
San Jose State University
SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research

Spring 2013

Application of Query-Based Qualitative
Descriptors in Conjunction with Protein Sequence
Homology for Prediction of Residue Solvent
Accessibility
Reecha Nepal
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for
inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

Recommended Citation
Nepal, Reecha, "Application of Query-Based Qualitative Descriptors in Conjunction with Protein Sequence Homology for Prediction
of Residue Solvent Accessibility" (2013). Master's Theses. 4299.
DOI: https://doi.org/10.31979/etd.em6c-qn2b
https://scholarworks.sjsu.edu/etd_theses/4299

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F4299&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F4299&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F4299&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F4299&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/4299?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F4299&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

APPLICATION OF QUERY-BASED QUALITATIVE DESCRIPTORS IN
CONJUNCTION WITH PROTEIN SEQUENCE HOMOLOGY FOR

PREDICTION OF RESIDUE SOLVENT ACCESSIBILITY

A Thesis

 Presented to

The Faculty of the Department of Chemistry

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Reecha Nepal

May 2013

© 2013

Reecha Nepal

ALL RIGHTS RESERVED

The Designated Thesis Committee Approves the Thesis Titled

APPLICATION OF QUERY-BASED QUALITATIVE DESCRIPTORS IN

CONJUNCTION WITH PROTEIN SEQUENCE HOMOLOGY FOR
PREDICTION OF RESIDUE SOLVENT ACCESSIBILITY

by

Reecha Nepal

APPROVED FOR THE DEPARTMENT OF CHEMISTRY

SAN JOSE STATE UNIVERSITY

May 2013

Dr. Brooke Lustig Department of Chemistry

Dr. Daryl K. Eggers Department of Chemistry

Dr. Marc d’Alarcao Department of Chemistry

ABSTRACT

APPLICATION OF QUERY-BASED QUALITATIVE DESCRIPTORS IN
CONJUNCTION WITH PROTEIN SEQUENCE HOMOLOGY FOR

PREDICTION OF RESIDUE SOLVENT ACCESSIBILITY

by Reecha Nepal

Characterization of relative solvent accessibility (RSA) plays a major role in

classifying a given protein residue as being on the surface or buried. This information is

useful for studying protein structure and protein-protein interactions, and it is usually the

first approach applied in the prediction of 3-dimensional (3D) protein structures.

 Various complicated and time-consuming methods, such as machine learning,

have been applied in solvent-accessibility predictions. In this thesis, we presented a

simple application of linear regression methods using various sequence homology values

for each residue as well as query residue qualitative predictors corresponding to each of

the 20 amino acids. Initially, a fit was generated by applying linear regression to training

sets with a variety of sequence homology parameters, including various sequence

entropies and residue qualitative predictors. Then the coefficients generated via the

training sets were applied to the test set, and, subsequently, the predicted RSA values

were extracted for the test set. The qualitative predictors describe the actual query

residue type (e.g., Gly) as opposed to the measures of sequence homology for the aligned

subject residues. The prediction accuracies were calculated by comparing the predicted

RSA values with NACCESS RSA (derived from X-ray crystallography). The utilization

of qualitative predictors yielded significant prediction accuracy.

v

ACKNOWLEDGEMENT

 First of all, I would like to express my gratitude towards my research advisor,

Dr. Brooke Lustig, for guiding me through all of this work. I would like to thank

him for his patience, the amount of time he spent with me, and all the opportunities

he provided me. I will forever be thankful for his encouragement and his positive

attitude when things were not working as expected. I would also like to thank my

M. S. thesis committee members, Dr. Daryl Eggers and Dr. Marc d’Alarcao, first for

agreeing to be in my committee. Second, for spending time in reading and providing

valuable feedback on my thesis. I would also like to thank my parents and my

brother for their unshakable believe in me. Finally, I would like to extend my

heartfelt gratitude towards my husband, Sailesh Agrawal, without whose help,

support and encouragement this work would not have been possible.

