
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2013

Metamorphic Detection Using Singular Value
Decomposition
Ranjith Kumar Jidigam
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Jidigam, Ranjith Kumar, "Metamorphic Detection Using Singular Value Decomposition" (2013). Master's Projects. 330.
DOI: https://doi.org/10.31979/etd.838t-v2qr
https://scholarworks.sjsu.edu/etd_projects/330

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70408643?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F330&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F330&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F330&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F330&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F330&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/330?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F330&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Metamorphic Detection Using Singular Value Decomposition

A Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Ranjith Kumar Jidigam

December 2013

c○ 2013

Ranjith Kumar Jidigam

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Metamorphic Detection Using Singular Value Decomposition

by

Ranjith Kumar Jidigam

APPROVED FOR THE DEPARTMENTS OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

December 2013

Dr. Mark Stamp Department of Computer Science

Dr. Thomas Austin Department of Computer Science

Dr. Richard Low Department of Mathematics

ABSTRACT

Metamorphic Detection Using Singular Value Decomposition

by Ranjith Kumar Jidigam

Metamorphic malware changes its internal structure with each infection, while

maintaining its original functionality. Such malware can be difficult to detect using

static techniques, since there may be no common signature across infections. In

this research we apply a score based on Singular Value Decomposition (SVD) to

the problem of metamorphic detection. SVD is a linear algebraic technique which is

applicable to a wide range of problems, including facial recognition. Previous research

has shown that a similar facial recognition technique yields good results when applied

to metamorphic malware detection. We present experimental results and we analyze

the effectiveness and efficiency of this SVD-based approach.

ACKNOWLEDGMENTS

I am very thankful to my advisor Dr. Mark Stamp for his continuous guidance

and support throughout this project and believing me. Also I would like to thank

the committee members Dr. Thomas Austin and Dr. Richard Low for monitoring

the progress of the project and their valuable time.

v

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

2 Malware . 3

2.1 Metamorphic Techniques . 3

2.1.1 Garbage Code and Dead Code 3

2.1.2 Instruction Substitution 3

2.1.3 Instruction Reordering . 4

2.1.4 Register Swapping . 4

2.1.5 Host Code Mutation . 4

2.2 Metamorphic Malware . 4

2.2.1 G2 . 5

2.2.2 MPCGEN . 5

2.2.3 NGVCK . 5

2.2.4 MWOR . 5

2.3 Malware Detection Techniques . 6

2.3.1 Signature scanning and heuristics 6

2.3.2 Machine Learning . 6

2.3.3 n-gram Analysis . 7

2.3.4 Code Disassembling . 7

2.3.5 Code Emulation . 7

2.3.6 Opcode Graph Analysis 7

vi

vii

2.3.7 Simple Substitution . 7

2.3.8 Structural Entropy . 8

3 Singular Value Decomposition and Eigenface 9

3.1 Eigenvalues and Eigenvectors . 10

3.2 Image Detection . 11

3.3 Singular Value Decomposition . 13

4 Singular Value Decomposition for Malware 15

4.1 Algorithm . 15

4.1.1 Training Phase . 15

4.1.2 Testing Phase . 19

5 Implementation . 20

5.1 Extract Raw Bytes . 20

5.2 Pictorial Representation of Technique 21

5.3 Environment Setup . 22

5.4 JAMA Library . 23

6 Experimental Results . 24

6.1 Results . 25

6.1.1 MWOR . 25

6.1.2 NGVCK . 30

6.1.3 G2 . 31

6.2 Receiver Operating Characteristic (ROC) Curves 31

6.3 AUC statistics . 37

6.4 Compiler Datasets . 39

7 Conclusion and Future Work . 41

viii

LIST OF TABLES

1 Software and Hardware configuration 23

2 Malware Datasets . 24

3 Benign Datasets . 25

4 NGVCK and G2 AUC . 32

5 MWOR AUC values . 33

6 NGVCK and G2 AUC values using two eigenvectors 37

7 MWOR AUC values using two Eigenvectors 38

8 NGVCK and G2 AUC values using three Eigenvectors 38

9 MWOR AUC values using three Eigenvectors 39

10 Turboc scores against different compiler datasets 39

11 Clang scores against different compiler datasets 40

12 Mingw scores against different compiler datasets 40

13 Gcc scores against different compiler datasets 40

ix

LIST OF FIGURES

1 Eigenvalue and Eigenvector . 10

2 Original Images . 11

3 Eigenfaces of the Original Images . 12

4 Projection of known and unknown images into the eigenspace 13

5 Matrix transformation using SVD . 14

6 Text Section Bytes . 21

7 Implementation . 22

8 Scatter Plot for MWOR_1.0 . 26

9 Scatter Plot for MWOR_1.5 . 27

10 Scatter Plot for MWOR_2.0 . 27

11 Scatter Plot for MWOR_2.5 . 28

12 Scatter Plot for MWOR_3.0 . 28

13 Scatter Plot for MWOR_4.0 . 29

14 Scatter Plot for NGVCK . 30

15 Scatter Plot for G2 . 31

16 ROC for Mwor_1.0 . 33

17 ROC for Mwor_3.0 . 34

18 ROC for Mwor_4.0 . 34

19 ROC for NGVCK . 35

20 ROC for NGVCK . 36

21 ROC for G2 . 36

x

CHAPTER 1

Introduction

Malware is a major threat to the cyber space. It is estimated that annually the

losses incurred by computer malware is $114 billion worldwide [17]. With the ad-

vancement in technology, usage of gadgets etc., malware attacks have been increasing

rapidly. Malware is a piece of software payload that injects in to the host file causing

denial of service, stealing confidential information etc.,. With the generation of new

malware everyday there is a mandate need for efficient detection techniques [11].

Metamorphic malware mutates so that every infection is different. Different

morphing techniques like garbage code insertion, register swap, instruction reordering

etc., are implemented to generate malware to achieve code obfuscation. Malware

writers have become so intelligent in morphing malware that is hard to detect. Many

reasons like software bugs, unawarness among naive internet users etc., are few reasons

that provide entry points for malware into the cyber space [10].

The base for this paper is from a facial recognition technique Eigenfaces [29].

In this paper we have extended the previous work done on malware detection using

eigenvalue analysis technique [22]. We modified the implementation by using Singular

Value Decomposition (SVD) [13, 24]. SVD is applied on highly metamorphic malware

families that have evaded detection by statistical approaches. In this technique we

pre-processed the malware executables to extract the raw bytes from the text section.

