

San Jose State University SJSU ScholarWorks

Master's Projects

Master's Theses and Graduate Research

Fall 2013

Pattern Recognition of DNA Sequences using Automata with application to Species Distinction

Parnika P. Achrekar San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects Part of the <u>Computer Sciences Commons</u>

Recommended Citation

Achrekar, Parnika P., "Pattern Recognition of DNA Sequences using Automata with application to Species Distinction" (2013). *Master's Projects*. 334. DOI: https://doi.org/10.31979/etd.4ysq-wbmt https://scholarworks.sjsu.edu/etd_projects/334

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

Pattern Recognition of DNA Sequences using Automata with application to Species Distinction

A Thesis Presented to The Faculty of the Department of Computer Science San José State University

> In Partial Fulfillment Of the Requirements for the Degree Master of Science

> > By Parnika P Achrekar December 2013

© 2013

Parnika P Achrekar

ALL RIGHTS RESERVED

SAN JOSE STATE UNIVERSITY

The Designated Thesis Committee Approves the Thesis Titled

Pattern Recognition of DNA Sequences using Automata with emphasis on Species Distinction By Parnika P Achrekar

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

December 2013

Dr. T. Y. Lin, Department of Computer Science Date

Date

Date

Dr. Chris Tseng, Department of Computer Science

Mr. Amit Sant, Software Engineer at Apple Inc

ABSTRACT

"Darwin wasn't just provocative in saying that we descend from the apes—he didn't go far enough, we are apes in every way, from our long arms and tailless bodies to our habits and temperament." said Frans de Waal, a primate scientist at Emory University in Atlanta, Georgia. 1.3 million Species have been named and analyzed by scientists. This project focuses on capturing various nucleotide sequences of various species and determining the similarity and differences between them. Finite state automata have been used to accomplish this. The automata for a DNA genome is created using Alergia algorithm and is used as the foundation for comparing it to the other species DNA sequences.

ACKNOWLEDGEMENTS

I would like to take this opportunity to thank each and every person who has contributed towards the completion of this project. Working on this project was an exciting experience. Knowledge and experience gained from this project will remain with me as an ingratiating memory.

I would like to express my special thanks of gratitude to my project advisor Dr. T. Y. Lin who gave me this golden opportunity to this wonderful project. His guidance and cooperation have helped me in completing this project successfully. Thanks for the benevolent support and kind attention. I would also like to thank my committee members Dr. Tseng and Mr. Amit Sant for their support and patience.

I would also like to thank our department for providing us with the necessary software required in our project. I'm also thankful to the library for providing necessary books and materials required to learn different concepts for our project.

Last but not the least, sincere thanks to my parents for inspiration and blessings, to my brother's constant moral support and encouragement without which project completion would have been next to impossible. I would also like to take this opportunity to thank my friends Mona, Mini, Krupali and Nikhil for being there for whenever I needed them.

Table of contents

1. Introduction
2. DNA Sequencing12
3. Understanding Automata17
4. Alergia Algorithm19
5. Creating SFA using alergia algorithm22
6. DNA Samples of Living organisms25
7. Test Results
8. Future Work
9. Conclusion
10. References45

List of Tables

Table 1: List of Amino Acids	14
Table 2: Comparison of Human, Chimpanzee and Banana DNA 3	33
Table 3: Comparison of Human, Chimpanzee and Mouse DNA3	34
Table 4: Comparison of Human, Monkey and Fruit Fly DNA	}5
Table 5: Comparison of Human, Dog and E. coli DNA	36
Table 6: Comparison of Human, Mouse and Yeast DNA	37
Table 7: Comparison of Human, Mouse and Yeast DNA	.38
Table 8: Comparison of Human, Cat and Cow DNA	39
Table 9: Comparison of Human, Dog and Mushroom DNA	.40
Table 10: Comparison of Human, Dog and Rice DNA	41
Table 11: Comparison of Human, Cow and E. Coli DNA	42
Table 12: Homologous Gene Summary Chart	43

List of Figures

Figure 1: Process of Transcription	12
Figure 2: Process of Translation	13
Figure 3: Amino Acids Chart	15
Figure 4: Total Number of Species on Earth	25
Figure 5: Relative Number of Named Species	25
Figure 6: DNA sequence of Human	26
Figure 7: DNA sequence of Chimpanzee	27
Figure 8: DNA sequence of Monkey	28
Figure 9: DNA sequence of Mus Musculus (House Mouse)	28
Figure 10: DNA sequence of Banana	29
Figure 11: DNA sequence of Weed	29
Figure 12: DNA sequence of Drosophila Melanogaster	30
Figure 13: DNA sequence of Oryza sativa (Rice)	31
Figure 14: DNA sequence of Agaricus bisporus(Mushroom)	32
Figure 15: DNA sequence of Felis Catus (Cat)	32

1. Introduction

DNA, or deoxyribonucleic acid, is the hereditary material in humans and almost all other organisms. Almost all the cells in a human body have the same DNA. Most DNA is found in the cell nucleus (where it is called nuclear DNA) however a small amount of DNA can also be discovered in the mitochondria (where it is called mitochondrial DNA or mtDNA). DNA molecules are double-stranded helices, consisting of two long biopolymers made of simpler units called nucleotides. DNA nucleobase contains 4 chemical bases: Adenine (A), Guanine (G), Cytosine (C) and Thymine (T) [15].

RNA or ribonucleic acid is an important molecule with long chains of nucleotides. A RNA nucleotide contains a nitrogenous base, a ribose sugar, and a phosphate [15]. RNA, just like DNA, is equally important for living beings. RNA is usually single stranded unlike DNA which is double stranded. RNA nucleobase is made up of 4 chemical bases: Adenine (A), Guanine (G), Cytosine (C) and Uracil (U) [2].

DNA chemical bases pair up with each other, A with T and C with G, forming units called base pairs. A sugar molecule and a phosphate molecule are attached to each base. DNA in humans contains around 3 billion bases and these are similar in two people for about 99% of the total bases. These bases are sequenced differently for different information that needs to be transmitted [15]. This is similar to the way that different sequences of letters form words and sequences of words form sentences. The study of abstract machines and the computational difficulties that can be resolved using these abstract machines is called automata. Automata theory is closely related to formal language theory, as the automata are often classified by the class of formal languages they are able to recognize. A finite representation of a formal language that may be an infinite set can be automata [1].

Automata theory has been used to analyze the pattern of text data to find the writer and find the similarity and differences between him and others [5]. In biology, automata theory has been of vital importance. DNA nucleotide genomes have been symbolized using Cellular automata [13]. Hence, the study of DNA nucleobase pairs can be achieved using the automata theory.

A human DNA has approximately three billion base pairs. Searching a single gene from these vast base pairs that contribute to the human genome is known as DNA sequencing. In late 1970's, primary technique for DNA sequencing was established however scientist could sequence very few base pairs.

An enormous volume of information can be captured from one million bases or more. Matching the dissimilarity between the vast DNA sequences can help in understanding evolution, adaptation and immunity. The Human Genome Project (HGP) was dedicated to evolving innovative and improved tools to obtain gene economically, more rapidly and practical for scientists to achieve. Its popular sequencing of the human genome has provided scientists with a fundamental design of the human being [12].

In this project, we will create the automata of the DNA nucleotide sequence by appropriately representing the base pair sequences in the form of numerical symbols. We will further create a PTA (Prefix Tree Acceptor) to compare the sequence with various other species.

2. DNA Sequencing

A segment of DNA that is transferred from parents to children is known as gene. They are systematized and wrapped in components called chromosomes. Humans have 23 pairs of chromosomes which makes them different from other creatures. A gene also codes for a single protein molecule also known as polypeptide which is also used for protein synthesis. It comprises of two steps: Transcription and Translation [9]. Transcription: The sequence of one gene is replicated in an RNA molecule [15].

Figure 1: Process of Transcription [17]

Translation: The RNA molecule acts as a cypher for the formation of an amino-acid chain (a polypeptide) [15].

