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ABSTRACT 
 

APPLICATION OF QUERY-BASED QUALITATIVE DESCRIPTORS IN 
CONJUNCTION WITH PROTEIN SEQUENCE HOMOLOGY FOR 

PREDICTION OF RESIDUE SOLVENT ACCESSIBILITY 
 

by Reecha Nepal 
 

Characterization of relative solvent accessibility (RSA) plays a major role in 

classifying a given protein residue as being on the surface or buried.  This information is 

useful for studying protein structure and protein-protein interactions, and it is usually the 

first approach applied in the prediction of 3-dimensional (3D) protein structures. 

 Various complicated and time-consuming methods, such as machine learning, 

have been applied in solvent-accessibility predictions.  In this thesis, we presented a 

simple application of linear regression methods using various sequence homology values 

for each residue as well as query residue qualitative predictors corresponding to each of 

the 20 amino acids.  Initially, a fit was generated by applying linear regression to training 

sets with a variety of sequence homology parameters, including various sequence 

entropies and residue qualitative predictors.  Then the coefficients generated via the 

training sets were applied to the test set, and, subsequently, the predicted RSA values 

were extracted for the test set.  The qualitative predictors describe the actual query 

residue type (e.g., Gly) as opposed to the measures of sequence homology for the aligned 

subject residues.  The prediction accuracies were calculated by comparing the predicted 

RSA values with NACCESS RSA (derived from X-ray crystallography).  The utilization 

of qualitative predictors yielded significant prediction accuracy. 
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1. Introduction 

Proteins, polymers of 20 amino acids, are biological macromolecules essential to 

life that have a variety of functions within each cell.  Proteins serve both mechanical 

(actin in muscle that aids in mobility) and structural (involved in system of scaffolding in 

cell to maintain shape) functions.  Many proteins are enzymes that are involved in vital 

biochemical processes such as metabolism.  In addition to these roles, proteins are also 

involved in cell signaling, immune responses, cell adhesion, and cell cycle.  

1.1  Protein Structure Prediction Methods 

Protein structure is directly related to protein function.  The study of protein 

structure and function could provide much-needed insight in the role of proteins in vivo.  

Knowledge of protein structure is fundamental for uncovering mechanisms of actions for 

various protein functions, exploring protein-protein interaction, predicting protein 

hydration sites, and characterizing hydrophobic clusters in proteins.  Furthermore, 

structure explorations could facilitate the discovery and development of various drugs, so 

as to aid in the discovery of solutions to different protein malfunction and protein absence 

disorders in humans.  Protein structure and functions are studied both experimentally and 

computationally.  
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1.1.1 Experimental Approaches 

Protein structure determinations have usually involved expensive and time-

consuming methods such as X-ray diffraction analysis, immunohistochemistry, site-

directed mutagenesis, chromatography, and nuclear magnetic resonance (NMR).  

Processes such as these provide high-quality 3D protein structure determinations with 

precise accuracy and sensitivity.  However these processes can be extremely expensive 

and time consuming.  As a result, the corresponding 3D structures of the majority of 

proteins have not yet been characterized.  In addition, because there can be significant 

difficulty in characterizing protein structures via X-ray, there is a desire for protein 

prediction using sequence and/or sequence homology (Dale et al., 2003). 

Historically, a vast majority of proteins in the Protein Data Bank (PDB) are 

determined via X-ray (82%) with NMR being utilized for most of the remaining 

structures (Berman et al., 2000).  The success rate of a high-resolution 3D protein 

structure analysis is very low, with only 2–10% of protein targets resulting in high-

resolution protein structures (Mizianty and Kurgan, 2011).  In order to deduce the correct 

3D structure of a protein, it is essential to have a high-resolution crystal structure of the 

protein.  Protein crystal formation is an active field of biological science, and much work 

is required before the low yield of protein crystallization can be improved.  Moreover, 

there are certain groups of proteins, such as some membrane ribosomal proteins, for 

which crystal structure deduction is problematic (Gluehmann et al., 2001; Mizianty and 

Kurgan, 2011).  Often these difficulties result from the production of diffraction-quality 

crystals (Chayen and Saridakis, 2008).  The target protein crystallization process can be 
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expensive and time consuming because it involves trial and error until the best-quality 

crystal is obtained.   

Interestingly, the use of computational methods in protein crystallization 

determination can aid in directing the most efficient use of resources in the current 

coordinated effort to determine high-resolution 3D structures for the whole proteome.  

One of the primary examples of this is the establishment of the Protein Structure 

Initiative (PSI), whose main goal is to determine 3D structures of proteins on a large 

scale (Berman, 2008).  This has also greatly improved success rates of structural 

methods (Graebsch et al., 2010; Savchenko et al., 2003).  One offshoot of X-ray structure 

determination involves a special class of computational modeling that is sometimes 

referred to as protein homology modeling. 

Here, homology involves aligning 2 or more sequences of a known X-ray 

structure, essentially “stitching” them together, and subsequently optimizing the resulting 

form.  One such homology-modeling program is called MODELLER (Eswar et al., 

2006).  It implements a process similar to that of 2D NMR called spatial restraints.  In 

this process, a set of geometrical constraints is used to create a probability density 

function for the location of each atom in the protein. 

1.1.2 First Approaches in Protein Structure Determination 

Bioinformatics largely involves the characterization of protein structure and 

function, but it is not necessarily involved in the difficult task of detailed protein structure 

determination.  There is a vast amount of protein sequence data available, and screening 
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these sequences would be greatly beneficial in terms of characterizing protein 

function (Panchenko et al., 2005).  

Water plays a major role in biological function.  The ability to correctly predict 

solvent accessibility from a protein sequence could be very useful in characterizing 

protein interaction and function as well as guiding protein modification and design.  The 

results of the characterization of solvent-accessible surfaces are useful in many protein 

design and structural biology applications (Petrova and Wu, 2006; Pettit et al., 2007).  

This includes identification of catalytic and other key functional residues including those 

found on protein surfaces.  This of course augments the restricted number of proteins 

with extensive 3D structures determined from X-ray and NMR.  In addition, solvent-

accessible surface prediction has garnered attention for its usefulness in the 

characterization of protein-protein interactions (Porollo et al., 2007).  Furthermore, the 

characterization of solvent-accessible surface has been a standard first approach in 

determining protein structure.  The ability to predict solvent accessibility of a given 

residue would yield great benefits. 

Using the primary amino acid sequence to predict surface-accessible residues has 

been a standard first approach in structural biology’s pursuit to model 3D protein 

structures.  Solving this problem has been of great interest as a testing platform for a 

variety of machine-learning methods.  Protein characterization from sequence data can 

also be applied to other biological issues such as identification of key core (e.g., strongly 

hydrophobic) residues (Berezovsky and Trifonov, 2001; Poupon and Mornon, 1999).  

Such methods hold the potential for increased understanding of the fundamentals of 
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protein folding.  Methods utilizing sequence information usually use machine-training 

approaches and have shown accuracy of 70–78% (Adamczak et al., 2004; Richardson and 

Barlow, 1999; Rost, 1994;).   

Currently, various methods have been reported to yield better prediction accuracy.  

Among these methods, the following are noteworthy: two-stage and related regression 

approaches, nearest neighbor method, decision tree methods such as random forest 

method, and support vector machine learning (Adamczak et al., 2004; Joo et al., 2012; 

Mizianty and Kurgan, 2012; Pugalenthi et al., 2012).  Typically in these types of 

methods, the test (experimental) relative surface accessibility (RSA) value is predicted 

based on a particular or constraints model, and consensus predictors are generated via the 

use of a training data set.  

1.2 Sequence Entropy 

 Another structural feature extensively used is the identification of the key core of 

proteins mostly made up of strongly hydrophobic residues (Berezovsky and Trifonov, 

2001; Poupon and Mornon, 1999).  The identification of key core residues can help 

define key constraints in modeling a protein’s folding and characterization.  Shannon 

entropies for protein sequences have been used to score amino acid conservation (Koehl 

and Levitt, 2002; Shenkin et al., 1991; Valdar, 2002).  Sequence entropy (Shannon 

entropy) is the ability of a residue in protein sequence to mutate or change.  The 

correlation of Shannon entropy is greater mutability at a particular amino acid position, 

the more able an amino acid is able to adapt to a mutation (Hseih et al., 2002).  On one 

hand, the core (hydrophobic) regions are usually evolutionarily well conserved; hence, 



 
 

6 
 

they tend to have low sequence entropy values.  On the other hand, the non-hydrophobic 

residues are usually solvent accessible, and tend to have higher sequence entropy values.  

The sequence entropy, E20, at some residue position k is expressed as  

 S! =   −Σ!!!,!"!!"!"#!  !!" , (1.1) 

here probability Pjk at amino acid sequence position k is derived from the frequency for 

an amino acid type j for N aligned residues.  Here, each amino acid out of the 20 

canonical represents individual groups. 

There have been studies where sequence entropy information has been greatly 

helpful in characterizing protein-protein boundaries (Guharoy and Chakrabarti, 2005).  

Koehl and Levitt (2002) described a correlation between thermodynamic and sequence 

entropy in proteins.  The Lustig group calculated two regions for sequence entropy and 

hydrophobicity of individual residues with respect to the inverse of their respective Cα 

packing densities (Liao, 2005).  Out of these two regions, major region II corresponds to 

less than 11 Cα per 9Å radius and is principally flat and consistent with the most flexible 

residues.  The majority of the most flexible residues display significant exposure to 

solvent. 

The Lustig group previously reported the addition of a second term that uses the 

corresponding probability Pj of an amino acid type j to correct for random substitution 

that also does not significantly improve the noise or otherwise change the overall trends 

of the correlation plots (Liao, 2005).  Although sequence entropy alone is not a unique 

identifier of structural features (Guharoy and Chakrabarti, 2005; Oliveira et al., 2002; 

Yan et al., 2006), it has shown some potential to illustrate protein-protein interfaces.   
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1.3 Overview 

This thesis summarizes calculations that use a set of homology-based parameters to 

predict the RSA of protein residues.  Thresholds were applied to the RSA values of a 

given residue where 1 was assigned as being on the surface and 0 as being buried.  After 

reproducing and automating the existing training set of 268 protein sequences, a larger 

data set comprising 1363 diverse computationally designed proteins (described in 

Chapter 2) was incorporated in the calculations.  BLASTP was used to align all of the 

proteins with known protein sequences from the database.  These results were used to 

calculate sequence entropy and other homology-based parameters.  Packing density was 

calculated for each residue in the 1363 data set.  Entropy, functional parameters, and 

packing density were determined for each residue in the data set to create an aggregate 

training set of protein parameters.  Once the final aggregate training set was created, 

statistical software, R, was used to perform linear regression for a total of 12 models 

comprising various combinations of the functional parameters and entropy values.  This 

linear regression model employs a novel application of a query-based qualitative 

predictor in conjunction with quantitative protein sequence homology.  The training set 

was used to generate coefficients for linear regression models; once these coefficients 

were generated, they were applied to the test set to generate estimated RSA values.  

Finally, as determined from X-ray 3D structure, accuracy was calculated for the 

prediction. 
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1.4 Organization of the Thesis 

This thesis is organized into 6 parts: Introduction, Methods, Results, Discussions, 

Conclusion, and Future Studies.  The second chapter, Methods, details the calculations 

and techniques used to come up with the results.  This section also explains how linear 

regression was performed and how different functional parameters including entropy 

values were generated and used.  Chapter 2 also contains a detailed description of how 

the data sets were generated. The third chapter, Results, includes the key results of the 

Methods sections.  It contains various tables and figures that summarize outcomes of a 

number of experiments performed.  The fourth chapter, Discussion, is focused on a 

review of available literature.  This chapter also notes some areas where calculations 

could be improved.  Chapter 5 provides concluding remarks regarding the methods and 

results and their context within the literature.  Possibilities for future studies are described 

in the final chapter of this thesis, Chapter 6.  
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2. Methods 

In order to study protein structure using sequence information, various homology 

parameters were calculated and their relationship with Cα packing density was 

investigated.  In conjunction with protein sequence homology, a novel application of 

query-based qualitative predictors was then used to characterize solvent-accessible 

residues. Out of the three diverse sets of proteins, two (1363 and 268) were used as 

training sets, and the standard 215 (Naderi-Manesh et al., 2001) was used as a test set.  

2.1 Protein Sets and Preparations 

The 268 protein set, as the name suggests, is made up of 268 diverse protein 

chains (Mishra, 2010).  The goal of recreating calculations and recharacterizing the 268 

training set was first to automate the various steps involved.  Previously, PDB IDs for the 

individual 268 training proteins were entered manually in the NCBI website.  It was 

critical to be able to automate this process; with the development and incorporation of a 

larger training set (1363), it would be an extremely daunting and time-consuming task to 

manually run BLAST for of each the 1363 PDB IDs.  There were instances where NCBI 

would take much longer (>5 minutes) to run BLAST manually for some PDB IDs.  

Additionally, it was essential to use the FASTA sequence corresponding to the PDB IDs 

as the header of the .txt output file for subsequent calculations of various sequence 

homology parameters and entropies.  The automation of this process allowed for ease of 

incorporation of PDB IDs for additional training and test sets and reduced the number of 

manually introduced errors. 
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The BLAST output file automation was made possible by the python script 

download_blast.py, and the FASTA sequence was downloaded with the aid of 

download_blast.py (see Appendix A).  Each of these programs can be run in batch, and 

the resulting BLAST and FASTA files are saved in an output folder.  

The 215 set was used as the test set and was the standard 215-protein list from 

Naderi-Manesh et al. (2001).  Earlier calculations of surface-accessible residues have 

been noted in our previous paper (Rose et al., 2011).  The largest set of the three protein 

sets, 1363, was used as training data.  Bondugula et al. (2011) listed a diverse set of 6511 

protein domain with 50 designed sequences per domain.  The proteins are designed using 

computational sequence design methods to engineer proteins with desired properties such 

as increased thermal stability and novel functions.   

The 6511 proteins were available in SCOP (Structural Classification of Proteins) 

format (Bondugula et al. 2011).  Since all of the programs and scripts written worked 

with PDB IDs, the SCOP identifiers of the 6511 set were converted to PDB IDs.  SCOP 

identifiers are made up of 7 characters; the first character is “d,” the subsequent 4 letters 

stand for the PDB name, the third part is the DB chain id (“_” if none, “.” if multiple), 

and finally a single-digit integer, if needed, uniquely specifies the domain (“_” if not).  

All the SCOP identifiers were converted using a python script called 

SCOPid_to_PDBid.py, which is listed in Appendix A.  

 Each protein had to be entered in the PDB website to validate its identifier.  

Again, a python script called common pdbs in the Bondugula set vs PDB library.py (see 

Apendix A) was written to address this issue. Steps 1 to 4 in Figure 2.1 describe this 
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validation method.  Out of the original list of 6511 proteins, only 5157 were found in the 

pbd library, and thus the remaining 1354 PDB names were dropped from the list.  

 The list of 5157 proteins (see Figure 2.1) was entered in a protein culling service 

called PISCES (Wang and Dunbrack, 2003).  The 5157-protein set was culled for PDB 

chain identifiers that share ≤ 25% identity, have a structural resolution of 0.0 to 2.5 Å, an 

R-factor of ≤ 0.3, and a sequence length of 40 to 10,000.  Protein chains with Cα-only 

entries were eliminated, and only protein structures determined via X-ray crystallography 

methods were selected.  The same culling standards were used on the 268 and 215 data 

sets as well (Mishra, 2010).  The final list of all the PDB IDs that that were part of the 

1363 training data set is presented in Appendix B. 
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Step 1 
i)	  Open a .txt input file containing all of the 6511 Bondugula PDB IDs, and 
read in each line 

Step 2 
i) Download all of the PDB IDs (June, 2011) present in the PDB library 
as a .txt file, output a .txt file with all the PDB IDs downloaded 

Step	  3	  
i) Check if the first PDB from the Bondugula set (Step 1) is present in the 
PDB library (Step 2) 
ii) Loop over each of the PDB IDs in the Bondugula set and compare it to 
the PDB library 

	  

Step	  4	  
i) Print out all of the common PDB IDs from the Bondugula set and the PDB 
Library ( = 5157 PDB IDs as of June, 2011)	  

Step 5 
i) Run PISCES culling service with the following criteria: PDB chain 
identifiers that share  25%, have a structural resolution of 0.0 – 2.5 Å, R-
factor of  0.3, sequence length of 40- 10,000.  
ii) Protein chains with Cα only entries were eliminated and only protein 
structures determined via X-ray crystallography methods were selected 

Step 6 
i)	  Final List of larger training set  achieved 
ii) Total number of PDB IDs that passed each of the thresholds and requirements = 
1366 

Step 7 
- 3 PDB IDs (2Q46A, 2CIYA, and 1WTEA) from the 1366 training set had corrupt 

PDB file. This resulted in exclusion of these three PDB IDs from the list. Final 
training set = 1363 PDB IDs  

Figure 2.1 Flowchart of steps involved in the generation of the 1363 training data set 
based on the list of proteins from Bondugula et al. (2011). 
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2.2 Residue Packing Density 

Residue packing density calculates packing density in a residue’s native state and 

is used to measure protein compactness.  It is calculated by using X-ray determined Cα 

coordinates of a given query protein.  To calculate protein residue packing density, 

mmCIF of each protein in the protein sets were downloaded from RCSB PDB (2011). 

X-ray crystallography is used to determine the atom co-ordinates information of a 

protein.  Once all the mmCIF files were downloaded, all the Cα coordinates were 

extracted at each residue position using the python code calculate_density.py (see 

Appendix A).  This program calculates density between any two residues using the 

following equation: 

 Dist  (i, j)   =    ! ! − ! ! ! + (! ! − ! ! ! + (! ! + !(!)! (2.1) 

where x, y, and z are the Cα coordinates at that sequence position. Next, the number of 

Cα atoms within the radius of 9Å around the residue of interest is calculated.  Finally, the 

packing density at that residue was calculated by determining all other Cα residue 

positions within 9.0 Å from the Cα position of record. 

In earlier work conducted by the Lustig group (Mishra, 2010), all the density 

values were calculated using PERL scripts.  In this thesis, all density values were 

calculated via python scripts using similar logic and calculations.  The python program 

download_mmCIF.py (see Appendix A) downloads each of the mmCIF files for the 

corresponding PDB ID listed in the input file.  On one hand, the mmCIF has some 

residues whose coordinate values are unavailable; these values were assigned NA.  On 

the other hand, packing density equal to 0 was assigned to the unknown residue such as 
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‘X’.  Both NA and 0 density values were excluded from frequency plots and correlation 

plots. 

2.3 Sequence Variability 

Sequence variability for each residue was measured by sequence entropy or 

Shannon entropy.  Sequence entropy is defined as the measure of disorder or randomness 

in a system.  A list of PDB names was acquired for all the protein data sets. Each PDB 

name was entered in the Basic Local Alignment Search Tool (BLAST 2.2.18+), a protein 

database program provided by the National Center for Biotechnology 

Information (NCBI).  BLAST searched all the databases available for non-redundant 

protein sequences using a BLOSUM62 matrix and default gap penalties for each 

mutational insertion or deletion.  Once the PDB name of a protein of interest was entered 

in the BLASTP website, it is referred to as the query sequence.  The query sequence is 

compared to all of the sequences in the database, referred to as the subject, that are 

evolutionarily similar to it.  The search was performed using default settings except for 

the Max target sequences setting, which was altered from 100 to 10,000.  The aligned 

residues were extracted from BLASTP results using a python script labeled 

blast_to_entropy.py (see Appendix A).  BLASTP alignments with bit scores equal to 

40% of the highest bit score were only used for entropy calculations.  As noted in a 

previous thesis, a 40% cut off seemed to provide an ideal balance between homology and 

the diversity of sequence variability (Yeh, 2005).   

Alternative calculations for sequence entropy were also applied, one involving an 

application of a 6-term sequence entropy (Mirnya and Shakhnovich, 1999) to the existing 
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alignments for all of the data sets.  The E6 entropy groups amino acids into six groups 

and is calculated by: 

 
!! =   − !!

!

!!!

! log!!   
(2.2) 

 

where pi is the frequency of each of the 6 classes i of residues at position l in multiple 

sequence alignment.  The 6 classes of residues are aliphatic (AVLIMC), aromatic 

(FWYH), polar (STNQ), positive (KR), negative (DE) and special (GP). Once the PDB 

name of the protein of interest was entered in the BLASTP website, it was referred to as 

the query sequence.  The query sequence was compared to all the subject sequences 

available in the database that are evolutionary similar to it.  The search was performed 

using default settings except for the Max target sequence setting, which was altered from 

100 to 10,000.  The aligned residues were extracted from BLASTP results using a python 

script labeled blast_to_entropy.py (see Appendix A). 

 BLASTP alignments with bit scores equal to 40% of the highest bit score were 

used only for entropy calculations. A 40% cut off seemed to provide an ideal balance 

between homology and the diversity of sequence variability (Mishra, 2010).   

2.4 Homology-Based Parameters 

The development of homology-based parameters was one of the first approaches 

used to predict solvent accessibility of residues.  Once the training and test sets were 

selected, BLASTP (2010) from Genbank was used to align the sequences.  The protein of 

interest, the query sequence, is aligned with other homologous subject sequences in the 
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database, subject sequences that are closely related.  Sequence homology parameters for 

the Lustig group used are 20-term entropy (E20), 6-term sequence entropy (E6), aligned 

residues that are strongly hydrophobic (FSHP), and aligned small residues (FSR).  

Fraction strongly hydrophobic (FSHP) uses strongly hydrophobic residues, 

VILFYMW (Poupon and Mornon, 1999).  FSHP is calculated in the following manner: 

 !"#$%&'(  !"#$%&'(  ℎ!"#$%ℎ!"#$!  (!"#$) =
!"#$%&!"#!

!"#$%  !"#$%&  !"  !"#$%&'  !"#$%&"#!
             (2.3) 

Where, !"#$%&!"#! is the number of strongly hydrophobic residues at sequence position 

i. Fraction small residues (FSR) refer to residues Gly or Ala and are calculated as 

follows: 

 !"#$%&'(  !"#$$  !"#$%&"#!  (!"#) =
!"#$%&!"!

!"#$%  !"#$%&  !"  !"#$%&'  !"#$%&"#!
  (2.4) 

Fraction Alanine residues (FA) refer, as their name suggests, to residue Ala and are 

represented by: 

 !"#$%&'(  !"#$%$&  (!") =    !"#$%  !"#$%&  !"  !"#$%$&  !"#$%&"#
!"#$%  !"#$%&  !"  !"#$%&'  !"#$%&"#

    (2.5) 

Fraction Glycine residues (FG) represent GLY residues and are represented by: 

 !"#$%&'(  !"#$%&'  (!") =    !"#$%  !"#$%&  !"  !"#$%&'  !"#$%&"#
!"#$%  !"#$%&  !"  !"#$%&'  !"#$%&"#

  (2.6) 

2.5 RSA Calculations  

In this work, residue RSA is calculated with the bioinformatics tool called 

NACCESS (Hubbard and Thornton, 1993).  The NACCESS program calculates 

accessible surface by rolling a probe of a given size around a van der Waals surface.  It 

also determines a residue accessibility file (.rsa) containing summed atomic-accessible 

surface areas over each protein residue.  The program also normalizes the accessibility of 
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each residue calculated as the percent of accessibility compared to the accessibility of 

that residue type in an extended A-x-A tripeptide format (Hubbard et al., 1991).  

The NACCESS RSA values were used as a standard to compare predicted RSA 

values generated from calculations for this research.  RSA values can range from 0 to, 

very occasionally, 150. Anything higher than or equal to 20 is regarded as being on the 

surface and anything less than 20 is considered buried (Carugo, 2000).  A binary system 

was incorporated to support the calculations pertaining to this research.  Any RSA value 

greater than or equal to 20 was assigned a 1, and RSA values less than 20 were assigned a 

0 and labeled as buried.  Programmatically, the following python scripts were used to 

calculate RSA values: 1. download_pdb.py, 2. run_naccess.py, 

3. RUNNACCESSonUnix.pl, 4. extract_data.py.  The corresponding python scripts can be 

found in the Appendix A section of this thesis. 

2.6 Determination of Qualitative Predictors  

 Linear regression is a method used to model relationships between a scalar 

variable Y and one or more variables denoted as X.  In this method, data are modeled 

using linear functions, and unknown parameters are estimated from the data.  There are 

two main kinds of variables used in regression analysis: quantitative variables and 

qualitative variables.  On one hand, quantitative variables are expressed as numerical 

values.  Qualitative variables, on the other hand, are categorical expressions.  For 

example, the corresponding barometric height of mercury for a reaction chamber would 

be 153 mm, whereas pressure could be classified qualitatively as either high or low.  

Qualitative predictors have been widely used in the social sciences and related fields 
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(Hellevik, 2009), but have been relatively unexplored in molecular science.  This novel 

method was used to predict RSA values in this research. 

In this section, a simple calculation expressing the application of query-related 

qualitative predictors for RSA prediction will be illustrated.  One of the ways to 

quantitatively express categorical information is to use indicator variables that take on 

values, or 0 and 1 (Kutner et al., 2004).  Two such delimeters will be expressed here: 

strongly hydrophobic residues (SHP; VILFYMW) and the remaining non–strongly 

hydrophobic residues (NSHP).  The general model for a first-order linear regression 

model is: 

 !! =   !! +   !!!!! +   !!!!! +   !! (2.7) 

where !! is a straight line with intercept !! , slope !!, and  !! as residual error function 

(Kutner et al., 2004).  For the SHP and NSHP regression calculations, the 73,675 residue 

RSA values are fit to the variable Xi1 corresponding to the E6 value at each residue, i.  

Here, the two qualitative predictors are SHP (Xi2 is 0) and NSHP (Xi2 is 1). The 

generalized response function can be expressed as: 

 !{!} =   !! +   !!!! +   !!!! (2.8) 

Substituting the SHP and NSHP value, the fit equation for hydrophobic and non-

hydrophobic equation becomes: 

 E{Y} = β0  + β1X1  where X2 is 0 (2.9) 

 E{Y} = (β0 + β2) + β1X1  where X2 is 1 (2.10) 

The regression for these equations was generated using the programming language, R. 

Figures 2.2 and 2.3 show the fit for this calculation.  To create linear regression plots 
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with qualitative predictors, the training data sets’ .csv files were used as input files.  The 

input files include one column for NACCESS RSA values and another for the 

corresponding E6, E, FSR and FSHP values.  Now our model can include 20 qualitative 

predictors that are associated with each amino acid type (for example, A) for all the 

sequence residues. 

2.7 PSI-BLAST Calculations 

The NCBI website was used to perform PSI-BLAST searches.  The PDB names 

were entered in the search field, and this time around PSI-BLAST was chosen under the 

algorithm section instead of blastp.  Under Algorithm parameter, “Max target sequences” 

was altered from 500 to 10,000. After each search result was presented, a second and 

third iteration were performed.  
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Figure 2.2. Sample regression fit for 73,734 query residues from the 268 training data 
set.  Here, the NACCESS RSA values to a variable term Xi1 as E6 and the qualitative 
predictor terms having two values, where Xi2 is 0 (top) for strongly hydrophobic (SHP) 
query residues and Xi2 is 1 (middle) for non–strongly hydrophobic (NSHP) residues, are 
presented.  The slope, 15.6, corresponding to the variable term is the same for both plots, 
while intercepts are 7.6 and 21.9 for β0 and (β0 + β2), respectively.  The aggregate plot 
is shown (bottom). 
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Figure 2.3: Sample regression fit for 319,551 query residues from the 1363 training data 
set.  Here, the NACCESS RSA values to a variable term Xi1 as E6 and the qualitative 
predictor terms having two values, where Xi2 is 0 (top) for strongly hydrophobic (SHP) 
query residues and Xi2 is 1 (middle) for non–strongly hydrophobic (NSHP) residues, are 
presented.  The slope, 14.3, corresponding to the variable term is the same for both plots, 
while intercepts are 8.8 and 24.1 for β0 and (β0 + β2), respectively.  The aggregate plot 
is shown (bottom). 
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2.8  Accuracy Calculations 

The accuracy for both buried and surface-accessible residues was then calculated 

by the standard expression of Richardson and Barlow (1999): 

 Accuracy = !"#$%&  !"  !""#$%&'%(  !"  !"##$!%  !"#$%&'(
!"!#$  !"#$%&  !"  !""#$%&'%(  !"#$

 * 100 % (2.11) 

To calculate accuracies for each of the models, principally linear regression was applied 

to each of the 13 main models used to generate predicted RSA values.  These models 

were made up of various combinations of the two types of entropy (E and E6), and 

homology-based parameters (FSR, FSHP) with amino acids were used as qualitative 

predictors.  The y-intercept for the line of best fit determined the threshold for the 

predicted RSA.  With the y-intercept for hydrophobic versus non-hydrophobic linear 

regression line of best fit, a threshold of  >23 was classified as surface, whereas ≤23 was 

classified as being buried.  This is a result of internal optimization of the test results.  The 

accuracy equation above was then applied in a binary fashion.  Any NACCESS RSA that 

was ≥20 was assigned as 1 meaning on the surface (while 0 was for residues that were 

buried), any predicted RSA that was >23 was also assigned as a 1.  Next, it was noted 

whether a given residue matched as being on the surface or buried when compared to the 

NACCESS RSA and predicted RSA.  Finally, accuracy was discovered by dividing the 

number of correctly assigned residues by the total number of predictions made and 

reported as a percent.  Programmatically, the generation of linear regression models, the 

predicted RSA and accuracy calculations were made possible by R program code 

accuracy.R (see Appendix A)  
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2.9 Aggregate Analysis and Correlation Plots 

Once correctly aligned, files were obtained for each of the proteins in the protein 

sets and additional calculations were conducted.  Comparable to procedures listed by 

Mishra (2010), at each density position the different homology parameters and entropies 

were averaged.  This averaging at each density value was obtained with the help of the 

python script extract_density_frequency.py (see Appendix A).  For example, at the 

density 4 average, all of the E values for residues that have a density of 4 are present.  