Then we implemented SVD to determine the singular space which represents the cor-

relation among the malware files. Malware test dataset and benign files are projected

on to this space to determine if they are close to the training malware dataset. We

1

have done experiments on highly metamorphic malware and got good results.

The paper is organized as follows. Chapter 2 describes about malware genera-

tion, different types of malware and malware detection techniques. Chapter 3 tells

about the eigenfaces and eigenvectors in facial recognition. Implementation of SVD

technique on metamorphic malware is described in Chapter 4. Test setup, software

and hardware requirements and JAMA(Java Matrix) API are briefed in Chapter 5.

Chapter 6 shows the experimental results and conclusion in Chapter 7.

2

CHAPTER 2

Malware

In this chapter we provide a brief background information that is relevant to the

technique implemented. First we begin with malware morphing techniques and then

about malware types.

2.1 Metamorphic Techniques

Malware is generated by performing swapping, insertion, substitution operations

on assembly code instructions. The amount of morphing determines the strength of

the malware. Following is the description of morphing techniques.

2.1.1 Garbage Code and Dead Code

Garbage code does not have any functionality. It is called as do nothing code.

The program functionality does not change with garbage code insertion. For example

the instruction NOP does not have any functionality. On the other hand dead code

is the code which is never reached. Both these morphing strategies can be used to

defend against signature based detection approaches and are effective defenses against

statistical based detection techniques [7].

2.1.2 Instruction Substitution

In this morphing technique an instruction is replaced with its equivalent instruc-

tion by keeping the functionality the same. Registers are used interchangeably in this

technique [32]. This acts as a strong defense against signature based detection and is

used in metamorphic generators.

3

2.1.3 Instruction Reordering

As the name suggests this technique works by shuffling the blocks and modules

in an malware executable to generate a new infection. Inserting jump instructions

in between modules by keeping the functionality the same is the main process im-

plemented in this. As the blocks are shuffled this technique is an effective defense

against signature based detection strategies [7] and also against structural detection

approaches [25].

2.1.4 Register Swapping

In register swapping technique the virus instruction operands are stored in dif-

ferent registers for each new infection. Wildcard pattern matching would detect this

technique.

2.1.5 Host Code Mutation

Some malware infections like Win95/Bistro morph their code as well as the orig-

inal code of host file into which they are inserted [15]. It is too difficult to implement

this technique. As the host code itself mutates it is hard to detect this malware.

2.2 Metamorphic Malware

Malware is generated to achieve code obfuscation. We mentioned different mal-

ware generation techniques in previous section. We describe about different malware

families [3] in this section.

4

2.2.1 G2

G2 malware family is called as second generation malware. It is modestly meta-

morphic malware [31]. It is generated by using instruction substitution morphing

technique.

2.2.2 MPCGEN

Mass produced code generation kit malware family is mild. When compared with

randomly selected benign code this malware family exhibits more similarity between

each infection [4, 31].

2.2.3 NGVCK

The next generation virus construction kit uses garbage code insertion, register

swapping, code reordering techniques to generate sufficiently morphed malware [30].

This malware is written in visual basic and it generates 32 bit executable files. This

malware family evades signature based detection techniques but can be detected using

statistical approach [21, 28, 31].

2.2.4 MWOR

For research purposes MWOR malware has been created. Morphing engine is

present along with the worm. Morphing is done by instruction substitution and

garbage code insertion. The morphing is on par with NGVCK and hence this worm

evades signature based detection. The flexibility with this worm is user can specify

the level of morphing and dead code from non-virus files is inserted. Morphed code

is indistinguishable from benign code at sufficient padding ratio causing statistical

detection techniques to fail [26]. For the experiments we used malware with padding

5

ration ranging from 0.5 to 4.0. Padding ratio 0.5 represents that dead code equivalent

to 50% of the actual worm size has been inserted. High padding ratios implements

that more code from linux benign files has been inserted in to the virus replicate.

2.3 Malware Detection Techniques

A number of malware detection techniques [11, 16] have been proposed in the

recent past but with the growth in the number of cyber security attacks there is a

mandate need for fast and efficient malware detection techniques.

The paper tells about current malware detection techniques. Based on the com-

parison between different detection techniques and the problems with these techniques

in identifying modern malware the paper proposed the need for new malware detction

techniques. Malware is detected using following approaches.

2.3.1 Signature scanning and heuristics

Few malware families are generated just by instruction swapping or instruction

substitution methods, such malware can be detected by just looking for a common

signature. Sometimes heuristics can be applied to detect poorly morphed malware.

2.3.2 Machine Learning

Machine Learning is implemented across a lot of domains in computer industry.

For malware detection Hidden Markov Model (HMM) [2, 20, 26, 27] is a famous

technique that is used to learn about the malware data and result some information.

Opcode sequences of malware executable are trained using HMM. The trained HMM

is then used to score malware test and benign files. The highly morphed virus family

NGVCK are easily detected using this HMM technique.

6

2.3.3 n-gram Analysis

In n-gram Analysis technique overlapping sequence of n bytes of malware exe-

cutable is considered and frequency table is generated [31]. Benign and virus files are

evaluated to calculate frequencies of overlapping bytes and then is scored against the

frequency table built for malware family files. This technique also detects NGVCK

malware effectively.

2.3.4 Code Disassembling

A malware file is diassembled and is analyzed to identify the garbage instructions.

This model when used with Hidden Markov Model gives efficient results.

2.3.5 Code Emulation

Virus files are executed in a Virtual Machine. The exectuion is carefully moni-

tored to identify the virus payload.

2.3.6 Opcode Graph Analysis

Graphs are constructed for opcode digraph frequencies. Then a test file frequen-

cies are compared against this trained frequencies. A detailed experiment is given in

paper [21]. This technique detects MWOR metamorphic worms effectively.

2.3.7 Simple Substitution

An experiment using simple substitution is analyzed in paper [23]. In this, all

the opcode digraph statistics of malware family are gathered and when we want to

classify a file, we collect its opcodes and then simple substitution attack is applied

with the malware family statistics as language statistics. A high score implies that

7

the file can be transformed using language statistics to match a malware family file.

2.3.8 Structural Entropy

Wavelet analysis is used to segment files based on varying entropy levels. These

segments are then compared used Levenshtein distance to computer a score. This

technique is not costly as it is applied on binary files. The technique is more analyzed

in paper [5, 25]. The results shows that MWOR worms are detected correctly.

