic functions. These functions make no further calls and have same names across
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Table 4: Function call graph construction

// Input: Assembly file M , Output: Function call graph GM

// Initializations
GM .V = φ and GM .E = φ
EntryFunctionSet = φ, FunctionSet = φ, FunctionQueue = φ, VertexSet = φ
FunctionSet = ExtractFunction(M)
EntryFunctionSet = ExtractEntryFunction(M)
FunctionQueue = InitQueue(EntryFunctionSet)
while(FunctionQueue is not empty)

tailVertex = Dequeue(FunctionQueue)
Insert tailVertex in GM

tailVertex.enqueFlag = true
VertexSet = getCallee(tailVertex)
for each vertex in VertexSet

if(vertex is not in FunctionSet)
continue

endif
headVertex = vertex
// Construct an edge between tailVertex and headVertex
if(e ∈ GM .E)

tailVertex.outdegree++
headVertex.indegree++

else
Insert headVertex in GM

Insert edge e in GM

endif
if(headVertex.enqueFlag == false)

Enqueue headVertex in FunctionQueue
headVertex.enqueFlag = true

endif
next vertex

end while
return GM

end

all executables [5]. In the graph theory, external functions are the leaf nodes with

in-degree 1 and out-degree 0 [5]. External functions can be matched based on their

symbolic names. For example, GetVersion function in one program can be matched
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with same function in other program. Table 5 shows an algorithm used to match

external functions [17].

Table 5: Algorithm to match external functions

// Input: Function call graph G1 and G2 Output: common vertex(G1, G2)
ExternalfuncSet1 ← External function from G1

ExternalfuncSet2 ← External function from G2

Copy vertices from G1 into Us

Copy vertices from G2 into Vs
foreach vertex Usi ε ExternalfuncSet1 do

foreach vertex Vsj ε ExternalfuncSet2 do
if(Usi.name = Vsj.name)

common vertex(G1, G2) ← common vertex(G1, G2) ∪ (Usi,Vsj)
Remove Usi from Us

Remove Vsj from Vs
end

end
end

External functions are extracted from graph G1, G2 and copied into

ExternalfuncSet1 and ExternalfuncSet2 respectively. Then both sets are tra-

versed to find out same symbolic names. If there is match in name, then that vertex

is copied into common vertex pair.

4.3.2 Finding similar local functions based on same external functions

Two local functions are considered to be matching if they call two or more similar

external functions [5]. Table 6 shows an algorithm used to find matching function

pair [17].

All local functions in graph G1, G2 are traversed and checked if they call same

external functions. If the count of these common external functions is greater than

or equal to 2, then those local functions are copied into common vertex pair.
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Table 6: Algorithm to match local functions based on external functions

// Input: Function call graph G1 and G2,Us,Vs,common vertex(G1, G2)
//Output: common vertex(G1, G2)
foreach vertex Usi ε Us do

foreach vertex Vsj ε Vs do
if(ExternalFunction(Usi) ∩ ExternalFunction(Vsj) ≥ 2) then

common vertex(G1, G2) ← common vertex(G1, G2) ∪ (Usi,Vsj)
Remove Usi from Us

Remove Vsj from Vs
end

end
end

4.3.3 Matching local functions based on opcode sequence

Each vertex in the call graph is colored depending on the instructions used in

this function. Then cosine similarity method along with color similarity is used to

find similar functions. All x86 instructions are classified in 15 classes according to

their function as shown in Table 7.

A 15 bit color variable is used to color a vertex in the graph. This variable is

initialized to 0. When an instruction from a particular class appears in the function,

corresponding bit of color variable is set to 1. We have also created a vector which

holds number of corresponding class instructions appearing in a local function. Ta-

ble 8 contains function from MWOR virus and Table 9 shows corresponding class

variable and vector.
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Table 7: x86 instruction classification [17]