Similarly, averages were filled out for each of the entropies, FSR, and FSHP for each of 

the density values.  The python script was used to generate a table in .csv format with all 

the average values.  Finally the .csv files were converted to .xlsx format.  These averages 

were used to generate different correlation plots by plotting various homology-based 

parameters against inverse density. 

2.10  Frequency Distributions 

 The homology-based parameters (E20, E6, FSHP, FSR) were aligned together 

properly together by matching each of the density values with corresponding residue 

positions.  These homology parameters for each of the proteins in a given training or test 

set were then compiled into a single .csv so that frequency distribution histograms could 

be generated.  As noted in previous work by the Lustig group (Mishra, 2010), each of the 

density values equal to 0 and NA were eliminated from the list.  

 Query length for each of the proteins in the lists was calculated with the python 

script extract_query_length.py (see Appendix A).  This program used BLAST output .txt 

files as input to extract query length.  The length of alignment was also generated with 
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the help of another python program, extract_record_length.py.  For the bit score 

frequency plot, the frequency of subject proteins at BLAST bit score were generated with 

the help of extract_bit_score.py. 

2.11 Assimilation of Additional Methods to Improve Accuracy 

2.11.1 Incorporation of Tertiary Protein Structure Information 

A second-stage prediction method was the use of tertiary protein structure 

information to study its impact on prediction accuracy.  The goal of this research was to 

study whether protein tertiary structure information from a limited subset of proteins can 

aid in assigning the solvent-exposed residues of a protein outside the subset.  Previous 

work from the Lustig group at San Jose State University investigated tertiary contact 

information (Nguyen, 2012).  As outlined in his thesis, a protein tertiary contact is 

defined as a pair of amino acid interactions that are separated by at least 10 residues in 

the protein primary sequence (Kallblad and Dean, 2004).  The atomic distances of these 

two amino acids need to be less than the sum of the van der Waals radii of the 2 atoms 

plus 1.0 Å (Kim and Park, 2003).  Protein tertiary structures are also critical for protein 

stability; while secondary structures are usually unstable, tertiary interactions make them 

more stable (Daggett and Fersht, 2003). 

 It has been shown that tertiary interactions in a protein are usually buried, well 

conserved, and more densely packed than other protein residues (Do, S. and Lustig, B. 

San Jose State University, San Jose, CA. Unpublished work, 2010).  Furthermore, tertiary 

contact information suits secondary protein structure prediction very well in terms of 
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sequence entropy, packing density, and RSA values.  Therefore it makes sense to utilize 

tertiary contact information as a second filter in RSA prediction. 

 Previous research noted that, out of the 268 proteins in the training set, 75 were 

known to have tertiary contact (Nguyen, 2012).  A 95% confidence interval was applied 

to the 75 tertiary contact proteins to derive the appropriate tertiary contact threshold.  The 

95% confidence interval here implies that, out of all the tertiary contacts presented, 95% 

(including false positives) of the lowest-threshold tertiary contact sequence entropy 

values are correctly predicted as being buried within a protein.  This is because tertiary 

contacts are more conserved when compared to other residues, and most likely to be 

found buried.  Once the threshold was established, it was applied to the entire 215 test 

set.  This calculation was carried out by dividing each of the proteins into a separate .csv 

file that included all of its residues.  For example, the first protein in the 215 set is 

119LA, which has 162 residues; therefore 119LA.csv would have 162 residues present in 

it.  Following this, a matrix was created. In this example, the matrix was 162 by 162.  For 

each possible position in the matrix, entropy was averaged for the two residues involved 

(column residue and row residue).  If the average entropy of any two residues was greater 

than the threshold value, then those two residues were predicted to be on the surface, 

denoted by a 1; otherwise, the position was predicted to be buried and assigned a 0.  This 

information was applied to the predicted RSA values obtained from linear regression 

data.  Anytime, a given residue position was predicted to be on the surface in the tertiary 

contact matrix, the linear regression data was altered to match the prediction of the 

tertiary filter.  Performing the calculations manually—checking each and every residue 
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assigned a 1 in the matrix and referring back to the prediction Excel file— would have 

been not only challenging, but also prone to many errors.  Thus, to address this issue, two 

R scripts were written: tertiary_contact_filter2.R and accuracy_with_filter_2.R (see 

Appendix A).  The first program, tertiary_contact_filter2.R, takes entropy data from 

multiple residues of a given protein and creates a filter matrix.  The second program, 

accuracy_with_filter_2.R, imposes the threshold to each matrix value and recalculates 

solvent accessibility accuracy.  Contrary to our initial hypothesis, the incorporation of 

tertiary information in the prediction model did not improve accuracy.   

2.11.2 Additional Models Applied 

Upon further investigation of individual protein accuracies, it was noticed that the 

smallest residues, alanine and glycine, were the most mispredicted amino acid residues.  

The small residue fraction was represented as a model in conjunction with the 20 amino 

acids as a qualitative predictor.  However, the initial 11 models were missing fraction 

strongly hydrophobic (FSHP) in combination with amino acids as qualitative predictors.  

FSHP + AA was added as a new model.  The results of this calculation are presented in 

Table 3.4 in the Results Section of this thesis. 

Fraction Alanine (FA) was the first tested on the regression models.  For the new 

model, FSR was replaced with FA. The results of this test are presented later in this 

thesis.  Again, comparable to FA, model FG also replaced FSR as a model, and accuracy 

for all the models with FSR replaced with FG were recalculated.  The results of this 

calculation are presented in Table 3.4.  Finally, it was not sufficient to just substitute FSR 
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with either FG or FA.  As a third test to this principle, FSR was swapped with FG + FA; 

these results are also presented in Table 3.4.  

2.11.3 Incorporation of a Categorized Protein Data Set 

An additional approach that incorporated a new data set was used to study any 

further impact on the accuracy calculations.  In a previous study conducted by Pettit and 

co-workers (2007), a set of 618 proteins categorized to 15 different chemical groups was 

investigated by a HotPatch study.  HotPatch is a statistical analysis system that finds 

unusual patches on the surface of proteins and computes just how unusual they are (called 

patch rareness), as well as the functional importance of each patch.  The set of 618 

proteins are divided into 12 different groups: proteases, hydrolases, kinases, transferase, 

oxidoreductases, catalytic general, DNA/RNA interacting, negative ion binding, small-

molecule interacting, carbohydrate interacting, lipid interacting, and positive-metal ion 

binding.  An individual PDB ID from the 618 set could belong to any one of these groups 

or multiple groups.  For the purpose of this study, the 12 original groups were split into 

three simpler groups: oligomers, protein binding, and generic without oligomers and 

protein binding.  Notably protein binding refers to proteins that transiently bind to other 

proteins. 

 The main goal of this experiment was to implement the group information to both 

the test set and the training set to observe if any progress would be made in the accuracy 

numbers.  There were multiple sub-sets of calculations carried out with this principle, all 

of which are described in the following subsections of this thesis.  
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The first group of proteins investigated was protein binding.  The PDB IDs from 

the 268 training set, 1363 training set, and 215 test set all shared common PDB IDs with 

the 618 set.  A group of PDB IDs from the 268 set that overlapped with the protein 

binding group was selected; similarly, the PDBs in common between the 215 and 618 

protein binding groups were also chosen.  
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3. Results 

3.1 Characterization of Protein Lists 

The characterization of protein lists based on the method of structure 

determination, resolution R-factor, free R value, protein length, and alignment length for 

the 268 training set has been presented in an earlier study (Mishra, 2010).  For the 268 

training set, frequency distributions and correlations found in the previous studies were 

extracted from manually derived BLAST output files.  In this section, results from the 

automated BLAST output files are presented for comparison and validation purposes.  

The newly developed training set, 1363, has also been characterized using frequency and 

correlation plots in this section. 

The automated BLAST-generated frequency distributions for the characterization 

of the 268 training set are shown in Figure 3.1.  A frequency plot of length of query 

protein length with regard to the frequency of occurrence is presented in Figure 3.1A.  

The highest and second highest peaks are represented by a frequency of 39 at a 350-

protein length and a frequency of 38 for 200-protein length.  The histogram distribution 

appears to be distorted and skewed right; the right tail of the graph is considerably longer 

than its left tail.  The mean value of this histogram was at 283, and the mode was 

presented at 340.  The length of protein ranges from 50 to 950; however, the majority of 

the proteins (95.5%) have lengths between 100 and 600. 

Figure 3.1B displays a histogram for density of query residues as a function of 

frequency of query residues.  The mean and mode for this distribution are 17.5 and 15, 

respectively.  The histogram has normal distribution, with 95.6% of data points appearing 
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within the intervals of 7 and 22.  The highest frequency of query protein density, 6467, 

occurred at a density value equal to 15.  This corresponds to a normal Gaussian-like 

distribution. 

The number of alignments as a function of frequency of query residue distribution 

plot is presented in Figure 3.1C.  The number of alignment ranges from 200 to slightly 

over 2000 for the frequency of query proteins.  The maximum for the number of 

alignments is at 1200 alignment for the frequency of 104.  The shape of the distribution is 

skewed slightly left, with 69.0% of alignments hovering from 1000 to 1200.  The mean, 

mode, and median of the distribution are at 962.55, 1000, and 1000, respectively.   

The distribution plot of the BLAST bit score (Figure 3.1D) displays a right-

skewed pattern, as expected for such a distribution (Liao et al., 2005).  The maximum 

BLAST bit score occurs at the value of 1894, with the minimum at 29.  The bit score of 

100 is the highest, occurring at the frequency of 88,198.  The mean BLAST bit score is 

224, the mode is 37, and the median is at 164.   

The goal of re-characterizing the 268 training set was to compare and validate the 

automated BLAST-generated output performed in previous work by the Lustig group 

(Mishra, 2010).  All four of the distribution plots (length of proteins, density, number of 

alignments, and BLAST bit score) are almost identical to the manually generated BLAST 

output calculations.  Both sets of the distribution plots have the same maxima, minima, 

general trend of the histogram, and distribution.  This validates the reliability of the 

python program download_blast.py to automatically download BLAST files from NCBI 
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website and shows that the outputs are comparable to manually downloaded BLAST 

files. 

 

 

Figure 3.1. Frequency distributions for the characterization of the 268 learning set list of 
proteins. The 268 proteins in the list have a total of 73,734 query residues, and a total of 
257,963 aligned subject protein sequences were used for these calculations.   
A. Frequency of query residues with respect to length of each protein of the 268 learning 
set.  B. Frequency of 73,734 query residues with respect to each packing density.  C. 
Frequency of query proteins was plotted against a number of alignments obtained from 
NCBI BLASTP outputs for the learning set.  D. Frequency of 257,963 aligned subject 
sequences with respect to BLAST bit scores. 
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Figure 3.2 displays the frequency characterization of the 1363 training set.  Since 

the BLAST output for the manual download and automated download were similar, 1363 

BLAST files were automatically downloaded with the aid of down_blast.py.  The 

frequency plot for the 1363 training set (Figure 3.2A) also has length of query protein 

with respect to frequency of query proteins.  This histogram displays a slightly left-

truncated normal distribution.  The most frequent query protein length at 150 is shown at 

a frequency of 281.  The mean of the query length is at 243.8, and the mode of the 

distribution is 129.  Comparable to the protein lengths of the 268 training set, the protein 

length for the 1363 training data set also ranges from 50 to 950, and the majority of 

proteins (95.5%) have lengths between 100 and 550.  

The frequency of query residues versus density histogram (Fig 3.2B) displays a 

Gaussian-like distribution.  Density of 14 seems to be the most frequent density value at 

50,833; however, densities 12 and 16 also flag as close values at 50,024 and 50,457, 

respectively.  It is also evident from the figure that the majority, at 96.2%, of data points 

occur at densities between 8 and 23. 

The number of alignments associated with the query proteins of the training set 

list (Figure 3.2C) ranges from 0 to 2000 or more.  The maximum number of alignments 

occurs with a frequency of 391 at a sequence alignment of 1000 for 1KJQA.  The bit 

score distribution plot is right-skewed, as expected (Liao et al., 2005).  It indicates a 

BLAST bit score maximum at 100 occurring 500,000 times.  
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Figure 3.2. Frequency distributions for the characterization of the 1363 learning set list 
of proteins. The 1363 proteins in the list has a total of 319,551 query residues and total of  
1,055,920 aligned subject protein sequences were used for these calculations.  
A. Frequency of query residues with respect to length of each protein of the 268 learning 
set.  B. Frequency of 318,840 query residues with respect to each packing density.  C. 
Frequency of query proteins was plotted against a number of alignments obtained from 
NCBI BLASTP outputs for the learning set.  D. Frequency of 1,055,920 aligned subject 
sequences with respect to BLAST bit scores. 
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Figure 3.3 represents the histograms for frequency distributions for entropies and 

homology-based parameters of the 268 training set of proteins.  A total of 73,724 query 

residues and a total of 257,963 aligned subject protein sequences were used.  Figure 3.3A 

presents the distribution of the calculated 20-point entropy (E20) value as a function of 

frequency of query proteins.  An entropy value of 0 occurred at the highest frequency, 

with a total of 10,239 residues having this entropy value.  The average entropy value for 

the residues was 1.10, while the median was 0.972.  The histogram indicates multimodal 

characteristics.  The maximum calculated entropy value was 3.895.  The lower entropy 

value represents a well-conserved residue. The fact that more than half (51.3%) of the 

residues have entropy values between 0 and 1 indicates that half of the residues are well 

conserved in the 268 training data set. 

The distribution of 6-point entropy (E6) as a function of frequency of query 

residues is presented in Figure 3.3B.  Similar to E20 distribution, the highest frequency of 

entropy values were observed at E6 = 0.  However, the average E6 value at 0.64 was 

much lower than the E20 average (1.1).  The median for this distribution was at 0.397 E6 

value.  Comparable to the E20 distribution plot in 3.3A, the E6 distribution also appeared 

to be multimodal.  The maximum E6 value was 2.562. 

Figure 3.3C presents the frequency of fraction small residues (FSR) as a function 

of frequency of query proteins.  The mode of this distribution was at FSR = 0.  The 

average FSR calculated value was 0.1637, while the median FSR value was 0.006.  The 

FSR value of 0 occurred at the highest frequency of 31,420 residues.  The FSR 

distribution plot is also right skewed, with slight increases in frequencies of 1, 1.1, and 
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>1.1.  Finally, Figure 3.3D is the frequency plot of fraction strongly hydrophobic residues 

(FSHP) as a function of frequency of query residues.  The mean, mode, and median of 

this distribution were 0.3247, 0, and 0.0271774, respectively.  Here 59.06% of residues 

observed have FSHP values between 0 and 0.1.  For the distributions in Figures 3.3C and 

3.3D, there are clear decoupled components, which has been consistently noted with the 

manually generated BLAST output calculations (Mishra, 2010) and automated 268 

distributions. 
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Figure 3.3. Frequency distributions of entropies and homology-based parameters of the 
268 training set list of proteins. The 268 proteins in the list has a total of 73,734 query 
residues and total of 257,963 aligned subject protein sequences were used for these 
calculations.  A. Frequency of query residues with respect to entropy values of the 268 
learning set.  B. Frequency of query residues with respect to E6 values of the 268 
learning set.  C. Frequency of query residues with respect to fraction small residues 
(FSR).  D. Frequency of query residues with respect to fraction strongly hydrophobic 
residues (FSHP) 

Figure 3.4 shows the frequency distributions of entropies and homology-based 

parameters of the automated 268 training set for the two major regions, Region I and 

Region II.  Figure 3.4A presents the E20 distribution for the two major regions, and 3.4B 

presents the E6 distributions for the two regions.  It is observed that at lower entropy (0 

and 0.3) the majority of residues have RSA value less than 20, whereas at higher entropy 
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most of the residues have RSA ≥ 20 for both E20 and E6 distributions.  The frequency 

distribution of FSR for the two regions peaks at low FSR value (0 and 0.1) and high FSR 

values (1 and 1.1), while the distribution flattens out in the middle ranges.  This indicates 

that FSRs are found both in the core and surface of the protein.  The highest frequency 

are observed at FSR of 0.   

Finally, Figure 3.4D presents the distribution of the 268 training set for the two 

major regions and shows bimodal characteristics.  An FSHP value of 0 indicates the 

absence of strongly hydrophobic residues.  The majority of residues with FSHP = 0 

correspond to an RSA ≥ 20; this was expected because during protein folding most of the 

hydrophobic residues are buried.  When the FSHP = 1 or 1.1, the majority of the query 

residues have an RSA value of less than 20.  The findings and trends of the automatically 

generated BLAST output homology parameters showcase similar trends as reported for 

the manual BLAST output calculation (Mishra, 2010). 
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Figure 3.4. Frequency distributions of entropies and homology-based parameters of the 
268 data set for the two major regions, Region I and Region II.  A total of 73,734 
residues were divided into Major Region I (RSA <20) and Major Region II (RSA ≥ 20).  
A. E20; B. E6; C. FSR; D. FSHP. 
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The histograms for E20, E6, FSR, and FSHP residue occurrence pertaining to the 

1363 training set are presented in Figure 3.5.  A total of 319,551 query residues were 

used to generate the distribution histograms.  In Figure 3.4A, E20 is plotted as a function 

of frequency of query residues; the maximum E20 value is at 3.942, and the minimum is 

at 0.  The distribution of E20 appears to form two clusters, and this suggests two separate 

normally-distributed populations.  The highest frequency for both of these populations 

occurs at an E20 value of 0, with the frequency of 66,199 (20.7% of residues have an E20 

value of 0). The maximum frequency of the second cluster appears to have an E20 value 

of 1 with 4.9% (15,576) of residues. 

Figure 3.5B shows the frequency distribution of E6 for 319,551 query residues 

from the 1363 training data set.  The E6 plot also displays similar shape and bimodal 

distribution as the 268 training set.   

The FSR distribution plot as a function of frequency per query residue (Figure 

3.5C) does not display patterns similar to those of the E20 and E6 distribution plots.  The 

mode for FSR occurs at 0.0 with 51% of the residues at frequency of 162,822.  Residues 

with an FSR value of 0 indicate an absence of small residues, whereas an FSR value of 1 

indicates a high number of FSR (A and G).  The FSHP distribution plot in Figure 3.5D 

also shows FSHP mode at zero, with 40% of the residues (126,484) displaying an FSHP 

value of 0.  An FSHP value of 0 indicates an absence of substituted strongly hydrophobic 

residues.   
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Figure 3.5. Frequency distributions for entropies and homology-based parameters of the 
1363 learning set list of proteins. The 1363 proteins in the list have a total of 319,551 
query residues, and total of 1,055,920 aligned subject protein sequences were used for 
these calculations.  A. Frequency of query residues with respect to entropy values of the 
1363 learning set.  B. Frequency of query residues with respect to E6 values of the 1363 
learning set.  C. Frequency of query residues with respect to fraction small residues 
(FSR).  D. Frequency of query residues with respect to fraction strongly hydrophobic 
residues (FSHP). 

 
Similar to Figure 3.4, Figure 3.6 presents the frequency distribution of entropies 

and homology-based parameters, but for the 1363 training set for the two major regions, 

Region I and Region II.  Figure 3.6A shows the E20 distribution for the two major 

regions, and 3.6B shows is the E6 distributions for the two regions.  Similar to the E20, 

E6, FSR, and FSHP two-region distributions observed for the 268 training set (Figure 

3.4), Figure 3.6 also presents similar trends and distribution plots. 



 
 

41 
 

 

 

Figure 3.6. Frequency distributions of entropies and homology-based parameters of the 
1363 training data set for the two major regions, Region I and Region II.  A total of 
1,055,920 residues were divided into Major Region I (RSA < 20) and Major Region II 
(RSA ≥ 20).  A. E20; B. E6; C. FSR; D. FSHP. 

 
Figure 3.7 presents the frequency distribution of NACCESS RSA values for 

73,734 query residues of the 268 training data set.  The mode of the distribution is at a 

NACCESS RSA value of 10, with 28.2% of residues (20,815) displaying this value.  Any 

residue with a NACCESS ≥ 20 is characterized as being on the surface, whereas residues 

with a NACCESS value <20 are considered buried.  Here in this distribution, the mode is 

10, which indicates that a significant number of buried residues have a NACCESS value 

of 10.  There are 28,256 residues with a NACCESS RSA of <20, indicating that 38.3% of 
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residues in the 268 training set are buried by X-ray.  The remaining 61.7% of residues 

with NACCESS RSA values ≥ 20  are branded to appear on the surface. 

 

Figure 3.7. Frequency distribution of NACCESS RSA values for various RSA ranges for 
the 268 training data set. RSA values for a total of 73734 query residues were used for 

this plot. 

Similarly to Figure 3.7, Figure 3.8 shows the frequency distribution of NACCESS 

RSA values, but for 319,812 residues of the 1363 training data set.  In comparison to the 

268 NACCESS RSA distribution plot, the 1363 training set also displays a similar trend.  

The mode of distribution for the 1363 training set also occurs at a NACCESS RSA value 

of 10.  The 1363 training set also has 38.3% of residues characterized as buried and 

61.7% of residues on the surface.  The mean, mode, and median of this distribution are 

27.4, 0, and 19.4, respectively. 
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Figure 3.8. Frequency distribution of RSA values for various RSA ranges for the 1363 
training data set. RSA values for a total of 319,812 query residues were used for this plot. 

Figure 3.9 represents a comparison of RSA distribution of 50,856 residues of the 

215 test set for NACCESS RSA and predicted RSA values generated using the 268 

training set.  The NACCESS RSA value distribution plot is displayed in Figure 3.9. The 

NACCESS frequency distribution peaks at a NACCESS value at 5, with a total of 9572 

residues (18.8%) displaying this NACCESS value.  Both distributions are right-skewed 

histograms.  The NACCESS threshold for buried resides is  ≥ 20, and this distribution 

indicates about 48.4% (24,595) of residues can be characterized as buried when derived 

from X-ray information.  The remaining 51.6% of residues are characterized as appearing 

on the surface of the protein.  The mean, median, and mode of this distribution are 28.5, 
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21.6, and 0, respectively.

 

Figure 3.9. Frequency distribution comparison of NACCESS RSA values and predicted 
RSA values for the 215 test set using the 268 training set.  A total of 50,856 residues for a 
total of 215 protein lists were used to generate these plots.  Frequency of query residues 
with respect to NACCESS RSA values and frequency of query residues with respect to 
predicted RSA values generated by linear regression are presented. 

The second part of Figure 3.9 shows the distribution of predicted RSA values for 

the 50,856 residues of the 215 test set.  Unlike the NACCESS plot, the predicted RSA 

plot peaks at an RSA value of 10 with a total of 9729 (19.1%), and the second highest 

peak is observed at a predicted RSA of 35 with 5097 (10.0%) residues with an RSA of 

35.  The mean of this distribution is 27.1, the median is 27.4, and the mode is 6.4. Unlike 

NACCESS RSA, where there are 4767 residues (9.4%) with NACCESS values greater 

than 70, none of the residues in the predicted RSA are forecasted to have RSA value 
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greater than 70.  Also, predicted RSA values appear compressed relative to NACCESS 

RSA. 

The comparison of NACCESS RSA and predicted RSA for the 215 test set using 

1363 data as a training set is presented in Figure 3.10.  Just as in first part of Figure 3.9, 

Figure 3.10 presents NACCESS RSA distribution for the 50,856 residues of the 215 test 

set.  The second part of Figure 3.10 is the distribution of predicted RSA values for the 

215 test set using the 1363 as training set.  The highest peak in the predicted RSA 

generated via using the 1363 as training set is observed at an RSA value of 10.  A total of 

8693 residues (17.1%) have predicted RSA values equal to 10.  Similar to the distribution 

plot of the 215 test set using the 268 as training set (Figure 3.9), very few residues (0.1%) 

are predicted to have RSA value equal to 5, the highest corresponding peak in the 

NACCESS RSA frequency.  Again, none of the residues are predicted to have RSA 

values greater than 70.  The mean, median, and mode of this distribution are 28.1, 28.7, 

and 7.6, respectively.  This distribution displays a multimodal distribution pattern. 
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Figure 3.10. Frequency distribution comparison of NACCESS RSA values and predicted 
RSA values for the 215 test set using the 1363 training set.  A total of 50,856 residues for 
215 protein lists were used to generate these plots.  Frequency of query residues with 
respect to NACCESS RSA values and frequency of query residues with respect to 
predicted RSA values generated by linear regression are displayed. 

Figure 3.11 presents comparison aggregate correlation plots of sequence entropy 

and other homology-based parameters for the 268 training data set.  Here is the combined 

aggregate correlation plot for the manually generated BLAST output calculation 

performed previously by the Lustig group (Mishra, 2010).  On the other hand, Figure 

3.11B is the combined aggregate correlation plot for automatically generated BLAST 

output calculations.  This comparison was made to validate the finding of the automated 

BLAST output files.  Aggregate values for all of the homology-based parameters are 

determined by averaging their respective values within the same packing density interval.  
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The standard deviation for both the manually generated and automatic calculations are 

comparable, typically 0.3 for E20 and E6, and 0.1 for FSHP and FSR. 

Comparable to our previous work (Mishra, 2010; Rose et al., 2011), two major 

regions were noted in in both the graphs.  Major Region I is associated with a packing 

density of 11 to 25 (0.09 to 0.04 of inverse density), and relates to the portion of the 

graph where average sequence entropy increases linearly with an increase in packing 

density.  On the other hand, in Major Region II, associated with a packing density of 4 

to10 (0.25 to 0.1 of inverse density), a different trend is observed.  In Major Region II, 

sequence entropy remains almost the same as packing density increases.  Both Figures 

3.11A and 3.11B show similar trends and patterns. 
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Figure 3.11. Comparison of combined aggregate correlation plots of sequence entropy 
and other homology-based parameters for the 268 training set.  Packing density is the 
number of Cα within a 9Å radius, and excluded here is the portion of Region II with 
packing densities less than 5 (<1% of all residues). Average sequence entropy, E20 
(open-square, ordinate) and E6 (closed-diamond), are calculated by averaging the 
respective values for 73,727 query residues for each inverse packing density value. 
Fraction of strongly hydrophobic residues (asterisk) and fraction of small residues (open-
diamond) are calculated and averaged over a total of 7.12E7 aligned residues, plotted 
against inverse packing density. Average values for all the homology-based parameters 
are determined by averaging their respective values within the same packing density 
interval.  Note that the standard deviations for E20 and E6 are comparable (typically 0.3), 
while typically 0.1 for FSHP and FSR.  A. Combined aggregate correlation plot for the 
manually generated BLAST output calculation (Mishra, 2010).  B. Combined aggregate 
correlation plot for the automatically generated BLAST output calculation.  



 
 

49 
 

Figure 3.12 shows the aggregate correlation plots of sequence entropy and other 

homology based parameters for the 1363 training data set.  The presence of the two major 

Regions I and II are also observed with comparable trends in the 1363 training set as with 

the 268 training data sets.  

 

 

Figure 3.12. Combined aggregate correlation plots of sequence entropy and other 
homology-based parameters for the 1363 training set.  Packing density is the number of 
Cα within a 9Å radius and that the portion of Region II with a packing density less than 5 
is <1% of all residues. Average sequence entropy and E6 are calculated by averaging the 
respective values for 73,734 query residues for each inverse packing density value. 
Fraction of strongly hydrophobic residues and fraction of small residues are calculated 
and averaged over a total of 318,840 aligned residues, plotted against inverse packing 
density. Average values for all the homology-based parameters are determined by 
averaging their respective values within the same packing density interval. Note that the 
standard deviations for E20 and E6 are comparable (typically 0.3), while typically 0.1 for 
FSHP and FSR. 

Figures 3.13 and 3.14 represent individual plots of RSA as a function of inverse 

packing density and packing density for the 268 and 1363 training data sets.  Again, 
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similar to the aggregate correlation plots of sequence entropy, two major regions are 

observed with aggregate plots of RSA.  In the first major region, RSA values decrease 

linearly as packing density increases, and in the second major region, RSA values stay 

almost constant—close to 0—as packing density increases.  Similar trends are observed 

in both of the training data sets.  These concur with our previous findings (Mishra, 2010) 

that residues associated with lower packing densities have higher RSA and are more 

likely to be found on the surface of the proteins, whereas residues that have a high 

packing density are dense and are usually found in the core of the proteins.  The RSA 

values for these residues should be closer to 0.  Figures 3.12 and 3.13 support this claim, 

as high-density values have RSA close to 0.  Although majority of protein residues 

display this trend, very few residues have RSA values of 0 for a low packing density.  

Figures 3.13A and 3.14A simply show this RSA trend as a function of inverse density. 
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Figure 3.13. Density—relative surface accessibility comparison for the 268 training set.  
Here the aggregate of RSA values were obtained by averaging a total of 73,734 query 
residues at each packing density position. A. Aggregate correlation plot of relative 
surface accessibility (RSA) and inverse packing density for the 268 training set of 
proteins. B. Aggregate correlation plot of relative surface accessibility (RSA) and 
packing density for the 268 training set of proteins. 
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Figure 3.14. Density—relative surface accessibility comparison for the 1363 training set. 
Here the aggregate of RSA values was obtained by averaging a total of 318,840 query 
residues at each packing density position. A. Aggregate correlation plot of relative 
surface accessibility (RSA) and inverse packing density for the 1363 training set of 
proteins. B. Aggregate correlation plot of relative surface accessibility (RSA) and 
packing density for the 1363 training set of proteins. 
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3.2 Accuracy of Results 

 Table 3.1 showcases a comparison of accuracies for the 12 different linear 

regression models using the 268 training data set on the 215 test data set for the manually 

derived BLAST and automated BLAST outputs.  The accuracy for the manually derived 

BLAST output is generally lower than the accuracy of its counterpart model using the 

automated BLAST output.  The accuracies were generated with the same number; 73,734 

aligned residues were used for the 268 training data set, and 50,856 aligned residues were 

used for the 215 test set.  Theoretically, these two sets of accuracies should be identical, 

but due to various parameters involved during the process of accuracy calculation they 

are not.  Previous R scripts (Rose et al., 2011) calculated the manual BLAST output 

accuracies.  First, linear regression for the training data set was generated, and then β 

coefficients that were to be applied to the test set were extracted.  The β coefficients were 

also manually fed into the 215 data set RSA prediction calculations.  This manual 

introduction of β coefficients into the code presented room for error in calculation.  