8

CHAPTER 3

Singular Value Decomposition and Eigenface

A facial recognition technique Eigenfaces for recognition is the basis for this

implementaion. Similar technique is implemented on the malware files to identify the

correlation between the same.

Facial recognition is an important field of study as it has applications across

various domains like detecting criminals, digital animation, identifying the owner of

the gadgets, identifying the employees etc., Face recognition is a challenging task as

there are many features to consider like ear, nose, eyes etc., Also external features

like light focus in the image, different face expressions of the person, difference in age

etc., are also few challenging things to determine the relation among the images. All

the features in a face are represented in three dimensional vectors and it is hard to

implement the recognition technique. But a flat upright image is represented in two

dimensional vector (pixel values). This consideration helps in implementing facial

recognition and also to get accurate results.

A facial image can be decomposed further into small characteristic feature images

called eigenfaces. These eigenfaces represent the significant features of the image. The

space spanned by these eigenfaces is called facespace. When a new image has to be

tested to see if it resembles any of the trained facial image, it is projected on to this

face space and a score is calculated to determine how relavant the test image is to the

trained facial image. This technique is a kind of clustering technique which depicts

the relation among the input images.

9

3.1 Eigenvalues and Eigenvectors

Eigen means unique or belonging [9]. Eigenvectors are also called as characteristic

vectors. In linear algebra, if a non-zero vector 𝑥 satisfies the following equation for a

square matrix 𝐴, then 𝑥 is called an eigenvector of 𝐴 and 𝜆 is called the eigenvalue

associated with the eigenvector 𝑥. The equation

𝐴𝑥 = 𝜆𝑥

represents the eigenvector 𝑥 and 𝜆 , the eigenvalue is a scalar.

Figure 1: Eigenvalue and Eigenvector

Eigenvector and Eigenvalue are represented in the Figure 1. Matrix 𝐴 contains

data points of 𝑛 files aligned in 𝑛 columns. The variation among all these data

points is represented by covariance matrix. Eigenvectors helps in quantifying the

similarity between the various data points. So eigenvectors and eigenvalues for this

covariance matrix are calculated and when these eigenvectors are projected into space

they enclose an area called as eigenspace. More the eigenvalue, more important is its

10

corresponding eigenvector in contributing to the variance among the data points of

𝑛 files. In facial recognition technique these 𝑛 files corresponds to 𝑛 different images

and data points represents the pixel values.

3.2 Image Detection

In the image detection technique eigenvectors of the covariance matrix are de-

termined [8]. These eigenvectors when projected into the space they enclose an area

called face space. When we project a known image on to this face space we can re-

construct the original image in terms of eigenvectors associated with weights. Not all

eigenvectors contributes to the original image. In facial recognition technique after

constructing a column vector with pixels of each image we subtract the mean pixel

value all the training input images at that position from the actual pixel value of all

the images. Figure 2 represents the original face images and their ghost images in

Figure 3 when projected on to this face space.

Figure 2: Original Images

11

Figure 2 contains the original face images that are used for training. The equiv-

alent eigenfaces are represented in Figure 3.

Figure 3: Eigenfaces of the Original Images

Each eigenvector has corresponding weight associated with it. When we sum

up all the eigenvectors along with their weights we can reconstruct the original im-

age. An image 𝑀 containing 𝑚 × 𝑛 pixels can be represented as a vector 𝑉 . Let

𝐸1, 𝐸2, 𝐸3, . . . , 𝐸𝑛 are the eigenvectors constructed from a set of images where image

𝑀 is one among them. Now when we project vector 𝑉 on to this facespace con-

structed by 𝐸1, 𝐸2, 𝐸3, . . . , 𝐸𝑛 we can construct the original image. Now the sum of

eigenvectors and their corresponding weights gives the vector

𝑉 = 𝑤1𝐸1 + 𝑤2𝐸2 + 𝑤3𝐸3 + . . . + 𝑤𝑛𝐸𝑛

where 𝑤1, 𝑤2, 𝑤3, . . . , 𝑤𝑛 represents the weights associated with the eigenvectors

𝐸1, 𝐸2, 𝐸3, . . . , 𝐸𝑛. Weights of known and unknown images are compared against

these weights to determine if it is close to the training dataset images.

12

When a known image is projected on to the eigenspace we can reconstruct the

original image and when an unknown image is projected on to the eigenspace we

cannot construct the original image. The Figure 4 represents the projection of known

and unknown images on to the eigenspace. This Figure 4 is taken from CMU PIE

database of images.

Figure 4: Projection of known and unknown images into the eigenspace

3.3 Singular Value Decomposition

Singular Value Decomposition [24] is a factorization of a real matrix. The basic

idea behind SVD is taking high variable set of data points and reducing it to a lower

dimensions set that better exposes the substructure of the original data more clearly

by ordering the lower dimensional data from most variance to the least. SVD of a

real 𝑚*𝑛 matrix 𝐴 is a factorization of the form

𝐴 = 𝑈𝑆𝑉 𝑇

Matrix 𝑈 contains left singular vectors of 𝐴 which are generated by calculating the

eigenvectors of 𝐴𝐴𝑇 . Matrix 𝑉 contains right singular vectors of 𝐴, generated by

13

calculating eigenvectors of 𝐴𝑇𝐴. Matrix 𝑆 is a diagonal matrix with square root of

eigenvalues common to the matrices 𝑈 and 𝑉 . 𝑈𝑈𝑇 and 𝑉 𝑇𝑉 are identity matrices.

Here the eigenvectors of the matrix 𝑈 are normalized by dividing each eigenvector

with square root of its corresponding eigenvalue. That is why the eigenvectors of the

matrix 𝑈 are called as singularvectors.

The matrix 𝑈 contains eigenvectors sorted according to the singular values in the

matrix 𝐴. Figure 5 represents the Singular Value Decomposition on a 𝑚× 𝑛 matrix

𝐴.

𝜎1

𝜎2

𝜎1
𝜎2

𝑀

𝑆

𝑉 𝑇 𝑈

Figure 5: Matrix transformation using SVD

14

CHAPTER 4

Singular Value Decomposition for Malware

We discussed about Singular Value Decomposition and its implementation in

Image Recognition in the previous Chapter 3. Similar technique was implemented in

the paper Eigenviruses [12]. This serves as the basis for our implementation. In this

Chapter we describe about the SVD algorithm implemented in training and testing

malware files. The goal of the training phase is to determine the weights of the

training input files by projecting them on to the eigenspace. In the testing phase

we project the virus and benign test files on to this eigenspace to determine their

weights and then calculate the euclidean distance between the weights of the training

files and test files.