Figure 2: Process of Translation [17]

Translation of DNA to RNA into a sequence of amino acids marks the beginning of protein synthesis [9][15]. The main structure of protein is a thorough sequence of amino acids in a polypeptide string. A set of 20 naturally occurring amino acids exists today. Asparagine was discovered in 1806 followed by Cysteine, Leucine and Glucine [9].

Types of Amino Acids:

Amino Acid	one letter code	three letter code
L-alanine	A	Ala
L-arginine	R	Arg
L-asparagine	N	Asn
L-aspartic acid	D	Asp
L-cysteine	С	Cys
L-glutamine	Q	Gln
L-glutamic acid	E	Glu
glycine	G	Gly
L-histidine	Н	His
L-isoleucine.	Ι	Ile
L-leucine	L	Leu
L-lysine	K	Lys
L-methionine	М	Met
L-phenylalanine	F	Phe
L-proline	Р	Pro
L-serine	S	Ser
L-threonine	Τ	Thr
L-tryptophan	W	Trp
L-tyrosine	Y	Tyr
L-valine	V	Val

Table 1: List of Amino acids [2]

Amino acids are categorized into four major sets based on the properties of the "R" group in each amino acid. The types of amino acids are namely polar, nonpolar, positively charged, or negatively charged [9]. Polar amino acids have "R" groups that are hydrophilic, which hunt for contact with aqueous solutions. Nonpolar amino acids are the opposite of hydrophilic; they avoid contact with liquid [10].

Figure 3: Amino Acids Chart [2]

There are 8 different types of essential amino acids: isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan and valine. The remaining 12 are non-essential amino acids [10]. Essential amino acids perform various functions in your body including supervising insulin and maintaining healthy hair, skin, and nails.

They act as the elementary building blocks of the human body. Deficiency in amino acids can lead to lower energy levels. It could also slower the rate of metabolism and cause skin and hair loss, indigestion, insomnia, stress etc. Obesity can be avoided by getting all the required amino acid, which in turn can help in throwing waste away from the bloodstream.

3. Understanding Automata

In this section, we will understand the use of Finite Automata for representing DNA genomes [1] [3].

3.1. Finite automaton 'A' is defined as follows:

A=(S, P, i, δ , T), where

- S: is a finite set known as set of states
- P: finite input alphabet

 $P = {A, C, G, T}$ or ${A, C, G, U}$

- i: fixed element of A called as initial state
- \succ δ : is a function:

$$\delta : S \mathrel{x} A \rightarrow S$$

It is known as the transition function.

> T: is a subset of S known as terminal state.

3.2. Non-Deterministic Finite Automata:

Non-deterministic finite automata can be in various states at a single instance of

time [14]. Transition from one state on an input can be to any set of states.

DFA vs NFA [14]

Deterministic Finite Automata	Non Deterministic Finite Automata
Characterized as a 5 tuple state:	Characterized as a 5 tuple state:
<s, a,="" s<sub="" t,="">0, F></s,>	<s, a,="" s<sub="" t,="">0, F></s,>
S is the set of states	S is the set of states
A is the alphabet	A is the alphabet
T is the transition function:	T is the transition function:
$S \times A \rightarrow S$	S x (A U {E})→PS
s_0 is the initial state	s_0 is the initial state
F is the set of accepting states.	F is the set of accepting states.

4. Alergia Algorithm

Our main focus is on an algorithm that can encode the strategy for understanding the DNA sequences. This algorithm belongs to the family of functions that can be determined as Stochastic Finite State Transducer (SFST) [16][18]. Stochastic Moore machine is nothing but the probabilistic distribution of symbols.

We will use Alergia algorithm for our DNA recognition which is discussed as follows.

```
Algorithm Alergia
Input:
        S: sample set of strings
        \alpha: 1 - confidence level
Output:
        SFA
Begin
        A = stochastic prefix tree acceptor from S
        Do (for j = successor(first node(A) to last
        node (A) )
              Do (for i = firstnode(A) to j)
                   If compatible(i,j)
                        Merge (A,i,j)
                        Determinize(A)
                        Exit (i loop)
                   End if
              End for
        End for
        Return A
End algorithm
```

There are 4 major groups of amino acids: Polar, Non polar, positively charged and negatively charged. To build automata we have to convert these to numerical.

Hence, we will enumerate them in the following way:

NonPolar-0

- Glycine (G) GGU, GGC, GGA, GGG;
- Alanine (A) GCU, GCC, GCA, GCG;
- Valine (V) GUU, GUC, GUA, GUG;
- Leucine (L) CUU, CUC, CUA, CUG, UUA, UUG;
- Isoleucine (I) AUU, AUC, AUA;
- Proline (P) CCU, CCC, CCA, CCG;
- Methionine (M) AUG;
- Phenylalanine (F) UUU, UUC;
- Tryptophan (W) UGG

Polar-1

- Serine (S) UCU, UCC, UCA, UCG;
- Threonine (T) ACU, ACC, ACA, ACG;
- Cysteine (C) UGU, UGC;
- Asparagine (N) GAU, GAC;
- Glutamine (Q) CAA, CAG;

Tyrosine (Y) – UAU, UAC

Polar Acidic-2

Aspartic Acid (D) – GAU, GAC;

Glutamic Acid (E) – GAA, GAG

Polar Basic-3

Lysine (K) – AAA, AAG;

Arginine (R) – CGU, CHC, CGA, CGG, AGA, AGG;

Histidine (H) – CAU, CAC

Figure 3 shows that UAA, UAG and UGA are stop codons. We will group them in the final

stage as 4.

Stop Codons-4

UAA,

UAG,

UGA

5. Creating SFA using Algorithm Alergia

Let us assume there are 'n' strings, $S=\{s_0, s_1, s_2, s_3, ..., s_n\}$ and $s_i = a_1a_2a_3...a_i$.

Once the SFA is build, we start merging the states [16]. Two states can be merged when they are compatible i.e. they have equal transition probabilities for every input $a \in A$ and the end nodes must be same as well.

$$q_i \equiv q_j \Rightarrow \forall a \in A$$
, where $p_i(a) = p_j(a)$ and $\delta_i(a) \equiv \delta_j(a)$

It's very difficult to find equal frequencies hence states are accepted to be same if they fall under a confidence range.

Given the probability p and frequency n for n values, a confidence range can be defined as:

$$\left|p - \frac{f}{n}\right| < \sqrt{\frac{1}{2n}\log\frac{2}{\alpha}}$$
 with probability larger than $(1 - a)$.

The probabilities are calculated and these values of vital importance for the process of merging. Algorithm Alergia will reject the states if these values are greater than the confidence range.

$$\Big|\frac{f}{n} - \frac{f'}{n'}\Big| > \sqrt{\frac{1}{2}\log\frac{2}{\alpha}}\Big(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n'}}\Big).$$

The above equation helps in merging the compatible states. After merging all the compatible states, we get a SFA [16] which is an estimate of the initial one.

A DNA nucle	otide	e seq	uence	e can	be re	epres	sente	d in t	he fo	orm of numerical depending on
the 4 groups	ofai	nino	acids	disc	ussed	l in C	hapte	er 4 a	s foll	ows:
Sequence 1:	Sequence 1: AUG AGA CCA GCG AGG ACA CCU GAU GAA UGA									
Input 1:	0	3	0	0	3	1	0	2	2	4
Sequence 2: AUG CUC CAU CAA UGG GAC AAA UUU UUC UGG										
Input 2:	0	0	3	1	0	2	3	0	0	0
Commence D			100		CALL		<u> </u>		6611	CALL
Sequence 3:	AUG	AUC	ACC	UGU	GAU	AAG	GUU	AUU	CCU	CAU
Input 3:	0	1	1	1	2	3	0	0	0	3
Sequence 4:	AUG	UCU	GAG	GAC	GAA	CGU	UCU	UGG	GAL	JAAA
Input 4:	0	1	2	2	2	3	1	1	2	3
Sequence 5:	AUG	CCU	CAU	GAU	AAG	AUC	UGU	CAU	GUU	ACC
Input 5:	0	0	3	1	3	1	1	3	0	1
Sequence 6:	AUG	AUU	ссс	UAU	GAU	GAG	AAG	GAC	AAA	UCU
Input 6:	0	0	0	1	2	2	3	2	3	1
Sequence 7:	AUG	G CAU	J UAU	I GAL	J CAU	GAC		CCU	AUC	GAU
Input 7:	0	3	1	1	3	2	3	0	1	2
Sequence 8: AUG CCU GAU AUU UGU CAU GUU GAG UAU ACC										
Input 8:	0	0	1	0	1	3	0	2	1	1
Sequence 9:	AUG	GAU	AAG	GAA	AAA	UCA	GAC	CUU	CCC	CAU
Input 9:	0	1	3	2	3	1	1	0	0	3

Sequence 10: AUG AAA AAG GAU UGU CAA GAU AUC GAG CAC

Input 10: 0 3 3 2 1 1 2 0 2 3

Above are a few examples of DNA sequences being represented numerically. Once this is done we can now use Algorithm Alergia to build a prefix tree acceptor (PTA) [3][16]. The algorithm then merges all the compatible states in PTA and creates stochastic finite automata [16][17][18]. This automaton is an estimate of the initial one.