Class Data Description
C1 Data data transfer such as mov
C2 Stack Stack Operation
C3 Port In and out
C4 Lea Destination address trans-

mit
C5 Flag Flag transmit
C6 Arithmetic shift, rotate etc.
C7 Logic bitbyte operation
C8 String String operation
C9 Jump Unconditional transfer
C10 Branch Conditional transfer
C11 Loop Loop control
C12 Halt Stop instruction execution
C13 Bit Bit test and bit scan
C14 Processor Processor control
C15 Float Floating point operation

We created two vectors X = (x1, x2, ..., x15) and Y = (y1, y2, ..., y15) from two

function pairs. Then cosine similarity between these two vectors is calculated as

shown in formula (1) [17]:

sim(X, Y ) =

∑15
i=1 xi.yi√∑15

i=1 x
2
i .
√∑15

i=1 y
2
i

(1)

When cosine similarity is greater than or equal to certain threshold value α and

two color variables are same then two function pairs from two different executables

are considered to be color similar function pairs. Table 10 describes an algorithm

used to find the color similarity between two function pairs [17].

The algorithm takes functions f1 and f2 as input and calculates the cosine sim-

ilarity. First, it generates two color variables color1 and color2 from f1 and f2. If
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Table 8: The function from MWOR virus

sub 40448C proc near

push rbp

mov rbp, rsp

push rbx

sub rsp, 8

mov rax, cs:CTOR LIST

cmp rax, 0FFFFFFFFFFFFFFFFh

jz short loc 4051AF

mov ebx, offset CTOR LIST

sub rbx, 8

call CTOR LIST

mov rax, [rbx]

cmp rax, 0FFFFFFFFFFFFFFFFh

jnz short loc 4051A0

add rsp, 8

pop rbx

pop rbp

call sub 40238C

pop esi

retn

sub 40448C endp

Table 9: The color variable and the vector of MWOR virus

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

color variable 1 1 0 0 0 1 0 0 1 1 1 0 0 0 0
Vector 4 5 0 0 0 5 0 0 2 2 1 0 0 0 0

these two variables are similar then two vectors are generated from f1 and f2. Then

cosine similarity between vector1 and vector2 is calculated using the formula de-

scribed above. In order to get more accurate results, two extra constraints are added

as length of the function (number of bytes of instruction in the function) and degree

of the function (total of in-degrees and out-degrees in function). The in-degree of
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Table 10: Algorithm to find color similarity between two functions

// Input: Functions f1 and f2
//Output: color similarity between f1 and f2
color1 ← getColorSequence from f1
color2 ← getColorSequence from f2
if(color1=color2)

vector1 ← getVector from f1
vector2 ← getVector from f2
color sim ← calculate cosine similarity between vector1 and vector2

end
return color sim

a function A is total number of functions calling A. The out-degree of function A

is total number of functions called from A. Therefore, two functions are said to be

similar if, cosine similarity is greater than or equal to α, length similarity(len sim)

is greater than or equal to β and degree similarity(degree sim) is greater than or

equal to γ where len sim and degree sim are calculated using equation (2) and (3)

respectively.

len sim(f1, f2) =


len(f1)
len(f2)

if len(f1) ≤ len(f2)

len(f2)
len(f1)

otherwise.
(2)

degree sim(f1, f2) =

{
1 if d(f1) = d(f2)

1
|d(f1)− d(f2)|

otherwise. (3)

where len(f1) is number of bytes of instructions in the function f1, len(f2) is

number of bytes of instructions in the function f2, d(f1) is degree of function f1 and

d(f2) is degree of function f2. Value of α, β and γ were taken as 0.98, 0.83 and

0.5 respectively based on experiments. Table 11 describes an algorithm used to find

matching function pair based on color similarity [17].
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Table 11: Algorithm to match local functions based on color similarity

// Input: Function call graph G1 and G2,Us,Vs,common vertex(G1, G2)
//Output: common vertex(G1, G2)
foreach vertex Usi ε Us do

foreach vertex Vsj ε Vs do
if(color sim(Usi,Vsj) ≥ α ∩
len sim(Usi,Vsj) ≥ β ∩
degree sim(Usi,Vsj) ≥ γ) then

common vertex(G1, G2) ← common vertex(G1, G2) ∪ (Usi,Vsj)
Remove Usi from Us

Remove Vsj from Vs
end

end
end

4.3.4 Matching local functions based on matched neighbors

When two vertices match then, it is more likely that their neighbors will match

too [17]. In a graph, neighbors of vertex are its successors and predecessors. As shown

in Figure 10 vertex A of one graph is matched with vertex B of other. Then chances

are that vertices U,V and W from one graph can match with vertices X,Y and Z

from other graph because they are direct neighbors to previously matched vertices.