SVD is represented as 𝐴 = 𝑈𝑆𝑉 𝑇 . Eigenspace is determined by projecting the

eigenvectors of the covariance matrix 𝐴𝐴𝑇 , which are represented by the matrix 𝑈 .

Matrix 𝑆 is a diagonal matrix with square root of eigenvalues common to the matrices

𝑈 and 𝑉 . We are considering singular vectors of the matrix 𝑈 for calculating the

weights of training and testing files.

4.1 Algorithm

The training and testing phases follow a step by step process. The algorithm

implemented in these phases is described below.

4.1.1 Training Phase

In the training phase first extract the raw bytes from the text or code sections

of all the input training files and construct a column vector for each file. Then deter-

15

mine the eigenvectors of the covariance matrix. These covariance matrix eigenvectors

represents the eigenspace. We do not consider all the eigenvectors for generating the

eigenspace as vectors with low eigenvalue are less important. Then we project each

input training file on to this eigenspace to get set of weights. Implementation of this

phase is explained below.

1. Acquire a set of 𝑀 virus replicates of a particular malware family

2. Extract raw bytes from the text or code section of each virus replicate

3. Construct a matrix 𝐴 = [Φ1,Φ2,Φ3, . . . ,Φ𝑀] with vectors where each vector

represents the raw bytes of a particular virus replicate arranged in a column.

Let us say that the maximum number of bytes in a particular replicate among all

replicates are 𝑁 , then the number of rows in matrix 𝐴 will be 𝑁 . Append zeros

to other columns which has less than 𝑁 bytes. In case of image recognition we

subtract the mean image (obtained by taking average of pixel values of all the

training images) from each image vector. However in case of malware detection

we are ignoring this as subtracting byte values does not make any sense.

4. Now in order to identify the variance between different malware replicates find

the eigenvectors of the covariance matrix 𝐶.

𝐶 =
1

𝑀

𝑀∑︁
𝑖=1

Φ𝑖Φ𝑖
𝑇 (1)

= 𝐴𝐴𝑇

where 𝑀 = number of files

5. Matrix 𝐴 dimensions are 𝑁 × 𝑀 . Covariance matrix 𝐶 dimensions will be

𝑁 × 𝑁 . Finding eigenvectors for such a big matrix is not feasible with the

16

general computing power and moreover all the eigenvectors are not important.

So alternatively we can calculate eigenvectors from another matrix 𝐿 which is

generated from 𝐴𝑇𝐴. The dimensions of 𝐿 are 𝑀×𝑀 . Let 𝜈𝑖 be the eigenvector

of the matrix 𝐿. Then the following equation gives the eigenvectors of the matrix

𝐿.

𝐿𝑣𝑖 = 𝜆𝑖𝑣𝑖 (2)

𝐴𝑇𝐴𝑣𝑖 = 𝜆𝑖𝑣𝑖

where 𝜆𝑖 is the eigenvalue.

Multiplying both sides of the above equation with 𝐴 gives us the eigenvectors

of the covariance matrix 𝐶.

𝐴𝐴𝑇𝐴𝑣𝑖 = 𝜆𝑖𝐴𝑣𝑖 (3)

𝑖.𝑒., 𝐶𝐴𝑣𝑖 = 𝜆𝑖𝐴𝑣𝑖

𝐴𝑣𝑖 is the eigenvector of the covariance matrix 𝐶. If 𝑣 is the set of eigenvectors

of 𝐿 then 𝐴𝑣 is the set of eigenvectors of 𝐶. where 𝑣 = 𝑣1, 𝑣2, . . . , 𝑣𝑖.

This reduced output of covariance matrix is called as Reduced Singular Value

Decomposition. Therefore the multiplication of matrix 𝐴 with the eigenvectors

matrix 𝑣 gives the eigenvectors of covariance matrix 𝐶. We can represent it

as 𝑢=𝐴𝑣. The eigenvectors in the matrix 𝑢 are normalized by dividing each

eigenvector with square root of its corresponding eigenvalue.

6. Sort the eigenvectors 𝑢 according to their associated eigenvalue in descending

order. The higher the eigenvalue the more important is its corresponding eigen-

vector.

17

7. We consider only 𝑀 ‘ eigenvectors out of 𝑀 , where 𝑀 ‘ < 𝑀 . We project these

eigenvectors in to the space and the space spanned by these vectors is called

eigenspace. As eigenvectors with small eigenvalue does not contribute much

to the eigenspace. We determine the value of 𝑀 ‘ heuristically by conducting

experiments for different value of 𝑀 ‘.

8. We can construct the original virus replicate from these 𝑀 ‘ vectors when added

with their corresponding weights. Lets us say for a virus file “𝜑” in the training

set with eigenvectors 𝑢1, 𝑢2, 𝑢3, . . . , 𝑢𝑛 we can get back the virus files as below

𝜑 = 𝑤1 * 𝑢1 + 𝑤2 * 𝑢2 + . . . + 𝑤𝑀 ‘ * 𝑢𝑀 ‘ (4)

𝜑 =
𝑀 ‘∑︁
𝑖=1

𝑤𝑖𝑢𝑖 (5)

where 𝑀 ‘ represents important eigenvectors.

Then we can determine weights of a particular virus replicate ’𝜑’ as follows

𝑤𝑖 =
𝑀 ‘∑︁
𝑖=1

𝑢𝑖
𝑇𝜑 (6)

We represent the set of weights of a virus replicate 𝜑𝑖 as

Ω𝑇
𝑖 = [𝑤1, 𝑤2, . . . , 𝑤𝑀 ‘] (7)

Similarly we project all the training dataset virus replicates on to this eigenspace

and determine their corresponding weight vectors.

9. The weights of all the virus replicates together are represented as ∆.

∆ = [Ω1,Ω2, . . . ,Ω𝑀 ‘] (8)

The set of weights of all the virus replicates after projecting them on to the eigenspace

is the output of training phase.