6. DNA samples of living organisms

There are approximately 8.7 million species of species on our planet out of which 6.5 million are from land and the remaining from the seas [8].

Figure 4: Total Number of Species on Earth [8]

As shown in the above figure, only 1.8 million species have been categorized and known to mankind. This clearly states that around 75-90% of them are yet to be discovered.

Figure 5: Relative Number of Named Species [7]

The above chart shows that there are approximately 12% of invertebrates such as arthropod, mollusk, annelid, coelenterate etc. Vertebrates, categorized by the existence of spinal cord, include mammals (human beings), birds, reptiles, amphibians etc. Our percentage is the lowest amongst all [7].

Our goal is to find the similarity between different species. Below are samples of DNA sequences [15][19] of some species:

DNA nucleotide sequence for Homo sapiens (Human) [19]:

1	atttccagct	ttctatgcat	tctggcaaaa	gctagctcca	caagccagag	gacagccctt
61	gagagaaaga	tttaggcact	ggcttttgaa	atagaaagca	cctcaaatgc	tggggagaag
121	gaacacacag	aaaatagcaa	aaaaggatcc	agtgagacct	gggcaatgca	caaatgcaat
181	gcaccacttt	gagacaatca	gctttcaatt	tacacaagca	gtaacaatgc	tccaaaccac
241	accctgcagc	tgtcccatgc	accatcaggg	aaatctctga	tgctgctggt	gccctgccag
301	caccactacc	cactgctgca	tctaactgct	gactgcagtc	attgccccat	cctcactccc
361	atggattctg	cctgtaacct	gctcttggaa	tctctgactt	ctaaagtcta	gcgtttatgg
421	aatactacac	agccacacaa	aataatgaaa	tcatatcttt	tgtaccaaca	tggatgcagg
481	tgaaggccat	tatccttagt	gaaattaaca	gaaaaccaaa	taccgtatgt	tctcacttat
541	aagtgacagc	taaacactgg	ttactcatgg	acataaaaat	aggaacaata	gacactgggg
601	aatactggag	gggggaagga	gggaaaggaa	caacagttga	aaaactaact	gttggttact
661	atgctcagga	catgggtgac	agtatcattc	ataccccgaa	cttcaatatc	atgtaatgta
721	ctcatgtaac	aaacctgcac	atgtaccccc	tgaatctaaa	ataagttgaa	attacaaaaa
781	acaaaaata	aaataaaaca	aagtttaggg	tgctaagtga	tggcagccag	ggtgtgttta
841	tacatcagct	gcaagaaatg	ccagaaaagg	gaatatctgg	catttttagc	tgtcgtatca
901	agaggcaaga	tccacctcat	taaatattag	gtgggaattc	ccaaaacacg	gggagaagat
961	gatgatgttg	tgtagaaaaa	aaaaaaaaa	gtaagagcca	ttcactccac	acacaaatgc
1021	ataaaacatt	tagaattggg	ccgggcgcag	tggctcacgc	ctgtaatccc	agcacttggg
1081	gaggccgaga	cgggcagatc	atgaggtcag	gagatcgagg	tcatcctggc	taacacagtg
1141	aaatcccgtc	tctactaaaa	atacaaaaaa	atagccaggt	gtggtggcgg	gcgcctgtag
1201	tcccagctac	ttaggaggct	gaggcaggag	aatggcatga	acccaggagg	cggagcttgc
1261	agtgagcaga	gatcatgcca	ctgcactcca	gcctaggcga	cagtgagact	ccacctcaaa
1321	aaaaaatcc	atttagaatt	aatatgaaat	tgccatcaga	aattacctct	ggggagtgga
1381	accagageta	tagtttcagg	agtgggtgag	agaagattct	tacttctcat	tttatatgtt
1441	tcggtagtat	ttaagaattt	tataagcgac	atatgtttct	ttttttgatt	tcaaagaact
1501	ggtttacttt	ttaagacctg	tetettett	tagaactgct	tttaaaaaga	ggctggaacg
1561	ttttaattaa	attatgtacc	ctctgctttc	aggaagggag	gccactcaga	tttggtggcg
1621	gtggttacca	ttcattttt	cattcattta	tcaaagattt	attgattgta	tgcaaggccc
1681	aagaaagatg	aaagacagag	gctctgttct	caaggaggga	attaatgtta	tgatgagaaa
1741	tgtctttgaa	tgtcttgggt	tttgtgttat	tttcttacat	attggtgaac	cttttacttc
1801	agatagtaag	taccetetae	tatacagett	taactagatt	tacttacgtt	ttttcctatt
1861	aaatggaatt	aggaaatata	agttgtacat	cttcacaatg	atttccaage	taaatgatgt
1921	tggtggggtc	tttgaaatga	gttactgtgg	aagtattta	tgctcttgaa	cttctgtgga
1981	agtatttat	gctcttgaat	ttcattcaag	aattcaattt	aacttcattt	aaagatttca
2041	ttagaattag	gtgacatcac	cttatgtttt	gtgttggttt	gcaaaagact	tattgctagc
2101	cagatgtgct	ccttttgctg	atagtaatat	aagcattcta	aaagttctaa	tttctaagcc
2161	ttggatttaa	tacaaaacca	taggtaataa	agatgtataa	aaatctagca	cggagtccgg
2221	acgcggtggc	tcatgcctgt	aatcccagca	ctttgggaag	tcgaggtggg	tggatcacct

Figure 6: DNA sequence of Human [19]

DNA nucleotide sequence for Chimpanzee [19]:

1	ccacgcgtcc	gggtggtgcc	aaattctggg	gcctaggcat	ttccctcgct	ttatgttttt
61	ggttttttt	cttccttcaa	tctctttgat	taggccgtac	gtggctgtgg	caaggagttg
121	gggaaaaaaa	ttataaaaac	aggaaagaga	gaaagcacag	ccagageeee	ggcttcgcga
181	gccgccgggg	agggggcgga	ggaggctgag	ccaggcagag	tcgccagcgg	agactcgcga
241	gtggcgcgcg	ggaggagcgg	ctgccggcgc	tgggcttgcc	ttgctgctgc	tgctgctgcc
301	tccccaccgc	cttttttt	ttttaatctg	gagcggggtg	gggagtggga	accggagaga
361	aagcaaaata	ttaaaaagcc	ccaaagacag	ccagcaggag	cgcggtgccc	gatggcttcg
421	ctgtaccaga	ggttcactgg	caagatcaac	acctcgaggt	ccttccccgc	gcccccggag
481	gcgagtcacc	tcctgggcgg	ccaggggccc	gaggaggacg	gcggcgcagg	agccaagccc
541	ctcggcccgc	gggcgcaggc	ggcggcgccc	cgggagcgcg	acaacaacaa	cddcddcdcd
601	ggtggccggc	cccggttcca	gtaccaggcg	cggagcgatg	gtgacgagga	ggacgagctg
661	gtggggagta	accctccgca	gaggaattgg	aaaggaatag	caattgcact	gcttgtcatt
721	ctggtcatct	gctccttgat	cgtcacctcg	gtcatacttc	tgacaccagc	ggaagataat
781	agtctgtctc	aaaagaagaa	ggtcactgta	gaagatetet	tcagtgaaga	cttcaaaatt
841	catgaccccg	aggctaagtg	gataagtgat	acagaattca	tctacagaga	acagaaagga
901	acagtgagac	tgtggaatgt	tgaaacaaat	acttctactg	tcttaataga	aggcaaaaaa
961	attgaatcat	taagagccat	cagatatgaa	atatctccag	atagagagta	tgcacttttt
1021	tcatacaatg	tggaacccat	gaagaaagtg	aagtccagga	agttgacatt	gcctcattca
1081	aaatcatgtg	actcattagc	agtaagtcaa	gcçtgtagcc	cagettgtca	ccagggctgt
1141	tttcttcatt	acatcaccat	gtctcttcct	cttcactgcc	tgcgtgacta	tgtctcggca
1201	gtcaatggat	acagcacagc	attgccagct	tgccatgtac	aagggggacc	tgtttcagat
1261	attccatgga	gaccctggct	ggaggattgc	aggagagtcc	caggaggcag	gactgccaat
1321	ggcaccaggc	ttcgcagcca	tgcacctgca	gccctcaggc	agcactgtcc	attgtcatac
1381	gagtgtggca	ggtgtgaggc	ategeatetg	ctcaccccgg	ggataatgca	cagcagctac
1441	aggcagattt	cgggccagag	agcaaccgag	tgagcettge	agcetetget	gccagcacag
1501	gettgtteet	tcaacactgg	tggagagaga	cacgctgtca	tcaggcccaa	gaaatactgc
1561	cttccccatc	ctatccctgg	tcactgggtg	cccgcagagt	gtcccagagg	agggagggag
1621	ggacceteca	ctggttcaaa	tggcctgttc	tcagagatgc	agcaatagac	cctcgtgaat
1681	actgaactga	taatcatggg	aaggagactg	gctctcctgg	attccctcat	gatteetetg
1741	agtgacaatg	tgatgttggc	cgactgtgtc	ttcttcagaa	tatcatatac	acttgaggtc
1801	tccaggagcc	tccaattaca	ttattttcct	ggeteataca	gtgacaagta	attettatee
1861	tggattcctc	gttactgaga	cttttcttgc	cttttttgtt	agettatgat	ttattctagg
1921	acttecteca	acaggttata	cttaactgtc	tacctcagtc	tctggaagtt	ttaaaaatgt
1981	tcagctaaat	aaaagaagta	gatteteet	ggaaaccaaa	aaaaaaaaa	aaaaaaaaa
2041	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaa		

Figure 7: DNA sequence of Chimpanzee [19]

DNA nucleotide sequence for Monkey [19]:

1	aagcttctcc	ggcgcaacta	ttctcataat	cgcccacgga	ctcacctcct	ccatgctatt
61	ctgcttagcc	aattccaact	atgaacgcac	ccacagtcgt	gttataatgc	tctcccgagg
121	acttcaagcc	ttacttccac	taatggcctt	ttgatgattc	gcagcaaatc	ttaccaatct
181	agccctaccc	cccactatca	atctaatagc	agageteett	gttattacag	cttcattttc
241	ttgatctcat	atcactatca	tactaatagg	gctcaacata	ctaatcacag	ccctctattc
301	cctctacata	tttatcacaa	cacaacgagg	aaaacttaca	caccacacaa	ctaacataaa
361	gccctcattc	acacgagaaa	acacactaat	atteetteac	cttgccccaa	ttattettet
421	atcccttaac	cctagcatca	tcctaggatt	tacctcttgt	aagtatagtt	taattaaaac
481	accagattgt	gaatctgact	atagaggcca	gtcacttctt	atttaccgag	aaaactcgca
541	aggattgcta	acccatgttc	ccataattaa	aactatggtt	ttctcaactt	ttaaaggata
601	atagetatee	attggcctta	ggagccaaaa	atattggtgc	aactccaaat	aaaagtaaca
661	attatgtaca	cctccattat	aataacagcc	ctcgtctccc	taattettee	aatcattgcc
721	accettatta	accctaataa	aaaacagtca	tatccaaact	atgtaaaaac	aactacaata
781	tatgcettea	tcaccagect	tatcccaata	actctctacc	tetttetaaa	tcaagaggca
841	actatttgaa	gttggcattg	aacaacaacc	caaacactaa	atctaacatt	aagett

Figure 8: DNA sequence of Monkey [19]

DNA nucleotide sequence for Mus Musculus (House Mouse)[19]:

1	ctgggattac	aagctggtac	aactactctg	gaaatcagtt	tggcaggtcc	tcagaaaatt
61	taatgtaatg	ctacccgagg	acccactaat	accactcctg	gcatctaccc	agaagatgct
121	ccaatatgta	ataatgacac	atgetetaet	atgttcatag	caccettatt	tataataacc
181	agaagctgga	aagaacccag	atgtccctca	gcagaggaat	ggatacagaa	aatgtggtat
241	atttatacaa	tggaatacta	ctcagctatt	aaaaggagtg	aattcatgaa	attettagge
301	aaatggatgg	aattagaaaa	tatccttagt	gaggttaccc	aatcacaaaa	gaacacacat
361	ggtatacact	cactgataag	tggatactag	cccagaagtt	cagaataccc	aagatacaat
421	ttaaagacaa	aatgaagete	aagaagaagg	aagaccaaag	tatggatact	ttggtccttc
481	ttagaagggg	aaacaaaata	cccatgggag	gagttacaga	gacagcgtgt	ggagcagaga
541	ctgaaggaaa	ggccattgag	agacttcccc	acctagagat	ccatcccata	tacagtcacc
601	aaacccagac	agtattgtgg	atgccaacca	gtgctttctg	acaggagcct	gatatagetg
661	tctccttgag	aggetettge	cagtgcctga	caaatacaga	gatggatgct	ctctctgagc
721	acaaggcete	cagtggagaa	gctagagaaa	ggaccaaagg	agctgaagga	gcttgcagcc
781	ccataggagg	aacaacaata	tgaaccaacc	agtacctcca	gageteecag	ggagtaaacc
841	accaaccaga	gagtatgcat	ggtgggactc	atgactccag	ctgcacatgt	agcagaggat
901	ggtcttattg	gacatcaatg	ggaggagagg	cgcttggtcc	tgagaagact	taatgtccca
961	gtataggaaa	atgccaggac	agggaagcgt	gggtgggtgg	gtggtgagca	gggggttggg
1021	ggagagaata	gggggttttc	agaggggaaa	ccaggaaagg	ggattacatt	tgaaatgtaa
1081	ataaagagaa	aaatctaata	aaaaacatt	atgttacaat	aaaaaaatg	agagaaatta
1141	gtaaagagcc	aatgttttaa	gtggaggtat	tgaataccaa	taatactatg	ttcagatttc
1201	tgaagaactg	ccagaatgat	ttctagaggg	gttataccag	cttgcaatcc	catgaaggag
1261	tttttctctt	tcaccacatc	cttgccagca	cctgctgtca	cctgagtttt	tgatcttagc
1321	cattctgatt	ggtgagaggt	ggaatctcag	ggccgttttg	atttgccttt	ctctgatgac
1381	tgaggatatt	ttctattcca	tgatcttatt	caggattcta	cattgtagtt	agtccttata
1441	tctccttata	tattcttta	ttaattgatc	atttttaatt	tacatttcaa	atgttattcc
1501	cccttcccca	tccccctctg	caaatccccc	ctatctcact	cctgcacttc	tatgagggtg
1561	ctcccctacc	cactcattca	ctcctgcctc	actgccctag	cattccctta	cgctggggca
1621	tcgagccttc	acagggccaa	gggcctcctc	tcccattaat	gccagataag	gccatcctct
1681	gctacatatg	gagctagacc	catggateet	tccatgtgta	ttetttggtt	ggtgttttt
1741	tttttttt	tttttagtcc	ctgggagcac	tgggcaatct	ggctggttga	tactgttttt
1801	cttcctatgg	ggttgaaaac	ttcttcaact	ccttagtcct	tcccctaact	cttccattgg