In Figure 10 vertices of same color are treated as similar.

Figure 10: Successor of vertex A and B are candidate vertices for matching
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Table 12 describes algorithm is used to find matching function pairs based on

matched successor [17].

Table 12: Algorithm to match local functions based on matched successor

// Input: Function call graph G1 and G2,Us,Vs,common vertex(G1, G2)
//Output: common vertex(G1, G2)
vertexQueue ← InitvertexQueue(common vertex(G1, G2))
while (vertexQueue is not empty)

(u,v) ← vertexQueue.dequeue()
foreach vertex Usi ε successor(u) ∩ Us do

foreach vertex Vsj ε successor(v) ∩ Vs do
if(color relaxed sim(Usi,Vsj) ≥ δ) then

common vertex(G1, G2) ← common vertex(G1, G2) ∪ (Usi,Vsj)
Remove Usi from Us

Remove Vsj from Vs
vertexQueue.enqueue(Usi,Vsj)

end
end

end
end
return common vertex(G1, G2)

A queue is initialized with the common vertex. Then the algorithm runs until

the queue becomes empty. The head of the queue is removed. As shown in line 6,7

successor vertices are traversed one by one from common vertex pair. If their color

relaxed similarity score is greater than or equal to δ then successor vertices pair is

considered to be similar. Finding color relaxed similarity score is same as finding color

similarity between two function pairs except the constraint of similar color variable

is removed. Here δ is equal to 0.97 based on experiments. The algorithm for finding

matched predecessor is similar to above except for the fact that instead of successors,

predecessors are traversed from common vertex pair.
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4.3.5 Similarity between function call graph

Once we have found common vertex pairs from two call graphs, common edges

between graphs are calculated. When vertices A, B from one graph are similar to

vertices C, D from other graph respectively and there is an edge between A,B in first

graph and between C,D in other then that edge is said to be common in two graphs.

Similarity between two function call graph is calculated as shown in Formula (4) [17]:

sim(G1, G2) =
2|common edge(G1, G2)|
|E(G1)|+ |E(G2)|

∗ 100 (4)

where |common edge(G1, G2)| represents common edges between call graph G1 and

G2. |E(G1)| + |E(G2)| represents total number of edges in graph G1 and G2. If

similarity score is closer to 1, then there is more similarity between two virus files.

29



CHAPTER 5

Experiments

We used Java to implement the algorithm mentioned in Chapter 4. The Next

Generation Virus Generation kit (NGVCK) and Metamorphic Worm (MWOR) are

used to test our implementation. Cygwin and Linux library files are used as benign

files during the testing. The metamorphic worm has been developed to defeat Hidden

Markov Model (HMM) detection technique [26]. It uses two morphing techniques:

• Dead code insertion

• Instruction substitution

The metamorphic generator produces copies of the same virus which are different

across all generations. Since the dead code is inserted directly from benign files, they

look similar. The metamorphic generator uses padding ratios to generate viruses.

The padding ratio is a number of dead code instructions to number of instructions in

virus which constitute its functionality [25].

5.1 Test Data

Our test data consists of 50 NGVCK virus files, total 140 MWOR virus files with

padding ratios of 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 and 4.0. In benign files we used 50 Cygwin

and 20 Linux library files.
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5.2 Test Results

The algorithm takes two files as input and calculates similarity between them.

Firstly, we calculate similarity score between two virus files. If the similarity score is

closer to 1, the two copies are similar. Secondly, we calculate similarity score between

virus and benign file. Thus, we are not only able to find out similar copies of virus

but also differentiate between virus and benign files. We used scatter graph and Area

under ROC curve (AUC) to evaluate performance of the detection system. AUC of 1

represents a perfect system and an AUC of 0.5 or less represents worst system. This

section describes test results obtained from the experiments.