vi

CONTENTS

List of Abbreviations ... viii	
List of Figures ... ix	
List of Tables .. xi	

1.	 Introduction ... 1	
1.1	 Protein Structure Prediction Methods ... 1	

1.1.1	 Experimental Approaches ... 2	

1.1.2	 First Approaches in Protein Structure Determination .. 3	

1.2	 Sequence Entropy ... 5	
1.3	 Overview .. 7	
1.4	 Organization of the Thesis ... 8	

2.	 Methods .. 9	
2.1	 Protein Sets and Preparations ... 9	
2.2	 Residue Packing Density .. 13	
2.3	 Sequence Variability .. 14	
2.4	 Homology-Based Parameters .. 15	
2.5	 RSA Calculations .. 16	
2.6	 Determination of Qualitative Predictors .. 17	
2.7	 PSI-BLAST Calculations ... 19	
2.8	 Accuracy Calculations .. 22	
2.9	 Aggregate Analysis and Correlation Plots ... 23	
2.10	 Frequency Distributions .. 23	
2.11	 Assimilation of Additional Methods to Improve Accuracy 24	

2.11.1	 Incorporation of Tertiary Protein Structure Information .. 24	

2.11.2	 Additional Models Applied .. 26	

2.11.3	 Incorporation of a Categorized Protein Data Set .. 27	

3.	 Results .. 29	
3.1	 Characterization of Protein Lists .. 29	
3.2	 Accuracy of Results .. 53	
3.3	 Outcome of Additional Methods to Improve Prediction Accuracy 57	

3.3.1	 Outcome of Additional Models Applied .. 57	

3.3.2	 Outcome of Categorized Protein Data Set .. 58	

3.3.3	 Use of All 618 PDB IDs as Training and 215 as Test .. 60	

vii

3.4	 Incorporation of the Categories to the Existing Data Sets 62	

4.	 Discussion .. 72	
4.1	 Prediction of RSA ... 72	

5.	 Future Studies ... 79	

6.	 Conclusions .. 80	
Bibliography .. 82	
Appendices ... 86	
A. Program Listings .. 86	
B. 1363 PDB Table .. 136	

viii

List of Abbreviations

Abbreviations Full Form
PDB Protein Data Bank
FSR Fraction Small Residues
FSHP Fraction Strongly Hydrophobic
NSHP Non-Strongly Hydrophobic
FA Fraction Alanine
FG Fraction Glycine
E6 6-point Sequence Entropy
E20 20 term Sequence Entropy
RSA Relative Solvent Accessibility
PB Protein Binding

ix

List of Figures

Figure 2.1 Flowchart of steps involved in the generation of the 1363
training data set based on the list of proteins from Bondugula et al. (2011). 12	

Figure 2.2. Sample regression fit for 73,734 query residues from the
268 training data set. ... 20	

Figure 2.3: Sample regression fit for 319,551 query residues from the
1363 training data set. ... 21	

Figure 3.1. Frequency distributions for the characterization of the 268
learning set list of proteins. ... 31	

Figure 3.2. Frequency distributions for the characterization of the 1363
learning set list of proteins. ... 33	

Figure 3.3. Frequency distributions of entropies and homology-based
parameters of the 268 training set list of proteins. .. 36	

Figure 3.4. Frequency distributions of entropies and homology-based
parameters of the 268 data set for the two major regions, Region I and Region II. 38	

Figure 3.5. Frequency distributions for entropies and homology-based
parameters of the 1363 learning set list of proteins. ... 40	

Figure 3.6. Frequency distributions of entropies and homology-based
parameters of the 1363 training data set for the two major regions, Region
I and Region II. ... 41	

Figure 3.7. Frequency distribution of NACCESS RSA values for various
 RSA ranges for the 268 training data set. .. 42	

Figure 3.8. Frequency distribution of RSA values for various RSA ranges
for the 1363 training data set. ... 43	

Figure 3.9. Frequency distribution comparison of NACCESS RSA values
and predicted RSA values for the 215 test set using the 268 training set. 44	