18

4.1.2 Testing Phase

In this phase we construct a column vector for each test file and project on to

this eigenspace generated in the previous section. For training phase any file with

total bytes less than 𝑁 is appended with zeros and files with bytes more than 𝑁 bytes

are chopped off from the bottom to make the column vector size to 𝑁 rows. Once we

determine the weights of test file we compare these weights against weight vector of

each virus replicate generated in the training phase. We calculate euclidean distance

between these weight vectors. If the test file is close to the training data set virus

replicates then we get a score below the predetermined threshold score. Here are the

steps in the training phase

1. Project the test file 𝜑𝑛 on to the eigenspace or singularspace to determine its

weights.

𝑤𝑖 =
𝑀∑︁
𝑖=1

𝑢𝑖
𝑇𝜑𝑛

Ω𝑇
𝑛 = [𝑤1, 𝑤2, . . . , 𝑤𝑀 ‘] (9)

2. Now calculate the euclidean distance between this vector Ω𝑛 and weight vectors

generated in the training phase. If Ω𝑖 is the weight vector of a training file then

the euclidean distance is calculated as below.

𝜖𝑖 =
√︁

(𝜔2
1 − 𝜌21) + (𝜔2

2 − 𝜌22) + . . . + (𝜔2
𝑀 − 𝜌2𝑀)

where 𝜔 represents weights of the training files and 𝜌 represents weights of test

replicate.

3. First, few virus replicates that are close to the training data set are tested

to determine a threshold score. Then we test benign files by calculating the

euclidean score and checking if is below or above the threshold.

19

CHAPTER 5

Implementation

In this chapter we describe about preprocessing the input files that includes

extracting raw bytes from the text or code section, diagramatic representation of the

technique, the environment set up and JAMA linear algebra library.

5.1 Extract Raw Bytes

The code or text section code contains the actual application logic in any ex-

ecutable file. In case of malware replicates this is the place where virus payload

instructions are present. So we extract text section bytes and then construct our

input training matrix. The number of bytes varies across the different malware fami-

lies and also benign files. We converted these byte values to their equivalent decimal

values and constructed the input training matrix as SVD can be implemented only

on integer or float data points. The Singular Vectors are already normalized in the

actual implementation of SVD.

Figure 6 represents the code section instructions of a highly morphed malware

replicate NGVCK. We can clearly see that the middle colum represents the byte values

of the correpsonding instructions in the third column. We constructed a column vector

for each malware replicate by arranging the byte values in a sequnce. For example in

the Figure 6 the sequence of bytes in the input training vector is c1, e0, 1e, e8,

00 and so on. Corresponding decimal values of thes bytes are inserted into the input

matrix while implementing the SVD.

20

Figure 6: Text Section Bytes

5.2 Pictorial Representation of Technique

We extract raw bytes from the text section of all the training set malware files

and construct a training input matrix 𝐴 [19]. If there are 𝑀 training files and the

maximum number of bytes among all the files is 𝑁 then the matrix 𝐴 dimensions

are 𝑁 *𝑀 . We then pass this huge matrix to the JAMA API developed for Java to

calculate the Singular Values and Singular Vectors of the covariance matrix. Once we

obtain the Singular Vectors we calculate the weights of the training files by projecting

them on to the singular space generated.

Similarly we project test files on to the singular space and determine their

weights. Then we compute the euclidean distance between the weights of each test

file and weights of all the training files. Here is the diagramatic representation of the

whole process

21

Figure 7: Implementation

It is obvious from the Figure 7 that raw bytes are extracted from both test

and train files. To generate eigenvalues and vectors we consider bytes from only

the train files. Once these eigenvectors are determined the test and train files are

projected on to this space to determine their weights between which euclidean distance

is computed. First we test malware files agains this training dataset and we then

determine a threshold. Later we calculate euclidean scores for benign files. Ideally

the values for benign files should be above this threshold score.

It is not very easy to find the test files with exact size of the training files. So

instead we considered files with more instruction bytes and then chopped off the bytes

from the end. For the smaller files with less instructions we append zeroes. We tested

files with more bytes than the maximum number of bytes in the input training files.

5.3 Environment Setup

We carried experiments on the below Hardware and Software.

22

Table 1: Software and Hardware configuration

Type Description
Operating System Windows 7
Processor Intel(R) Core(TM) i5-3210M
RAM 6.00 GB
Java Version 6
JAMA API for linear Algebra

In general it is not feasible to calculate the singular vectors for all the input

training vectors as the covariance matrix is huge. Instead we calculate the eigenvec-

tors for the reduced covariance matrix and then calculate singular vectors. Detailed

implementation of this is explained in previous Chapter 3. SVD technique is imple-

mented on the configuration in Table 1. The technique is quick enough in calculating

the scores.

5.4 JAMA Library

JAMA [14] stands for Java Matrix. It is a linear algebra package that is devel-

oped by National Institute of Standards and Technology(NIST). Modules in this API

calculates the eigenvalues and eigenvectors as accurately as Matlab. Using this API

we can solve complex matrix operations quickly. We used Jama-1.0.3.jar file for Java

in calculating the singular values and vectors.

23

CHAPTER 6

Experimental Results

We carried our testing on different malware families and benign files as listed in

Tables 2 and 3. We used the malware files efficiently by performing five fold cross

technique i.e., by randomly shuffling the malware train and test datasets. For all

the rounds we used 80% files for training and remaining 20% files for testing. For

all the five folds the train and test files differs but the benign test files remain same.

Table 2 tells about the number of virus replicates that are used for training and

testing purposes.

Table 2: Malware Datasets

Malware Family Operating System Total Files Training Testing
MWOR Linux 700 560 140
NGVCK Windows 50 40 10
G2 Windows 50 10 40

There are windows and linux based malware families in our training datasets.

G2 malwar families are less morphed when compared with MWOR and NGVCK

so we noticed that the technique could find better correlation between the data

points for just ten training files in case of G2. The results section for G2 justifies

this assumption. If the malware files are highly morphed then we consider more

replicates of that malware family for training phase. For the benign test files we took

files from both the operating systems and tested them against the type of malware.

Table 3 describes the number of windows and linux files used for testing.

24

Table 3: Benign Datasets

Bengin Family Operating System Total Files
Ubuntu Linux 20
Cygwin Windows 30

6.1 Results

Following sub-sections shows the scores obtained for malware and benign files

against the training dataset. These scores are obtained by calculating the euclidean

distance between weights of the test files and train files after projecting them on to

eigenspace.