Anytime there was an improvement or modification made to the training set, it altered the 

β coefficients’ values.  Due to the fact that the entries were made manually, these 

changes were often not reflected in the application to the test set.  The possibility of input 

truncation was also introduced. 

 However, in the automated BLAST output accuracies, this sort of error in 

calculations was eliminated by sequentially generating the linear model using the training 

data set and applying the parameters obtained from the regression to the test sets 

automatically and internally in the program.  Anytime there were any changes implied in 
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the training set, those changes were automatically reflected in the test set.  This new 

automated accuracy code was also implemented in the manual BLAST output 

calculations, and comparable accuracies with the automated BLAST outputs were 

observed.  The highest accuracy observed was for the E20 + E6 + FSR + FSHP + AA 

model at 72.4% and 74.2%, respectively, for the manual and automated version of the 

268 training set and the 215 test set.  Accuracy of 74.4% was also observed for the E6 + 

FSR + FSHP+ AA model.  Noteworthy is the fact that the E20 + E6 + AA hovers very 

close to the highest accuracy at 74%.  This also shows that the addition of a qualitative 

predictor, AA, aided in better accuracy prediction because, without AA, the E20 + E6 

model has accuracy of 69.1%, which is lower by 4.9%.  Also, the model FSHP + AA is 

missing from the manual BLAST accuracy because FSHP + AA was incorporated as the 

12th model after these values were generated.  
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Table 3.1. Comparison of regression accuracy using manually generated BLAST output 
calculation and automatically generated BLAST output calculations. 

Models  Accuracy 
 Manual 268 

Training 
215 Test 

Automated 268 Training 
215 Test 

E20 63.1 63.0 
E6 67.0 68.9 
FSHP 67.3 68.2 
FSHP + AA  69.8 
AA 70.6 70.4 
E20 + AA 72.1 72.8 
E6 + AA 73.1 74.0 
E20 + E6+ AA 72.9 74.0 
E20 + E6 67.4 69.1 
E20 + FSR + FSHP + 
AA 

73.4 73.3 

E6 + FSR + FSHP + 
AA 

73.2 74.2 

E20 + E6 + FSR + 
FSHP + AA 

72.4 74.2 

 
 Table 3.2 displays a summary of regression accuracies for 12 models tested for 

the 215 test set using 268 as the training set, the 215 test set using 1363 as the training 

set, and finally the 215 PSI-BLAST test set using 268 PSI-BLAST as the training set.  

This set of 12 models accuracy calculations is also referred to as standard accuracy 

calculation for the remainder of this thesis.  The NACCESS RSA threshold used for the 

268 training set, and the 268 PSI-BLAST training set was >23, while >25.2 was used for 

the 1363 training set.  These thresholds were determined with the aid of linear regression 

line of best fit (Figures 2.2 and 2.3) for each of the training sets. 

 Here again as in Table 3.1, we observe similar trends.  Consistently, for all of the 

training and test set combinations used, E20 + E6 + FSR + FSHP + AA has the highest 

prediction accuracy observed.  Our findings here indicate that, although the highest 
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accuracy for the PSI-BLAST model does slightly better, at 74.4% vs. 74.2% for regular 

BLAST, it does not have a significantly large impact.  Also for some models, like E6 + 

FSR + FSHP + AA, PSI-BLAST actually results in lower accuracy than BLAST at 

69.09% vs. 73.29%.  As was seen in Table 3.1, the addition of the qualitative predictor 

AA improves accuracy. 

 
Table 3.2. Summary of regression accuracy for the 12 models tested.  The three different 
sets of numbers represent different training and test set models.  The predicted RSA 
thresholds for the three sets were slightly different depending on the non-hydrophobic 
linear regression intercept for each data set. 

Models Accuracy 
 268 Training 

215 Test1 
1363 Training  
215 Test2 

268 PSI-BLAST Training 
215 PSI-BLAST Test3 

E20 63.0 63.3 63.1 
E6 68.9 68.8 68.8 
FSHP 68.3 68.2 68.2 
FSHP + AA 69.7 70.8 70.8 
AA 70.4 70.4 70.4 
E20 + AA 72.8 72.9 72.9 
E6 + AA 74.0 74.1 74.1 
E20 + E6+ AA 74.0 74.1 74.1 
E20 + E6 69.1 69.1 74.1 
E20 + FSR + FSHP + 
AA 

73.3 74.1 69.1 

E6 + FSR + FSHP + 
AA 

74.2 74.4 74.1 

E20 + E6 + FSR + 
FSHP + AA 

74.2 74.4 74.4 

1 Predicted RSA threshold used >23. 
2 Predicted RSA threshold used >25.2. 
3 Predicted RSA threshold used >23. 
 



 
 

57 
 

3.3 Outcome of Additional Methods to Improve Prediction Accuracy 

3.3.1 Outcome of Additional Models Applied 

 Separate predictors for each of the small residues Ala and Gly are worth noting 

here.  In our previous models, Ala and Gly were incorporated under one sequence 

homology parameter, FSR.  The fraction of aligned residues that are Gly (FG) and Ala 

(FA) were then generated.  New models that substituted FSR with FA, FG, and FA + FG 

were generated.  The accuracies for each of these additional models are presented in 

Table 3.3.  The highest accuracy observed as a result of the incorporation of these 

additional models was 73.6% and 73.4% for the 268 and 1363 training data sets, 

respectively.  Contrary to our hypothesis, separating the Ala and Gly from the existing 

FSR sequence homology did not improve the overall prediction accuracy.  Interestingly 

for both the 268 and 1363 training sets, the accuracies with the 215 set hovered between 

73.0% and 73.6 %.  While we observed variant accuracy ranges for all of the other 

regression models we applied (see Tables 3.1 and 3.2), it is noteworthy that the range of 

accuracies involving FG and FA did not improve over the standard methods. 

  



 
 

58 
 

Table 3.3. Regression accuracy table for additional models applied.  The two different 
sets of numbers represent different training and test set models.  The predicted RSA 
thresholds for the two sets were slightly different depending on the non-hydrophobic 
linear regression intercept for each data set.  >23 and >25.2 were used, respectively, for 
the 268 BLAST–215 BLAST and1363 BLAST–215 BLAST. 

Models Accuracy 
 268 Training 

215 Test 
1363 Training  
215 Test 

FSHP + AA 69.7 70.8 
E20 + FA + FG + FSHP + AA 73.3 73.0 
E20 + FA + FSHP + AA 73.3 73.0 
E20 + FG + FSHP + AA 73.2 73.0 
E6 + FA + FG + FSHP + AA 73.6 73.4 
E6 + FA + FSHP + AA 73.6 73.4 
E6 + FG + FSHP + AA 73.4 73.4 
E20 + E6 + FA + FG + FSHP + 
AA 

73.6 73.4 

E20 + E6 + FA + FSHP + AA 73.6 73.4 
E20 + E6 + FA + FSHP + AA 73.5 73.4 
 

3.3.2 Outcome of Categorized Protein Data Set 

	   In the Hotpatch study by Petit and coworkers (2007), a total of 618 PDB IDs are 

included.  Out of the two categories investigated to explore the possibility of accuracy 

improvement, only the protein binding group yielded better accuracy.  Table 3.4 displays 

protein binding PDB ID matches between the 618 set and each of the two training data 

sets (268 and 1363) and the test set.  There were 13 PDB ID matches between the 618 

and 268 training sets, 8 PDB ID matches between the 618 and 1363 training sets, and a 

total of 16 PDB ID matches between the 618 and 215 test sets for the protein-binding 

category. 
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Table 3.4. Protein binding category PDB ID matches between the 618 Hotpatch protein 
PDB IDs (Petit et al., 2007) and the 268 and 1363 training sets and 215 test set. 

	   Protein	  Binding	  PDB	  ID	  Matches	  
	   618–268	  matches	   618–1363	  matches	   618–215	  matches	  
1. 	   1AK4C	   1BKRA	   1BEOA	  
2. 	   1B3AA	   1G3PA	   1BGCA	  
3. 	   1BUOA	   1KPTA	   1CFYA	  
4. 	   1FINB	   1KWAA	   1CSGA	  
5. 	   1KPTA	   1TENA	   1JKWA	  
6. 	   1KWAA	   1VCAA	   1KNBA	  
7. 	   1M6PA	   2PSPA	   1KPTA	  
8. 	   1OSPO	   3SEBA	   1LKIA	  
9. 	   1YCSA	   	   1LKKA	  
10. 	   1YCSB	   	   1MAZA	  
11. 	   2ILKA	   	   1OSPO	  
12. 	   2TGIA	   	   1SIGA	  
13. 	   2TRCP	   	   1SVPA	  
14. 	   	   	   1VCAA	  
15. 	   	   	   1WHIA	  
16. 	   	   	   2PSPA	  
 
 There were two sets of regressions carried out for the protein binding categories.  

For the first set of regression analyses, 618-268 protein binding (PB) matches were used 

as the training set and 618-215 protein binding matches were used as the test set.  For the 

second set of regression analyses, 618-1363 protein binding matches were used as the 

training set and 618-215 protein binding matches were used as the test set.  The 

prediction accuracy for the 12 different models is presented in Table 3.5.  

 As observed from the accuracy table (see Table 3.5), the PB category yielded 

slightly better prediction accuracy than our previous regression analysis (see Tables 3.1, 

3.2, and 3.4).  In standard calculation, the highest accuracy achieved was 74.4% for the 

1363 training set and the 215 test set calculations.  The highest accuracy value for the PB 
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is at 76.3% for 618-268 PB matches as training set and 618-215 PB matches for the test 

set.  Both E20 + E6 + FSR + FSHP + AA and E6 + FSR + FSHP + AA display the 

highest predicted accuracy for this regression analysis at 76.0.  Both sets of regressions 

display similar patterns and accuracy amounts.  

Table 3.5. Regression accuracy table for protein binding model.  The two different sets 
of numbers represent different training and test set models.  The predicted RSA 
thresholds for the two sets were >23 and >25.2, respectively, for the 618-268 and 1363-
268 matches.  Here, PB stands for protein-binding. 

Models Training = 618-268 PB 
PDB IDs Matches 
Test = 618-215 PB PDB 
IDs Matches1 

Training = 618-1363 PB 
PDB IDs Matches 
Test = 618-215 PB PDB 
IDs Matches2 

E20 60.5 60.5 
E6 60.5 60.5 
FSHP 73.0 74.3 
FSHP + AA 74.2 75.8 
AA 73.0 73.4 
E20 + AA 74.8 74.5 
E6 + AA 75.4 75.4 
E20 + E6 + AA 75.0 75.5 
E20 + E6 60.1 61.4 
E20 + FSR + FSHP + AA 76.0 75.3 
E6 + FSR + FSHP + AA 76.2 76.0 
E20 + E6 + FSR + FSHP + 
AA 

76.3 76.0 

1 The predicted RSA threshold used for this set of calculations was >23. 
2 The predicted RSA threshold used for this set of calculations was >25.2. 
 

3.3.3 Use of All 618 PDB IDs as Training and 215 as Test 

 Another test performed on the 618 set was the use of all 618 proteins as the 

training set and the 215 as the test set.  There were four different sets of linear regression 

calculations involving the 618 and 215 protein sets: 1.generic, 2. protein binding, 
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3. Oligomers, 4. generic without PB and Oligomers.  Table 3.6 includes a comprehensive 

presentation of the actual application of these sets of calculations.   

Table 3.6. Description of 618 PDB IDs as training and 215 PDB IDs as test regression 
analysis calculations.  This table summarizes the different groups of PDB IDs used as 
training and test sets for this analysis. 

 Training Test 
1) Generic  All of the 618 protein  All the PDBs in the 215 set 

that match 618 set  
2) Protein Binding (PB) PB PDB IDs from 618 Set1 PB PDBs matches between 

the 618 and 215 sets 
3) Oligomers  Oligomer PDB IDs from 

the 6182 
Oligomer PDBs matches 
between the 618 and 215 
sets 

4) Generic without PB 
and Oligomers 

618 PDBs excluding PB 
and oligomers3 

All 618 – 215 matches 
without PB and oligomers 

1618–215 PB matches were excluded. 
2618–215 Oligomer matches were excluded. 
3618–215 matches were excluded. 

 
Table 3.7 is the regression accuracy results of the different set calculations presented 

in Table 3.6.  Out of the four categories, protein binding consistently had higher 

accuracies for each of 12 models tested, while oligomers reliably had lower accuracies 

for each model.  Protein binding model, RSA = E20 + FSR + FSHP + AA, had the 

utmost accuracy, 77.7%, of all the models for the various categories tested.  The addition 

of the amino acid (AA) qualitative predictors to each of the homology-based parameters 

used as models generally resulted in higher accuracies compared to the same model 

without an AA qualitative predictor.  
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Table 3.7. Regression accuracy table of PDB IDs of the four groups: 1. generic 2. protein 
binding 3. oligomers 4. and generic without PB and Oligomers used in the regression 
analysis.  Here the entire categorized 618-protein sets were used as training, and 

categorized PDB IDs from the 215 were used as test set. 

 

3.4 Incorporation of the Categories to the Existing Data Sets 

 There are several PDB IDs that match PDB IDs in the 268, 215, and 1363 data 

sets.  The last set of regression analyses took advantage of the PDB IDs that overlap 

between the different data sets with 618.  Similar to the previous set of calculations with 

Model  Generic  Protein 
Binding (PB) 
  

Oligomer 

  

Generic 
without PB and 
Oligomer 

  
RSA = E20 62.1 60.5 61.0 63.3 
RSA = E6 68.8 60.5 68.2 70.1 
RSA  = FSHP 69.8 74.0 68.3 71.9 
RSA  = FSHP 
+ AA 

71.0 75.8 69.8 72.3 

RSA  = AA 71.2 74.4 70.3 70.9 
RSA = E20 + 
AA 

73.5 76.0 72.3 74.6 

RSA = E6  + 
AA 

74.6 76.9 73.1 75.1 

RSA  = E20 + 
E6 + AA 

74.5 76.7 73.2 75.2 

RSA  = E20 + 
E6 

69.1 63.1 68.7 70.3 

RSA  = E20 + 
FSR + FSHP 
+ AA 

74.0 76.9 72.7 75.1 

RSA = E6+ 
FSR + FSHP 
+ AA 

74.7 77.2 73.5 75.3 

RSA  = E20 + 
E6  + FSR + 
FSHP + AA 

74.7 77.3 73.4 75.4 
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the 618 data set, these regression calculations were also calculated for four categories of 

PDB ID: 1. Generic, 2. protein binding (PB), 3. Oligomers, 4. generic without PB and 

oligomers.  

 As the first task, all the PDB IDs that were common between the 618 and 215 

data set, 618 and 268 data set, and 618 and 1363 data set were extracted for each of the 

categories.  The protein binding category had a total of 17 PDB IDs in 215, 12 in 268, 

and 8 in 1363 common with the 618 protein binding category.  The oligomer category 

shared 30 PDB IDs in 215, 25 in 268, and 12 in 1363 with 618 in the oligomer category.  

Generic PDB IDs are all of the PDB IDs in the various categories in the 618 data set.  

Generic matches between each of the data sets simply are the number of PDB IDs 

common between each of the data sets with the 618 data set.  All PDB ID matches 

between the 618 data set and each of the three data sets (268, 215, and 1363) are 

presented in Tables 3.8 through 3.10.  

 Tables 3.11 through 3.14 are the regression accuracies for the different categories 

using PDB IDs that are common between the 618 data set and each of the three original 

data sets (268, 1363, and 215).  Table 3.11 is the regression accuracy for the generic 

category. Generic PDBs are the PDBs that were found in common between the 618 data 

set and the 268, 215, and 1363 group for all of the categories listed in the 618 data set.  

The highest accuracy for the generic category was achieved at 74.8% for the RSA = E20 

+ E6  + FSR + FSHP + AA model using all of the 618-268 common PDBs as the training 

set and all of the 618-215 common PDBs as the test set. 
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The regression accuracies for the 12 models for the protein binding category are 

presented in presented in Table 3.12.  The highest accuracy for the protein binding 

category is 76.9% for the RSA = E20 + E6  + FSR + FSHP + AA model using protein 

binding from 1363 as the training set and protein binding from 215 as the test set.  

Similar to earlier calculations, the protein binding category yielded the overall highest 

prediction accuracies. 
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Table 3.8. PDB ID matches between the 618 data set with three data sets (215, 268, and 
1363) for the protein binding and oligomer categories.  Note: A PDB ID categorized as 
protein binding can also be categorized as oligomer. 

Protein	  Binding	   Oligomers	  
215	   268	   1363	   215	   268	   1363	  

1BEOA	   1YCSB	   1BKRA	   1QAPA	   1KPFA	   2PSPA	  
1BGCA	   1OSPO	   2PSPA1	   1DOSA	   3CLAA	   1A73A	  
1CFYA	   1AK4C	   3SEBA	   1HGXA	   1AJSA	   1HFES	  
1CSGA	   1BUOA	   1KPTA	   2PSPA1	   2SICI	   1UTGA	  
1DKTB	   1B3AA	   1TENA	   1SVPA1	   1BD0A	   1MTYB	  
1JKWA	   2TGIA	   1KWAA	   1BBPA	   1BUOA	   1B5EA	  
1KNBA1	   1KPTA	   1VCAA	   1TFEA	   1VLBA	   3CHBD	  
1KPTA	   1FINB	   1G3PA	   1BTMA	   1AORA	   1PSRA	  
1LKIA	   1M6PA	   	  	   1GSAA	   1B3AA	   1BEBA	  
1LKKA	   1KWAA	   	  	   1KNYA	   1UTGA	   1REGX	  
1MAZA	   2ILKA	   	  	   3SDHA	   2TGIA	   2SQCA	  
1OSPO	   2TRCP	   	  	   1ABRB	   3SDHA	   1OTFA	  
1SIGA	   	  	   	  	   1IDAA	   1B5EA	   	  	  
1SVPA1	   	  	   	  	   1ECPA	   1GOTB	   	  	  
1VCAA	   	  	   	  	   1DELA	   1GVPA	   	  	  
1WHIA	   	  	   	  	   3MINB	   1CG2A	   	  	  
2PSPA1	   	  	   	  	   1GOTB	   1NOXA	   	  	  
	  	   	  	   	  	   1PDOA	   1M6PA	   	  	  
	  	   	  	   	  	   1DKZA	   3DAPA	   	  	  
	  	   	  	   	  	   1NOXA	   2ILKA	   	  	  
	  	   	  	   	  	   1PEAA	   12ASA	   	  	  
	  	   	  	   	  	   2TYSA	   1REGX	   	  	  
	  	   	  	   	  	   1FDSA	   1HJRA	   	  	  
	  	   	  	   	  	   1XVAA	   1DPGA	   	  	  
	  	   	  	   	  	   1AFRA	   2SQCA	   	  	  
	  	   	  	   	  	   1HSBA	   	  	   	  	  
	  	   	  	   	  	   1OFGA	   	  	   	  	  
	  	   	  	   	  	   1YASA	   	  	   	  	  
	  	   	  	   	  	   1DHRA	   	  	   	  	  
	  	   	  	   	  	   1KNBA1	   	  	   	  	  

 1 Represents PDB IDs that is common between the protein binding category and 
Oligomer Category. 
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Table 3.9. PDB ID matches between the 618 data set with three data sets (215, 268, 
1363) between all categories. 

Generic	  	  
215	   268	   1363	  

1LKKA	   3SDHA	   1ABRB	   1YCSB	   1KWAA	   1BKRA	   2PIAA	  
1MAIA	   5P21A	   1AFRA	   1KPFA	   1AYLA	   1XFFA	   1REGX	  
1MAZA	   1KTEA	   1AXNA	   3CLAA	   1THTA	   1PINA	   1G3PA	  
1NOXA	   1LBAA	   1BBPA	   1FJMA	   2ILKA	   2PSPA	   2SQCA	  
1OFGA	   1LCLA	   1BEOA	   1OSPO	   12ASA	   2SCPA	   1OTFA	  
1OSPO	   1LKIA	   1BGCA	   1AK4C	   2TRCP	   256BA	   	  	  
1PDOA	   2PSPA	   1BIBA	   2SCPA	   1REGX	   1A73A	   	  	  
1PEAA	   2RN2A	   1BTMA	   1AJSA	   1NO3A	   1IXHA	   	  	  
1POCA	   2SCPA	   1BTNA	   2SICI	   1HJRA	   3SEBA	   	  	  
1POTA	   2TYSA	   1CFYA	   1TX4A	   1DPGA	   1UTGA	   	  	  
1QAPA	   3CHYA	   1CHDA	   256BA	   1STFI	   2FDNA	   	  	  
1RCFA	   3MINB	   1CNVA	   1NP4A	   2SQCA	   1A62A	   	  	  
1RECA	   1IDAA	   1CSGA	   2LIVA	   2MBRA	   1MTYB	   	  	  
1RSYA	   1IDOA	   1DELA	   1BD0A	   1A48A	   1B5EA	   	  	  
1SBPA	   1JKWA	   1DHRA	   1BUOA	   1A6QA	   1KPTA	   	  	  
1SIGA	   1KNBA	   1DKTB	   1VLBA	   1GVPA	   1AMUA	   	  	  
1SMEA	   1KNYA	   1DKZA	   1HIAI	   2RN2A	   1MPGA	   	  	  
1SRAA	   1KPTA	   1DOSA	   1AORA	   1CG2A	   1IIBA	   	  	  
1STFI	   	  	   1ECEA	   1BLZA	   1NOXA	   1FDRA	   	  	  
1SVPA	   	  	   1ECPA	   4HTCI	   1FINB	   3CHBD	   	  	  
1TFRA	   	  	   1EXNB	   1B3AA	   1M6PA	   1NBCA	   	  	  
1VCAA	   	  	   1FDSA	   1UTGA	   3DAPA	   1CIPA	   	  	  
1WHIA	   	  	   1FJMA	   2TGIA	   2TPSA	   1TENA	   	  	  
1XVAA	   	  	   1FTPA	   1AK0A	   	  	   2TPSA	   	  	  
1YASA	   	  	   1GAIA	   3SDHA	   	  	   1KWAA	   	  	  
256BA	   	  	   1XFFA	   1B5EA	   	  	   1JFRA	   	  	  
2AYHA	   	  	   1GPCA	   1AH7A	   	  	   1PSRA	   	  	  
2GDMA	   	  	   1GSAA	   13PKA	   	  	   1VCAA	   	  	  
2LIVA	   	  	   1HGXA	   1KPTA	   	  	   1A8LA	   	  	  
2MTAC	   	  	   1HLBA	   1AMUA	   	  	   1BEBA	   	  	  
2PIAA	   	  	   1HSBA	   1MPGA	   	  	   2GDMA	   	  	  
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Table 3.10. PDB ID matches between the 618 data set and the three data sets (215, 268, 
and 1363) between all categories without the protein binding and oligomer matches. 

 

  

Generic	  without	  Protein	  Binding	  and	  Oligomers	  	  
215	   268	   1363	  

1AXNA	   1SBPA	   1FJMA	   	  	  
1BIBA	   1SMEA	   2SCPA	   1XFFA	  
1BTNA	   1SRAA	   1TX4A	   1PINA	  
1CHDA	   1STFI	   256BA	   2SCPA	  
1CNVA	   1TFRA	   1NP4A	   256BA	  
1ECEA	   256BA	   2LIVA	   1IXHA	  
1EXNB	   2AYHA	   1HIAI	   2FDNA	  
1FJMA	   2GDMA	   1BLZA	   1A62A	  
1FTPA	   2LIVA	   4HTCI	   1AMUA	  
1GAIA	   2MTAC	   1AK0A	   1MPGA	  
1XFFA	   2PIAA	   1AH7A	   1IIBA	  
1GPCA	   2RN2A	   13PKA	   1FDRA	  
1HLBA	   2SCPA	   1AMUA	   1NBCA	  
1IDOA	   3CHYA	   1MPGA	   1CIPA	  
1KTEA	   5P21A	   1A48A	   2TPSA	  
1LBAA	   	  	   1A6QA	   1JFRA	  
1LCLA	   	  	   2RN2A	   1A8LA	  
1MAIA	   	  	   2TPSA	   2GDMA	  
1POCA	   	  	   1AYLA	   2PIAA	  
1POTA	   	  	   1THTA	   	  	  
1RCFA	   	  	   1NO3A	   	  	  
1RECA	   	  	   1STFI	   	  	  
1RSYA	   	  	   2MBRA	   	  	  
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Table 3.11. Regression accuracy for generic category using common PDB IDs between 
the 618 data set and the 215, 268, and 1363 data sets for the two regression models.  The 
respective training set and test set used for each of these calculations are also presented in 
the table. 

 
 
 
 
 
 
 
 
 
 
  

Models Generic 

 Training = 
Generic 268 
Test = Generic 
215 

Training = Generic 
1363  
Test = Generic 215 

Training= Generic 
268 and Generic 1363 
Test = Generic 215 

RSA= E20 62.2 61.6 62.01 
RSA = E6 68.4 68.5 68.5 
RSA = FSHP 70.0 70.1 70.0 
RSA = FSHP + AA 71.1 71.3 71.3 
RSA = AA 71.4 70.2 71.4 
RSA = E20 + AA 73.5 73.3 73.6 
RSA = E6  + AA 74.6 73.7 74.4 
RSA = E20 + E6 + 
AA 

74.6 73.7 74.4 

RSA = E20 + E6 68.8 68.7 68.9 
RSA = E20 + FSR + 
FSHP + AA 

74.6 73.7 74.1 

RSA = E6 + FSR + 
FSHP + AA 

74.7 73.8 74.5 

RSA = E20 + E6  + 
FSR + FSHP + AA 
 

74.8 73.9 74.5 
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Table 3.12. Regression accuracy for the protein binding category using common PDB 
IDs between the 618 data set and the 215, 268, and 1363 data sets for the two regression 
models.  The respective training set and test set used for each of these calculations are 
also presented in the table. 

 

Table 3.13 is the regression accuracy for oligomer category.  Similar to the 

previous calculations, the oligomer category is the least well-predicted group because 

accuracies are consistently lower for each of the related models.  The highest accuracy 

for the oligomer category is 73.6% for the RSA = E20 + E6  + FSR + FSHP + AA model 

using oligomers from 268 as the training and oligomers from 215 as the test set. 

 

Models Protein Binding 

 Training = 
Protein Binding 
268 
Test = Protein 
Binding 215 

Training = Protein 
Binding 1363  
Test = Protein 
Binding 215 

Training= Protein 
Binding 268 and 
Protein Binding 1363 
Test = Protein Binding 
215 

RSA= E20 60.9 60.9 60.9 
RSA = E6 60.9 60.9 60.9 
RSA = FSHP 75.1 75.0 75.0 
RSA = FSHP + AA 74.5 76.2 74.5 
RSA = AA 73.4 73.7 73.4 
RSA = E20 + AA 74.8 76.0 75.6 
RSA = E6  + AA 75.2 77.3 76.7 
RSA =E20 + E6 + 
AA 

75.0 77.2 76.3 

RSA = E20 + E6 60.9 62.3 60.9 
RSA = E20 + FSR + 
FSHP + AA 

76.0 76.2 77.0 

RSA = E6+ FSR + 
FSHP + AA 

75.9 76.7 77.9 

RSA = E20 + 
E6  +FSR +FSHP + 
AA 
 

76.2 76.9 77.3 
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Table 3.13. Regression accuracy for the oligomer category using common PDB IDs 
between the 618 data sets and the 215, 268, and 1363 data sets for the two regression 
models.

 

Table 3.14 represents regression accuracies for the generic category excluding 

PDB IDs categorized as protein binding and oligomers.  The key difference between 

Table 3.12 generic accuracy and Table 3.14 is that Table 3.12 includes protein binders 

and oligomers as part of the list.  In contrast, for the calculations presented in Table 3.14, 

these two groups are removed.  The highest accuracy for the generic category without the 

Models Oligomer 

 Training = 
Oligomer 268  
Test = Oligomer 
215 

Training = 
Oligomer 1363 
Test = Oligomer 
215 

Training= Oligomer 
268 and Oligomer 
1363 
Test = Oligomer 215 

RSA= E20 61.5 60.4 61.2 
RSA = E6 68.3 68.5 68.3 
RSA = FSHP 67.0 67.1 67.1 
RSA = FSHP + AA 69.4 69.4 68.5 
RSA = AA 72.4 69.4 68.4 
RSA = E20 + AA 73.7 72.1 72.6 
RSA = E6  + AA 73.6 73.1 73.5 
RSA =E20 + E6 + 
AA 

73.6 73.0 73.4 

RSA = E20 + E6 68.9 68.8 68.8 
RSA = E20 + FSR + 
FSHP + AA 

73.1 72.1 72.9 

RSA = E6+ FSR + 
FSHP + AA 

73.6 73.1 73.5 

RSA = E20 + 
E6  +FSR +FSHP + 
AA 
 

73.6 73.0 73.4 
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protein binders and oligomers categories is 76.0% for the RSA = E20 + E6 + FSR + 

FSHP + AA model. 