Figure 3.10. Frequency distribution comparison of NACCESS RSA values
and predicted RSA values for the 215 test set using the 1363 training set. 46	

Figure 3.11. Comparison of combined aggregate correlation plots of
sequence entropy and other homology-based parameters for the 268 training set. 48	

x

Figure 3.12. Combined aggregate correlation plots of sequence entropy
 and other homology-based parameters for the 1363 training set. 49	

Figure 3.13. Density—relative surface accessibility comparison for the
268 training set. ... 51	

Figure 3.14. Density—relative surface accessibility comparison for the
1363 training set. ... 52	

xi

List of Tables

Table 3.1: Comparison of regression accuracy using manually generated
BLAST output calculation and automatically generated BLAST output calculations. 55	

Table 3.2: Summary of regression accuracy for the 12 models tested. 56	

Table 3.3: Regression accuracy table for additional models applied. 58	

Table 3.4: Protein binding category PDB ID matches between the 618
Hotpatch protein PDB IDs (Petit et al., 2007) and the 268 and 1363 training
sets and 215 test set. .. 59	

Table 3.5: Regression accuracy table for protein binding model. 60	

Table 3.6: Description of 618 PDB IDs as training and 215 PDB IDs
as test regression analysis calculations. .. 61	

Table 3.7: Regression accuracy table of PDB IDs of the four groups: 1. generic
2. protein binding 3. oligomers 4. and generic without PB and Oligomers used
in the regression analysis. ... 62	

Table 3.8: PDB ID matches between the 618 data set with three data sets
(215, 268, and 1363) for the protein binding and oligomer categories. 65	

Table 3.9: PDB ID matches between the 618 data set with three data sets
(215, 268, 1363) between all categories. .. 66	

Table 3.10: PDB ID matches between the 618 data set and the three data
sets (215, 268, and 1363) between all categories without the protein binding
and oligomer matches. .. 67	

Table 3.11: Regression accuracy for generic category using common PDB
IDs between the 618 data set and the 215, 268, and 1363 data sets for the
two regression models. .. 68	

Table 3.12: Regression accuracy for the protein binding category using
common PDB IDs between the 618 data set and the 215, 268, and 1363
data sets for the two regression models. ... 69	

Table 3.13: Regression accuracy for the oligomer category using common
PDB IDs between the 618 data sets and the 215, 268, and 1363 data sets
for the two regression models. .. 70	

xii

Table 3.14: Regression accuracy for generic category excluding protein
binding and oligomer categories using common PDB IDs between the 618
data sets with 215, 268 and 1363 data sets for the two regression models. 71

1

1. Introduction

Proteins, polymers of 20 amino acids, are biological macromolecules essential to

life that have a variety of functions within each cell. Proteins serve both mechanical

(actin in muscle that aids in mobility) and structural (involved in system of scaffolding in

cell to maintain shape) functions. Many proteins are enzymes that are involved in vital

biochemical processes such as metabolism. In addition to these roles, proteins are also

involved in cell signaling, immune responses, cell adhesion, and cell cycle.

1.1 Protein Structure Prediction Methods

Protein structure is directly related to protein function. The study of protein

structure and function could provide much-needed insight in the role of proteins in vivo.

Knowledge of protein structure is fundamental for uncovering mechanisms of actions for

various protein functions, exploring protein-protein interaction, predicting protein

hydration sites, and characterizing hydrophobic clusters in proteins. Furthermore,

structure explorations could facilitate the discovery and development of various drugs, so

as to aid in the discovery of solutions to different protein malfunction and protein absence

disorders in humans. Protein structure and functions are studied both experimentally and

computationally.

2

1.1.1 Experimental Approaches

Protein structure determinations have usually involved expensive and time-

consuming methods such as X-ray diffraction analysis, immunohistochemistry, site-

directed mutagenesis, chromatography, and nuclear magnetic resonance (NMR).