6.1.1 MWOR

MWOR is highly metamorphic malware generated in a academic thesis [26].

The paper tells about experiments carried out in generating different padding ratio

malware datasets. This malware replicates are linux based. The padding ratio at

the end indicates that the percentage of dead code that has been inserted in to the

malware replicates. For example MWOR_0.5 indicates that 50% of dead code has

been inserted into the malware replicate, MWOR_4.0 says that 400% of malware

replicates has dead code. This dead code is taken from 20 linux benign files.

From the experiments carried out on all the padding ratios we observed that a

proper threshold can be set for the scores obtained for padding ratios upto 2.0. For

padding ratios after 2.0, it is little hard to obtain a clear threshold between benign

and malware test dataset scores. The reason for this is as the padding ratio increases

most of the instructions in the malware replicates matches the instrutions in the

25

benign linux files.

Figure 8 represents the scores obtained for MWOR_1.0 virus replicates against

the linux files.

Figure 8: Scatter Plot for MWOR_1.0

From the Figure 9 we can interpret that all the malware and benign files are

classified properly. The AUC and ROC values mentioned in the below sections tells

more about the false and true positives obtained for this dataset.

26

Figure 9: Scatter Plot for MWOR_1.5

The scatter plot for the MWO_1.5 also gives a proper threshold. We can clearly

distinguish the scores of the benign linux files and malware replicate files. Out of the

20 files we tested against this padding ratio files we observed 0% false positives and

0% false positives. Scores for MWOR_2.0 are represented in the Figure 10. We could

see that there are few false positives as the padding ratio increases.

Figure 10: Scatter Plot for MWOR_2.0

27

Figures 11, 12 represents the scores for malware families MWOR_2.5 and

MWOR_3.0. We observe that the few benign file scores are merging with the train

files. The scores for few benign files are coming down because of the more number of

matching instructions of malware and benign files as padding ration increased. This

tells that the similarity between the files increases as the padding ratio increased. We

noticed the scores for the benign files dropped as the padding ratio increased.

Figure 11: Scatter Plot for MWOR_2.5

Figure 12: Scatter Plot for MWOR_3.0

28

From the scores for MWOR_4.0 in the Figure 13 we observe that there are false

positivies identified in this set. The reason as said earlier more padding ratio indicates

that more instructions match between malware and benign files.

Figure 13: Scatter Plot for MWOR_4.0

Another reason for false positives would be presence of noise in the train files.

An explanation for possibility of noise in the files and the scores drop is given in the

link [1].

For all the above experiments we considered only first singular vector. We pro-

jected this singular vector into the space and then determined the weights for malware

and test files. The reason we considered only one singular value is because the other

singular values are very small when compared with the first singular value. So we

ignored singular vectors with small singular value comparative to first singular value

considering that they are not important in contributing to the Eigenspace.

The scores obtained for different Singular Values are further explained in the

ROC section.

29

6.1.2 NGVCK

NGVCK is highly morphed malware. These virus replicates run on windows

platform. Cygwin files are scored against this malware family. Figure 14 represents

the scores for the NGVCK family. We considered only one singular value and its

corresponding vector in calculating the euclidean score between the test and training

datasets.

From the Figure 14 we observe that there are false negatives. It is little hard to

set a proper threshold between benign and malware scores. But still the results are

good as NGVCK is highly morphed.

Figure 14: Scatter Plot for NGVCK

In the NGVCK dataset there are few malware replicates with more number of

instructions and these are highly morphed. Most of those byte instructions are NOP.

We included these files in our training datasets. Most of the benign files are classified

properly. There are few malware replicates for which the scores are almost above the

scores of the benign files. But still the technique could seperate the malware and

benign scores.

30

6.1.3 G2

G2 virus replicates run on windows. We tested cygwin files against this family

and the Figure 15 represents the scores obtained.

Figure 15: Scatter Plot for G2

From the Figure 15 we can clearly separate the malware and benign scores. G2

is less morphed when compared with rest of the malware families described above. In

case of G2 for the training phase we considered only 10 files and the technique indeed

showed better results. We achieved 0% false positives.

6.2 Receiver Operating Characteristic (ROC) Curves

ROC curve is a graphical plot which helps in determining the accuracy of the

test. It is a plot between true positive rate and false positive rate. ROC curves are

used in signal detection systems, medical field etc., The accuracy of the test depends

on how well the true positives are differentiated from false positivies. When an ROC

curve is drawn an area is enclosed and it is called as Area Under Curve (AUC). AUC

value 1 represents that there is a perfect separation of true positivies and and false

31

positives by the test. We calculate ROC curves for different malware families scores

discussed above.

Also in our tests we performed experiments by considering 1, 2 and 3 singular

vectors. We observed that considering only first singular vector with highest singular

value gives efficient results than considering first two and three Singular Vectors.

We have shown the AUC trend for the different Singular Vectors considered in our

experiment.

Table 4 displays the AUC values for the G2 and NGVCK malware families when

only first singular vector is considered in generating the eigenspace. The AUC for

these two families shows that the malware and benign files are identified correctly with

the SVD technique. In case of the G2 virus family 0% false positives are identified.

In case of NGVCK there are few false positives.

Table 4: NGVCK and G2 AUC

Malware AUC Average AUC of all five sets
NGVCK 0.94552 0.91415
G2 1 0.98828

In case of MWOR there are different padding ratios ranging from 0.5 till 4.0. We

mentioned AUC values for the entire MWOR family in Table 5. As said earlier we

implemented five fold cross technique on this datasets. In MWOR there are different

padding ratios, so in each padding ratio we mentioned the best set ROC value and

also the average value for the entire padding ratio.

Almost all the padding ratios has AUC value near to 1 which tells that MWOR

families are detected properly using SVD technique. Figures 17, 18 represents the

AUC value for MWOR families with different padding ratios. We could see a drop in

32

Table 5: MWOR AUC values

Malware AUC Average AUC of all five sets
MWOR_1.0 1 0.99998
MWOR_1.5 1 0.999976
MWOR_2.0 0.99883 0.997464
MWOR_2.5 0.99890 0.9966
MWOR_3.0 0.99713 0.9935
MWOR_4.0 0.98803 0.98336

the AUC value as we move to higher padding ratios.