DNA nucleotide sequence for Banana [19]:

```
1 tggatttaaa getggtgtta aagattacaa attgacttat tatacteetg aetaegaagt
61 caaagataet gataeettgg eageatteeg agtaaeteet eaaeetggag tteegeeega
121 agaageaggg getgeggtag etgeegaate ttetaetggt aeatggaeaa etgtgtggae
181 tgatggaett aeeagtettg ategtaeaa agggegatge taeeaeaee aggeegttgt
241 tggggaggaa aateaatata ttgettatgt agettateet ttagaeettt ttgaagaagg
301 ttetgttaet aaeatgttta etteeattgt gggtaatgta tttggtttee aageettaeg
361 agetetaegt etggaggate tgegaattee eaettettat teeaaaeett teeaaggeee
421 geeteaegge atteaggttg aaagagataa gttgaacaag tatggtegte eeetattgg
481 atgtaetatt aaaceaaat tgggattate tgeaaaaae taeggtagag eggttatga
541 atgtetaegt ggtggaetg agag
```

Figure 10: DNA sequence of Banana [19]

DNA nucleotide sequence for Weed [19]:

```
1 atgcattgca tggctgttcg ccatttcgct ccatcgtcat cgctctccat attttcgagt
  61 actaatatta ataatcattt ttttggtaga gaaattttta caccaaaaac atctaatatt
 121 acaacaaaaa aatcaagatc aagacctaat tgcaatccaa tccaatgtag tttggccaaa
 181 agccctagta gtgatactag tacaattgtt agaagatcag ccaactatga tcctcccatt
 241 tggtcttttg atttcattca gtctcttcca tgcaaatata agggagaacc ctatacaagt
 301 cgatcgaata agctaaaaga agaagtgaaa aagatgttag ttggaatgga aaactcttta
 361 gtccaacttg agttgattga tacattacaa agacttggaa tatcttatca ttttgagaat
 421 gaaatcattt ctattttgaa agaatatttc actaatatta gtactaataa aaaccctaaa
 481 tatgatttat atgccactgc tctcgaattt aggcttttac gcgaatatgg atatgcaata
 541 cctcaagaaa tatttaatga ttttaaggac gagacgggaa agttcaaagc gagtattaaa
 601 aatgatgata ttaagggagt attggcttta tatgaagctt cattctatgt gaaaaatggt
 661 gaaaatattt tggaggaagc tagggttttc acaacagaat atctcaaaag atatgtaatg
 721 atgattgatc aaaacataat attaaatgat aatatggcaa tattagtgag acatgccttg
 781 gagatgccac ttcattggag gactataaga gcagaagcta agtggttcat tgaagaatat
841 gagaagacac aagacaagaa tggcactttg cttgaatttg cgaaattgga tttcaacatg
901 cttcaatcaa tatttcaaga agatctaaaa catgtctcga ggtggtggga acattctgag
961 cttggaaaga ataaaatggt ttatgctaga gatagattgg tagaggcttt tctatggcag
1021 gttggagtaa gatttgagcc acaattcagc cactttagga gaatatctgc aagaatatat
1081 gctctaatta caatcataga tgacatatat gatgtgtatg gaacattgga agagttagag
1141 cttttcacca aggctgttga gagatgggat gcgaagacca tacacgagtt accagattat
1201 atgaagttgc ctttctttac tttatttaac accgtaaatg aaatggcgta tgatgtatta
1261 gaagagcata attttgtcac cgttgaatac ctcaagaact cgtgggcaga gttatgtagg
1321 tgctatttgg aagaggcaaa atggttctat agcggataca aaccaacctt gaaaaaatat
1381 attgagaacg cctcgctttc aataggagga caaattattt ttgtatatgc ttttttctct
1441 cttacaaagt ccataacaaa cgaggcctta gagtccttgc aagagggtca tcacgctgca
1501 tgtcgccaag gatccttaat gttacgactt gcagatgatc taggaacatt gtcggatgaa
```

Figure 11: DNA sequence of Weed [19]

DNA nucleotide sequence for Drosophila Melanogaster (Fruit Fly) [19]:

1	gaattettga	atatatccaa	gtctagttac	gcaccttctt	caccaggcga	catttgacaa
61	cattgtcgtt	gagcggatgt	gtcgtcatat	cgaagagtag	aaaattttgc	ttttccgtcg
121	tgagcacacc	cttctccacc	agatttttgg	ccagacgttc	gcgtacattt	ttcagttggt
181	agcgcaattt	caacggattc	caggtttcac	ctgccacaac	aataggttat	acaaaacata
241	cttggcgaaa	tggcaggcgc	taaatacaca	ccactaagat	attcaatcca	gctctgcacc
301	gtctccgggg	gatetgttte	cttaatgtgt	ttaagtccct	ccaccactaa	gatattcaat
361	ccagetetge	accgtctccg	ggggatctgt	ttccttaatg	tgtttaagtg	cctcatcgag
421	tagaacgtct	cccgtctgct	gatccgattt	cagtattaat	ttccttgtac	atagaccacg
481	tcgccgcatt	ccagatttct	cgatcatcac	gcgacctcgc	agtccaagct	ctatgagaat
541	gcatccgcgc	aagccgcttg	atatgcagtc	gttccagaaa	gatgtgtagc	cctccttgtc
601	cttgagtccc	agcagcagaa	cctcctccat	gagcgttagt	cgtgtttcct	tggagtcgcc
661	atcgtcgata	ttgtcctcct	ggtctcatac	acgcacacaa	acacagcgag	agcgagatgt
721	ccgagaaaaa	cctgaaagtg	ggcgcccggg	tcgagctgac	cggcaaggat	ctgcttggca
781	cggttgccta	cgtggggatg	accagetteg	cgtcggcaag	tgggtgggcg	tcgtgctgga
841	cgagccgaag	ggcaaaaaca	gcggctccat	caagggccag	cagtacttcc	agtgcgatga
901	gaactgtggc	atgtttgtgc	gacccacgca	gctgcgtctg	ctggaggctg	ctcctggcag
961	caggcgcagc	atcgaggatg	tcagcggggc	tacgcccacg	gctgcccaac	ccacaaaggc
1021	gcggctgagc	agctctcgca	cctcgctctc	ctccagtcgc	caatcgctgc	tgggttcccg
1081	cacccagttg	accacttctc	tgagtgaacg	cactgcctcc	agcagcagta	ttggcccgag
1141	gaaatctttg	gcgccgcaaa	acagcaagga	taaggagtcc	cccagcactt	cattggcaga
1201	aggagcccca	gcagcaagcg	gtggcaacgg	tgccgttcgc	atgeeteete	caaacgggct
1261	teettegtgg	agacgggctt	ccttgaaatt	cttaagccgc	agttcacgcc	ttcccagcca
1321	ctgcgatcgc	cctctttcac	catgccctcc	aactccggtg	ctgaagacaa	ggttegeeet
1381	gctggaggca	cagaaaacga	gcgccgagct	gcaggctcag	ctggctgatc	tcaccgagaa
1441	gctggaaact	ttaaagcagc	gcaggaacga	ggataaagaa	aggttgcggg	agttcgacaa
1501	gatgaagatt	cagtttgagc	agcttcaaga	gtttcgaacg	aaaatcatgg	gtgctcaggc
1561	ttcgcttcag	aaggagttac	tgcgcgccaa	acaggaggcc	aaggatgcaa	tcgaggccaa
1621	ggagcagcat	gctcaggaaa	tggcagatct	ggcagacaat	gtggagatga	tcacgctgga
1681	caaggaaatg	gccgaggaga	aggccgacac	gctgcagctg	gagctagagt	cctccaagga
1741	gcgtattgaa	gagttggagg	tagatctgga	gctcttacgc	tcggagatgc	aaaacaaggc
1801	cgaatctgcc	atcggaaata	tttctggcgg	cggcgattcg	ccgggcctct	ctacttatga
1861	attcaaacag	ctggagcaac	agaacattcg	tttgaaggaa	acactagtgc	gtctgaggga
1921	tctatctgct	cacgacaagc	acgacatcca	aaagttgagc	aaggaactgg	agatgaagcg
1981	ctctgaagtc	accgaactgg	agcgcaccaa	ggagaagctt	agtgccaaga	ttgatgaact
2041	ggaggccata	gtcgccgact	tgcaggaaca	agtcgatgct	gcacttggtg	ccgaggaaat
2101	ggtggagcag	ctggctgaaa	agaaaatgga	attggaagac	aaagtaaaac	tgctcgagga
2161	ggaaattgcc	caattggagg	ccttggagga	agtgcacgaa	cagctggtgg	agagtaacca
2221	cgaactggag	cttgatctgc	gcgaggaatt	ggatetegee	aatggggcca	aaaaggaggt
2281	gctgcgagag	cgggatgctg	ccattgaaac	catctatgat	cgcgaccaaa	ctatcgttaa
2341	gtttagggaa	ctggtacaga	agctaaacga	ccaactaact	gagttaaggg	atcgcaattc
2401	tagcaacgaa	aaggagtcgt	tgcaggatcc	cagtttgaaa	atggtcaccg	aaaccatcga
2461	ctacaaacaa	atgttcgccg	aatccaaggc	ttacactcgc	gccatcgacg	ttcaactgcg
2521	ccagattgag	ctgagccagg	ccaatgagca	tgtccagatg	cttaccgcct	tcatgcctga
2581	gtcattcatg	agtcgcggtg	gcgatcacga	ctcaatcctt	gtgattctgc	tcatttcacg
2641	cattgtettt	aagtgcgcac	attgtcgttt	cgcaaacgag	agagegttte	ccaccagtgg