Table 3.14. Regression accuracy for generic category excluding protein binding and 
oligomer categories using common PDB IDs between the 618 data sets with 215, 268 and 
1363 data sets for the two regression models.  The respective training set and test set used 
for each of these calculations are also presented in the table. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  

Models Generic – Protein Binding - Oligomer 

 Training = 
Generic – 
Protein 
Binding – 
Oligomer 
(268) 
Test = 
Generic – 
Protein 
Binding – 
Oligomer 
(215)  

Training = 
Generic – 
Protein Binding 
– Oligomer 
(1363) 
Test = Generic 
– Protein 
Binding – 
Oligomer 
(1363) 

Training= Generic 
– Protein Binding 
– Oligomer (268 
and 1363) 
Test = Generic – 
Protein Binding – 
Oligomer  (215) 

RSA= E20 64.0 63.5 64.1 
RSA = E6 69.9 69.9 69.8 
RSA = FSHP 70.7 70.9 70.8 
RSA = FSHP + 
AA 

71.8 72.1 72.1 

RSA = AA 71.9 70.7 70.7 
RSA = E20 + 
AA 

74.6 74.3 74.4 

RSA = E6  + AA 75.4 74.7 75.4 
RSA =E20 + E6 
+ AA 

75.4 74.7 75.4 

RSA = E20 + E6 70.1 70.1 70.0 
RSA = E20 + 
FSR + FSHP + 
AA 

75.6 74.9 75.7 

RSA = E6+ FSR 
+ FSHP + AA 

75.9 75.4 75.9 

RSA = E20 + 
E6  +FSR 
+FSHP + AA 
 

76.0 75.4 75.9 
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4. Discussion 

 The aggregate and correlation plots of the first of all of the data sets used for this 

work, the 268 training set, were presented in previous work by the Lustig group 

(Mishra, 2010).  The earlier calculations derived by manually downloaded BLAST files 

for each PDB ID in the 268 data set has been presented for comparison and validation 

purposes of the automatically downloaded BLAST output files.  The earlier manually 

presented data and the automated results presented in the results section of this thesis 

were identical, confirming the validity of the automated system.  The automation of 

downloading BLAST files was then applied toward development of a larger data set.  The 

1363 training set filled the need for a larger training set.  The 1363 set presented trends 

for all the distribution and correlation plots similar to both the automated and manual 268 

training set.  Also similar to the 268 training data set, the 1363 aggregate plots displayed 

the characteristics of two major regions for sequence homology parameters when plotted 

against inverse Cα packing density.   

4.1 Prediction of RSA 

 The primary focus of this study was to accurately predict solvent accessibility of a 

given protein residue using a sequence qualitative predictor.  The significance of linear 

regression in conjunction with the amino acid as qualitative predictors lies in the fact that, 

with a very limited number of sequence homology parameters, one can reasonably 

predict the likelihood of a residue being either buried or on the surface as a part of binary 

classification.  The prediction accuracy ranged from 73 - 78% with models, and the 

combination of E20, E6, FSR, FSHP, and AA resulted in the highest accuracy achieved 
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for most of the subset of calculations performed.  The direct introduction of secondary 

subclass information as qualitative predictors did not improve prediction results.  The 

sequence qualitative predictors directly introduce the actual query information into the 

analysis.  By themselves, they offer significant prediction accuracy.  However, our first 

attempts at nearest neighbor analysis using query sequence information, at least implicitly 

in averaging flanking of RSA values, did not improve accuracy (Nepal, R. and Lustig, B. 

San Jose State University, San Jose, CA. Unpublished work, 2011).  This approach is a 

common one in k-nearest neighbor analysis (Joo et al., 2012; Sim et al., 2006).   

 There appears to be a fundamental limitation of prediction accuracy for solvent-

accessible residues.  This involves having to deal with the association of solvent 

accessibility with quaternary structure.  Similar intrinsic limitation is also noticed in 

secondary structure prediction (Kihara, 2005; Rost, 2001) with respect to tertiary 

structure.  Though we calculated a 40% alignment score as a threshold, this is comparable 

to a sequence identity score of 40% (Yeh, 2005).  But truncating sequences has its own 

problems including losing valuable information about the nature of certain substituted 

residues.  Although sequence alignment helps identify differences between protein pairs 

of similar and non-similar structures in high sequence identity (>40% for long 

alignment), the signal gets less clear in 20–35% sequence identity (Jaroszewski et al., 

2002; Rost, 1999; Schwarz et al., 2010).  This blurring should have an impact on solvent 

accessibility. 

There have been some additional improvements in solvent accessibility 

predictions using support vector machines (Adamczak et al., 2004) and other learning-
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based approaches, such as the random forest method to determine specific accessible 

surface area (Pugalenthi et al., 2012).  These calculations still remain very 

computationally intensive and somewhat obscure in the physical interpretation of 

individual parameters.  However, even under optimal threshold RSA criteria, the overall 

binary prediction limits remain just at or below the 78% accuracy.  One parameter that 

could have an impact is the quality of a learning set.  Assuming this source of error is 

addressed, the intrinsic limitations from coupling of local secondary and higher orders of 

3D structure will likely still remain. 

The most significant limitation for the prediction of residue solvent accessibility 

may be attributed to the coupling between residue surface accessibility and 

protein-protein contacts including quaternary structure.  Although the majority of 

hydrophobic residues are found buried in the core of the protein structure, there are some 

hydrophobic residues on the surface of the protein involved in interaction with other 

proteins (Yan et al., 2008).  Earlier work by the Lustig group presented a linear 

correlation between query hydrophobicity and inverse packing density in most of the 

Major Region I (Liao et al., 2005).  On the other hand, 10% of Major Region II query 

residues were identified as strongly hydrophobic.   

Although the accuracies calculated by linear regression model as described in this 

thesis are slightly lower, it is comparable to the most utilized RSA accuracy calculation 

reported in the literature (Adamczak et al., 2004).  The former uses a complicated system 

built upon neural networks that involve multilayered feed.  A continuous approximation 

of the real-value RSA using nonlinear regression was used with several feed-forward and 
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recurrent neural networks that were then combined into a consensus predictor.  We 

employed a simple two-step linear regression method for RSA prediction.  Also, it was 

reported that the use of Position-Specific Iterative BLAST (PSI-BLAST) resulted in 

better accuracy.  Our calculations resulted in similar accuracies with PSI-BLAST and did 

not improve the accuracy predictions. 

We have found that a very limited number of parameters can result in significant 

prediction accuracy.  These parameters include direct descriptor of actual sequence and 

the various Shannon entropies associated with their substitution.  The inclusion of 20-

point sequence entropy displayed the flexibility of a given amino acid to change or 

mutate (Koehl and Levitt, 2001).  Also noteworthy is that the addition of parameters 

involving the classification of strongly hydrophobic or small residues add some 

incremental value to the prediction. However, once one achieves accuracy approaching 

mid 70%, additional parameter components add very little incrementally to the prediction 

accuracy. 

Various surface accessibility prediction methods applying the two-state (buried 

and on the surface) have been recently developed.  The use of SVM has been explored to 

improve solvent accessibility prediction accuracies (Kim and Park, 2003; Wang et al., 

2007; Yuan et al., 2002).  Typically, SVM constructs extended representation of data and 

then classifies them into groups.  This requires the use of a training set to inform the 

boundaries of the classifier.  Another method extensively applied to solvent accessibility 

prediction is the utilization of neural networks (Adamczak et al., 2004; Ahmad and 

Gromiha, 2002; Kim and Park, 2003; Rost and Sander, 1994).  In neural networks 
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methods, RSA is predicted using a non-linear regression method instead of a 

classification method.  Unlike in SVM methods, here a continuous approximation and 

evaluation of the real-value RSA is produced instead, imposing an arbitrary threshold to 

the RSA (Adamczak et al., 2004).  One such application in surface accessibility 

prediction is the fuzzy k-nearest method applied to sequence information (FKNN) by Sim 

et al. (2006); Joo et al. (2012) presented an additional application of the nearest neighbor 

method where a database is constructed based on sequence information of residues and 

its neighbors.  Accuracy in all of these methods typically stays near 80%, and this is 

consistent with the intrinsic problem at hand.   

From a limited set of known quaternary contacts (Do, S.and Lustig, B. San Jose 

State University, San Jose, CA. Unpublished work, 2010) it was concluded that RSA 

prediction of residues on the surface is problematic.  The RSA prediction of residues is 

challenging primarily due to the presence of hydrophobic patches on the surface of the 

protein.  However, it is known in general that 50% of the globular protein’s surface is 

non-polar, making “hydrophobic patches” inevitable even if protein does not interact with 

other proteins (Eisenhaber and Argos, 1996; Lins et al., 2003).  Although the majority of 

hydrophobic residues are found buried deep within a protein structure, some are present 

on the surface of the protein interacting with other complexes.  To address this issue in 

solvent accessibility prediction, Bahadur et al. (2004) described a method in which 

surface residues are divided into two groups: the “core” and the “rim” set.  This core is 

not necessarily what is descriptive of the core in buried residues of the folded protein.  

The core residues present in surface-accessible patches include interfaces with quaternary 
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interaction, and a mere presence of one buried interface atom is enough to categorize a 

given residue as a core residue (Chakrabarti and Janin, 2002).  

The incorporation of 618 categorical PDB IDs (Petit et al., 2007) was performed 

in an attempt to improve RSA prediction accuracies.  These proteins are in context of an 

algorithm to predict, from X-ray structure, functionally relevant patches on the surface of 

various classes of proteins.  It was observed that, out of all the calculations performed, 

our method consistently resulted in a better prediction for the protein binding category 

better than any other group, whereas the oligomer group dependently resulted in lower 

accuracies.  The difference between the highest protein binding category and the highest 

oligomer category was about 4.5%.  Noteworthy, the remaining of the 618 PDB IDs 

excluding protein binding PDB IDs, and oligomeric IDs, resulted in prediction accuracies 

better than the oligomeric category, but not as good as protein binding.  Here the 

difference between protein binding and this group was around 2%. 

In this thesis we have outlined a reliable RSA prediction method, and further 

enhancements in this scheme have a potential to be a novel simple binary RSA 

predictions method as a gold standard for the field.  Incorporation of a larger training data 

set (i.e., 1363) did not yield a drastic improvement over RSA prediction.  Unlike Joo et 

al. (2012), who claimed the larger data set improved results drastically, our results do not 

indicate such.  The original size of the data set for the 1363 PDB IDs in the 1363 training 

set was 6511 proteins (Bondugula et al., 2011), and similar PISCES culling parameters 

were applied to this list as stated in the Joo et al. paper.  After the application of PISCES, 

the original list of 5157 (subset of the 6511 PDBs that were part of NCBI PDB library) 



 
 

78 
 

was reduced to 1363 of structurally diverse set.  Even though, Joo et al. (2012) found 

5717 proteins, after application of the culling service PISCES, it is hard to imagine that 

the list is not structurally redundant.   

Our results have indicated that dividing the proteins into various structural 

categories holds itself as a promising new direction for RSA predictions.  The role of 

solvent accessibility in protein binding categories and oligomers needs to be further 

investigated to discover why the latter results in poor prediction accuracy while the 

former does not.  Currently for this work, the incorporation of structural information (i.e., 

protein binding, oligomers) to the existing data sets (268, 1363, and 215) could only be 

applied to PDB IDs that were present in the 618 data set.  As a future direction to the 

project, a reliable method to apply structure information to every PDB ID in the existing 

data sets needs to be assimilated.  Once this has been done, the RSA prediction 

calculations need to be recalculated, and any changes observed could be noteworthy.  

Also, multiple stages have displayed some level of advantage in terms of RSA prediction 

with SVM and linear regressions (Adamczak et al., 2005).  A second-stage 

implementation of the existing first-stage qualitative predictor methodology may present 

itself as a new improvement to the existing systems. 
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5. Future Studies 

	   Additional studies to further the work described in this thesis are listed below: 

• Investigate the reasons why the protein binding category consistently results in 

higher prediction accuracy, whereas the oligomer category yields a lower range of 

prediction accuracy. 

• Protein binding and oligomeric classifications should be made for all of the three 

different data sets (268, 1363, and 215). 

• A second stage regression method should be incorporated into the existing 

regression approach.  Our preliminary results indicated the incorporation of a 

distant homolog as a second filter yielded higher accuracy; this approach needs to 

be further analyzed. 

• The possibility of application of logistic regression where an outcome is predicted 

on the basis of categorical dependent variable in the presence of one or more 

predictor variables should be explored for better accuracy predictions. 

• Further in-depth exploration of the current method should be implemented to 

recognize amino acid residues and RSA values that are most mispredicted with 

the existing method.   

• Further investigate a larger training NACCESS threshold than the 20 that is 

currently being used.	  
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6. Conclusions 

 Query-based qualitative predictors with protein sequence information were 

utilized to predict protein residue solvent accessibility.  An automated system to 

download, integrate, and analyze various homology-based parameters and calculations 

was developed.  The manual and automated characterization were deemed to be identical, 

thereby validating the later method.  A novel and larger training data set (1363 training) 

was developed.  The distribution plots of both the 268 and 1363 training data sets 

displayed a bimodal frequency distribution of residues, indicating the presence of highly 

hydrophobic residues on the surface.  This is consistent with the notion of intrinsic 

limitations in predicting surface-accessible residues with only one chain. 

A total of 12 main regression models utilizing various combinations of the two 

types of entropies (E20 and E6), homology-based parameters (FSR, FSHP) as 

quantitative predictors, and direct 20 amino acid information as qualitative predictors 

were created.  Our results indicate consistently that E20 + E6 + FSR + FSHP + AA 

resulted in the highest accuracy compared to all the other models for all the tests 

performed.  Interestingly, 6-point entropy (E6) with the qualitative predictor (AA) 

resulted in better prediction than the use of 20-point entropy (E20).  In fact, in some sets 

of linear regression accuracy calculations, E6 + AA did almost as well as the best model.  

And breaking the FSR qualitative predictor into its two individual components (FA and 

FG) did not improve prediction accuracy.  The incorporation of a larger training data set 

did not improve the accuracy prediction of the test set but actually resulted in accuracies 

comparable to the smaller training data set. 
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 Categorical regressions, where the proteins are divided into groups such as protein 

binding and oligomer, bring about some interesting information.  The linear regression 

method imposed in this thesis seemed to consistently yield higher prediction accuracy for 

the protein binding category.  On the other hand, the oligomeric category resulted in 

slightly lower prediction accuracies. 
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Appendices 
 

A.   Program Listings 
 
############################################################################### 
# Author: Reecha Nepal 
# Date: May 6, 2012 
# Purpose: This script downloads the blast results for all pdb names in a 
# given file. To run this script do the following: 
#    python download_blast.py pdb_names.txt 
#    or 
#    python download_blast.py 119LA 
# The output files will be created in a directory called "blast". 
# File: download_blast.py 
############################################################################### 
 
import os 
import sys 
 
############################################################################### 
# Returns the blast results for the given GI number. 
############################################################################### 
def download_blast_for_gi_number(gi_number): 
    from Bio.Blast import NCBIWWW 
    blast_result_handle = NCBIWWW.qblast('blastp', 'nr', gi_number, \ 
                                         format_type="Text", alignments="1000", 
                                         descriptions="10000", 
                                         hitlist_size="10000") 
    blast_text = blast_result_handle.read() 
    blast_result_handle.close() 
    return blast_text 
 
############################################################################### 
# Reads the fasta file for the given pdb name. 
############################################################################### 
def read_fasta_file_for_pdb_name(pdb_name): 
    file_name = os.path.join("fasta", pdb_name + ".fasta") 
    if not os.path.exists(file_name): 
        print "Error: Couldn't find file:", file_name 
        print "Did you run the download_fasta.py script?" 
        sys.exit(-1) 
 
    input_file_handle = open(file_name, "r") 
    input_data = input_file_handle.read() 
    input_file_handle.close() 
    return input_data 
 
############################################################################### 
# Gets the output path for the given pdb_name. For example, if the PDB name 
# is 1HGXA then the output path would be: 
#     blast/1HGXA.txt 
############################################################################### 
def get_output_path(pdb_name): 
    # put the file in a directory named "blast" 
    if not os.path.exists("blast"): 
        os.makedirs("blast") 
 
    output_path = os.path.join("blast", pdb_name + ".txt") 
    return output_path 
 
############################################################################### 
# Saves the blast data with the fasta data at the top. 
############################################################################### 
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def save_blast_data(fasta_data, blast_data, output_path): 
    out_file_handle = open(output_path, "wb") 
    out_file_handle.write(fasta_data) 
    out_file_handle.write(blast_data) 
    out_file_handle.close() 
 
############################################################################### 
# Gets the GI number from a fasta file. 
############################################################################### 
def get_gi_number_from_fasta(fasta_data): 
    # The fasta_data should look like this: 
    #    >gi|1827785|pdb|1HGX|A Chain 
    words = fasta_data.split("|") 
 
    # If there are less than 4 words then this fasta file has errors in it. 
    if len(words) < 4: 
        print "Error: The fasta file for this PDB has errors in it." 
        sys.exit(-1) 
 
    return words[1] 
 
############################################################################### 
# Get a list of pdb names from the a file. 
############################################################################### 
def get_pdb_list(): 
    if len(sys.argv) != 2: 
        print "To run this script do the following:\n" \ 
              "\tpython download_blast.py pdb_names.txt\n" \ 
              "\tor python download_blast.py 119LA" 
        sys.exit(-1) 
 
    pdb_list = [] 
    if os.path.exists(sys.argv[1]): 
      input_file_handle = open(sys.argv[1], "r") 
      lines = input_file_handle.readlines() 
      for line in lines: 
          pdb_name = line.strip() 
          if len(pdb_name) > 1: 
              pdb_list.append(pdb_name) 
    else: 
      pdb_list.append(sys.argv[1]) 
 
    return pdb_list 
 
############################################################################### 
# Runs the main script. 
############################################################################### 
def run(pdb_name): 
    output_path = get_output_path(pdb_name) 
    if os.path.exists(output_path): 
        return 
 
    fasta_data = read_fasta_file_for_pdb_name(pdb_name) 
    gi_number = get_gi_number_from_fasta(fasta_data) 
    blast_data = download_blast_for_gi_number(gi_number) 
    save_blast_data(fasta_data, blast_data, output_path) 
 
############################################################################### 
# The main function, this gets run first when the program is run from the 
# command line. 
############################################################################### 
if __name__ == "__main__": 
    pdb_list = get_pdb_list() 
    for index in range(0, len(pdb_list)): 
        pdb_name = pdb_list[index] 
 
        # Show how much is done 
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        percent_done = (index + 1.0) / len(pdb_list) 
        percent_done = int(percent_done * 100.0) 
        print index + 1, percent_done, "%", pdb_name 
 
        run(pdb_name) 
 
############################################################################### 
# Author: Reecha Nepal 
# Date: May 6, 2012 
# Purpose: This script downloads the fasta files for all pdb names in a given 
# file. To run this script do the following: 
#    python download_fasta.py pdb_names.txt 
#    or 
#    python download_fasta.py 119LA 
# The output files will be created in a directory called "fasta". 
# File: download_fasta.py 
############################################################################### 
 
from urllib import urlopen 
import os 
import time 
import sys 
 
############################################################################### 
# Download and return the fasta file for the given GI number. 
############################################################################### 
def download_fasta_for_gi_number(gi_number): 
    url = "http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?" \ 
          "db=nucleotideandid=" + gi_number + "andrettype=fasta" 
    url_file_handle = urlopen(url) 
    fasta_data = url_file_handle.read() 
    url_file_handle.close() 
    return fasta_data 
 
############################################################################### 
# Gets the output path for the given pdb_name. For example, if the PDB name 
# is 1HGXA then the output path would be: 
#     fasta/1HGXA.fasta 
############################################################################### 
def get_output_path(pdb_name): 
    # put the file in a directory named "blast" 
    if not os.path.exists("fasta"): 
        os.makedirs("fasta") 
 
    output_path = os.path.join("fasta", pdb_name + ".fasta") 
    return output_path 
 
############################################################################### 
# Save the fasta file in a directory called fasta. 
############################################################################### 
def save_fasta_data(fasta_data, output_path): 
    out_file_handle = open(output_path, "wb") 
    out_file_handle.write(fasta_data) 
    out_file_handle.close() 
 
############################################################################### 
# Checks if the fasta data is valid. A valid fasta data should look like this: 
#    >gi|1827785|pdb|1HGX|A Chain 
# If there's a server error then we sometimes get data that looks like this: 
#    Error:Cannot connect to database 
############################################################################### 
def fasta_data_is_valid(fasta_data): 
    fasta_data_string = fasta_data.decode("utf-8") 
    words = fasta_data_string.split("|") 
    if len(words) < 4: 
        return False 
    else: 



 
 

89 
 

        return True 
 
############################################################################### 
# Get a list of pdb names from a file. 
############################################################################### 
def get_pdb_list(): 
    if len(sys.argv) != 2: 
        print "To run this script do the following:\n" \ 
              "\tpython download_fasta.py pdb_names.txt\n" \ 
              "\tor python download_fasta.py 119LA" 
        sys.exit(-1) 
 
    pdb_list = [] 
    if os.path.exists(sys.argv[1]): 
      input_file_handle = open(sys.argv[1], "r") 
      lines = input_file_handle.readlines() 
      for line in lines: 
          pdb_name = line.strip() 
          if len(pdb_name) > 1: 
              pdb_list.append(pdb_name) 
    else: 
      pdb_list.append(sys.argv[1]) 
 
    return pdb_list 
 
############################################################################### 
# Gets the GI number for the given PDB name. 
############################################################################### 
def get_gi_number(pdb_name): 
    file_name = os.path.join("gi_number", pdb_name + ".txt") 
    if not os.path.exists(file_name): 
        print "Error: Couldn't find file:", file_name 
        print "Did you run the download_gi_number.py script?" 
        sys.exit(-1) 
 
    input_file_handle = open(file_name, "r") 
    input_data = input_file_handle.read() 
    input_file_handle.close() 
    return input_data.strip() 
 
############################################################################### 
# Runs the main script. 
############################################################################### 
def run(pdb_name): 
    output_path = get_output_path(pdb_name) 
    if os.path.exists(output_path): 
        return 
 
    gi_number = get_gi_number(pdb_name) 
 
    retry_count = 0 
    while True: 
        # Download and save the fasta file 
        fasta_data = download_fasta_for_gi_number(gi_number) 
        if fasta_data_is_valid(fasta_data): 
            if retry_count > 0: 
                print "Downloading fasta data succeeded after", \ 
                        retry_count, "tries" 
            save_fasta_data(fasta_data, output_path) 
            break 
 
        # If there was an error then retry up to 8 times. 
        if retry_count == 0: 
            print "Warning: Downloading fasta data failed, retrying" 
        elif retry_count > 8: 
            print "Error: Unable to download fasta file for pdb:", \ 
                    pdb_name, "quitting." 
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            sys.exit(-1) 
        else: 
            print "Retrying", retry_count 
        retry_count = retry_count + 1 
 
        # Wait 0.1 seconds before trying again incase we're overloading 
        # the server. 
        time.sleep(0.1) 
 
############################################################################### 
# The main function, this gets run first when the program is run from the 
# command line. 
############################################################################### 
if __name__ == "__main__": 
    pdb_list = get_pdb_list() 
 
    for index in range(0, len(pdb_list)): 
        pdb_name = pdb_list[index] 
 
        # Show how much is done 
        percent_done = (index + 1.0) / len(pdb_list) 
        percent_done = int(percent_done * 100.0) 
        print index + 1, percent_done, "%", pdb_name 
 
        run(pdb_name) 
 
############################################################################### 
# Author: Reecha Nepal 
# Date: July 24, 2012 
# Purpose: This script downloads the GI number for all pdb names in a given 
# file. To run this script do the following: 
#    python download_gi_number.py pdb_names.txt 
#    or 
#    python download_gi_number.py 119LA 
# The output files will be created in a directory called "gi_number". 
# File: download_gi_number.py 
############################################################################### 
 
from urllib import urlopen 
from xml.dom.minidom import parseString 
import os 
import time 
import sys 
 
############################################################################### 
# Download and return the GI number file for the given pdb name. 
############################################################################### 
def download_gi_number_for_pdb_name(pdb_name): 
    url = "http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?" \ 
          "db=proteinandterm=" + pdb_name + "andretmode=xml" 
    url_file_handle = urlopen(url) 
    gi_number_data = url_file_handle.read() 
    url_file_handle.close() 
    return gi_number_data 
 
############################################################################### 
# Gets the output path for the given pdb_name. For example, if the PDB name 
# is 1HGXA then the output path would be: 
#     gi_number/1HGXA.txt 
############################################################################### 
def get_output_path(pdb_name): 
    # put the file in a directory named "blast" 
    if not os.path.exists("gi_number"): 
        os.makedirs("gi_number") 
 
    output_path = os.path.join("gi_number", pdb_name + ".txt") 
    return output_path 
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############################################################################### 
# Save the GI number in a directory called gi_number. 
############################################################################### 
def save_gi_number_data(gi_number, output_path): 
    out_file_handle = open(output_path, "wb") 
    out_file_handle.write(gi_number) 
    out_file_handle.close() 
 
############################################################################### 
# Checks if the GI number data is valid. Valid data should look like this: 
#    <eSearchResult> 
#    <Count>1</Count> 
#    <RetMax>1</RetMax> 
#    <RetStart>0</RetStart> 
#    <IdList> 
#    <Id>157829547</Id> 
#    </IdList> 
#    <TranslationSet/> 
#    <QueryTranslation/> 
#    </eSearchResult> 
# If there's a server error then we sometimes get data that looks like this: 
#    Error:Cannot connect to database 
# If the data is valid then returns the GI number. 
############################################################################### 
def parse_gi_number_from_data(data): 
    string = data.decode("utf-8") 
    if string.find("eSearchResult") == -1: 
        return -1 
 
    dom = parseString(data) 
    id_list = dom.getElementsByTagName("Id") 
    if not id_list or len(id_list) == 0: 
        return -1 
    return id_list[0].childNodes[0].nodeValue 
 
############################################################################### 
# Get a list of pdb names from a file. 
############################################################################### 
def get_pdb_list(): 
    if len(sys.argv) != 2: 
        print "To run this script do the following:\n" \ 
              "\tpython download_gi_number.py pdb_names.txt\n" \ 
              "\tor python download_gi_number.py 119LA" 
        sys.exit(-1) 
 
    pdb_list = [] 
    if os.path.exists(sys.argv[1]): 
      input_file_handle = open(sys.argv[1], "r") 
      lines = input_file_handle.readlines() 
      for line in lines: 
          pdb_name = line.strip() 
          if len(pdb_name) > 1: 
              pdb_list.append(pdb_name) 
    else: 
      pdb_list.append(sys.argv[1]) 
 
    return pdb_list 
 
############################################################################### 
# Runs the main script. 
############################################################################### 
def run(pdb_name): 
    output_path = get_output_path(pdb_name) 
    if os.path.exists(output_path): 
        return 
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    retry_count = 0 
    while True: 
        # Download and save the gi number 
        gi_number_data = download_gi_number_for_pdb_name(pdb_name) 
        gi_number = parse_gi_number_from_data(gi_number_data) 
        if gi_number != -1: 
            if retry_count > 0: 
                print "Downloading gi number data succeeded after", \ 
                        retry_count, "tries" 
            save_gi_number_data(gi_number, output_path) 
            break 
 
        # If there was an error then retry up to 8 times. 
        if retry_count == 0: 
            print "Warning: Downloading GI number failed, retrying" 
        elif retry_count > 8: 
            print "Error: Unable to download GI number for pdb:", \ 
                    pdb_name, "quitting." 
            sys.exit(-1) 
        else: 
            print "Retrying", retry_count 
        retry_count = retry_count + 1 
 
        # Wait 0.5 seconds before trying again incase we're overloading 
        # the server. 
        time.sleep(0.5) 
 
############################################################################### 
# The main function, this gets run first when the program is run from the 
# command line. 
############################################################################### 
if __name__ == "__main__": 
    pdb_list = get_pdb_list() 
 
    for index in range(0, len(pdb_list)): 
        pdb_name = pdb_list[index] 
 
        # Show how much is done 
        percent_done = (index + 1.0) / len(pdb_list) 
        percent_done = int(percent_done * 100.0) 
        print index + 1, percent_done, "%", pdb_name 
 
        run(pdb_name) 
 
############################################################################### 
# Author: Reecha Nepal 
# Date: July 18, 2012 
# Purpose: Convert SCOP (Structural Classification of Proteins) ids to PDB ids. 
# File: SCOPid_to_PDBid.py 
############################################################################### 
 
input_file = open("260 Similarity log.txt", "r"); 
pdb_names = [] 
pdb_rejected_mapping = { } 
for line in input_lines: 
  # line is something like "reject 1CSEE 2PRKA  38" 
  words = line.split(" ") 
  # words is something like ["reject", "1CSEE", "2PRKA", "38"] 
  number_of_words = len(words) 
  if number_of_words >= 4: 
    current_pdb_name = words[1] 
    rejected_pdb_name = words[2] 
    # at this point, current_pdb_name is something like "1CSEE" 
    if not current_pdb_name in pdb_names: 
      # this is a new pdb name 
      pdb_names.append(words[1]) 
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      pdb_rejected_mapping[current_pdb_name]= [rejected_pdb_name] 
    else: 
      # give me the list of rejected pdb names for current_pdb_name 
      rected_pdb_names = pdb_rejected_mapping[current_pdb_name] 
      # add the rejected pdb name 
      rected_pdb_names.append(rejected_pdb_name) 
      # update our mapping 
      pdb_rejected_mapping[current_pdb_name] = rected_pdb_names 
       
for pdb_name in pdb_names: 
  print(pdb_name) 
  if False: 
    print(" The rejected pdbnames are ") 
    # print the rejected pdb names for this pdb_name 
    list_of_rejected_names = pdb_rejected_mapping[pdb_name] 
    for a in list_of_rejected_names: 
      print(" ") 
      print(a) 
     
  print("\n") 
 
############################################################################### 
# Author: Reecha Nepal 
# Date: July 18, 2012 
# Purpose: Takes pdb name from the 6511 total Bondugula set, checks if each of 
# those proteins are listed in pdb website or not, and finally print out an 
# output file consisting of just the pdb names found in pdb website 
# File: common pubs in the Bondugula set vs pdb library.py 
############################################################################### 
 
# step 1A 
 
# list of pdb names from the Bondugulla paper 
input_file_Bondugulla = open("Bondugulla_pdbid_4letters.txt", "r"); 
source_pdb_lines = input_file_Bondugulla.readlines() 
# There's only one line in the file, so just split that one line 
# into words and save it into the variable source_pdb_list 
source_pdb_first_line = source_pdb_lines[0] 
source_pdb_list= source_pdb_first_line.split(", ") 
 