Figure 16: ROC for Mwor_1.0

33

Figure 17: ROC for Mwor_3.0

Figure 18: ROC for Mwor_4.0

For MWOR_1.0 malware family the AUC value is 1. It means that there is a

proper separation between false and true positives. But as the padding ratio increased

34

the AUC value decreased by a small fraction which indicates that there are few false

positives. The average values of all the five folds is the best approximation score for

the different mwor families.

Figure 19 represents the NGVCK malware family ROC curve. The AUC value

in this case is 0.94552. NGVCK is highly morphed malware yet the technique shown

good results with few false positives identified.

Figure 19: ROC for NGVCK

We also did experiments by considering first two and three singular vectors

though there is a huge difference in their singular values when compared with the

first singular value. In case of NGVCK we observed that there is a drop in the AUC

value. Figure 20 represents the ROC curve for NGVCK family for two and three

singular vectors used in generating the Eigenspace.

35

Figure 20: ROC for NGVCK

The trend in scores for NGVCK families for 2 and 3 eigenvectors is better when

compared with scores for MWOR and G2. We noticed that the scores for two and

three eigenvectors in case of NGVCK are good. G2 is less morphed when compared

with NGVCK and MWOR. The AUC value when one singular vector considered in

generating the eigenspace is 1. Figure 21 represents the ROC curve for G2 family.

Figure 21: ROC for G2

36

From the Figure 21 we can say that we could separate the malware and benign

test files scores.

6.3 AUC statistics

Tables in the previous section contains values for only one singular vector con-

sidered in the implementation. Tables 6, 7, 8 and 9 contains AUC values for two

and three singular vectors considered in the experiment. The comparison shows tells

that it is always preferrable to consider only first singular vector when there is a huge

difference between eigenvalues.

The Table 6 shows the average AUC values for G2 and NGVCK malware families

when first two singular vectors are considered in the technique for generating the

eigenspace.

Table 6: NGVCK and G2 AUC values using two eigenvectors

Malware AUC
G2 0.7012
NGVCK 0.915578

If we compare the AUC values of G2 and NGVCK in the Table 6 with the values

in Table 6 we notice that the AUC values drop for both G2 and NGVCK which

indicates that more number of false positives are identified if we consider first two

singular vectors for generating the eigenspace.

For MWOR families also the AUC values decreased with two singular vectors.

But we observed that as the padding ratio increased the AUC values didnot drop.The

values in the Tables above represents the average of the AUC values for all the five

sets.

37

Table 7: MWOR AUC values using two Eigenvectors

Malware AUC
MWOR_1.0 0.78965
MWOR_1.5 0.79961
MWOR_2.0 0.81975
MWOR_2.5 0.83083
MWOR_3.0 0.84405
MWOR_4.0 0.86579

The Tables 8, 9 shows the AUC values when first three singular vectors are

considered in the technique. The values for G2 and NGVCK in the Table 8 shows

that there is a drop in AUC value when compared with values generated by two

singular vectors.

Table 8: NGVCK and G2 AUC values using three Eigenvectors

Malware AUC
G2 0.69592
NGVCK 0.90282

We notice that there is a drop in the AUC values for all the malware families

when we consider two eigenvectors and three eigenvectors for projecting the mal-

ware replicates on to the eigenspace. This concludes that considering the first few

eigenvectors with more eigenvalue achieves best results.

Similarly we did experiments on malware family by considering first three eigen-

vectors and we noticed a drop in the AUC value when compared with first eigenvecor.

Table 9 represents the scores for all the mwor families with different padding ratios

when first three eigenvectors are considered for scoring.

38

Table 9: MWOR AUC values using three Eigenvectors

Malware AUC
MWOR_1.0 0.76733
MWOR_1.5 0.72837
MWOR_2.0 0.75133
MWOR_2.5 0.77488
MWOR_3.0 0.79521
MWOR_4.0 0.8148

From the above AUC values for all the malware familes tested we observe that

if we consider more singular vectors in generating the eigenspace more false positives

are identified. The reason is that if we consider more eigenvectors there could be a

probable chance of considering noise for finding the scores. So first singularvector

with high singularvalue gives the best trained output.

6.4 Compiler Datasets

We implemented SVD technique to classify compiler datasets. We trained one

compiler dataset files and then tested other compiler dataset executables against the

trained dataset to check if SVD can classify the files correctly. Experiments have

been done on windows and linux compiler datasets. Turobc and Mingw are windows

compiler datasets, Gcc and Clang are linux compiler datasets. Following are the AUC

values obtained for the compiler datasets:

Table 10: Turboc scores against different compiler datasets

Num of Eigenvalues 1 2 3
clang 0.70335 0.67431 0.64402
mingw 0.60605 0.59699 0.57555
gcc 0.71831 0.69158 0.66182

39

Table 11: Clang scores against different compiler datasets

Num of Eigenvalues 1 2 3
turboc 0.60785 0.69871 0.73016
mingw 0.65196 0.72682 0.74319
gcc 0.50735 0.50381 0.4983

Table 12: Mingw scores against different compiler datasets

Num of Eigenvalues 1 2 3
clang 0.65687 0.54935 0.55955
turboc 0.5291 0.51023 0.50782
gcc 0.6716 0.57611 0.59054

Table 13: Gcc scores against different compiler datasets

Num of Eigenvalues 1 2 3
clang 0.52535 0.52359 0.52221
turbo 0.70485 0.7351 0.74377
mingw 0.69823 0.74984 0.71789

We infer that the scores for the compiler datasets are not good. Compiler datasets

vary structurally a lot thought they remain statistically same, which is the reason for

bad scores. Also for the training phase we considered different programs which have

different functionality. Incase of malware files all the training dataset files have same

functionality. Hidden Markov Model is a statistical approach and this technique

would give good results in classifying the compiler datasets.

40

CHAPTER 7

Conclusion and Future Work

Many detection techniques have been proposed in the past to detect highly meta-

morphic malware. One of the techniques to detect the malware family using eigen-

values has been proposed in the paper [22]. The paper considered virus replicates

of different malware families in the training data set. In our implementation we

implemented singular value decomposition which is more similar to the eigenvalues

technique. Here we considered virus replicates of a particular malware family in the

training phase instead of considering different malware families virus replicates in

the training phase. This assumption tells that all the virus replicates in the training

phase will be of almost same size which is not the case in the eigenvalue decomposition

technique. Also we implemented this technique on classifying the compiler datasets

which is not done in previous implementations.