Figure 12: DNA sequence of Drosophila Melanogaster [19]

DNA nucleotide sequence for Oryza sativa (Rice) [19]:

1	tcccaaaaca	atgtgtctat	ggtcttccga	attectagte	tcagcattgt	gcaccaccga
61	gctaggttgc	agactatcac	gatctgcttg	atatatagtg	tcaatttggt	gtgtaccaac
121	taaaggttgg	tttgcattta	ccgtctttct	ttgtttatta	gcaattgttt	ctcgctgagt
181	ggccatactt	cttcctctct	ttttagtgag	tggaagttga	gtggttttat	ttggtacctc
241	cactctttct	ggcgcattct	gagcgggaat	gaaagattta	gtcacacctt	tataattggt
301	aaatgcatct	ggcagattat	ttgcaagtct	ttgcaaatgt	ataattttct	gaacttgaag
361	ttcagtttca	gtagtacgtg	ggtctgaggc	tggaacacct	tgggcatccc	aatcaatttc
421	ctggcattct	ttctggtact	tgaagtctcc	ccctaatgcc	gggaaatgtt	actcatcaaa
481	gatagagtca	gcgaaccagg	cagtaaatag	atcacatgtt	aagggttcta	aatactttat
541	gatcgacgga	gatttgaatc	ccacatagat	ccccactttc	ctgtgtgggc	ccatagcagt
601	acgctgtggt	ggtgagatcg	gtatgtatac	aacacaaccg	aacttacgca	aatgggaaat
661	atttggaaga	tttccacgta	ctaactgcat	tggggaagtt	tcatgatatg	cagttggtcg
721	tagttggaca	aggtcagcag	cgtgcagaac	tgcatgaccc	caacacgacg	aaggtaattt
781	gcaattcatc	aataatggtc	gagtaataag	cttaattett	tttatcaatg	attcagccaa
841	accattttgt	gtgtggacat	atggaacaaa	gtgttgaacc	tgaatteeca	atgccataca
901	ataatcatcg	aaagcatggg	atgtaaattc	ggcagcattg	tccatacgga	ttgattgaat
961	cctatgttca	gggtaatttg	ccttcagcct	tataatttga	gacattaatt	tggcaaaggc
1021	atggtttcgt	gtcgatagaa	gacacacatg	agaccatcta	gtagatgcat	caatcagaac
1081	cataaagtac	ctaaacggtc	cagatettgg	cacaataggg	ccatagatat	ctccttgaat
1141	gcgttcaagg	aatttaagtg	gtteggetet	aattttgaga	taagatggtc	tcaaaatcag
1201	tttcccagta	gcacatgcag	tgcatacgaa	atcggaggat	ttgggaaatt	tgtcagtgat
1261	caaatgatga	ccaatagagt	tgccaataat	ttttctcatc	atcccgatac	tagggtgccc
1321	aagtcgatca	tgccaagtgt	ggaatgcatc	aacattttga	aaaattactt	tgtacgtaac
1381	atgtgcaatg	ggcttaatgt	atgtatagta	caatcccgat	gtgagagatg	gaattttctc
1441	gcaaatgcat	ttgccatatc	tgttttgttt	ggttaagaga	agaaattett	ctcgattatc
1501	catatgggtt	tcaatgtgaa	acccattttg	acggatatct	ctataactta	gtagggtacg
1561	ggttgaatca	agatacaata	aagcateett	gattgtaatt	tgtgtaccca	ttgggagtgt
1621	aataattgct	cateetgage	caactatcac	agtategege	ccagtgatag	tcaaaacttt
1681	gccttctctc	tttttgagag	tttgaaagta	tttgatctcc	ctaagtatag	agtttgtggt
1741	accactgtcc	acaagacata	attectetee	aatcggagtg	atateettag	acatctataa
1801	tgaaagaaga	attgettgat	taagaattet	ttatccaata	tatatacata	cataaaataa
1861	ttaaaacatc	agatacatag	tatgacgttt	acaaatgtta	atagtacata	ctctaatgac
1921	tagcaagtet	tataacctta	taatataagg	gagtttgtac	tcatcgactt	attacaacca
1981	ttattgtttt	aacaaactat	aggatatcaa	tatactgtct	caaacacact	gagattaaag
2041	cagetttate	tctaagtggg	acgcactgag	attacagtaa	atctccaagt	gggtccgttg
2101	agcagtattc	gatgagcatg	tcatccattg	cagaaaatgc	agcggtatcc	tctgggagaa
2161	gagcgaggtt	gttctctggt	tcaataggag	cctagtgaga	actttcaaca	tccggtcttt
2221	cttttgtaag	atgaagtgag	cttcaaatct	tagttcctca	gaagactttt	tcgcctttag
2281	ggatttctga	tacaggagaa	caagatgttt	ttgggatgtg	gcaatcttta	gtgacatgat
2341	agtcagatcc	acacctgttg	caatgcctgt	tgctattgca	acgaggttgt	ggtgccttac
2401	ccttctcttt	teetttetat	cgaccattgg	atttgcacct	tgttgttatg	ttgcgttttc
2461	cagtcagatt	cttagggtta	ttcgaggaat	ttcccttgaa	teetttaagt	gcgatactgt
2521	tggtttagta	tettgteete	cggaaacata	gttgatagag	ttttctctat	ctttctgctt
2581	tcgttggctc	ttatcgcaaa	atatcaactt	ggagcaaatg	ttgtgaacag	catgattgta
2641	ttctgccaca	gtttaaaatc	ctgtaggcgt	aaatgaatcc	agccataatt	agceteatge

Figure 13: DNA sequence of Oryza sativa (Rice) [19]

DNA nucleotide sequence for Agaricus bisporus(Mushrooms) [19]:

1	accgacgatg	catttctctt	tgtcttttgc	cacccttgct	ctcttagtcg	cttcggctgt
61	tggtgcgccc	gctgcgatcc	actctatcga	gactttcgat	ggcgagacta	ctggaaagca
121	catcatcatg	ctcaaggaag	gagtcaagaa	ggaggatctc	ttcgccaact	tcaaggccaa
181	ggtcgctgta	tcccatcagt	gggaactgat	caatggcttt	gccggtgaat	tcgacgagga
241	gacactgaac	gagettegeg	caaaccccaa	cgttgagagc	atttccgagg	acggcctgat
301	gcacaccatg	actactcaaa	ccaatgcgcc	atggggcctc	gcccgattga	gctccactac
361	aaggctcagt	aaccagaacg	ccgcagctct	gaccttcagc	tacaccttcg	atgetteege
421	cggaagtggc	gttgatattt	tcattgttga	taccggcatt	ctcacaacgc	acagtcaatt
481	cggtggtcgt	gcagcttggg	gagagacctt	cggtccctac	gcagaccgtg	atggcaacgg
541	tcatggtact	catgtcgccg	gtactgctgc	tggaagccaa	ttcggtgttg	ctaaatctgc
601	caacgtcttc	gccgttaagg	tactcagcga	tgaaggttcc	ggttcgatca	ccgatatcgt
661	ttccggcttg	aacttcgtcg	gccaaagagc	tgcgtccagt	ggccgaccca	cgattgcatc
721	catgtctcta	ggtggtggtg	cctccagcag	tctggacagt	gcagtagctt	ctctcacgaa
781	cagtggtgtt	cacgttaccg	tcgctgccgg	aaatgataat	gccaacgccg	cgaatacatc
841	tcccgctcgt	gctccttccg	ccattactgt	cggcgcatct	actaccggcg	acgctcgtgc
901	ttcattctcc	aactttggaa	gcgttgtcga	catcttcgct	cccggccaga	gcgtcatcag
961	ttcttggatc	ggtagcaaca	ctgataccaa	ctgcatctca	ggaacttcca	tggcaactcc
1021	ccatattgca	ggactcgtcg	cttacttgat	cagtetteaa	ggaaacgtga	gccccgctgc
1081	catgagcacc	aagatcaagt	ccctcagttt	gaagggtgtc	atcagtggaa	ttccttaagg
1141	aagcccttga	gagttgctga	accgggtgtt	acgaatttcg	aagccgcata	ttgaaatttg
1201	gaatgtatca	tcatcattat	tcctttgttt	tttaaaaatc	aagtcaagga	atatacactt
1261	tgcaaaaaaa	aaaaaaaaa				

Figure 14: DNA sequence of Agaricus bisporus(Mushroom) [19]

DNA nucleotide sequence for Felis Catus (Cat) [19]:

```
1 ggcgggggga ggagggtcta agagagcaga aggaaggttt ccatgggaca ggccctcgcc
  61 tcaacccggg gatectggtg cgeeteetee aaggeggeea cgagggggeg eegeggeege
 121 gcctgcgaac tcacctgtgc agaagcaggc acgcggctgt tctcagccgg cgggatccag
181 cgggcaggtg tgggttcgag cgcgcagagc ttcctgattt tcggtccccc agcgcggtg
241 tocaggoodg ggggtggggt gactggottg ggggctgago cootcaggtg gagocatogo
301 actgtgtctc cttgaaacca ggctctgagc agagagaga acagagatgt gtgggcgctt
 361 ctccggctgg gggacgtcct cctgcgtgtc actctcaggc gggcgcagcc ggcccggtgt
481 cagtgtggag gggagaagac ggaggagacc tccggcaagg agaggaagga agcggagggg
541 ggaggcggga agaggaggag aagcatcaga cctgaaatcc gaggtgggag gggagctggg
 661 ttgcggcctg aaccggggag gccttatgaa atgaggcagc ggtgggcgcg gttctcggcg
721 gtagaattcc acgggctgtg gaaattccag ggctgttgct tggattgcct gaagaagacg
781 tgtgtgtcgg gttagggtgg ttgagacagg agtgggtgca gagggttctg gggtgcgggg
841 aggcaagtga ccgtgtgtgt acagtgtgag gctgcattgg ggcggcgtga aagcaagtca
901 cgctaatctg gcgagagaga tcatggtcgg gaacgtactt ttttccagag tgaggcatgt
961 gtgttccgcc gaggacctac tgacctctg tgattttcct caagtatgcg cagttcggct
1021 gcgcttgtgc tctctcgagg taactggtgt ttaaagcatc aaacgcgttt tggtgttttg
1081 ctgtatettt gttttgcttg teettttagt ttaagagttt tgeeceagea teteagagat
1141 acttgtgaat aatcaccaaa atggccctta ttttgtatat ttcgtttact tgttcctttc
1201 ttatttgtag tttgtggttc attcttagtt tttcttgtgg tttatgtgca agataactta
1261 gagtaacgtt cotgatggag tttggagtgt atttaaatga ttcgagttag tttttccctg
```

Figure 15: DNA sequence of Felis Catus (Cat) [19]

7. Test Results

Comparison of Human, Chimpanzee and Banana

	Alpha	Human	Chimp	Banana
1	0.10	99.981	99.949	89.933
2	0.20	99.979	97.816	87.154
3	0.30	99.978	95.342	81.706
4	0.40	99.975	94.721	74.585
5	0.50	99.972	92.808	70.633
6	0.60	99.971	90.368	63.707
7	0.70	99.965	89.886	59.961
8	0.80	99.962	88.386	54.822
9	0.90	99.955	86.371	52.666
10	1.00	99.951	84.731	49.595

Table 2: Comparison of Human, Chimpanzee and Banana DNA

The above table shows that the DNA of chimpanzee has 84% similarity with Human DNA and DNA of banana is 49% similar to human DNA.

	Alpha	Human	Chimp	Mouse
1	0.10	99.981	99.949	97.933
2	0.20	99.979	97.816	97.154
3	0.30	99.978	95.342	96.706
4	0.40	99.975	94.721	94.585
5	0.50	99.972	92.808	93.633
6	0.60	99.971	90.368	92.707
7	0.70	99.965	89.886	91.961
8	0.80	99.962	88.386	89.822
9	0.90	99.955	86.371	82.666
10	1.00	99.951	84.731	81.595

Table 3: Comparison of Human, Chimpanzee and Mouse DNA

The above table shows that the DNA of chimpanzee has 84% similarity with Human DNA and DNA of banana is 81% similar to Mouse DNA.

Comparing Human, Monkey and Fruit Fly

	Alpha	Human	Monkey	Fruit Fly
1	0.10	99.981	99.941	79.103
2	0.20	99.979	97.814	72.974
3	0.30	99.978	95.360	66.286
4	0.40	99.975	94.722	64.605
5	0.50	99.972	92.800	61.993
6	0.60	99.971	90.363	57.127
7	0.70	99.965	89.898	53.581
8	0.80	99.962	88.545	49.232
9	0.90	99.955	86.371	46.116
10	1.00	99.951	84.931	44.685

Table 4: Comparison of Human, Monkey and Fruit Fly DNA

The above table shows that the DNA of monkey has 84% similarity with Human DNA and DNA of Fruit Fly is 44% similar to human DNA.

	Alpha	Human	Dog	E. Coli
1	0.10	99.981	97.923	39.202
2	0.20	99.979	94.701	32.346
3	0.30	99.978	92.456	29.282
4	0.40	99.975	89.980	22.167
5	0.50	99.972	86.976	17.593
6	0.60	99.971	85.049	12.152
7	0.70	99.965	83.728	09.361
8	0.80	99.962	82.983	07.991
9	0.90	99.955	80.624	05.668
10	1.00	99.951	77.828	03.120

Table 5: Comparison of Human, Dog and E. Coli DNA

The above table shows that the DNA of Dog has 77% similarity with Human DNA and DNA of E. Coli is 3% similar to human DNA.

Comparing Human, Mouse and Yeast

	Alpha	Human	Mouse	Yeast
1	0.10	99.981	99.191	58.111
2	0.20	99.979	97.664	52.912
3	0.30	99.978	95.850	49.282
4	0.40	99.975	94.102	46.629
5	0.50	99.972	92.810	41.908
6	0.60	99.971	90.303	37.133
7	0.70	99.965	89.678	34.592
8	0.80	99.962	88.685	31.225
9	0.90	99.955	87.371	29.193
10	1.00	99.951	86.931	27.662

Table 6: Comparison of Human, Mouse and Yeast DNA

The above table shows that the DNA of Mouse has 86% similarity with Human DNA and DNA of Yeast is 27% similar to human DNA.

Comparing Human, Fruit fly and Weed

	Alpha	Human	Fruit Fly	Weed
1	0.10	99.981	78.717	58.125
2	0.20	99.979	71.285	52.936
3	0.30	99.978	67.453	49.222
4	0.40	99.975	64.636	46.695
5	0.50	99.972	62.125	42.901
6	0.60	99.971	59.984	33.198
7	0.70	99.965	55.920	29.598
8	0.80	99.962	52.615	25.233
9	0.90	99.955	48.331	22.180
10	1.00	99.951	44.231	18.690

Table 7: Comparison of Human, Fruit Fly and Weed DNA

The above table shows that the DNA of Fruit Fly has 44% similarity with Human DNA and DNA of Weed is 18% similar to human DNA.