 
 
# step 1B 
# list of all the pdb names from the RCSB database 
input_file_pdb = open("list of all pdbs in RCSB as of July8,2011.txt", "r"); 
master_pdb_list = input_file_pdb.readlines() 
# There's only one line in the file, so just split that one line 
# into words and save it into the variable source_pdb_list 
master_pdb_first_line = master_pdb_list[0] 
master_pdb_list = master_pdb_first_line.split(", ") 
 
 
#Step 2 
matched_pdb_name_list= [] 
for current_pdb in source_pdb_list: 
    if current_pdb in master_pdb_list: 
        matched_pdb_name_list.append(current_pdb) 
 
 
#Step 3 
output_file = open("Common pdbs between the Bondugulla set and pdb library.txt", "w") 
for matched_pdb_name in matched_pdb_name_list: 
    output_file.write(matched_pdb_name ) 
    output_file.write("\n ") 
 
output_file.close() 
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############################################################################### 
# Author: Reecha Nepal 
# Date: July 22, 2012 
# Purpose: This script calculates packing density. 
# To run this script do the following: 
#    python calculate_density.py pdb_names.txt 
# The output files will be created in a directory called "density". 
# 
# This script is adapted from: 
#     cif2den.pl written by Radhika Pallavi Mishra 
#     pdb2denMOD2-2 written by William Yeh 
# File: calculate_density.py 
############################################################################### 
 
import os 
import sys 
import math 
import exceptions 
 
# User Specified Variables to Control Analysis and Output 
# For each Value, calc's #dist <= Value 
TAB_VALUES = [6, 7, 8, 9, 10, 11, 12] 
 
# Must be increasing in value. 
# Defines which TAB_VALUES should be printed. 
TAB_PRINT = [0, 1, 2, 3, 4, 5, 6] 
 
# Initialize Amino Acid 3-letter to 1-letter associative list 
AA_DICTIONARY = { 
    'GLY': 'G', 'ALA': 'A', 'VAL': 'V', 'LEU': 'L', 
    'ILE': 'I', 'MET': 'M', 'PRO': 'P', 'PHE': 'F', 
    'TRP': 'W', 'SER': 'S', 'THR': 'T', 'ASN': 'N', 
    'GLN': 'Q', 'TYR': 'Y', 'CYS': 'C', 'LYS': 'K', 
    'ARG': 'R', 'HIS': 'H', 'ASP': 'D', 'GLU': 'E' 
} 
 
def get_int(str_value): 
    try: 
        return int(str_value) 
    except exceptions.ValueError: 
        return 0 
 
def get_float(str_value): 
    try: 
        return float(str_value) 
    except exceptions.ValueError: 
        return 0.0 
 
 
class AminoAcidSeqRes: 
    def __init__(self): 
        # Should be something like "A" 
        self.amino_acid_short = "" 
        # FASTA position. 
        self.fasta_pos = 0 
        # PDB position 
        self.pdb_pos = 0 
 
class AlphaC: 
    def __init__(self): 
        # Amino acid, should be something like "LYS" 
        self.amino_acid = "" 
        # Short form, should be something like "A" 
        self.amino_acid_short = "" 
        # (x, y, z) coordinates from ATOM statement 
        self.x = 0 
        self.y = 0 
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        self.z = 0 
        # PDB position 
        self.pdb_pos = 0 
 
############################################################################### 
# Extract Amino Acid seq from SEQRES statements. 
############################################################################### 
def extract_amino_acid_seqres(input_lines, i, chain_name): 
    array = [] 
 
    i = i + 1 
    line = input_lines[i] 
    while i < len(input_lines) and line != "loop_": 
        words = line.split() 
        if len(words) > 9 and words[9] == chain_name: 
            aa = AminoAcidSeqRes() 
            if words[3] in AA_DICTIONARY: 
                aa.amino_acid_short = AA_DICTIONARY[words[3]] 
            else: 
                aa.amino_acid_short = "NA" 
            aa.fasta_pos = get_int(words[4]) 
            if words[6].isdigit(): 
                aa.pdb_pos = get_int(words[6]) 
            else: 
                aa.pdb_pos = -1 
            array.append(aa) 
        i = i + 1 
        line = input_lines[i] 
    return i, array 
 
############################################################################### 
# Extract alpha-C (x,y,z) from ATOM statements 
############################################################################### 
def extract_alpha_c(input_lines, i, chain_name): 
    array = [] 
 
    i = i + 1 
    line = input_lines[i] 
    count_1 = 0 
    count_2 = 0 
    count_3 = 0 
    while i < len(input_lines) and not line.startswith("#"): 
        count_1 = count_1 + 1 
        words = line.split() 
        # Find alpha-Carbon ATOM lines 
        if words[0] == "ATOM" and words[3] == "CA": 
            count_2 = count_2 + 1 
            aa_ref = words[5] 
            aa_refi = words[23] 
            if aa_ref in AA_DICTIONARY and aa_refi == chain_name: 
                count_3 = count_3 + 1 
                alphac = AlphaC() 
                alphac.amino_acid = aa_ref 
                alphac.amino_acid_short = aa_refi 
                alphac.x = get_float(words[10]) 
                alphac.y = get_float(words[11]) 
                alphac.z = get_float(words[12]) 
                alphac.pdb_pos = get_int(words[21]) 
                array.append(alphac) 
            # TODO: This line is probably a bug and should be removed. 
            i = i + 1 
        i = i + 1 
        line = input_lines[i] 
 
    return i, array 
 
############################################################################### 
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# Extracts all the data from the given file. 
############################################################################### 
def extract_all(input_lines, chain_name): 
    aa_seqres_array = [] 
    alphac_array = [] 
    pdb_name = "" 
 
    i = 0 
    while i < len(input_lines): 
        line = input_lines[i] 
        if line.startswith("_pdbx_poly_seq_scheme.pdb_ins_code"): 
            i, array = extract_amino_acid_seqres(input_lines, i, chain_name) 
            aa_seqres_array.extend(array) 
 
        line = input_lines[i] 
        if line.startswith("_atom_site.pdbx_PDB_model_num"): 
            i, array = extract_alpha_c(input_lines, i, chain_name) 
            alphac_array.extend(array) 
 
        # extract the PDB name from the header line 
        line = input_lines[i] 
        if line.startswith("data_"): 
            pdb_name = line.split("_")[1] 
            pdb_name = pdb_name.lower() 
        i = i + 1 
 
    return aa_seqres_array, alphac_array, pdb_name 
 
############################################################################### 
# Calculate distances and tabulate. 
############################################################################### 
def calculate_densities(alphac_array): 
    pos_den_hash = {} 
 
    for i in range(0, len(alphac_array)): 
        # Calculate distances 
        distances = [] 
        for j in range(0, len(alphac_array)): 
            x = alphac_array[j].x - alphac_array[i].x 
            y = alphac_array[j].y - alphac_array[i].y 
            z = alphac_array[j].z - alphac_array[i].z 
            value = math.sqrt(x * x + y * y + z * z) 
            distances.append(math.sqrt(x * x + y * y + z * z)) 
 
        # Sort and tabulate according to distance 
        tab_count = [] 
        for tab_value in TAB_VALUES: 
            count = 0 
            for distance in distances: 
                if distance <= tab_value: 
                    count = count + 1 
            tab_count.append(count) 
 
        # store density values in a hash corresponding to their PDB position 
        pos_den_hash[alphac_array[i].pdb_pos] = tab_count 
 
    return pos_den_hash 
 
############################################################################### 
# Prints the density values to the given file. 
############################################################################### 
def print_densities(cif_pdb_name, aa_seqres_array, pos_den_hash): 
    lines = [] 
    for aa_seqres in aa_seqres_array: 
        value = ("D %s_%03d_%1s ") % (cif_pdb_name, aa_seqres.fasta_pos, \ 
                                      aa_seqres.amino_acid_short) 
        if aa_seqres.pdb_pos == -1 or not aa_seqres.pdb_pos in pos_den_hash: 
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            # output count C() = NA 
            for index in TAB_PRINT: 
                value = value + "C(%d) = NA " % TAB_VALUES[index] 
            value = " ?" 
        else: 
            density_array = pos_den_hash[aa_seqres.pdb_pos] 
            for index in TAB_PRINT: 
                value = value + "C(%d)= % 3d " % \ 
                    (TAB_VALUES[index], density_array[index]) 
            value = value + " %d" % aa_seqres.pdb_pos 
        lines.append(value + "\n") 
    return lines 
 
############################################################################### 
# Reads a mmCIF for the given PDB name. 
############################################################################### 
def read_mmcif_file(pdb_name): 
    file_name = os.path.join("mmCIF", pdb_name + ".cif") 
    if not os.path.exists(file_name): 
        print "Error: Couldn't find file:", file_name 
        print "Did you forget to run the download_mmCIF.py script?" 
        sys.exit(-1) 
 
    input_file_handle = open(file_name, "r") 
    input_lines = input_file_handle.readlines() 
    input_file_handle.close() 
 
    clean_lines = [] 
    for line in input_lines: 
        clean_lines.append(line.strip()) 
    return clean_lines 
 
############################################################################### 
# Get a list of pdb names from the a file. 
############################################################################### 
def get_pdb_list(): 
    if len(sys.argv) != 2: 
        print "To run this script do the following:\n" \ 
              "\tpython calculate_density.py pdb_names.txt\n" \ 
              "\tor python calculate_density.py 119LA" 
        sys.exit(-1) 
 
    pdb_list = [] 
    if os.path.exists(sys.argv[1]): 
      input_file_handle = open(sys.argv[1], "r") 
      lines = input_file_handle.readlines() 
      for line in lines: 
          pdb_name = line.strip() 
          if len(pdb_name) > 1: 
              pdb_list.append(pdb_name) 
    else: 
      pdb_list.append(sys.argv[1]) 
 
    return pdb_list 
 
############################################################################### 
# Gets the output path for the given pdb_name. For example, if the PDB name 
# is 1HGXA then the output path would be: 
#     density/1HGXA.den 
############################################################################### 
def get_output_path(pdb_name): 
    # put the file in a directory named "density" 
    if not os.path.exists("density"): 
        os.makedirs("density") 
 
    output_path = os.path.join("density", pdb_name + ".den") 
    return output_path 
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############################################################################### 
# Runs the main script. 
############################################################################### 
def run(pdb_name): 
    output_path = get_output_path(pdb_name) 
    if os.path.exists(output_path): 
        return 
 
    input_lines = read_mmcif_file(pdb_name) 
    # The chain name is the last letter of the PDB name in upper case. 
    chain_name = pdb_name[-1].upper() 
 
    # Extra data and calculate densities 
    aa_seqres_array, alphac_array, cif_pdb_name = \ 
            extract_all(input_lines, chain_name) 
    pos_den_hash = calculate_densities(alphac_array) 
    lines = print_densities(cif_pdb_name, aa_seqres_array, pos_den_hash) 
 
    # Save to file 
    output_file = open(output_path, "w") 
    output_file.write("Number of residues in Sequence = %d\n" %\ 
                      len(aa_seqres_array)) 
    output_file.writelines(lines) 
    output_file.close() 
 
############################################################################### 
# The main function, this gets run first when the program is run from the 
# command line. 
############################################################################### 
if __name__ == "__main__": 
    pdb_list = get_pdb_list() 
 
    for index in range(0, len(pdb_list)): 
        pdb_name = pdb_list[index] 
        # Use lower case name and strip white space. 
        pdb_name = pdb_name.lower().strip() 
 
        # Show how much is done 
        percent_done = (index + 1.0) / len(pdb_list) 
        percent_done = get_int(percent_done * 100.0) 
        print index + 1, percent_done, "%", pdb_name 
 
        run(pdb_name) 
 
############################################################################### 
# Author: Reecha Nepal 
# Date: May 6, 2012 
# Purpose: This script downloads a mmCIF file from the wwpdb FTP site. 
# To run this script do the following: 
#    python download_mmCIF.py pdb_names.txt 
#    or 
#    python download_mmCIF.py 119LA 
# The output files will be created in a directory called "mmCIF". 
# File: download_mmCIF.py 
############################################################################### 
 
import os 
import sys 
import gzip 
from ftplib import FTP 
 
FTP_ADDRESS = "ftp.wwpdb.org" 
FTP_FOLDER = "/pub/pdb/data/structures/divided/mmCIF/" 
 
############################################################################### 
# Gets the output path for the given pdb_name. For example, if the PDB name 
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# is 1HGXA then the output path would be: 
#     mmCIF/1HGXA.cif 
############################################################################### 
def get_output_path(pdb_name): 
    # put the file in a directory named "pdb" 
    if not os.path.exists("mmCIF"): 
        os.makedirs("mmCIF") 
 
    output_path = os.path.join("mmCIF", pdb_name + ".cif") 
    return output_path 
 
############################################################################### 
# Download and save the mmCIF file for the given pdb 
############################################################################### 
def download_mmCIF_for_pdb_name(pdb_name, ftp, output_path): 
    # The name of the folder on the FTP site is the 2nd and 3rd character of 
    # of the PDB name. For example, for 1r6ja the folder is r6. 
    ftp_path = pdb_name[1:3] + "/" 
 
    # The name of the file on the FTP site is the first 4 characters of the 
    # PDB name plus the extension ".cif.gz". For example, for 1r6ja, the file 
    # name is 1r6j.cif.gz. 
    ftp_path = ftp_path + pdb_name[0:4] + ".cif.gz" 
 
    # Start the download. 
    zip_path = output_path + ".gz" 
    ftp.retrbinary('RETR %s' % ftp_path, open(zip_path, 'wb').write) 
 
    # Unzip the download. 
    unzip_file(zip_path) 
 
    # Delete the zip file 
    os.remove(zip_path) 
 
############################################################################### 
# Unzip a file and save it to disk. 
############################################################################### 
def unzip_file(in_file_path): 
    # If in_file_path is "a/b.cif.gz" then dst_file_path becomes "a/b.cif". 
    dst_file_path, file_extension = os.path.splitext(in_file_path) 
 
    src_zip_file = gzip.open(in_file_path, "rb") 
    dst_unzip_file = open(dst_file_path, "wb") 
    dst_unzip_file.writelines(src_zip_file) 
    dst_unzip_file.close() 
    src_zip_file.close() 
 
############################################################################### 
# Get a list of pdb names from the a file. 
############################################################################### 
def get_pdb_list(): 
    if len(sys.argv) != 2: 
        print "To run this script do the following:\n" \ 
              "\tpython download_mmCIF.py pdb_names.txt\n" \ 
              "\tor python download_mmCIF.py 119LA" 
        sys.exit(-1) 
 
    pdb_list = [] 
    if os.path.exists(sys.argv[1]): 
      input_file_handle = open(sys.argv[1], "r") 
      lines = input_file_handle.readlines() 
      for line in lines: 
          pdb_name = line.strip() 
          if len(pdb_name) > 1: 
              pdb_list.append(pdb_name) 
    else: 
      pdb_list.append(sys.argv[1]) 
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    return pdb_list 
 
############################################################################### 
# Creates a FTP connection 
############################################################################### 
def create_ftp_connection(): 
    # Login to the FTP site as anonymous 
    ftp = FTP(FTP_ADDRESS) 
    ftp.login() 
    ftp.cwd(FTP_FOLDER) 
    return ftp 
 
############################################################################### 
# Runs the main script. 
############################################################################### 
def run(pdb_name, ftp=None): 
    # Use lower case name and strip white space. 
    pdb_name = pdb_name.lower().strip() 
 
    output_path = get_output_path(pdb_name) 
    if os.path.exists(output_path): 
        return 
 
    should_close_ftp = False 
    if not ftp: 
        ftp = create_ftp_connection() 
        should_close_ftp = True 
 
    download_mmCIF_for_pdb_name(pdb_name, ftp, output_path) 
 
    if should_close_ftp: 
        ftp.quit() 
 
############################################################################### 
# The main function, this gets run first when the program is run from the 
# command line. 
############################################################################### 
if __name__ == "__main__": 
    pdb_list = get_pdb_list() 
    ftp = None 
 
    for index in range(0, len(pdb_list)): 
        pdb_name = pdb_list[index] 
 
        # Show how much is done 
        percent_done = (index + 1.0) / len(pdb_list) 
        percent_done = int(percent_done * 100.0) 
        print index + 1, percent_done, "%", pdb_name 
 
        if not ftp: 
            ftp = create_ftp_connection() 
        run(pdb_name, ftp) 
 
    if ftp: 
        ftp.quit() 
 
############################################################################### 
# Author: Reecha Nepal 
# Date: May 6, 2012 
# Purpose: This script downloads the pdb files for all pdb names in a given 
# file. To run this script do the following: 
#    python download_pdb.py pdb_names.txt 
#    or 
#    python download_pdb.py 119LA 
# The output files will be created in a directory called "pdb". 
# File: download_pdb.py 
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############################################################################### 
 
from urllib import urlopen 
import os 
import time 
import sys 
 
############################################################################### 
# Download and return the pdb file for the given pdb name. 
############################################################################### 
def download_pdb_for_pdb_name(pdb_name): 
    # The pdb files are stored online with the last letter of the pdb name 
    # removed. For example, 119LA becomes 119L.pdb 
    pdb_name = pdb_name[:-1] 
    url = "http://www.pdb.org/pdb/files/" + pdb_name + ".pdb" 
    url_file_handle = urlopen(url) 
    pdb_data = url_file_handle.read() 
    url_file_handle.close() 
    return pdb_data 
 
############################################################################### 
# Gets the output path for the given pdb_name. For example, if the PDB name 
# is 1HGXA then the output path would be: 
#     pdb/1HGXA.pdb 
############################################################################### 
def get_output_path(pdb_name): 
    # put the file in a directory named "pdb" 
    if not os.path.exists("pdb"): 
        os.makedirs("pdb") 
 
    output_path = os.path.join("pdb", pdb_name + ".pdb") 
    return output_path 
 
############################################################################### 
# Save the pdb file in a directory called pdb. 
############################################################################### 
def save_pdb_data(pdb_data, output_path): 
    out_file_handle = open(output_path, "wb") 
    out_file_handle.write(pdb_data) 
    out_file_handle.close() 
 
############################################################################### 
# Checks if the pdb data is valid. A valid pdb data should look like this: 
#    >HEADER    HYDROLASE(O-GLYCOSYL)                   28-MAY-93   119L 
# If there's a server error then we sometimes get data that looks like this: 
#    Error:Cannot connect to database 
############################################################################### 
def pdb_data_is_valid(pdb_data): 
    pdb_data_string = pdb_data.decode("utf-8") 
    if pdb_data_string[:6] == "HEADER": 
        return True 
    else: 
        return False 
 
############################################################################### 
# Get a list of pdb names from a file. 
############################################################################### 
def get_pdb_list(): 
    if len(sys.argv) != 2: 
        print "To run this script do the following:\n" \ 
              "\tpython download_pdb.py pdb_names.txt\n" \ 
              "\tor python download_pdb.py 119LA" 
        sys.exit(-1) 
 
    pdb_list = [] 
    if os.path.exists(sys.argv[1]): 
      input_file_handle = open(sys.argv[1], "r") 
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      lines = input_file_handle.readlines() 
      for line in lines: 
          pdb_name = line.strip() 
          if len(pdb_name) > 1: 
              pdb_list.append(pdb_name) 
    else: 
      pdb_list.append(sys.argv[1]) 
 
    return pdb_list 
 
############################################################################### 
# Runs the main script. 
############################################################################### 
def run(pdb_name): 
    output_path = get_output_path(pdb_name) 
    if os.path.exists(output_path): 
        return 
 
    retry_count = 0 
    while True: 
        # Download and save the pdb file 
        pdb_data = download_pdb_for_pdb_name(pdb_name) 
        if pdb_data_is_valid(pdb_data): 
            if retry_count > 0: 
                print "Downloading pdb data succeeded after", \ 
                        retry_count, "tries" 
            save_pdb_data(pdb_data, output_path) 
            break 
 
        # If there was an error then retry up to 8 times. 
        if retry_count == 0: 
            print "Warning: Downloading pdb data failed, retrying" 
        elif retry_count > 8: 
            print "Error: Unable to download pdb file for pdb:", \ 
                    pdb_name, "quitting." 
            sys.exit(-1) 
        else: 
            print "Retrying", retry_count 
        retry_count = retry_count + 1 
 
        # Wait 0.1 seconds before trying again incase we're overloading 
        # the server. 
        time.sleep(0.1) 
 
############################################################################### 
# The main function, this gets run first when the program is run from the 
# command line. 
############################################################################### 
if __name__ == "__main__": 
    pdb_list = get_pdb_list() 
 
    for index in range(0, len(pdb_list)): 
        pdb_name = pdb_list[index] 
 
        # Show how much is done 
        percent_done = (index + 1.0) / len(pdb_list) 
        percent_done = int(percent_done * 100.0) 
        print index + 1, percent_done, "%", pdb_name 
 
        run(pdb_name) 
 
############################################################################### 
# Author: Reecha Nepal 
# Date: May 6, 2012 
# Purpose: Open the output of the naccess program (a .rsa file) and extract 
# data from it. 
# File: extract_data.py 
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############################################################################### 
 
#!/usr/bin/python 
 
import os 
 
# Initialize Amino Acid 3-letter to 1-letter associative list 
AA_DICTIONARY = { 
    'GLY': 'G', 'ALA': 'A', 'VAL': 'V', 'LEU': 'L', 
    'ILE': 'I', 'MET': 'M', 'PRO': 'P', 'PHE': 'F', 
    'TRP': 'W', 'SER': 'S', 'THR': 'T', 'ASN': 'N', 
    'GLN': 'Q', 'TYR': 'Y', 'CYS': 'C', 'LYS': 'K', 
    'ARG': 'R', 'HIS': 'H', 'ASP': 'D', 'GLU': 'E' 
} 
 
def GetQueryLetter(aa): 
    if aa in AA_DICTIONARY: 
        return AA_DICTIONARY[aa] 
    else: 
        return '?' 
 
 
############################################################## 
# Reads the .rsa file from the naccess program. 
############################################################## 
def GetNaccessValuesForPDB(pdb_name): 
    rsa_file_path = os.path.join("naccess", pdb_name + ".rsa") 
    input_file = open(rsa_file_path, "r") 
    lines = input_file.readlines() 
    input_file.close() 
 
    naccess_table = [] 
    chain_letter = pdb_name[-1:] 
 
    for line in lines: 
        words = line.split() 
         
        if len(words) < 5 or words[0] != "RES": 
            continue 
 
        residue = words[1].strip() 
        aa = words[2].strip() 
        if len(aa) == 1: 
            rel = words[5].strip() 
        else: 
            aa = aa[0] 
            rel = words[4].strip() 
 
        if aa != chain_letter: 
            continue 
 
        naccess_entry = {} 
        naccess_entry["AA"] = residue 
        naccess_entry["QueryLetter"] = GetQueryLetter(residue) 
        naccess_entry["REL"] = rel 
        naccess_entry["CATH"] = aa 
        naccess_table.append(naccess_entry) 
    return naccess_table 
 
 
############################################################## 
# 
############################################################## 
def save_naccess_to_csv(pdb_name, data, output_path): 
    f = open(output_path, "w") 
    f.write(",AA,REL,CATH\n") 
    size = len(data["REL"]) 
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    for i in range(0, size): 
        f.write("%d," % (i+1)) 
        f.write("%s," % data[i]["AA"]) 
        f.write("%s," % data[i]["REL"]) 
        f.write("%s" % data[i]["CATH"]) 
        f.write("\n") 
    f.close() 
 
if __name__ == "__main__": 
    pdb_name = "1A4IA" 
    data = GetNaccessValuesForPDB(pdb_name) 
    save_naccess_to_csv(pdb_name, data, "/Users/reecha/Desktop/a.csv") 
 
############################################################################### 
# Author: Reecha Nepal 
# Date: May 6, 2012# 
# Purpose: This script runs the naccess program. 
# To run this script do the following: 
#    python run_naccess.py pdb_names.txt 
#    or 
#    python run_naccess.py 119LA 
# The output files will be created in a directory called "naccess". 
# The .rsa files in the output folder contain REL values as calculated by 
# the naccess program. These REL values are used to compare against predicted 
# REL values based on the entropy regression. 
# File: run_naccess.py 
############################################################################### 
 
import os 
import sys 
import platform 
import tempfile 
import shutil 
 
############################################################################### 
# Gets the output path for the given pdb_name. For example, if the PDB name 
# is 1HGXA then the output path would be: 
#     naccess/1HGXA.rsa 
############################################################################### 
def get_output_path(pdb_name): 
    # put the file in a directory named "blast" 
    if not os.path.exists("naccess"): 
        os.makedirs("naccess") 
 
    output_path = os.path.join("naccess", pdb_name + ".rsa") 
    return output_path 
 
############################################################################### 
# Get a list of pdb names from the a file. 
############################################################################### 
def get_pdb_list(): 
    if len(sys.argv) != 2: 
        print "To run this script do the following:\n" \ 
              "\tpython run_naccess.py pdb_names.txt\n" \ 
              "\tor python run_naccess.py 119LA" 
        sys.exit(-1) 
 
    pdb_list = [] 
    if os.path.exists(sys.argv[1]): 
      input_file_handle = open(sys.argv[1], "r") 
      lines = input_file_handle.readlines() 
      for line in lines: 
          pdb_name = line.strip() 
          if len(pdb_name) > 1: 
              pdb_list.append(pdb_name) 
    else: 
      pdb_list.append(sys.argv[1]) 



 
 

105 
 

    return pdb_list 
 
############################################################################### 
# Gets the path to folder that contains the naccess code. 
############################################################################### 
def get_naccess_code_path(): 
    script_path = os.path.realpath(__file__) 
    parent_directory = os.path.dirname(script_path) 
    return os.path.join(parent_directory, "NACCESS_Code") 
 
############################################################################### 
# Gets the path the .pdb file. 
############################################################################### 
def get_pdb_file_path(pdb_name): 
    pdb_file_path = os.path.join("pdb", pdb_name + ".pdb") 
    if not os.path.exists(pdb_file_path): 
        print "Couldn't find pdb file: ", pdb_file_path 
        print "Run the download_pdb.py script to download the pdb file first." 
        sys.exit(-1) 
    return os.path.abspath(pdb_file_path) 
 
############################################################################### 
# Runs the naccess program 
############################################################################### 
def run_naccess(pdb_name, pdb_file_path, naccess_code_path): 
    old_working_directory = os.getcwd() 
    temp_dir = tempfile.mkdtemp() 
    os.chdir(temp_dir) 
 
    if platform.system() == "Windows": 
        naccess_program = os.path.join(naccess_code_path, "naccess_win.exe") 
    else: 
        naccess_program = os.path.join(naccess_code_path, "naccess") 
    vdw_file_path = os.path.join(naccess_code_path, "vdw.radii") 
    os.system(naccess_program + " " + pdb_file_path + " -r " + vdw_file_path) 
 
    file_name = pdb_name + '.rsa' 
    shutil.copy(file_name, os.path.join(old_working_directory, 'naccess')) 
    os.chdir(old_working_directory) 
    shutil.rmtree(temp_dir, ignore_errors=True) 
 
############################################################################### 
# Runs the main script. 
############################################################################### 
def run(pdb_name, naccess_code_path=None): 
    if not naccess_code_path: 
        naccess_code_path = get_naccess_code_path() 
    os.environ["NACCESS_EXE_PATH"] = naccess_code_path 
 
    output_path = get_output_path(pdb_name) 
    if os.path.exists(output_path): 
        return  
 
    pdb_file_path = get_pdb_file_path(pdb_name) 
    run_naccess(pdb_name, pdb_file_path, naccess_code_path) 
 
############################################################################### 
# The main function, this gets run first when the program is run from the 
# command line. 
############################################################################### 
if __name__ == "__main__": 
    naccess_code_path = get_naccess_code_path() 
 
    pdb_list = get_pdb_list() 
    for index in range(0, len(pdb_list)): 
        pdb_name = pdb_list[index] 
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        # Show how much is done 
        percent_done = (index + 1.0) / len(pdb_list) 
        percent_done = int(percent_done * 100.0) 
        print index + 1, percent_done, "%", pdb_name 
 
        run(pdb_name, naccess_code_path) 
 
############################################################################### 
# Author: Reecha Nepal 
# Date: July 23, 2012 
# Purpose: Convert blast data to entropy data. 
# Usage: import parse_blast 
#        data = BlastData() 
#        data.ParseQueryAndSubject("nblast_all/1A2KAblast.txt") 
#        entropyRecordList = EntropyRecordsForBlastData(blastData) 
# 
#        At this point entropyRecordList will contain a list of entropy 
#        records. Each record contains the entropy value and sequence 
#        for a single letter in the blast query sequence. 
# 
# Revision History 
#  v.1.0 11/23/10 Inital version by Reecha Nepal. 
#                 This is a python translation of 
#                 Radhika-6pointPsiBlastentropy.pl. The original script 
#                 was written by D.Chiang and modified by 
#                 Radhika Pallavi Mishra. If use6Point is set to False then 
#                 this script is equivalent to the bst2entMOD2psiEntropy.pl 
#                 perl script. 
# File: blast_to_entropy.py 
############################################################################### 
 
import parse_blast 
import sys 
import string 
import math 
 
# Specify User Parameters 
SCORE_CUT_OFF_PERCENT = 40 
HOMOLOG_MIN = 1 
 
 
################################################################# 
# Stores information about a single entropy sequence. 
################################################################# 
class EntropyRecord: 
   def __init__(self): 
       self.queryLetter = "" 
       self.queryLetterIndex = 0 
       self.entropyValue = 0.0 
       self.entropySequence = "" 
 
 
   ############################################################### 
   # Gets the blast query. 
   ###############################################################    
   def CalculateWithSequence(self, letter, letterIndex, sequence, use6Point): 
      self.queryLetter = letter.strip() 
      self.queryLetterIndex = letterIndex 
      self.entropySequence = sequence 
      if use6Point: 
         self.entropyValue = Calculate6PointEntropy(self.entropySequence, HOMOLOG_MIN) 
      else: 
         self.entropyValue = CalculateAllPointEntropy(self.entropySequence, HOMOLOG_MIN) 
 