Our technique SVD worked well in detecting the highly metamorphic malware

families NGCK, MWOR and also G2. Though the technique generates many singular

vectors our technique showed good results for just first singular vector. In fact we did

experiments using first two and three singular vectors for all the malware families but

we observed that the score for malware and benign test files are almost converging

except for NGVCK. So we conclude that first singular vector alone will give better

results if there is huge difference between the eigenvalues of the first eigenvector and

the rest of the eigenvectors.

This technique is very fast and efficient and it can be implemented along with

traditional detection techniques that are present in current antivirus products.

41

We implemented this approach on only three malware families and the results

obtained are satisfactory. As part of future work it is good to see how the technique

works on other malware families like W95/Zmist, W95/Zperm or W95/Bistro.

Other techniques which works on the data points and vectors like Lattice Red-

cution and Fisherface recognition can be implemented on the raw bytes to see its

effectiveness. It is said that in case of eigenvectors some information might be lost

while throwing away the eigenvectors [6]. So Fisherfaces technique can be imple-

mented to see its effectiveness in detecting the malware. Another scoring technique

like Mahabalonis Distance can be implemented which takes into account the correla-

tion of the data set and also its scale-invariant.

42

LIST OF REFERENCES

[1] D. Austin, We recommend a singular value decomposition
http://www.ams.org/samplings/feature-column/fcarc-svd

[2] T. Austin, E. Filiol, S. Josse, and M. Stamp, Exploring hidden Markov models
for virus analysis: A semantic approach, 46th Hawaii International Conference
on System Sciences (HICSS 46), pp. 5039–5048, 2012

[3] J. Aycock,Computer Viruses and Malware, Springer, 2006

[4] R. Babak, et al, Morphing engines classification by code his-
togram, Symposium on Information and Computer Sciences, 2011
http://eprints.sunway.edu.my/94/1/ICS2011_03.pdf

[5] D. Baysa, R. M. Low and M. Stamp, Structural entropy and metamorphic mal-
ware, Journal in Computer Virology 9(4):179–192, April 2013

[6] P. N. Belhumeur, J. P. Hespanha, D. Kriegman, Eigenfaces vs. Fisherfaces: recog-
nition using class specific linear projection,Pattern Analysis and Machine Intel-
ligence, IEEE Transactions 19(7):711-720, August 2002

[7] J. Borello and L. Me, Code obfuscation techniques for metamorphic viruses,
Journal in Computer Virology 4(3):211–220, August 2008

[8] L. Cao., Singular value decomposition applied to digital image processing
http://www.lokminglui.com/CaoSVDintro.pdf

[9] T. Croft, Eigenvalues and Eigenvectors, 2010
http://www.mathcentre.ac.uk/resources/uploaded/mccp-croft-0901.pdf

[10] D. Danchev, Reasons for malware propagation, ZDNet
http://www.zdnet.com/blog/security/which-is-the-most-popular-malware-
propagation-tactic/9638

[11] E. Daoud and I. Jebril, Computer virus strategies and detection methods, In-
ternational Journal of Open Problems in Computer Science and Mathematics
1(2):29–36, 2006

[12] S. Deshpande, Y. Park, and M. Stamp, Eigenvalue analysis for metamorphic
detection, to appear in Journal of Computer Virology and Hacking Techniques

[13] C. Hsu and C. Chen, SVD-based projection for face recognition
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4374514

43

[14] JAMA, Java matrix package
http://math.nist.gov/javanumerics/jama/

[15] E. Konstantinou and S. Evgenios, Metamorphic virus: Analysis and detection,
Technical Report RHUL-MA-2008-02, Royal Holloway University of London,
February 2008

[16] M. Konstantinou and S. Wolthusen, Metamorphic virus analysis and detection,
Royal Holloway University of London, 2008
http://media.techtarget.com/searchSecurityUK/downloads/RH5_Evgenios.pdf

[17] Norton study calculates cost of global cybercrime, Symantec Corporation
http://www.symantec.com/about/news/release/article.jsp?prid=20110907_02

[18] Original Images and Eigen Faces
http://www.pages.drexel.edu/~sis26/Eigenface%20Tutorial.htm

[19] PE file structure
http://www.thehackademy.net/madchat/vxdevl/papers/winsys/pefile/pefile.htm

[20] L. R. Rabiner, A tutorial on hidden Markov models and selected applications in
speech recognition, Proceedings of the IEEE 77(2):257–286, 1989

[21] N. Runwal, R. M. Low, and M. Stamp, Opcode graph similarity and metamorphic
detection, Journal in Computer Virology 8(1-2):37–52, May 2012

[22] M. Saleh, A. Mohamed, and A. Nabi, Eigenviruses for metamorphic virus recog-
nition, IET Information Security 5(4):191–198, 2011

[23] G. Shanmugam, R. M. Low, and M. Stamp, Simple substitution distance and
metamorphic detection, Journal of Computer Virology and Hacking Techniques
9(3):159–170, August 2013

[24] Singular value decomposition, Wolfram MathWorld
http://mathworld.wolfram.com/SingularValueDecomposition.html

[25] I. Sorokin, Comparing files using structural entropy, Journal in Computer Virol-
ogy 7(4):259–265, 2011

[26] S. Sridhara and M. Stamp : Metamorphic worm that carries its own morphing
engine, Journal in Computer Virology 9(2):49–58, May 2013

[27] M. Stamp : A revealing introduction to hidden Markov models, 2012
http://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf

[28] A. H. Toderici and M. Stamp, Chi-squared distance and metamorphic virus de-
tection, Journal of Computer Virology and Hacking Techniques 9(1):1–14, Febru-
ary 2013

44

[29] M. A. Turk and A. P. Pentland, Eigenfaces for recognition, Journal of Cognitive
Neuroscience 3(1):71–86, 2007

[30] Virus Profile: W32/NGVCK, McAfee Inc.
http://home.mcafee.com/virusinfo/virusprofile.aspx?key=1090050

[31] W. Wong and M. Stamp, Hunting for metamorphic engines, Journal in Computer
Virology 2(3):211–229, December 2006

[32] I. You and K. Yim, Malware obfuscation techniques: A brief survey, Interna-
tional Conference on Broadband, Wireless Computing, Communication and Ap-
plications, pp. 297–300, 2010

45

	San Jose State University
	SJSU ScholarWorks
	Fall 2013

	Metamorphic Detection Using Singular Value Decomposition
	Ranjith Kumar Jidigam
	Recommended Citation

	tmp.1387570156.pdf.A3U1x