Comparing Human, Cat and Cow

	Alpha	Human	Cat	Cow
1	0.10	99.981	98.717	97.989
2	0.20	99.979	98.219	96.026
3	0.30	99.978	95.420	94.894
4	0.40	99.975	93.685	92.695
5	0.50	99.972	91.133	89.430
6	0.60	99.971	89.993	88.925
7	0.70	99.965	88.913	86.686
8	0.80	99.962	86.215	82.135
9	0.90	99.955	85.931	79.248
10	1.00	99.951	84.231	76.666

Table 8: Comparison of Human, Cat and Cow DNA

The above table shows that the DNA of Cat has 84% similarity with Human DNA and DNA of Cow is 76% similar to human DNA.

	Alpha	Human	Dog	Mushroom
1	0.10	99.981	97.923	89.471
2	0.20	99.979	94.701	82.895
3	0.30	99.978	92.456	79.346
4	0.40	99.975	89.980	77.908
5	0.50	99.972	86.976	69.786
6	0.60	99.971	82.049	66.012
7	0.70	99.965	78.728	61.623
8	0.80	99.962	76.983	54.979
9	0.90	99.955	75.624	49.801
10	1.00	99.951	77.828	42.213

Comparing Human, Dog and Mushroom

Table 9: Comparison of Human, Dog and Mushroom DNA

The above table shows that the DNA of Dog has 77% similarity with Human DNA and DNA of Mushroom is 42% similar to human DNA.

Comparing Human, Dog and Rice

	Alpha	Human	Dog	Rice
1	0.10	99.981	97.923	58.309
2	0.20	99.979	94.701	46.786
3	0.30	99.978	92.456	41.523
4	0.40	99.975	89.980	37.960
5	0.50	99.972	86.976	33.986
6	0.60	99.971	82.049	29.112
7	0.70	99.965	78.728	25.011
8	0.80	99.962	76.983	22.951
9	0.90	99.955	75.624	18.208
10	1.00	99.951	74.828	15.420

Table 10: Comparison of Human, Dog and Rice DNA

The above table shows that the DNA of Dog has 74% similarity with Human DNA and DNA of Rice is 15% similar to human DNA.

	Alpha	Human	Cow	E. Coli	
1	0.10	99.981	97.130	39.202	
2	0.20	99.979	94.195	32.346	
3	0.30	99.978	92.222	29.282	
4	0.40	99.975	89.900	22.167	
5	0.50	99.972	86.928	17.593	
6	0.60	99.971	82.022	12.152	
7	0.70	99.965	81.123	09.361	
8	0.80	99.962	79.646	07.991	
9	0.90	99.955	77.186	05.668	
10	1.00	99.951	76.925	03.120	

Comparing Human, Cow and E. Coli(bacteria)

Table 11: Comparison of Human, Cow and E. Coli DNA

The above table shows that the DNA of Cow has 76% similarity with Human DNA and DNA of E. Coli is 3% similar to human DNA.

Following is a table which shows the similarity between different species. For example, the Human and Chimps are 87% similar (84% according to our test result), Dog and Mouse are 82% similar (87% according to our test result). The results below are almost in accordance with the tests we have conducted.

Homologs	Human	Chimp	Dog	Mouse	Rat	Fruit Fly
Human		29529 87% 84%	27761 81% 77%	26830 79% 81%	23860 70% 73%	13276 39% 44%
Chimp	18898 87% 84%		16865 78% 71%	16194 75% 79%	14283 66% 68%	7673 35% 38%
Dog	28144 82% 77%	27139 89% 82%		26740 88% 91%	23816 78% 74%	22771 75% 69%
Mouse	16384 83% 81%	15674 82% 78%	16066 84% 87%		14067 74% 76%	7887 41% 45%
Rat	12409 70% 73%	11907 90% 92%	12184 92% 89%	12420 94% 91%		6592 50% 49%

Table: Homologous gene Summary Chart [21]

8. Future Work

Although 1.8 million species are discovered today, all their DNA nucleotides are not easily accessible to study the differences and the similarities between these organisms. Also, DNA can be represented in 3D structures [12][20] depending on the behavioral patterns of proteins in the amino acids. This can be achieved in future research.

9. Conclusion

Pattern recognition of sequential symbolic data using automata theory was proposed in 2005 by Dr. Lin [1] and is being researched since then by him and his students. His student, Nikhil Kalantri has proposed an approach for author identification using the Alergia algorithm for pattern recognition.

In this project, two or more species can be compared on the basis of their DNA genome. The nucleotide sequences help us understand and learn the theory of life and the evolution of living organisms by comparing two species or by comparing the two organisms of the same species. For mathematical results, theory of automata proves to be vital importance. A PTA formed by the use of Alergia helps us understand the DNA genome in a better way.

10. References

- P.Baliga and T.Y.Lin: Kolmogorov Complexity Based Automata Modeling for Intrusion Detection. Proceeding of the 2005 IEEE International Conference on Granular Computing, "July 25-27, Beijing, China (2005)
- 2. Pevsner, J. & Wiley, J.: Bioinformatics and Functional Genomics. (2003)
- 3. M.Young-Lai and F.Tompa: Stochastic Grammatical Inference of Text Database Structure. Machine Learning (2000)
- 4. Bosnacki D., Eikelder H.M.M., Steijaert M., Vink E.: Stochastic Analysis of Amino Acid Substitution in Protein Synthesis. In: CMSB 2008, LNBI 5307, 367–386, Springer-Verlag Berlin Heidelberg (2008)
- Cotter, N., Gesteland, R., & Murdock, M.: Neural network based pattern recognition for sequenced DNA autoradiograms. In: International Joint Conference on Neural Networks, 2, 909 (1991)
- 6. Burks C., Farmer D.: Towards Modeling DNA Sequences as Automata. In: Physica D: Nonlinear Phenomena, Volume 10, 157-167 (1984)
- Information about existing species: http://www.backyardnature.net, [Online May 2013]
- Total number of estimated species on Earth: http://www.plosbiology.org, [Online June 2013]
- 9. Martin, J. C. & Hawk, J. F.: DNA sequence analysis by optical pattern recognition. In: The International Society for Optical Engineering, 938, 238-45(1988)

- Anderson C., Brunak S.: Representation of Protein Sequence Information by Amino Acid Subalphabets. In: American Association for Artificial Intelligence, Volume 1, 97-104 (2004)
- 11. Crick F.: The Great Ideas of Today 1980, Encyclopedia Britannica, 644-683(1980)
- 12. Paul Barry, Michael Moorhouse.: Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics Computing Skills and Practice (2004)
- 13. Pierre Baldi, Soren Brunak.: Bioinformatics: The Machine Learning Approach (Adaptive Computation and Machine Learning)
- 14. Rajeev Motwani, Jeffrey D. Ullman, John E. Hopcroft.: Introduction to Automata Theory, Languages, And Computation (2003)
- 15. Jir Poner, Filip Lanka.: Computational Studies of RNA and DNA. Challenges and Advances in Computational Chemestry and Physics (2006)
- 16. Ferdinand Wagner, Ruedi Schmuki, Thomas Wagner, Peter Wolstenholme.: Modeling Software with Finite State Machines: A Practical Approach (2006)
- 17. Justin Davis.: Finite State Machine Datapath Design, Optimization, and Implementation (Synthesis Lectures on Digital Circuits and Systems) (2008)
- 18. David J Corner.: Digital Logic and State Machine Design (The Oxford Series in Electrical and Computer Engineering) (1994)
- 19. DNA Sequences- http://www.ncbi.nlm.nih.gov/gene, [Online June 2013]
- 20. Peter H. Raven, George B. Johnson, Jonathan B. Losos, and Susan R. Singer, Biology (7th edition).
- 21. Comparison of multiple species- http://eugenes.org/, [Online May 2013]