 
################################################################# 
# This function uses the query in the blast data to calculate 
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# the entropy for each letter in the blast query sequence. 
################################################################# 
def EntropyRecordsForBlastData(blastData, use6Point): 
   entropyRecordList = [] 
   query = GetQuery(blastData) 
 
   subjectSequenceList = GetQualifyingSubjectSequenceList( 
         query, blastData.recordList) 
 
   # Calculate the entropy for each letter in the query. 
   for letterIndex in range(0, len(query)): 
      entropySequence = "" 
      for subjectSequence in subjectSequenceList: 
         entropySequence += subjectSequence[letterIndex] 
 
      record = EntropyRecord() 
      record.CalculateWithSequence(query[letterIndex], letterIndex, entropySequence, 
use6Point) 
      entropyRecordList.append(record) 
 
   return entropyRecordList 
 
 
################################################################# 
# Gets the blast query. 
################################################################# 
def GetQuery(blastData): 
   query = blastData.firstQuerySequence 
   # If the blast parser didn't find the query at the top of the 
   # blast file then use the query in the first record instead. 
   if len(query) == 0 and len(blastData.recordList) > 0: 
      query = blastData.recordList[0].querySequence 
 
   # Note that BLAST can substitute 'X' (proteins) or 'N' (nucleotides) into 
   # the Query sequence to filter out "low complexity" regions. These 
   # residues are kept as X or N in the entropy calculation. However, they 
   # can be post-processed when correlated with the PDB information using 
   # the residue position number. They are converted to lower case 
   # in the output (trick to help merging with pdb2den.pl output, 
   # since lowercase sorts after all upper case). 
   query = query.replace("X", "x") 
   # (Should be removed, N is used for nucleotides only) 
   #query = query.replace("N", "n") 
 
   # Extracted all '-' from Query sequence reported from 1st 
   # match in BLAST, to take care of case when the 1st match 
   # includes insertions (ie the query itself is not found). 
   query = query.replace("-", "") 
 
   return query 
 
 
################################################################# 
# Gets the compacted version of the subject sequence. 
################################################################# 
def GetCompactedSubjectSequence(query, record): 
   # The record's query sequence starts at a certain offset from the 
   # original query. Fill in the compactQuery with the original query. 
   # Fill in the subject sequence with dash characters. 
   fillLength = record.queryOffset - 1 
   compactQuery = query[0:fillLength] + record.querySequence 
   compactSubject = "".ljust(fillLength, '-') + record.subjectSequence 
 
   # Find and delete insertions 
   i = 0 
   while i < len(compactQuery): 
      if compactQuery[i] == "-": 
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         compactQuery = compactQuery[:i] + compactQuery[i+1:] 
         compactSubject = compactSubject[:i] + compactSubject[i+1:] 
      else: 
         i += 1 
 
   # If compactQuery is shorter than the query then fill it in with the 
   # end of the original query. Fill in the compactSubject with dash 
   # characters. 
   lengthDiff = len(query) - len(compactSubject) 
   if lengthDiff > 0: 
      compactQuery = compactQuery + query[-lengthDiff:] 
      compactSubject = compactSubject + "".ljust(lengthDiff, "-") 
 
   return compactSubject 
 
 
################################################################# 
# Gets a list of compacted subject sequences. 
################################################################# 
def GetQualifyingSubjectSequenceList(query, recordList): 
   scoreMin = 100 
   if len(recordList) > 0: 
       scoreMin = recordList[0].scoreBits * SCORE_CUT_OFF_PERCENT / 100.0; 
 
   subjectSequenceList = [] 
   for record in recordList: 
      # If this sequence doesn't qualify, skip 
      if record.scoreBits < scoreMin: 
         continue 
      subjectSequenceList.append(GetCompactedSubjectSequence(query, record)) 
   return subjectSequenceList 
 
 
################################################################# 
# Calculates entropy from the given sequence. The calculation 
# is done by grouping items in the sequence into one of 6 
# points. 
################################################################# 
def Calculate6PointEntropy(sequence, homologMin): 
   totalCount = 0 
   categoryCount = {"aliphatic" : 0, 
                    "aromatic" : 0, 
                    "polar" : 0, 
                    "positive" : 0, 
                    "negative" : 0, 
                    "special" : 0} 
 
   for letter in sequence: 
      # Ignore any letters that are not upper case 
      if letter not in string.ascii_uppercase: 
         continue 
      totalCount += 1 
      if letter in "AVLIMC": 
         categoryCount["aliphatic"] += 1 
      elif letter in "FWYH": 
         categoryCount["aromatic"] += 1 
      elif letter in "STNQ": 
         categoryCount["polar"] += 1 
      elif letter in "KR": 
         categoryCount["positive"] += 1 
      elif letter in "DE": 
         categoryCount["negative"] += 1 
      elif letter in "GP": 
         categoryCount["special"] += 1 
 
   # If too few homologs then flag as error. 
   if totalCount < homologMin: 
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      return -1 
 
   entropy = 0.0 
   for categoryValue in categoryCount.values(): 
      if categoryValue > 0: 
         prob = float(categoryValue) / totalCount 
         entropy = entropy - (prob * (math.log(prob)/math.log(2))) 
   return entropy 
 
 
################################################################# 
# Calculates entropy from the given sequence. The calculation 
# is done without groping items in the sequence. 
################################################################# 
def CalculateAllPointEntropy(sequence, homologMin): 
   totalCount = 0 
   categoryCount = {} 
 
   for letter in sequence: 
      # Ignore any letters that are not upper case 
      if letter not in string.ascii_uppercase: 
         continue 
      totalCount += 1 
      if letter in categoryCount: 
         categoryCount[letter] += 1 
      else: 
         categoryCount[letter] = 1 
 
   # If too few homologs then flag as error. 
   if totalCount < homologMin: 
      return -1 
 
   entropy = 0.0 
   for categoryValue in categoryCount.values(): 
      if categoryValue > 0: 
         prob = float(categoryValue) / totalCount 
         entropy = entropy - (prob * (math.log(prob)/math.log(2))) 
   return entropy 
 
 
################################################################ 
# Normally this script is not run directly. Callers should just 
# use the EntropyRecordsForBlastData function to get the 
# entropy data that they need. 
# For debuging purposes though you can call this as follows: 
#    python blast_to_entropy.py <pdb_name> <blast_file_name> 
#                               <fasta_file_name> <out_file_name> 
# This will calculate the entropy and save it in 
# <out_file_name>. 
################################################################ 
if __name__ == "__main__": 
   pdb_name = sys.argv[1] 
   blast_file_name = sys.argv[2] 
   fasta_file_name = sys.argv[3] 
   out_file_name = sys.argv[4] 
 
   # Parse the blast file. 
   blastData = parse_blast.BlastData() 
   blastData.ParseQueryAndSubject(blast_file_name, fasta_file_name) 
   entropyRecordList = EntropyRecordsForBlastData(blastData, True) 
 
   out_file = open(out_file_name, "w") 
   for r in entropyRecordList: 
      # Print the entropy and sequence 
      out_file.write("D %s_%03d_%s E = % .3f A= %s\n" % 
                     (pdb_name, r.queryLetterIndex + 1, r.queryLetter, 
                      r.entropyValue, r.entropySequence)) 
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   out_file.close() 
 
############################################################################### 
# Author: Reecha Nepal 
# Date: July 17, 2012 
# Purpose: This script prints the bit score for each record in each protein. 
# The bit score is the "Score = 780 bits" part in the blast file. 
# To run this script do the following: 
#    python extract_bit_score.py pdb_names.txt 
#    or 
#    python extract_bit_score.py 119LA 
# File: extract_bit_score.py 
############################################################################### 
 
import parse_blast 
import sys 
import os 
 
############################################################################### 
# Get a list of pdb names from the a file. 
############################################################################### 
def get_pdb_list(): 
    if len(sys.argv) != 2: 
        print "To run this script do the following:\n" \ 
              "\tpython extract_query_length.py pdb_names.txt\n" \ 
              "\tor python run_all.py 119LA" 
        sys.exit(-1) 
 
    pdb_list = [] 
    if os.path.exists(sys.argv[1]): 
      input_file_handle = open(sys.argv[1], "r") 
      lines = input_file_handle.readlines() 
      for line in lines: 
          pdb_name = line.strip() 
          if len(pdb_name) > 1: 
              pdb_list.append(pdb_name) 
    else: 
      pdb_list.append(sys.argv[1]) 
    return pdb_list 
 
############################################################################### 
# Author: Reecha Nepal 
# Date: August 13, 2012 
# Purpose: Extract data from blast results. 
# File: extract_data.py 
############################################################################### 
 
#!/usr/bin/python 
# File: extract_data.py 
 
import parse_blast 
import blast_to_entropy 
import fractional_analysis 
import parse_density 
import sys 
import os 
 
############################################################## 
# 
############################################################## 
def save_entropy_to_csv(pdb_name, data, output_path): 
    f = open(output_path, "w") 
    f.write(",RES,E,E6,FSR,FSHP,AA,REL,CATH\n") 
    size = len(data["E"]) 
    for i in range(0, size): 
        f.write("%d," % (i+1)) 
        f.write("%s," % pdb_name) 
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        f.write("%.3f," % data[i]["E"]) 
        f.write("%.3f," % data[i]["E6"]) 
        f.write("%f," % data[i]["FSR"]) 
        f.write("%f," % data[i]["FSHP"]) 
        f.write("%s," % "NA") 
        f.write("%s," % "NA") 
        f.write("%s" % "NA") 
        f.write("\n") 
    f.close() 
 
############################################################## 
# 
############################################################## 
def save_density_to_csv(pdb_name, data, output_path): 
    f = open(output_path, "w") 
    f.write(",denB\n") 
    size = len(data["denB"]) 
    for i in range(0, size): 
        f.write("%d," % (i+1)) 
        f.write("%s" % data[i]["denB"]) 
        f.write("\n") 
    f.close() 
 
############################################################## 
# Calculates the entropy and density values and returns them. 
############################################################## 
def GetEntropyAndDensityValuesForPDB(pdb_name): 
    blast_file_path = os.path.join("blast", pdb_name + ".txt") 
    fasta_file_path = os.path.join("fasta", pdb_name + ".fasta") 
    density_file_path = os.path.join("density", pdb_name + ".den") 
     
    densityRecordList = parse_density.ParseDensityFile(density_file_path) 
    blastData = parse_blast.BlastData() 
    blastData.ParseQueryAndSubject(blast_file_path, fasta_file_path) 
    entropyRecordList = blast_to_entropy.EntropyRecordsForBlastData( 
            blastData, False) 
    entropyRecordList_6_point = blast_to_entropy.EntropyRecordsForBlastData( 
            blastData, True) 
 
    density_table = [] 
    for record in densityRecordList: 
        density_entry = {} 
        density_entry["denB"] = record.density_value 
        density_entry["QueryLetter"] = record.query_letter 
        density_table.append(density_entry) 
 
    entropy_table = [] 
    for i in range(0, len(entropyRecordList)): 
        # Calculate franctions from the entropy record 
        f = fractional_analysis.FractionRecord() 
        f.CalculateWithEntropyRecord(entropyRecordList[i]) 
        f6 = fractional_analysis.FractionRecord() 
        f6.CalculateWithEntropyRecord(entropyRecordList_6_point[i]) 
 
        entropy_entry = {} 
        entropy_entry["E"] = entropyRecordList[i].entropyValue 
        entropy_entry["E6"] = entropyRecordList_6_point[i].entropyValue 
        entropy_entry["QueryLetter"] = entropyRecordList[i].queryLetter 
        entropy_entry["FSR"] = f.small_residues_fraction 
        entropy_entry["FA"] = f.ala_residue_fraction 
        entropy_entry["FG"] = f.gly_residue_fraction 
        entropy_entry["FSHP"] = f.strongly_hydrophobic_fraction 
        entropy_table.append(entropy_entry) 
 
    return (density_table, entropy_table) 
 
############################################################################### 
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# Author: Reecha Nepal 
# Date: July 28, 2012 
# Purpose: This script prints the query length for each protein. The query is the 
# sequence at the top of the blast file. 
# To run this script do the following: 
#    python extract_query_length.py pdb_names.txt 
#    or 
#    python extract_query_length.py 119LA 
# File: extract_density_frequency.py 
############################################################################### 
 
import parse_blast 
import sys 
import os 
import exceptions 
 
def get_int(str_value): 
    try: 
        return int(str_value) 
    except exceptions.ValueError: 
        return 0 
 
def get_float(str_value): 
    try: 
        return float(str_value) 
    except exceptions.ValueError: 
        return 0.0 
 
############################################################################### 
# 
############################################################################### 
def parse_csv_data(file_path, pdb_name): 
    input_file_handle = open(file_path, "r") 
    lines = input_file_handle.readlines() 
    csv_data = [] 
 
    header = None 
    for line in lines: 
        words = line.strip().split(',') 
        if header == None: 
            header = words 
        elif len(words) > 1: 
            record = {} 
            for i in range(0, len(words)): 
                record[header[i]] = words[i] 
            assert record['RES'] == pdb_name 
            csv_data.append(record) 
    return csv_data  
 
############################################################################### 
# Get a list of pdb names from the a file. 
############################################################################### 
def get_pdb_list(): 
    if len(sys.argv) != 2: 
        print "To run this script do the following:\n" \ 
              "\tpython extract_density_frequency.py pdb_names.txt\n" \ 
              "\tor python run_all.py 119LA" 
        sys.exit(-1) 
 
    pdb_list = [] 
    if os.path.exists(sys.argv[1]): 
      input_file_handle = open(sys.argv[1], "r") 
      lines = input_file_handle.readlines() 
      for line in lines: 
          pdb_name = line.strip() 
          if len(pdb_name) > 1: 
              pdb_list.append(pdb_name) 
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    else: 
      pdb_list.append(sys.argv[1]) 
    return pdb_list 
 
if __name__ == "__main__": 
    pdb_list = get_pdb_list() 
    density_frequence = {} 
    max_density = -1 
    min_density = 123456 
 
    keys = ["E", "E6", "FSR", "FSHP", "REL"] 
 
    for pdb_name in pdb_list: 
      fasta_file_path = os.path.join("csv", pdb_name + ".csv") 
      csv_data = parse_csv_data(fasta_file_path, pdb_name) 
 
      for csv_record in csv_data: 
        density = get_int(csv_record['denB']) 
 
        if density in density_frequence: 
            density_record = density_frequence[density] 
        else: 
            density_record = {'count':0} 
 
        for key in keys: 
            value = get_float(csv_record[key]) 
            if key in density_record: 
                r = density_record[key] 
            else: 
                r = {'count':0, 'sum':0.0} 
            r['count'] = r['count'] + 1 
            r['sum'] = r['sum'] + value 
            density_record[key] = r 
        density_record['count'] = density_record['count'] + 1 
        density_frequence[density] = density_record 
 
        if density > max_density: 
            max_density = density 
        if density < min_density: 
            min_density = density 
 
    print "min_density,%d" % min_density 
    print "max_density,%d" % max_density 
 
    sys.stdout.write("density,count") 
    for key in keys: 
        sys.stdout.write(",") 
        sys.stdout.write(key) 
    sys.stdout.write("\n") 
 
    for i in range(-1, max_density): 
        if i in density_frequence: 
            density_record = density_frequence[i] 
            sys.stdout.write(str(i)) 
            sys.stdout.write(",") 
            sys.stdout.write(str(density_record['count'])) 
            for key in keys: 
                sys.stdout.write(",") 
                r = density_record[key] 
                average = r['sum'] / r['count'] 
                sys.stdout.write(str(average)) 
            sys.stdout.write("\n") 
        else: 
            sys.stdout.write("%d,0" % i) 
            for key in keys: 
                sys.stdout.write(",0") 
            sys.stdout.write("\n") 
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############################################################################### 
# Author: Reecha Nepal 
# Date: July 17, 2012 
# Purpose: This script prints the query length for each protein. The query is 
# the sequence at the top of the blast file. 
# To run this script do the following: 
#    python extract_query_length.py pdb_names.txt 
#    or 
#    python extract_query_length.py 119LA 
# File: extract_query_length.py 
############################################################################### 
 
import parse_blast 
import sys 
import os 
 
############################################################################### 
# Get a list of pdb names from the a file. 
############################################################################### 
def get_pdb_list(): 
    if len(sys.argv) != 2: 
        print "To run this script do the following:\n" \ 
              "\tpython extract_query_length.py pdb_names.txt\n" \ 
              "\tor python run_all.py 119LA" 
        sys.exit(-1) 
 
    pdb_list = [] 
    if os.path.exists(sys.argv[1]): 
      input_file_handle = open(sys.argv[1], "r") 
      lines = input_file_handle.readlines() 
      for line in lines: 
          pdb_name = line.strip() 
          if len(pdb_name) > 1: 
              pdb_list.append(pdb_name) 
    else: 
      pdb_list.append(sys.argv[1]) 
    return pdb_list 
 
if __name__ == "__main__": 
    pdb_list = get_pdb_list() 
    for pdb_name in pdb_list: 
      fasta_file_path = os.path.join("fasta", pdb_name + ".fasta") 
      query = parse_blast.ParseQueryFromFastaFile(fasta_file_path) 
      print "%s,%s" % (pdb_name, len(query)) 
 
############################################################################### 
# Author: Reecha Nepal 
# Date: July 17, 2012 
# Purpose: This script prints the record length for each protein. 
# sequence at the top of the blast file. 
# To run this script do the following: 
#    python extract_record_length.py pdb_names.txt 
#    or 
#    python extract_record_length.py 119LA 
# File: extract_record_length.py 
############################################################################### 
 
import parse_blast 
import sys 
import os 
 
############################################################################### 
# Get a list of pdb names from the a file. 
############################################################################### 
def get_pdb_list(): 
    if len(sys.argv) != 2: 
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        print "To run this script do the following:\n" \ 
              "\tpython extract_query_length.py pdb_names.txt\n" \ 
              "\tor python run_all.py 119LA" 
        sys.exit(-1) 
 
    pdb_list = [] 
    if os.path.exists(sys.argv[1]): 
      input_file_handle = open(sys.argv[1], "r") 
      lines = input_file_handle.readlines() 
      for line in lines: 
          pdb_name = line.strip() 
          if len(pdb_name) > 1: 
              pdb_list.append(pdb_name) 
    else: 
      pdb_list.append(sys.argv[1]) 
    return pdb_list 
 
if __name__ == "__main__": 
    pdb_list = get_pdb_list() 
    for pdb_name in pdb_list: 
      blast_file_path = os.path.join("blast", pdb_name + ".txt") 
      fasta_file_path = os.path.join("fasta", pdb_name + ".fasta") 
      blastData = parse_blast.BlastData() 
      blastData.ParseQueryAndSubject(blast_file_path, fasta_file_path) 
      print "%s,%s" % (pdb_name, len(blastData.recordList)) 
 
############################################################################### 
# Author: Reecha Nepal 
# Date: July 28, 2012 
# Purpose: This script prints the query length for each protein. The query 
# is the sequence at the top of the blast file. 
# To run this script do the following: 
#    python extract_query_length.py pdb_names.txt 
#    or 
#    python extract_query_length.py 119LA 
# File: extract_rel_frequency.py 
############################################################################### 
 
import math 
import parse_blast 
import sys 
import os 
import exceptions 
 
def get_int(str_value): 
    try: 
        return int(str_value) 
    except exceptions.ValueError: 
        return 0 
 
def get_float(str_value): 
    try: 
        return float(str_value) 
    except exceptions.ValueError: 
        return 0.0 
 
############################################################################### 
# 
############################################################################### 
def parse_csv_data(file_path, pdb_name): 
    input_file_handle = open(file_path, "r") 
    lines = input_file_handle.readlines() 
    csv_data = [] 
 
    header = None 
    for line in lines: 
        words = line.strip().split(',') 
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        if header == None: 
            header = words 
        elif len(words) > 1: 
            record = {} 
            for i in range(0, len(words)): 
                record[header[i]] = words[i] 
            assert record['RES'] == pdb_name 
            csv_data.append(record) 
    return csv_data  
 
############################################################################### 
# Get a list of pdb names from the a file. 
############################################################################### 
def get_pdb_list(): 
    if len(sys.argv) != 2: 
        print "To run this script do the following:\n" \ 
              "\tpython extract_rel_frequency.py pdb_names.txt\n" \ 
              "\tor python run_all.py 119LA" 
        sys.exit(-1) 
 
    pdb_list = [] 
    if os.path.exists(sys.argv[1]): 
      input_file_handle = open(sys.argv[1], "r") 
      lines = input_file_handle.readlines() 
      for line in lines: 
          pdb_name = line.strip() 
          if len(pdb_name) > 1: 
              pdb_list.append(pdb_name) 
    else: 
      pdb_list.append(sys.argv[1]) 
    return pdb_list 
 
############################################################################### 
# 
############################################################################### 
 
def get_bucket(rel): 
    if rel <= 0: 
        return 1 
    a = rel / 10.0 
    return int(math.ceil(a) + 1.0) 
 
 
def get_bucket_range(bucket): 
    if bucket == 1: 
        return "0" 
    else: 
        rel = (bucket - 1) * 10 
        return str(rel - 10) + " < rel <= " + str(rel) 
 
if __name__ == "__main__": 
    pdb_list = get_pdb_list() 
    rel_frequence = {} 
    max_rel = -1 
    min_rel = 1234567 
 
    keys = ["denB", "E", "E6", "FSR", "FSHP", "REL"] 
 
    for pdb_name in pdb_list: 
      fasta_file_path = os.path.join("csv", pdb_name + ".csv") 
      csv_data = parse_csv_data(fasta_file_path, pdb_name) 
 
      for csv_record in csv_data: 
        rel = get_float(csv_record['REL']) 
        rel_bucket = get_bucket(rel) 
 
        if rel_bucket in rel_frequence: 
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            rel_record = rel_frequence[rel_bucket] 
        else: 
            rel_record = {'count':0} 
 
        for key in keys: 
            value = get_float(csv_record[key]) 
            if key in rel_record: 
                r = rel_record[key] 
            else: 
                r = {'count':0, 'sum':0.0} 
            r['count'] = r['count'] + 1 
            r['sum'] = r['sum'] + value 
            rel_record[key] = r 
        rel_record['count'] = rel_record['count'] + 1 
        rel_frequence[rel_bucket] = rel_record 
 
        if rel > max_rel: 
            max_rel = rel  
        if rel < min_rel: 
            min_rel = rel  
 
    print "min_rel,%d" % min_rel 
    print "max_rel,%d" % max_rel 
 
    sys.stdout.write("REL bucket,REL range,count") 
    for key in keys: 
        sys.stdout.write(",") 
        sys.stdout.write(key) 
    sys.stdout.write("\n") 
 
    max_rel_bucket = get_bucket(max_rel) 
    for i in range(1, max_rel_bucket): 
        sys.stdout.write(str(i)) 
        sys.stdout.write(",") 
        sys.stdout.write(get_bucket_range(i)) 
        sys.stdout.write(",") 
        if i in rel_frequence: 
            rel_record = rel_frequence[i] 
            sys.stdout.write(str(rel_record['count'])) 
            for key in keys: 
                sys.stdout.write(",") 
                r = rel_record[key] 
                average = r['sum'] / r['count'] 
                sys.stdout.write(str(average)) 
            sys.stdout.write("\n") 
        else: 
            sys.stdout.write("0") 
            for key in keys: 
                sys.stdout.write(",0") 
            sys.stdout.write("\n") 
 
############################################################################### 
# Author: Reecha Nepal 
# Date: August 13, 2012 
# Purpose: Calculate fraction record for blast data. 
# Usage: import parse_blast 
#        import blast_to_entropy 
#        data = parse_blast.BlastData() 
#        data.ParseQueryAndSubject("nblast_all/1A2KAblast.txt") 
#        entropyRecordList = EntropyRecordsForBlastData(blastData) 
#        fractionRecord = FractionRecord() 
#        fractionRecord.CalculateWithEntropyRecord(entropyRecordList[0]) 
# 
#        At this point fractionRecord will contain fraction values for the 
#        first entropy record. 
# 
# Revision History 
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#  v.1.0 11/23/10 Inital version by Reecha Nepal. 
#                 This is a python translation of 
#                 extract_fractanalysis_entropy_aggr.pl. The original script 
#                 was written by Radhika Pallavi Mishra. 
# File: fractional_analysis.py 
############################################################################### 
 
import parse_blast 
import blast_to_entropy 
import sys 
 
 
################################################################# 
# Stores fractions computed from a single entropy record. 
################################################################# 
class FractionRecord: 
   def __init__(self): 
       self.gap_fraction = 0.0 
       self.small_residues_fraction = 0.0 
       self.ala_residue_fraction = 0.0 
       self.gly_residue_fraction = 0.0 
       self.strongly_hydrophobic_fraction = 0.0 
       self.non_strongly_hydrophobic_fraction = 0.0 
 
   ############################################################### 
   # Fills in the FractionRecord object using fractions computed 
   # from the given entropy record. 
   ############################################################### 
   def CalculateWithEntropyRecord(self, entropyRecord): 
      gap_count = 0 
      small_residues_count = 0 
      ala_residue_count = 0 
      gly_residue_count = 0 
      strongly_hydrophobic_count = 0 
      total_length = len(entropyRecord.entropySequence) 
      for letter in entropyRecord.entropySequence: 
         if letter in "-": 
            gap_count += 1 
         elif letter in "AG": 
            small_residues_count += 1 
            if letter == "A": 
                ala_residue_count += 1 
            else: 
                gly_residue_count += 1 
         elif letter in "VILFYMW": 
            strongly_hydrophobic_count += 1 
 
      num_non_gap_amino_acids = total_length - gap_count 
      if num_non_gap_amino_acids > 0: 
         self.gap_fraction = float(gap_count) / num_non_gap_amino_acids 
         self.small_residues_fraction = float(small_residues_count) / 
num_non_gap_amino_acids 
         self.ala_residue_fraction = float(ala_residue_count) / num_non_gap_amino_acids 
         self.gly_residue_fraction = float(gly_residue_count) / num_non_gap_amino_acids 
         self.strongly_hydrophobic_fraction = float(strongly_hydrophobic_count) / 
num_non_gap_amino_acids 
         self.non_strongly_hydrophobic_fraction = 1.0 - 
self.strongly_hydrophobic_fraction 
      else: 
         self.gap_fraction = 0.0 
         self.small_residues_fraction = 0.0 
         self.ala_residue_fraction = 0.0 
         self.gly_residue_fraction = 0.0 
         self.strongly_hydrophobic_fraction = 0.0 
         self.non_strongly_hydrophobic_fraction = 0.0 
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################################################################ 
# Normally this script is not run directly. Callers should just 
# use the FractionRecord class to get the fraction data that 
# they need. 
# For debuging purposes though you can call this as follows: 
#    python fractional_analysis.py <pdb_name> <blast_file_name> <out_file_name> 
# This will compute fraction values for each letter in the 
# blast query and save the result to <out_file_name>. 
################################################################ 
if __name__ == "__main__": 
   pdb_name = sys.argv[1] 
   blast_file_name = sys.argv[2] 
   out_file_name = sys.argv[3] 
 
   # Parse the blast file. 
   blastData = parse_blast.BlastData() 
   blastData.ParseQueryAndSubject(blast_file_name) 
   entropyRecordList = blast_to_entropy.EntropyRecordsForBlastData(blastData, False) 
 
   out_file = open(out_file_name, "w") 
   for entropyRecord in entropyRecordList: 
      f = FractionRecord() 
      f.CalculateWithEntropyRecord(entropyRecord) 
      # Print the entropy and fractions 
      out_file.write("E=%.3f,FG=%f,FSR=%f,FSHP=%f,FNSHP=%f\n" % 
                     (entropyRecord.entropyValue, 
                      f.gap_fraction, 
                      f.small_residues_fraction, 
                      f.strongly_hydrophobic_fraction, 
                      f.non_strongly_hydrophobic_fraction)) 
   out_file.close() 
 
############################################################################### 
# Author: Reecha Nepal 
# Date: July 17, 2012 
# Purpose: Parse blast file data. 
# Usage: data = BlastData() 
#        data.ParseQueryAndSubject("nblast_all/1A2KAblast.txt", 
#                                  "fasta/1A2kA.fasta") 
# 
#        At this point data.firstQuerySequence will contain the 
#        blast query. For example "MGDKPIWEQ..." 
#        The query subject and records are stored in data.recordList. 
# 
# Revision History 
#  v.1.0 11/23/10 Inital version by Reecha Nepal. 
#                 This is a python translation of 
#                 Radhika-6pointPsiBlastentropy.pl. The original script 
#                 was written by D.Chiang and modified by 
#                 Radhika Pallavi Mishra. 
# File: parse_blast.py 
############################################################################### 
 
import sys 
 
################################################################# 
# Stores a single query and subject record. 
################################################################# 
class QueryAndSubjectRecord: 
   def __init__(self): 
      self.scoreBits = 0.0 
      self.percentIdentities = 0.0 
      self.percentPositives = 0.0 
      self.expectValue = 0 
      self.querySequence = "" 
      self.subjectSequence = "" 
      self.queryOffset = 0 
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      self.lineStartIndex = 0 
 
   ############################################################## 
   # Fills in the QueryAndSubjectRecord object by parsing data 
   # in the given lines. 
   ############################################################## 
   def ParseLines(self, lines, lineStartIndex): 
      # First line should look like this 
      # Score =  187 bits (475),  Expect = 4e-46, Method: Composition-based stats. 
      words = lines[0].split() 
      self.scoreBits = ParseFloat(words[2]) 
      self.expectValue = ParseFloat(words[7]) 
      self.lineStartIndex = lineStartIndex 
 