5.2.1 NGVCK Testing Results

We tested our detection system on NGVCK virus. Results show that our detec-

tion system is not only able to find similar copies of NGVCK virus but also differen-

tiate between virus and benign files.

Figure 11 shows similarity scores obtained by detection system on NGVCK

viruses. It shows 0.95 as maximum and 0.46 as minimum score for metamorphic

virus files. Figure 12 shows area under curve (AUC) statistics for NGVCK virus

family.

5.2.2 MWOR Testing Results

We tested our detection system on MWOR with different padding ratios. Results

show that, when padding ratio is greater than or equal to 2.5 there is misclassification

between virus and benign files. Figures 13 to 19 show similarity scores obtained by

detection system for various padding ratios in MWOR virus.
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Figure 11: Similarity score NGVCK virus family

Figure 13 is a scatter graph and it shows 0.87 as maximum and 0.56 as minimum

score of metamorphic virus files for padding ratio 0.5. In Figure 13 we can clearly see

a separation between virus vs. virus scores and virus vs benign scores.

As more and more dead code is inserted into virus file from benign files, similarity

scores between virus files start reducing. Figure 15 shows 0.47 as minimum score of

metamorphic virus files for padding ratio 1.5. As per the results, we are able to

separate virus vs. virus score from virus vs. benign score.

Figure 16 shows that the minimum score of metamorphic virus files is 0.44 for

padding ratio 2.0. As per the results, we are still able to separate virus vs. virus
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Figure 12: ROC Curve for NGVCK virus family

score from virus vs. benign score.

Figure 17 shows that there is misclassification between virus and benign files for

padding ratio 2.5. As shown in Table 13 the area under curve for 2.5 padding ratio

is 0.9999 , which confirms the misclassification.

Figure 18 also shows that there is a higher degree of misclassification between

virus and benign files for padding ratio 3.0 as compared to 2.5. As shown in Table 13

the area under curve for 3.0 padding ratio is 0.9989, which confirms the misclassifi-

cation.

Figure 19 also shows that there is a higher degree of misclassification between

virus and benign files for padding ratio 4.0 as compared to 3.0. As shown in Table 13

the area under curve for 4.0 padding ratio is 0.9979, which confirms the misclassifi-
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Figure 13: Similarity scores of MWOR with padding ratio of 0.5

cation.

Figure 20 and 21 show area under ROC curves (AUC) for MWOR virus with

different padding ratios. Table 13 represents ROC AUC statistics for different padding

ratios.
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Figure 14: Similarity scores of MWOR with padding ratio of 1.0

Table 13: ROC AUC statistics for different padding ratios of MWOR

Padding-ratio AUC
0.5 1
1.0 1
1.5 1
2.0 1
2.5 0.9999
3.0 0.9989
4.0 0.9979
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Figure 15: Similarity scores of MWOR with padding ratio of 1.5
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Figure 16: Similarity scores of MWOR with padding ratio of 2.0
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Figure 17: Similarity scores of MWOR with padding ratio of 2.5
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Figure 18: Similarity scores of MWOR with padding ratio of 3.0
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Figure 19: Similarity scores of MWOR with padding ratio of 4.0
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Figure 20: ROC Curves of MWOR different padding ratios
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Figure 21: ROC Curves of MWOR different padding ratios
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5.2.3 Comparison with other detection systems

5.2.3.1 Comparison with opcode based graph detection system

We compared our detection technique with the opcode based graph detection

technique mentioned in [23]. As mentioned in [26], opcode based graph similarity

technique misclassified benign files and MWOR virus with padding ratio greater than

or equal to 1.5. In our proposed technique, this misclassification starts from padding

ratio greater than or equal to 2.5.

5.2.3.2 Comparison with HMM Detection Technique

Hidden Markov Model detection technique was tested on MWOR virus with

different padding ratio [26]. After comparing our results with the result obtained

from HMM, our technique performs better. ROC statistics for both techniques is

shown in Table 14.