      # Second line should look like this: 
      # Identities = 122/127 (97%), Positives = 126/127 (99%), Gaps = 0/127 (0%) 
      words = lines[1].split() 
      self.percentIdentities = ParseFloat(words[3]) / 100.0 
      self.percentPositives = ParseFloat(words[7]) / 100.0 
       
      # Read the query sequence. The lines look like this: 
      # Query  121  LALHNFG  127 
      for line in lines: 
         if line[:5] == "Query": 
            words = line.split() 
            self.querySequence = self.querySequence + words[2] 
            if self.queryOffset == 0: 
               self.queryOffset = int(words[1]) 
 
      # Read the subject sequence. The lines look like this: 
      # Sbjct  121  LALHNFG  127 
      for line in lines: 
         if line[:5] == "Sbjct": 
            words = line.split() 
            self.subjectSequence = self.subjectSequence + words[2] 
 
 
################################################################# 
# This class stores data from the results of a blast query. 
# It stores the original query and a list of query and subject 
# records. 
################################################################# 
class BlastData: 
   def __init__(self): 
      self.recordList = [] 
      self.firstQuerySequence = "" 
 
 
   ############################################################## 
   # Fills in the BlastData object by parsing the data in the 
   # given blast file. 
   ############################################################## 
   def ParseQueryAndSubject(self, blast_file_name, fasta_file_name): 
      self.firstQuerySequence = ParseQueryFromFastaFile(fasta_file_name) 
 
      input_file = open(blast_file_name, "r") 
      lines = input_file.readlines() 
      input_file.close() 
       
      # Parse the subject and query records. 
      lineIndex = 0 
      while True: 
         (startIndex, endIndex) = FindNextQueryAndSubjectLines(lines, lineIndex) 
         if startIndex == -1: 
            break 
         record = QueryAndSubjectRecord() 
         record.ParseLines(lines[startIndex:endIndex+1], startIndex) 
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         self.recordList.append(record) 
         lineIndex = endIndex + 1 
 
################################################################ 
# Reads a fast file and returns the query sequence from it. 
################################################################ 
def ParseQueryFromFastaFile(fasta_file_name): 
   input_file = open(fasta_file_name, "r") 
   lines = input_file.readlines() 
   input_file.close() 
 
   query = "" 
   for line in lines: 
      if line[:1] == '>': 
         continue;  
      query = query + line.strip() 
   return query 
 
################################################################ 
# Change values from string to float. 
################################################################ 
def ParseFloat(floatString): 
   # If the string is "e-10" then change it to "1e-10". Otherwise python 
   # won't be able to parse it. 
   if floatString[:1] == "e": 
      floatString = "1" + floatString 
   # Remove any trailing commas and brackets and percent signs 
   floatString = floatString.strip(",()%") 
   return float(floatString) 
 
 
################################################################ 
# Finds the next Query and Subject record in the given lines. 
# Returns a tuple with the start and end line indexes for the 
# record. If no record is found then it returns (-1, -1). 
################################################################ 
def FindNextQueryAndSubjectLines(lines, startIndex): 
   recordStartIndex = 0 
   recordEndIndex = 0 
 
   # Find the start of the next record 
   for lineIndex in range(startIndex, len(lines)): 
      line = lines[lineIndex] 
      if line.find("Score = ") != -1: 
         break 
   if lineIndex >= len(lines) - 1: 
      return (-1, -1) 
   else: 
      recordStartIndex = lineIndex 
    
   # Find the end of the next record 
   blankLineCount = 0 
   for lineIndex in range(recordStartIndex, len(lines)): 
      line = lines[lineIndex].strip() 
      if len(line) == 0: 
         blankLineCount += 1 
      else: 
         blankLineCount = 0 
      if blankLineCount == 2: 
         break 
   if lineIndex >= len(lines) - 1: 
      return (-1, -1) 
   else: 
      recordEndIndex = lineIndex 
    
   return (recordStartIndex, recordEndIndex-2) 
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################################################################ 
# Normally this script is not run directly. Callers should just 
# use the BlastData object to get the data they need. 
# For debuging purposes though you can call this as follows: 
#    python parse_blast.py <blast_file_name> <fasta_file_name> 
# This will print the first query sequence, the first record, 
# and the total number of records. 
################################################################ 
if __name__ == "__main__": 
   blast_file_name = sys.argv[1] 
   fasta_file_name = sys.argv[2] 
 
   data = BlastData() 
   data.ParseQueryAndSubject(blast_file_name, fasta_file_name) 
   print "First query sequence is", data.firstQuerySequence 
   print "found", len(data.recordList), "records" 
   record = data.recordList[0] 
   print "The first record is" 
   print "scoreBits", record.scoreBits 
   print "percentIdentities", record.percentIdentities 
   print "percentPositives", record.percentPositives 
   print "expectValue", record.expectValue 
   print "querySequence", record.querySequence 
   print "subjectSequence", record.subjectSequence 
   print "queryOffset", record.queryOffset 
 
############################################################################### 
# Author: Reecha Nepal 
# Date: May 6, 2012 
# "Parse Density" 
# 
# Purpose: Parse the density file. 
# Usage: import parse_density 
#        densityRecordList = parse_density.ParseDensityFile("1a1ia.den") 
#        At this point densityRecordList will contain a list of density values. 
# 
# Revision History 
#  v.1.0 11/23/10 Inital version by Reecha Nepal. 
#                 This is a python translation of 
#                 svm_extract_fractentropy_density_aggr.py. The original script 
#                 was written by Radhika Pallavi Mishra. 
# File: parse_density.py 
############################################################################### 
 
import sys 
 
 
################################################################# 
# Stores a single density value and the pdb position for that 
# value. 
################################################################# 
class DensityRecord: 
   def __init__(self): 
       density_value = "" 
       pdb_pos = "" 
       query_letter = "" 
 
   ############################################################## 
   # Fills in the DensityRecord object by parsing data in the 
   # given line. 
   ############################################################## 
   def ParseLine(self, line): 
      words = line.split() 
      self.density_value = words[9].strip() 
      self.pdb_pos = words[16].strip() 
      query_words = words[1].split('_') 



 
 

123 
 

      self.query_letter = '?' 
      if len(query_words) == 3: 
        query_word = query_words[2].strip().upper() 
        if len(query_word) == 1: 
            self.query_letter = query_word 
 
############################################################## 
# Parses the given density file and returns a list of density 
# records. 
############################################################## 
def ParseDensityFile(density_file_name): 
   density_file = open(density_file_name, "r") 
   lines = density_file.readlines() 
   density_file.close() 
 
   densityRecordList = [] 
   for line in lines: 
      if line.find("C(9)") != -1: 
         densityRecord = DensityRecord() 
         densityRecord.ParseLine(line) 
         densityRecordList.append(densityRecord) 
   return densityRecordList 
 
 
################################################################ 
# Normally this script is not run directly. Callers should just 
# use the DensityRecord object to get the data they need. 
# For debuging purposes though you can call this as follows: 
#    python parse_density.py <density_file_name> 
# This will print the number of density records, and the 
# density value and pdb position of the first density record. 
################################################################ 
if __name__ == "__main__": 
   density_file_name = sys.argv[1] 
 
   densityRecordList = ParseDensityFile(density_file_name) 
   print "found", len(densityRecordList), "records" 
   record = densityRecordList[10] 
   print "The first record is" 
   print "density_value", record.density_value 
   print "pdb_pos", record.pdb_pos 
 
############################################################################### 
# Author: Reecha Nepal 
# Date: November 23, 2010 
# Purpose: This script prints the density and entropy values for all density and 
# blast files in the given directory. 
# Usage: python svm_extract_fractentropy_density_aggr.py <density_directory> 
#   <blast_directory> <out_file_name> <6Point|AllPoint> 
# The last parameter to this script should either be 6Point or AllPoint. 
# If 6Point is specified then the entropy value will be calculated 
# by grouping items in the sequence into one of six categories. 
# If AllPoint is specified then items in the sequence will not be 
# grouped when calculating the entropy. 
# 
# Revision History 
#  v.1.0 11/23/10 Inital version by Reecha Nepal. 
#                 This is a python translation of 
#                 svm_extract_fractentropy_density_aggr.py. The original script 
#                 was written by Radhika Pallavi Mishra. 
# File: svm_extract_fractentropy_density_aggr.py 
############################################################################### 
 
import parse_blast 
import blast_to_entropy 
import fractional_analysis 
import parse_density 
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import sys 
import os 
 
 
############################################################## 
# Prints density and entropy fraction values for the given 
# blast file and density file. 
############################################################## 
def PrintDensityAndEntropyValue(out_file, pdb_name, density_file_name, blast_file_name, 
use6Point): 
   # Read the density data 
   densityRecordList = parse_density.ParseDensityFile(density_file_name) 
 
   # Read the entropy data 
   blastData = parse_blast.BlastData() 
   blastData.ParseQueryAndSubject(blast_file_name) 
   entropyRecordList = blast_to_entropy.EntropyRecordsForBlastData(blastData, use6Point) 
 
   # TODO The density record list should be the same size as the entropy 
   # record list. Unfortunately there are some bugs in the script that creates 
   # the density record list so the two lists are not always the same size. 
   # Until this is fixed just ignore the extra data. 
   recordCount = len(densityRecordList) 
   if recordCount > len(entropyRecordList): 
      recordCount = len(entropyRecordList) 
 
   # Print a line for each density 
   for i in range(0, recordCount): 
      densityRecord = densityRecordList[i] 
      entropyRecord = entropyRecordList[i] 
 
      # Calculate franctions from the entropy record 
      f = fractional_analysis.FractionRecord() 
      f.CalculateWithEntropyRecord(entropyRecord) 
 
      # Print everything 
      
out_file.write("ProtName=%s,PDBPos=%s,Den=%s,E=%.3f,FG=%f,FSR=%f,FSHP=%f,FNSHP=%f\n" % 
                     (pdb_name, 
                      densityRecord.pdb_pos, 
                      densityRecord.density_value, 
                      entropyRecord.entropyValue, 
                      f.gap_fraction, 
                      f.small_residues_fraction, 
                      f.strongly_hydrophobic_fraction, 
                      f.non_strongly_hydrophobic_fraction)); 
 
 
############################################################## 
# Prints density and entropy fraction values for all density 
# and blast files in the given directories. 
############################################################## 
def PrintDensityAndEntropyForDirectory(out_file, density_directory, blast_directory, 
use6Point): 
   density_file_list = os.listdir(density_directory) 
   blast_file_list = os.listdir(blast_directory) 
 
   for index in range(0, len(density_file_list)): 
      file_name = density_file_list[index] 
      pdb_name = file_name[0:5].upper() 
      blast_file_name = FindFileWithPDBNameInDirectory(blast_directory, blast_file_list, 
pdb_name) 
      if len(blast_file_name) == 0: 
         continue 
 
      print index + 1, "of", len(density_file_list), pdb_name 
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      density_file_name = os.path.join(density_directory, file_name) 
      PrintDensityAndEntropyValue(out_file, pdb_name, density_file_name, blast_file_name, 
use6Point) 
 
 
############################################################## 
# Finds a file in the given directory that starts with the 
# pdb name. 
############################################################## 
def FindFileWithPDBNameInDirectory(directory_name, direstory_file_list, pdb_name): 
   pdb_name = pdb_name.upper() 
   pdb_len = len(pdb_name) 
   for file_name in direstory_file_list: 
      name_prefix = file_name[0:pdb_len].upper() 
      if name_prefix == pdb_name: 
         return os.path.join(directory_name, file_name) 
   return "" 
 
############################################################## 
# This script prints the density and entropy values for all 
# density and blast files in the given directory. To use 
# this script call it as follows: 
#     python svm_extract_fractentropy_density_aggr.py <density_directory> 
<blast_directory> <out_file_name> <6Point|AllPoint> 
############################################################## 
if __name__ == "__main__": 
   density_directory = sys.argv[1] 
   blast_directory = sys.argv[2] 
   out_file_name = sys.argv[3] 
   entropyGroupType = sys.argv[4] 
   use6Point = entropyGroupType == "6Point" 
 
   out_file = open(out_file_name, "w") 
   PrintDensityAndEntropyForDirectory(out_file, density_directory, blast_directory, 
use6Point) 
   out_file.close() 
 
############################################################################### 
# Author: Reecha Nepal 
# Date: July 24, 2012 
# Purpose: Align two tables based on QueryLetter. 
# File: align_tables.py 
############################################################################### 
 
from difflib import SequenceMatcher 
import copy 
 
def get_sequence_from_table(table): 
    result = '' 
    index = 0 
    for entry in table: 
        assert len(entry['QueryLetter']) == 1 
        result = result + entry['QueryLetter'] 
        index = index + 1 
    return result 
 
def join_dictionaries(dict1, dict2): 
    result = {} 
    if dict1: 
        result = copy.deepcopy(dict1) 
    if dict2: 
        tmp_dict = copy.deepcopy(dict2) 
        for key in tmp_dict.keys(): 
            result[key] = tmp_dict[key] 
    return result 
 
def get_nil_entry(table): 
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    if len(table) > 0: 
        result = {} 
        entry = table[0] 
        for key in entry.keys(): 
            result[key] = '-1' 
        return result 
    else: 
        return {} 
 
def get_aligned_index(naccess_sequence, naccess_index, 
                      entropy_sequence, entropy_index, 
                      sequence_matcher): 
    if len(naccess_sequence) <= naccess_index: 
        return -1 
    if len(entropy_sequence) <= entropy_index: 
        return -1 
    if naccess_sequence[naccess_index] == '?': 
        return -1 
    if naccess_sequence[naccess_index] == entropy_sequence[entropy_index]: 
        return entropy_index 
 
    match_naccess, match_entropy, match_len = sequence_matcher.find_longest_match( 
        naccess_index, len(naccess_sequence), 
        entropy_index, len(entropy_sequence)) 
 
    for cur_entropy_index in range(entropy_index,  match_entropy + 1): 
        if naccess_sequence[naccess_index] == entropy_sequence[cur_entropy_index]: 
            return cur_entropy_index  
    return -1 
 
def align_entropy_to_table(entropy_table, naccess_table): 
    entropy_sequence = get_sequence_from_table(entropy_table) 
    naccess_sequence = get_sequence_from_table(naccess_table) 
    sequence_matcher = SequenceMatcher(None, naccess_sequence, entropy_sequence, False) 
 
    aligned_table = [] 
    entropy_index = 0 
    for naccess_index in range(0, len(naccess_sequence)): 
        new_entropy_index = get_aligned_index(naccess_sequence, naccess_index, 
                                              entropy_sequence, entropy_index, 
                                              sequence_matcher) 
        if new_entropy_index == -1: 
            continue 
 
        aligned_table.append(join_dictionaries(entropy_table[new_entropy_index], 
                                               naccess_table[naccess_index])) 
        entropy_index = new_entropy_index + 1 
    return aligned_table 
 
def align_density_to_table(density_table, naccess_table): 
    density_sequence = get_sequence_from_table(density_table) 
    naccess_sequence = get_sequence_from_table(naccess_table) 
    sequence_matcher = SequenceMatcher(None, naccess_sequence, density_sequence, False) 
 
    nil_density_entry = get_nil_entry(density_table) 
 
    aligned_table = [] 
    block_index = 0 
    matching_blocks = sequence_matcher.get_matching_blocks() 
    match_naccess, match_density, match_len = matching_blocks[block_index] 
 
    for naccess_index in range(0, len(naccess_sequence)): 
        if (    naccess_index >= (match_naccess + match_len) and 
                block_index < (len(matching_blocks) - 1)): 
            block_index = block_index + 1 
            match_naccess, match_density, match_len = matching_blocks[block_index] 
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        if naccess_index < match_naccess: 
            aligned_table.append(join_dictionaries(nil_density_entry, 
                                                   naccess_table[naccess_index])) 
        elif naccess_index >= (match_naccess + match_len): 
            aligned_table.append(join_dictionaries(nil_density_entry, 
                                                   naccess_table[naccess_index])) 
        else: 
            delta = naccess_index - match_naccess 
            density_index = match_density + delta 
            aligned_table.append(join_dictionaries(density_table[density_index], 
                                                   naccess_table[naccess_index])) 
    return aligned_table 
 
def align_tables(density_table, entropy_table, naccess_table): 
    result = align_entropy_to_table(entropy_table, naccess_table) 
    result = align_density_to_table(density_table, result) 
    return result 
 
############################################################################### 
# Author: Reecha Nepal 
# Date: May 6, 2012 
# Purpose: Combine all .csv files in the current directory. 
# File: combine_csv_files.py 
############################################################################### 
 
import os 
import sys 
 
header = None 
output_lines = [] 
 
files = os.listdir(".") 
for file in files: 
    words = file.split(".") 
    if len(words) != 2 or words[1] != "csv": 
        continue 
    file = open(file, "r") 
    input_lines = file.readlines() 
    file.close() 
 
    if len(input_lines) == 0: 
        print "file", file, "is empty" 
        continue 
 
    if not header: 
        header = input_lines[0].strip() 
        output_lines.append(header + "\n") 
 
    for index in range(1, len(input_lines)): 
        line = input_lines[index].strip() 
        output_lines.append(line + "\n") 
 
output_file = open("combined.csv", "w") 
output_file.writelines(output_lines) 
output_file.close() 
 
############################################################################### 
# Author: Reecha Nepal 
# Date: April 16, 2012 
# Purpose: This program calculates the relative solvent accessibility (REL) 
# using the following models such as: 
#   REL ~ E20 + E6 + FSR + FSHP + as.factor(AA) 
# The coefficient for the above model are caclulated using training data 
# (Brel2Data268.csv). This model is then applied to the experimental data 
# (Brel2Data215.csv or other files) to predict new REL values. 
# 
# The predicted REL values and the actual REL values are then converted to 
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# binary using the following forumal: 
#   if (binary_actual_REL >= 20) 
#     binary_actual_REL = 1 
#   else 
#     binary_actual_REL = 0 
# 
#   if (binary_predicted_REL >= 20) 
#     binary_predicted_REL = 1 
#   else 
#     binary_predicted_REL = 0 
# 
# The accuracy of the model is then calculated by comparing 
# binary_predicted_REL with binary_actual_REL. 
# 
# To run this program do the following: 
# > R -f accuracy_v2.R <folder for training data> <folder for experimental data> 
# for example: 
# > R -f accuracy_v2.R --args 268_csv_folder 215_csv_folder 
# 
# File:accuracy.R 
############################################################################### 
 
############################################################################### 
# Reads all the CSV files in the given folder and creates a single data frame. 
############################################################################### 
read_data_from_files <- function(folder_name) { 
    file_list = list.files(folder_name, pattern="*.csv", full.names=TRUE) 
    E20 = c() 
    E6 = c() 
    FSR = c() 
    #FA = c() 
    #FG = c() 
    FSHP = c() 
    AA = c() 
    REL = c() 
    RES = c() 
    for (file in file_list) { 
        data = read.csv(file, sep = ",", header = TRUE) 
        E20 = c(E20, data$E) 
        E6 = c(E6, data$E6) 
        FSR = c(FSR, data$FSR) 
        #FA = c(FA, data$FA) 
        #FG = c(FG, data$FG) 
        FSHP = c(FSHP, data$FSHP) 
        AA = c(AA, as.vector(data$AA)) 
        REL = c(REL, data$REL) 
        RES = append(RES, as.vector(data$RES)) 
    } 
 
    return (data.frame(E20 = E20, 
                       E6 = E6, 
                       FSR = FSR, 
                       #FA = FA, 
                       #FG = FG, 
                       FSHP = FSHP, 
                       AA = AA, 
                       REL = REL, 
                       RES = RES)) 
} 
 
 
############################################################################### 
# Applies the given model the experimental data. Returns the number of REL 
# values where the predicted value matches the actual values. 
# Use the following formula: 
#     Predicted REL >  23 
#     NACCESS REL   >= 20 
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############################################################################### 
apply_model <- function(model, exp_data) { 
    match_count = 0 
    predicted_values = predict(model, exp_data) 
    for (i in 1:length(predicted_values)) { 
        actual_REL = exp_data$REL[i] 
        if (actual_REL >= 20) 
            actual_REL_Binary = 1 
        else 
            actual_REL_Binary = 0 
 
        predicted_REL = predicted_values[i] 
        if (predicted_REL > 23) # 25.2 
            predicted_REL_Binary = 1 
        else 
            predicted_REL_Binary = 0 
 
        if (actual_REL_Binary == predicted_REL_Binary) 
            match_count = match_count + 1 
    } 
    return(match_count) 
} 
 
 
############################################################################### 
# Save the predicted values in a CVS file for each PDB name. 
############################################################################### 
save_predicted_values <- function(i, model, exp_data) { 
    folder_name = paste("predicted_", i, sep="") 
    dir.create(folder_name, showWarnings=FALSE) 
 
    predicted_values = predict(model, exp_data) 
    for (i in 1:length(predicted_values)) { 
        pdb_name = exp_data$RES[i] 
        # remove any white space 
        pdb_name = gsub(" +", "", pdb_name) 
        file_name = paste(folder_name, "/", pdb_name, ".txt", sep="") 
        cat(predicted_values[i], file=file_name, sep="\n", append=TRUE) 
    } 
} 
 
 
############################################################################### 
# Read all the training csv files and setup models based on the data. 
############################################################################### 
args = commandArgs(trailingOnly = TRUE) 
training_data = read_data_from_files(args[1]) 
 
models = list() 
model_names = c() 
models[[1]] = lm(REL ~ E20, training_data) 
model_names[1] = "REL ~ E20" 
models[[2]] = lm(REL ~ E6, training_data) 
model_names[2] = "REL ~ E6" 
models[[3]] = lm(REL ~ FSHP, training_data) 
model_names[3] = "REL ~ FSHP" 
models[[4]] = lm(REL ~ FSHP + as.factor(AA), training_data) 
model_names[4] = "REL ~ FSHP + as.factor(AA)" 
models[[5]] = lm(REL ~ AA, training_data) 
model_names[5] = "REL ~ AA" 
models[[6]] = lm(REL ~ E20 + as.factor(AA), training_data) 
model_names[6] = "REL ~ E20 + as.factor(AA)" 
models[[7]] = lm(REL ~ E6 + as.factor(AA), training_data) 
model_names[7] = "REL ~ E6 + as.factor(AA)" 
models[[8]] = lm(REL ~ E20 + E6 + as.factor(AA), training_data) 
model_names[8] = "REL ~ E20 + E6 + as.factor(AA)" 
models[[9]] = lm(REL ~ E20 + E6, training_data) 
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model_names[9] = "REL ~ E20 + E6" 
models[[10]] = lm(REL ~ E20 + FSR + FSHP + as.factor(AA), training_data) 
model_names[10] = "REL ~ E20 + FSR + FSHP + as.factor(AA)" 
models[[11]]= lm(REL ~ E6 + FSR + FSHP + as.factor(AA), training_data) 
model_names[11] = "REL ~ E6 + FSR + FSHP + as.factor(AA)" 
models[[12]] = lm(REL ~ E20 + E6 + FSR + FSHP + as.factor(AA), training_data) 
model_names[12] = "REL ~ E20 + E6 + FSR + FSHP + as.factor(AA)" 
 
#models[[13]] = lm(REL ~ E20 + FA + FG + FSHP + as.factor(AA), training_data) 
#model_names[13] = "REL ~ E20 + FA + FG + FSHP + as.factor(AA)" 
#models[[14]] = lm(REL ~ E20 + FA + FSHP + as.factor(AA), training_data) 
#model_names[14] = "REL ~ E20 + FA + FSHP + as.factor(AA)" 
#models[[15]] = lm(REL ~ E20 + FG + FSHP + as.factor(AA), training_data) 
#model_names[15] = "REL ~ E20 + FG + FSHP + as.factor(AA)" 
 
#models[[16]]= lm(REL ~ E6 + FA + FG + FSHP + as.factor(AA), training_data) 
#model_names[16] = "REL ~ E6 + FA + FG + FSHP + as.factor(AA)" 
#models[[17]]= lm(REL ~ E6 + FA + FSHP + as.factor(AA), training_data) 
#model_names[17] = "REL ~ E6 + FA + FSHP + as.factor(AA)" 
#models[[18]]= lm(REL ~ E6 + FG + FSHP + as.factor(AA), training_data) 
#model_names[18] = "REL ~ E6 + FG + FSHP + as.factor(AA)" 
 
#models[[19]] = lm(REL ~ E20 + E6 + FA + FG + FSHP + as.factor(AA), training_data) 
#model_names[19] = "REL ~ E20 + E6 + FA + FG + FSHP + as.factor(AA)" 
#models[[20]] = lm(REL ~ E20 + E6 + FA + FSHP + as.factor(AA), training_data) 
#model_names[20] = "REL ~ E20 + E6 + FA + FSHP + as.factor(AA)" 
#models[[21]] = lm(REL ~ E20 + E6 + FG + FSHP + as.factor(AA), training_data) 
#model_names[21] = "REL ~ E20 + E6 + FG + FSHP + as.factor(AA)" 
 
 
 
############################################################################### 
# Read all the experimental CSV files and apply the models. 
############################################################################### 
exp_data = read_data_from_files(args[2]) 
count = c() 
 
i = 1 
for (model in models) { 
    count[i] = apply_model(model, exp_data) 
 
    if (i >= 12) 
        save_predicted_values(i, model, exp_data) 
 
    i = i + 1 
} 
 
 
############################################################################### 
# Print the accuracy 
############################################################################### 
cat("start_accuracy_values\n") 
total_count = length(exp_data$REL) 
for (i in 1:length(model_names)) { 
    cat(i) 
    cat(" ") 
    cat(model_names[i]) 
    cat(" ") 
    cat(count[i] / total_count) 
    cat("\n") 
} 
 
############################################################################### 
# Author: Reecha Nepal 
# Date: August 13, 2012 
# Purpose: This script runs all the other scripts (blast, density, etc..). It 
# creates a CSV file for each protein. 
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# To run this script do the following: 
#    python run_all.py pdb_names.txt 
#    or 
#    python run_all.py 119LA 
# The output files will be created in a directory called "csv". 
# File: run_all.py 
############################################################################### 
 
import os 
import sys 
 
import A_Download_Blast.download_gi_number 
import A_Download_Blast.download_fasta 
import A_Download_Blast.download_blast 
import B_Download_Density.download_mmCIF 
import B_Download_Density.calculate_density 
import C_NACCESS.download_pdb 
import C_NACCESS.run_naccess 
import C_NACCESS.extract_data 
import D_Entropy.extract_data 
import E_Misc.align_tables 
from multiprocessing import Pool 
 
############################################################################### 
# Gets the output path for the given pdb_name. For example, if the PDB name 
# is 1HGXA then the output path would be: 
#     csv/1HGXA.csv 
############################################################################### 
def get_output_path(pdb_name): 
    output_path = os.path.join("csv", pdb_name + ".csv") 
    return output_path 
 
############################################################################### 
# Get a list of pdb names from the a file. 
############################################################################### 
def get_pdb_list(): 
    if len(sys.argv) != 2: 
        print "To run this script do the following:\n" \ 
              "\tpython run_all.py pdb_names.txt\n" \ 
              "\tor python run_all.py 119LA" 
        sys.exit(-1) 
 
    pdb_list = [] 
    if os.path.exists(sys.argv[1]): 
      input_file_handle = open(sys.argv[1], "r") 
      lines = input_file_handle.readlines() 
      for line in lines: 
          pdb_name = line.strip() 
          if len(pdb_name) > 1: 
              pdb_list.append(pdb_name.upper()) 
    else: 
      pdb_list.append(sys.argv[1]) 
    return pdb_list 
 
############################################################################### 
# Gets the path to folder that contains the naccess code. 
############################################################################### 
def get_python_code_path(): 
    script_path = os.path.realpath(__file__) 
    parent_directory = os.path.dirname(script_path) 
    return os.path.dirname(parent_directory) 
 
############################################################################### 
# Runs the main script. 
############################################################################### 
def save_data_to_csv(pdb_name, data, output_path): 
    f = open(output_path, 'w') 
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    f.write('Num,denB,RES,E,E6,FSR,FA,FG,FSHP,EntropyQueryLetter,AA,REL,CATH\n') 
    index = 0 
    for record in data: 
        index = index + 1 
        f.write('%d,' % (index)) 
        f.write('%s,' % record['denB']) 
        f.write('%s,' % pdb_name) 
        f.write('%.3f,' % record['E']) 
        f.write('%.3f,' % record['E6']) 
        f.write('%f,' % record['FSR']) 
        f.write('%f,' % record['FA']) 
        f.write('%f,' % record['FG']) 
        f.write('%f,' % record['FSHP']) 
        f.write('%s,' % record['QueryLetter']) 
        f.write('%s,' % record['AA']) 
        f.write('%s,' % record['REL']) 
        f.write('%s' % record['CATH']) 
        f.write('\n') 
    f.close() 
 
 
############################################################################### 
# Runs the main script. 
############################################################################### 
def run(pdb_name): 
    output_path = get_output_path(pdb_name) 
    if os.path.exists(output_path): 
        return 
 
    A_Download_Blast.download_gi_number.run(pdb_name) 
    A_Download_Blast.download_fasta.run(pdb_name) 
    A_Download_Blast.download_blast.run(pdb_name) 
    B_Download_Density.download_mmCIF.run(pdb_name) 
    B_Download_Density.calculate_density.run(pdb_name) 
    C_NACCESS.download_pdb.run(pdb_name) 
    C_NACCESS.run_naccess.run(pdb_name) 
 
    (density_table, entropy_table) = \ 
        D_Entropy.extract_data.GetEntropyAndDensityValuesForPDB(pdb_name) 
    naccess_table = C_NACCESS.extract_data.GetNaccessValuesForPDB(pdb_name) 
    aligned_table = E_Misc.align_tables.align_tables(density_table, 
                                                     entropy_table, 
                                                     naccess_table) 
    save_data_to_csv(pdb_name, aligned_table, output_path) 
 
############################################################################### 
# The main function, this gets run first when the program is run from the 
# command line. 
############################################################################### 
if __name__ == "__main__": 
    python_code_path = get_python_code_path() 
 
    # put the file in a directory named "csv" 
    if not os.path.exists("csv"): 
        os.makedirs("csv") 
 
    pdb_list = get_pdb_list() 
    pool = Pool(processes=8) 
    pool.map(run, pdb_list) 
    #for pdb in pdb_list: 
    #  print pdb 
    #  run(pdb) 
 
############################################################################### 
# Author: Reecha Nepal 
# Date: February 5, 2012 
# Purpose: This program takes entropy data for multiple residues and for each residue 



 
 

133 
 

# creates a filter matrix. For example, if residue 119LA had entropy data for 
# 124 amino acids then a 124x124 matrix would be saved in matrix/119LA.csv. 
# 
# Required input file for this program: 
#   Brel2Data215.csv 
# To run this program do the following: 
# > R -f tertiary_contact_filter2.R 
# File: tertiary_contact_filter2.R 
############################################################################### 
 
############################################################################### 
# Read the CSV file 
############################################################################### 
 
# replace this with file.choose() to manually choose the CSV file 
file_name = "Brel2Data215.csv"  
csv_data = read.csv(file_name, sep= ",", header =TRUE) 
 
# Save the matrix output to a folder named "matrix" 
dir.create("matrix", showWarnings=FALSE) 
 
############################################################################### 
# For each residue (119LA, 153LA, etc...) compute the filter matrix 
############################################################################### 
residue_list = unique(csv_data$RES) 
for (residue in residue_list) { 
  residue_data = subset(csv_data, RES==residue) 
  AA = residue_data$AA  
  Entropy_20 = residue_data$E 
 
  len = length(AA) 
  m = matrix(nrow=len, ncol=len) 
  for (i in 1:len) { 
    current_entropy = Entropy_20[i] 
    for (j in 1:len) { 
      new_entropy = Entropy_20[j] 
      multiplied_entropy = (current_entropy + new_entropy)/2 
      if (i == j) 
        m[i, j] = "N/A" 
      else if (multiplied_entropy < 1.3025) 
        m[i, j] = 0 
      else 
        m[i, j] = 1 
    } 
  } 
 
  # Add amino acid names as heads (in the first row and first column) 
  header_row = c() 
  for (cur_aa in AA) { 
    header_row = c(header_row, toString(cur_aa)) 
  } 
  m = rbind(header_row, m) 
  # Add one extra item to the column since the size of the matrix is 1 biger 
  header_col = c("", header_row) 
  m = cbind(header_col, m) 
 
  # Save the matrix to a csv file (119LA.csv, etc...) 
  file_name = paste(residue, ".csv", sep="") 
  file_path = file.path("matrix", file_name) 
  write(m, file_path, ncolumns=len + 1, sep=",") 
} 
 
############################################################################### 
# Author: Reecha Nepal 
# Date: May 6, 2012 
# Purpose: This program calculates the relative solvent accessibility (REL) 
# using the following model: 
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#   REL ~ E20 + E6 + FSR + FSHP + as.factor(AA) 
# The coefficient for the above model are caclulated using training data 
# (Brel2Data268.csv). This model is then applied to the experimental data 
# (Brel2Data215.csv) to predict new REL values. 
# 
# The predicted REL values and the actual REL values are then converted to 
# binary using the following forumal: 
#   if (binary_actual_REL >= 20) 
#     binary_actual_REL = 1 
#   else 
#     binary_actual_REL = 0 
# 
#   if (binary_predicted_REL >= 20) 
#     binary_predicted_REL = 1 
#   else 
#     binary_predicted_REL = 0 
# 
# This accuracy of binary_predicted_REL vs binary_actual_REL is then printed. 
# 
# Additonally this program can also apply a tertiary contact filter. See 
# bellow for how the filter works. 
# 
# Required input files for this program: 
#   Brel2Data215.csv 
#   Brel2Data268.csv 
#   matrix/ (output from tertiary_contact_filter2.R) 
# To run this program do the following: 
# > R -f accuracy.R 
# File: accuracy_with_filter_2.R 
############################################################################### 
 
############################################################################### 
# Read the training and experimental data. 
############################################################################### 
# replace this with file.choose() to manually choose the CSV file 
file_name_268 = "Brel2Data268.csv" 
file_name_215 = "Brel2Data215.csv" 
blast_268_data = read.csv(file_name_268, sep = ",", header = TRUE) 
blast_215_data = read.csv(file_name_215, sep = ",", header = TRUE) 
blast_268_data_frame = data.frame(E20 = blast_268_data$E, 
                                  E6 = blast_268_data$E6, 
                                  FSR = blast_268_data$FSR, 
                                  FSHP = blast_268_data$FSHP, 
                                  AA = blast_268_data$AA, 
                                  REL = blast_268_data$REL) 
blast_215_data_frame = data.frame(E20 = blast_215_data$E, 
                                  E6 = blast_215_data$E6, 
                                  FSR = blast_215_data$FSR, 
                                  FSHP = blast_215_data$FSHP, 
                                  AA = blast_215_data$AA, 
                                  REL = blast_215_data$unREL, 
                                  RES = blast_215_data$RES) 
 
############################################################################### 
# Use our model to predict the REL values for the experimental data. 
############################################################################### 
lm_268 = lm(REL ~ E20 + E6 + FSR + FSHP + as.factor(AA), blast_268_data_frame) 
predicted_215_rel = predict(lm_268, blast_215_data_frame) 
 
############################################################################### 
# Map REL values to binary. 
############################################################################### 
binary_actual_REL_215 = c() 
for (rel in blast_215_data_frame$REL) { 
  if (rel >= 20) 
    X2 = 1 
  else 
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    X2 = 0 
  binary_actual_REL_215 = c(binary_actual_REL_215, X2) 
} 
 
binary_predicted_REL_215 = c() 
for (rel in predicted_215_rel) { 
  if (rel > 23) 
    X2 = 1 
  else 
    X2 = 0 
  binary_predicted_REL_215 = c(binary_predicted_REL_215, X2) 
} 
 
############################################################################### 
# Calculate accuracy 
############################################################################### 
match_count = 0 
len = length(binary_actual_REL_215) 
for (i in 1:len) { 
  if (binary_actual_REL_215[i] == binary_predicted_REL_215[i]) { 
    match_count = match_count + 1 
  } 
} 
accuracy = (match_count / len) * 100 
print(accuracy) 
 
############################################################################### 
# Apply the tertiary contact filter. 
############################################################################### 
filtered_values = binary_predicted_REL_215 
residue_list = unique(blast_215_data_frame$RES) 
for (residue in residue_list) { 
  print(paste("Processing matrix: ", residue)) 
  residue_index = 0 
  data_len = length(blast_215_data_frame$RES) 
  for (i in 1:data_len) { 
    if (blast_215_data_frame$RES[i] == residue) { 
      residue_index = i; 
      break; 
    } 
  } 
 
  matrix_file_name = paste(residue, ".csv", sep="") 
  matrix_file_path = file.path("matrix", matrix_file_name) 
  filter_matrix = read.csv(matrix_file_path, sep=",", header=FALSE) 
 
  row_count = length(filter_matrix) 
  col_count = row_count 
 
  for (row in 1:row_count) { 
    for (col in 1:col_count) { 
      distance = 0 
      if (row > col) { 
        distance = row - col 
      } else { 
        distance = col - row 
      } 
 
      if (filter_matrix[row, col] == 1 andand distance > 10) { 
        filtered_values[residue_index + row] = 1 
        filtered_values[residue_index + col] = 1 
      } 
    } 
  } 
} 
 
############################################################################### 
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# Calculate accuracy with the filter applied 
############################################################################### 
match_count = 0 
for (i in 1:len) { 
  if (binary_actual_REL_215[i] == filtered_values[i]) { 
    match_count = match_count + 1 
  } 
} 
accuracy = (match_count / len) * 100 
print(accuracy) 

 
B.   1363 PDB Table 
 
Table B.1: List of 1363 PDB IDs used in the 1363 training data set. 

2VB1A 1KQPA 1R0RI 2R2ZA 1OQVA 1V9YA 2GYQA 1O04A 1UPQA 
2DSXA 1UOWA 1JM1A 2BMOA 1F4PA 1PLCA 3EJVA 2F22A 3SEBA 
1R6JA 3C70A 1K7CA 1FYEA 1G61A 1KKOA 2P8IA 1PZ7A 3C9UA 
2B97A 1PSRA 1H1NA 1NZ0A 2C4BA 1VH5A 1U7IA 2HQXA 1WPUA 
1GCIA 1YQSA 1SU7A 1TU9A 1FCYA 1UTGA 2FTRA 2CJTA 1H41A 
2F01A 3SILA 2EUTA 1QU9A 1XUBA 1EAJA 2J5YA 1E6UA 1UUQA 
1G6XA 1FSGA 1U07A 1QW9A 1K3YA 2IYVA 1ODZA 1JBOA 1OF8A 
1MUWA 1R2QA 1P6OA 2A26A 2PRVA 2FS6A 2J73A 2GDGA 1HD2A 
1DY5A 1RQWA 2UUYA 2IFQA 1OX0A 1WDDA 1EZGA 1Z72A 1OCYA 
1G66A 1LQTA 2V7FA 1I24A 1WPNA 1WDDS 1M1FA 1FM0D 1OFZA 
1IX9A 1M2DA 1I8OA 1O7IA 1LQ9A 2PHNA 1Q5YA 1WL8A 3BI1A 
1VYRA 1EUWA 1VZIA 1V8HA 1NXMA 1U9CA 2HIYA 1W1HA 1ZKPA 
2BW4A 2AXWA 1I4UA 1LC0A 1J2RA 2FXUA 256BA 1KW3B 2O02A 
1OEWA 1KJQA 1XODA 1MJUL 2F69A 1WZDA 2ACFA 1Q0RA 2OPLA 
1N9BA 1PMHX 1H4AX 1W7CA 1FLMA 2PIEA 2IVYA 2O9CA 2FNUA 
2PVBA 2C9VA 2D8DA 1OI7A 1R0MA 1P4CA 2HOXA 2HEWF 1LV7A 
2PPNA 1XJUA 1M1NB 1WMAA 2I6CA 1PZ4A 2UX9A 2GLZA 1KM4A 
2FDNA 1JBEA 1M1NA 1USCA 1SG4A 1UZKA 1L6RA 1ABAA 1VL7A 
1NLSA 1UWCA 1HBNA 1M4LA 1KMTA 1PINA 1YE8A 1XD3A 1J8UA 
2GUDA 1W23A 1HBNB 1RWHA 2NR7A 3BUXB 1K3IA 1XD3B 1P3CA 
7A3HA 1DS1A 1HBNC 1GNLA 2Q9OA 1IJYA 1KS8A 1GVDA 2PBDP 
1RTQA 1K5NA 1H4XA 3CHBD 2GF3A 1KUFA 1M55A 1OS6A 1M7JA 
1NKIA 1QLWA 1X9IA 2HBAA 1RYAA 2AKZA 1UQ5A 1JI7A 1DJ0A 
2Z6WA 1N62B 1C9OA 1K3XA 1JNDA 1RHSA 2GMNA 1DI6A 2HSJA 
1AHOA 1N62C 1KQ6A 1EAQA 2NLVA 1VIMA 1Y8AA 2CVDA 1X82A 
1XG0C 1N62A 1UWKA 1OOHA 3BBBA 1JO0A 2QFAA 1HZTA 2BT6A 
1XG0A 1ZL0A 2CS7A 1MF7A 1O8XA 1F1EA 1EW4A 1W5RA 2J2JA 
2NMZA 1ITXA 1WRIA 2C60A 3D32A 3CJSB 1UWWA 1THFD 2F62A 
1IXHA 1I40A 1MJ4A 2B82A 1HYOA 3CJSA 1JUBA 1IDPA 1O9GA 
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1MWQA 2V9VA 1VR7A 2FVVA 1ES9A 1GVEA 1T7RA 1IO0A 2IMJA 
1P1XA 2V89A 1WM3A 2QJZA 2FCJA 1RYQA 2C78A 1V4PA 1KQ3A 
1JFBA 2BHUA 1XDNA 2TPSA 1I0DA 1JKVA 1PFBA 1URSA 1ISUA 
1O7JA 1G8TA 1KG2A 1C1DA 1HDHA 2BFDA 2TNFA 2RL8A 2BRJA 
1GA6A 1SBYA 2BLNA 2G3RA 1UCDA 2BFDB 1NYCA 1VE1A 2J8KA 
1Q6ZA 1Z2UA 1UCRA 2GOMA 1V70A 1N8VA 2OHWA 1VMGA 2Z3GA 
2RBKA 2ABSA 1Q6OA 1O8BA 2GECA 1I1JA 1PWBA 1HNJA 1XRKA 
2JHFA 1LS1A 2VPAA 1QAUA 1VDWA 1SJYA 1GP0A 1QREA 1CRUA 
2IIMA 1CTJA 1NWWA 1RDQE 2PV2A 1WB4A 1NG6A 1G3PA 2A35A 
1NQJA 1BKRA 2IJ2A 1GXUA 1VD6A 2G84A 1ES5A 2R8OA 2PYQA 
1OAIA 1T2DA 1W6SA 2J8WA 1JL1A 2ODKA 1FP2A 1JU2A 2IBAA 
1C7KA 1UZ3A 1W6SB 1GKPA 1GXMA 2G7SA 2POFA 1O4YA 2FOMB 
1CXQA 1RG8A 2DLBA 2AEBA 1E7LA 1K0MA 1XSZA 1VM9A 3ER7A 
1JR8A 1F0LA 2F1KA 1HFES	   1WQJB	   2JE6I	   2AALA	   1VJOA	   1PFVA	  

1IRQA 1SMBA 2F6UA 2EZ9A	   1WQJI	   1Y1PA	   2D29A	   2JE8A	   1V58A	  

1CIPA 2ZKDA	   2HX0A 1MXGA	   1V2BA	   1RYLA	   1VKFA	   2A9DA	   1WO8A	  

1NTVA 1PTFA	   2V33A	   3ETJA	   1G8QA	   1JKXA	   2QEEA	   2GDMA	   1B2PA	  

1SX5A 1Y7BA	   2NMLA	   2GUIA	   1B5EA	   1I58A	   1HX6A	   2OD4A	   3BYPA	  

1JX6A 2FHPA	   1MG7A	   1K92A	   1IU8A	   1N08A	   2EX0A	   2NXFA	   1YDYA	  

1JYKA 2D5JA	   1IX2A	   2PY5A	   1LQVA	   1XPPA	   1Y7TA	   1EEXA	   1XSVA	  

1FL0A 1RKIA	   1JKEA	   1U8VA	   1J1NA	   1KAFA	   1OK7A	   1EEXB	   1RXQA	  

1Y5HA 2FL4A	   2HHVA	   1S1DA	   1QGIA	   1YD9A	   2EV0A	   1EEXG	   1BUPA	  

1GMUA 1W0PA	   1A62A	   2VLQB	   1WS8A	   1M4JA	   2DEKA	   2ONFA	   1NVMB	  

2INWA 2G5RA	   1UGIA	   2VLQA	   1YXYA	   1U60A	   1UEBA	   2RLDA	   1DC1A	  

1V2XA 3DMCA	   1OQJA	   1D3GA	   1T9IA	   1XKGA	   1VHQA	   2ID3A	   1XCRA	  

1QS1A 2FHFA	   1BI5A	   1TJOA	   3C8WA	   2QFKA	   1GXRA	   1VCLA	   1OGQA	  

1NLQA 2FMPA	   2V3ZA	   1P0ZA	   1QMGA	   2ZKMX	   1VI0A	   1JHDA	   2FA1A	  

1OMRA 1FDRA	   1VKEA	   2ITEA	   1YT3A	   2CJ4A	   1UFIA	   2R85A	   1QD1A	  

1C4OA 1OQ1A	   1SXRA	   2BZ6L	   1E2WA	   1E5PA	   1FXOA	   1YOCA	   1H03P	  

3BEXA 1DMHA	   2AFWA	   1F74A	   2IU5A	   2ICTA	   1VPMA	   1U5DA	   1G3MA	  

2OOCA 1S5UA	   2BKFA	   1T92A	   1PE9A	   2FBNA	   1GZGA	   1WDVA	   1HZ6A	  

1C4QA 1T1JA	   2F9HA	   1T4BA	   2BDRA	   1PU6A	   1L3LA	   1P3DA	   1RH6A	  

2FSRA 1NKRA	   1JOVA	   1X7DA	   1J2JA	   1G8KA	   2AJ7A	   1D1QA	   1DUVG	  

2JFGA 1NSZA	   2GUYA	   1S95A	   1WLZA	   3ELGA	   1N1JA	   2IDLA	   2DUCA	  

1QQ5A 2O62A	   2IA1A	   2NW8A	   1ZKEA	   1YLLA	   2R7GA	   2BKYA	   2NUGA	  

1W7BA 2I6HA	   1VIOA	   1FIUA	   1J2JB	   1VPDA	   1UD9A	   1GU7A	   1T82A	  

2R1JL 2J9UA	   1K7IA	   1TQJA	   1GY7A	   1DWKA	   1TH7A	   2AVDA	   1IGQA	  

1L2HA 2J9UB	   2NNUA	   1Y0UA	   1RFYA	   2G50A	   1JP4A	   1P1JA	   3BOFA	  

1VHWA 1GXJA	   1CCWB	   1T0AA	   1T1VA	   1W2YA	   2I8DA	   1OOYA	   1UV7A	  
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2B5AA 1WMXA	   1CCWA	   1X6OA	   2CPGA	   1IM5A	   1JY1A	   2EG6A	   1SGWA	  

2GHSA 1G73A	   2OKFA	   1OW4A	   1O26A	   2G82A	   2HFTA	   1JW9B	   1VFJA	  

1SFXA 1JC4A	   1LQAA	   1KQFA	   1M7YA	   1O54A	   2QIYC	   2IGIA	   1DQGA	  

2F71A 1DQTA	   1T9HA	   2P0SA	   2F23A	   2P97A	   3BYQA	   1QXMA	   1P99A	  

2BEMA 1X0PA	   2APJA	   1JNRA	   1WC9A	   3CLSD	   1T0BA	   2DVTA	   1V9FA	  

1WBHA 2PI2A	   2I0KA	   1ELWA	   2V5ZA	   3CLSC	   1YKIA	   1D02A	   1KZQA	  

1W6GA 1TJLA	   2BO9B	   1L9XA	   1JHJA	   1QSAA	   2I5IA	   2VAPA	   1XKPA	  

1MV8A 2PI2E	   2CL5A	   2J43A	   2OY9A	   2IMLA	   2CCHB	   1MTYD	   1P5VA	  

2FP1A 1H3FA	   1VKIA	   1UKKA	   1OU8A	   1KOLA	   1TXGA	   1MTYB	   2OX6A	  

1EJDA 1YOZA	   2OMZA	   1AOPA	   1IT2A	   1NNHA	   2B8MA	   2CB2A	   1ZMTA	  

2ELCA 1F2LA	   2OMZB	   1V7ZA	   2B9DA	   1S99A	   1Q8FA	   1MTYG	   1K94A	  
1VLPA	   2OX7A	   2NP5A	   2FBHA	   2A1HA	   1Q33A	   1T15A	   2JDIA	   1CB8A	  
2I74A	   2GIYA	   1TDZA	   1OB8A	   1A73A	   2QJ2A	   3ENBA	   2JDID	   1UHGA	  
2F1FA	   2BS2A	   1Y0BA	   1Q9UA	   1I4JA	   1GQEA	   1U7KA	   1Q0QA	   1T06A	  
1KPTA	   2BS2C	   1BEBA	   3ERJA	   1PVGA	   2JI7A	   2B3YA	   1CHMA	   2PF5A	  
1JAKA	   2BS2B	   2IT9A	   1ORUA	   1V4VA	   1B65A	   1CQ3A	   2JDIG	   1FL2A	  
2FPWA	   1X74A	   1N7HA	   2VO9A	   1Q0PA	   1RY9A	   1VCTA	   2JDIH	   1M6YA	  
1CV8A	   2NT0A	   1CMCA	   2O70A	   1KXOA	   1WURA	   2H62A	   1QB5D	   1YQGA	  
2O3FA	   2PBLA	   1FNLA	   1QWRA	   2B8UA	   1H8PA	   2CWZA	   2JDII	   1AYOA	  
1PG4A	   1O5KA	   1WEHA	   2PNXA	   1UUZA	   1VLRA	   1J75A	   1UYPA	   1OBBA	  
1PM4A	   1VK8A	   2C2IA	   2GDQA	   1K6KA	   1H7EA	   2QMMA	   2ZQNA	   1LR5A	  
1ZARA	   2NACA	   1VC4A	   1M6SA	   1IQ4A	   1O5UA	   1EYQA	   1UNNC	   2PEQA	  
1K75A	   1VMEA	   1JIDA	   1F1MA	   1FPOA	   1TX2A	   2CXKA	   1REGX	   1G3KA	  
1UUJA	   2AC0A	   2OOKA	   1V54A	   1IG0A	   3E5UA	   2PD1A	   1VQ3A	   2FA8A	  
1NBCA	   1M3UA	   1IIBA	   1UXYA	   1FS1B	   1O69A	   1ZPDA	   1YARO	   1OTFA	  
1GTFA	   1NARA	   1C3DA	   1V54C	   1G8EA	   2DYJA	   1JB7A	   1YARA	   1VBKA	  
1NE7A	   1XFFA	   1SW5A	   1V54B	   1KU3A	   1JR2A	   1TZZA	   2I9AA	   1J9JA	  
1YRBA	   2CX1A	   1NZYA	   1VCAA	   1FS1A	   1SS4A	   2FZPA	   1XEDA	   1AGQA	  
1TVXA	   1LBUA	   1VYBA	   1V54D	   1NKPA	   1SGJA	   2A2MA	   1Q08A	   1BXYA	  
2EX4A	   2RGQA	   2FURA	   1V54E	   2FMMA	   1VKHA	   2PQRA	   2FREA	   3CPTA	  
2NPTA	   1TR0A	   2AG4A	   1V54F	   2ZD1B	   2OTMA	   2PQRC	   3ECFA	   3CPTB	  
2FUEA	   1ZLQA	   1BDOA	   1V54G	   2NS9A	   1WVEA	   2IGTA	   2NR5A	   2NYCA	  
1DQNA	   1LSTA	   1A3AA	   1V54H	   2CYYA	   2OU3A	   2GIAA	   1YT8A	   1U6ZA	  
1VH4A	   2Q03A	   2I9XA	   1V54I	   2R7DA	   1B25A	   1V3EA	   1LUAA	   1F0XA	  
1WWZA	   1FN9A	   1A9XA	   1V54J	   1RWZA	   2VZSA	   1M2TB	   1O91A	   1STMA	  
1NRZA	   1YX1A	   1OWLA	   1V54K	   1WZ3A	   2CWYA	   1VKCA	   2DSYA	   1M0DA	  
1GO3F	   1RQPA	   1A9XB	   1V54L	   2Z1CA	   2CHOA	   1JFRA	   2A6CA	   1CI4A	  
1XE7A	   2H1TA	   1DUSA	   1V54M	   1WZ8A	   2CB5A	   1OAOC	   1U94A	   3BDUA	  
1JLVA	   1MGTA	   1JH6A	   1WDYA	   1L8BA	   1K8WA	   1OJXA	   2FEFA	   1G291	  
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1XKRA	   1YTLA	   1YKSA	   1LM5A	   1CS6A	   1TUHA	   1YQ2A	   1QMYA	   2GAUA	  
1L1LA	   1VLAA	   1H4RA	   1UDZA	   1Y9IA	   2IEAA	   1IOWA	   1U7PA	   1Y7PA	  
2P3PA	   1GUQA	   1WLGA	   1LB6A	   1V2ZA	   1EX2A	   2MNRA	   1TZYC	   1AMUA	  
3BWUF	   1ATZA	   1RWIA	   2SPCA	   1RKXA	   2H7XA	   1J0HA	   1TZYA	   1B63A	  
3BWUD	   2O9AA	   1WOQA	   1NU4A	   1SQDA	   1LWDA	   1ZQ9A	   1TZYB	   1XIWA	  
2GMQA	   2HQYA	   1UJ2A	   1W2FA	   1LUZA	   2OD6A	   1SZOA	   1TZYD	   1F00I	  
1YNBA	   1MR7A	   1XTTA	   1K0IA	   1H8UA	   1V82A	   2CWQA	   2ODFA	   1IWMA	  
1U9KA	   2I02A	   1QNAA	   1N97A	   1X8DA	   1SSQA	   2CH5A	   1S4KA	   2FF4A	  
1R7AA	   3BB9A	   1FXLA	   2H26A	   1VQQA	   2AUWA	   1V0EA	   1ZPVA	   2ZGYA	  
3BSWA	   1C3CA	   1MPGA	   3PROA	   1VHSA	   1EXTA	   1ON3A	   1A8LA	   1NNWA	  
1U55A	   1RYIA	   1W96A	   3PROC	   2GAXA	   2Z3QA	   1PL3A	   2NZWA	   1JYSA	  
1X7VA	   1VKNA	   1TENA	   2G5FA	   2GU2A	   2Z3QB	   2OKUA	   1CEOA	   1DZFA	  
1Z6OA	   1TXOA	   1W85I	   1HRUA	   1WIWA	   1VCHA	   2BPTA	   1DEKA	   1MZGA	  
1Z6OM	   1KHYA	   1PPRM	   1I36A	   1ROWA	   2OGQA	   2SQCA	   1N2ZA	   1U5UA	  
2GF6A	   1JGTA	   1SACA	   1UANA	   1TYZA	   1XHNA	   2IHTA	   1WDJA	   1EL6A	  
2RDEA	   1YNHA	   1Z2WA	   1W07A	   1Q2YA	   2BO4A	   2NUJA	   1KXGA	   1SD4A	  
1ZELA	   1T6SA	   1RFXA	   3C10A	   1UC8A	   1I7QA	   2EBNA	   1ITUA	   1KNQA	  
1WC1A	   2APOB	   2SCPA	   2IB0A	   2CU6A	   2F2HA	   1YRRA	   1XV2A	   1H2VC	  
1EKJA	   1M1HA	   1SR4A	   2PULA	   2ES9A	   1PN2A	   2PV7A	   1AOCA	   1D2OA	  
1KWAA	   2I5NM	   2FNOA	   1VC1A	   1TE5A	   1G5HA	   2FEAA	   1S1QA	   1OEYJ	  
1DAAA	   1M5WA	   2PIAA	   1TKIA	   1K32A	   1PUCA	   3CNVA	   1RLJA	   1OEYA	  
1JZTA	   2D7VA	   1NBAA	   1CSNA	   1SGMA	   2P5MA	   3CW9A	   1OFDA	   1G3QA	  
1T6NA	   1JBSA	   3DCXA	   1MBMA	   1L2WA	   2AEEA	   1DQAA	   1SZWA	   1EKEA	  
1SVMA	   1VQZA	   1EX0A	   1XIZA	   1L2WI	   1ITWA	   2OAFA	   1OTKA	   2HKUA	  
2PSPA	   2HLJA	   1V6ZA	   1Q4GA	   1S12A	   1JRLA	   1FP3A	   2OWPA	   1XVHA	  
1Q7FA	   1VLFM	   2D0OA	   1GL4A	   1RIFA	   1J5WA	   1SR9A	   1COZA	   1D3BB	  
1GVNA	   1VLFN	   1DP4A	   1B9HA	   1R7LA	   1OGDA	   2HKJA	   1D3YA	   2FKZA	  
2O34A	   2IFXA	   1HBKA	   1YVIA	   2FNAA	   1OR7C	   1FC3A	   1E8CA	   1U5KA	  
1SA3A	   1F61A	   1P42A	   1HE1A	   1R0VA	   1W94A	   2LIGA	   2BM5A	   1OR7A	  
2FIUA	   2HEKA	   2CZVA	   1U9LA	   2I7NA	   1I0RA 1J3WA 3E9VA	   	  	  
2ARCA 1NN5A 2CZVC	   1D2TA	   1RYP2	   1D7PM 2OFYA	   1GTTA	   1F5NA	  

2CYJA 2HQSA 1S14A	   1F0KA	   1RYP1	   1PX5A	   1ZPSA	   1VP6A	   1F3UB	  

1V5IB 2HQSC 2I9FA	   1E3OC	   1RYPL	   1Z4RA	   1MVEA	   1R1TA	   1F3UA	  

1BTEA 1PVMA 1G7SA	   2FBLA	   1RYPJ	   1NQUA	   1OA8A	   2HAZA	   1VR9A	  

1GUTA 2O6PA 1UQTA	   1I7NA	   1RYPK	   3BLZA	   2AEUA	   1V71A	   1SG6A	  

1M6KA 2PA7A 1ZC3B	   1OISA	   1Q2HA	   1T0TV	   2B5GA	   1MK4A	   2BBKH	  

2ZDPA 1V5VA 1O75A	   1SEIA	   2BF5A	   3B5EA	   1JX4A	   1UPTB	   2BBKL	  

1FJ2A 1SH8A 1UW4B	   1ETXA	   1GUDA	   1JYOA	   1EZ3A	   2DSTA	   1ELKA 
2O1QA 1EJ0A 1TU1A	   1J5PA	   1GXYA	   1JYOE	   3CX5I	   2GA1A	   1V6SA 
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1MLAA 1F46A 1UW4A	   1R0DA	   1D0QA	   1YG6A	   3CX5C	   3CX5B	   1G2QA 
2BAYA 1A4IA 1RQJA	   1K3SA	   1JMKC	   1C8UA	   1R5LA 3CX5D	   1PUFB	  

2BMWA 1INLA 1VI6A	   2V94A	   2PBKA	   2GSVA	   2ZGWA 3CX5F	   1N2AA	  

2I53A 1H32A 1RKTA	   1SQWA	   1ZRUA	   1C7NA	   2H6FB 3CX5G	   1EERB	  

1L7AA 1CS1A 2NZCA	   1Y60A	   2F1NA	   1Q8RA	   2H6FA 3CX5H	   3CX5A	  

2ASBA 1DQZA 2QWXA 1DFMA 	  	   	  	   	  	   	  	   	  	  
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