Table 14: ROC AUC statistics of function call graph and HMM technique

Padding-ratio AUC call graph AUC HMM AUC simple substitution
0.5 1 1 1
1.0 1 0.99 1
1.5 1 0.9625 0.9980
2.0 1 0.9725 0.9985
2.5 0.9999 0.8325 0.9859
3.0 0.9989 0.8575 0.9725
4.0 0.9979 0.8225 0.9565

Figure 22 is a line graph showing comparison of area under curve statistics for

HMM and function call graph based malware detection techniques.
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Figure 22: AUC statistics for different metamorphic malware detection technique
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CHAPTER 6

Conclusion and future work

We designed and implemented function call graph technique for the metamorphic

malware detection. This technique makes use of cosine similarity based on opcodes

and graph coloring technique to identify similarity between two malware variants.

This technique finds out similar function pairs from two executables. The func-

tion matching is based on four parts - matching external functions with same name,

matching local functions based on identical external functions, matching local func-

tions based on opcode sequence and matching local functions based on their matched

neighbors. Then at the end similarity between two call graphs is calculated based on

common edges. This is also helpful in differentiating malware from benign files. We

tested our implementation on NGVCK and MWOR family viruses.

Results show that we can easily set threshold for NGVCK family that clearly

separates NGVCK viruses and the benign files. Our detection technique achieves

100% accuracy when tested on MWOR family virus with padding ratio 2.0 and below.

The misclassification starts from the padding ratio 2.5 onwards as shown in figure 13.

We also found that our detection technique performs better than other graph based

and HMM based detection techniques mentioned in [23] and [26] respectively.

Currently the function call graph detection technique detects NGVCK and

MWOR metamorphic viruses. Going forward, it would be beneficial to consider more

recent malware. The results clearly indicates that in case of MWOR family virus,

misclassification between malware and benign file starts when a block of code from

benign files is used for morphing. Therefore, some modifications are necessary to
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deal with this limitation. In this paper, we concentrated on the metamorphic viruses

as they are harder to detect. We can extend this detection technique on the other

types of malware like rootkit, backdoor. Also it might be useful to create the hybrid

model based on proposed technique and opcode graph similarity technique to gener-

ate stronger metamorphic virus detector.. In the future this detection technique can

be tested on metamorphic generator designed from LLVM IR byte code [33].
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APPENDIX

Additional Experiments

A.1 Experiment 1

Function call graph detection technique is based on analyzing functions. If we

insert dead code from benign files into MWOR files, it should degrade the score. We

inserted up to 5 dead code functions and for each function made up to 5 calls. In

these 25 cases we calculated area under the curve as shown in Table A.15.

A.2 Experiment 2

We performed in-line and out-line of functions in MWOR files. In-lining is done

by replacing function call with actual function. Out-lining is done by taking a section

of code and writing it into the function. In-line and out-line makes the function call

graph of MWOR different from each other. We did an experiment on MWOR with

dead code ratio 2.0. We did up to 5 function in-lining and for each in-line made up

to 5 function out-line. In these 25 cases we calculated area under the curve as shown

in Table A.16.
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Table A.15: AUC values of function calls

Number of Functions 1 2 3 4 5
1 call/function 0.999907 0.999253 0.993304 0.989721 0.991989
2 call/function 0.999907 0.992879 0.992678 0.993026 0.993506
3 call/function 0.999659 0.993962 0.992763 0.99243 0.994481
4 call/function 0.999458 0.993931 0.989806 0.992082 0.993653
5 call/function 0.999551 0.993544 0.990023 0.991586 0.993204

Table A.16: AUC values of function in-line and out-line

Number of in-line functions 1 2 3 4 5
1 outline/in-line function 0.994 0.986888 0.982111 0.961444 0.954111
2 outline/in-line function 0.988222 0.982555 0.981777 0.973555 0.960444
3 outline/in-line function 0.972222 0.972888 0.965888 0.964333 0.96
4 outline/in-line function 0.967823 0.965788 0.976045 0.962912 0.973555
5 outline/in-line function 0.964545 0.962698 0.97239 0.965861 0.977333
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