Processes such as these provide high-quality 3D protein structure determinations with

precise accuracy and sensitivity. However these processes can be extremely expensive

and time consuming. As a result, the corresponding 3D structures of the majority of

proteins have not yet been characterized. In addition, because there can be significant

difficulty in characterizing protein structures via X-ray, there is a desire for protein

prediction using sequence and/or sequence homology (Dale et al., 2003).

Historically, a vast majority of proteins in the Protein Data Bank (PDB) are

determined via X-ray (82%) with NMR being utilized for most of the remaining

structures (Berman et al., 2000). The success rate of a high-resolution 3D protein

structure analysis is very low, with only 2–10% of protein targets resulting in high-

resolution protein structures (Mizianty and Kurgan, 2011). In order to deduce the correct

3D structure of a protein, it is essential to have a high-resolution crystal structure of the

protein. Protein crystal formation is an active field of biological science, and much work

is required before the low yield of protein crystallization can be improved. Moreover,

there are certain groups of proteins, such as some membrane ribosomal proteins, for

which crystal structure deduction is problematic (Gluehmann et al., 2001; Mizianty and

Kurgan, 2011). Often these difficulties result from the production of diffraction-quality

crystals (Chayen and Saridakis, 2008). The target protein crystallization process can be

3

expensive and time consuming because it involves trial and error until the best-quality

crystal is obtained.

Interestingly, the use of computational methods in protein crystallization

determination can aid in directing the most efficient use of resources in the current

coordinated effort to determine high-resolution 3D structures for the whole proteome.

One of the primary examples of this is the establishment of the Protein Structure

Initiative (PSI), whose main goal is to determine 3D structures of proteins on a large

scale (Berman, 2008). This has also greatly improved success rates of structural

methods (Graebsch et al., 2010; Savchenko et al., 2003). One offshoot of X-ray structure

determination involves a special class of computational modeling that is sometimes

referred to as protein homology modeling.

Here, homology involves aligning 2 or more sequences of a known X-ray

structure, essentially “stitching” them together, and subsequently optimizing the resulting

form. One such homology-modeling program is called MODELLER (Eswar et al.,

2006). It implements a process similar to that of 2D NMR called spatial restraints. In

this process, a set of geometrical constraints is used to create a probability density

function for the location of each atom in the protein.

1.1.2 First Approaches in Protein Structure Determination

Bioinformatics largely involves the characterization of protein structure and

function, but it is not necessarily involved in the difficult task of detailed protein structure

determination. There is a vast amount of protein sequence data available, and screening

4

these sequences would be greatly beneficial in terms of characterizing protein

function (Panchenko et al., 2005).

Water plays a major role in biological function. The ability to correctly predict

solvent accessibility from a protein sequence could be very useful in characterizing

protein interaction and function as well as guiding protein modification and design. The

results of the characterization of solvent-accessible surfaces are useful in many protein

design and structural biology applications (Petrova and Wu, 2006; Pettit et al., 2007).

This includes identification of catalytic and other key functional residues including those

found on protein surfaces. This of course augments the restricted number of proteins

with extensive 3D structures determined from X-ray and NMR. In addition, solvent-

accessible surface prediction has garnered attention for its usefulness in the

characterization of protein-protein interactions (Porollo et al., 2007). Furthermore, the

characterization of solvent-accessible surface has been a standard first approach in

determining protein structure. The ability to predict solvent accessibility of a given

residue would yield great benefits.

Using the primary amino acid sequence to predict surface-accessible residues has

been a standard first approach in structural biology’s pursuit to model 3D protein

structures. Solving this problem has been of great interest as a testing platform for a

variety of machine-learning methods. Protein characterization from sequence data can

also be applied to other biological issues such as identification of key core (e.g., strongly

hydrophobic) residues (Berezovsky and Trifonov, 2001; Poupon and Mornon, 1999).

Such methods hold the potential for increased understanding of the fundamentals of

5

protein folding. Methods utilizing sequence information usually use machine-training

approaches and have shown accuracy of 70–78% (Adamczak et al., 2004; Richardson and

Barlow, 1999; Rost, 1994;).

Currently, various methods have been reported to yield better prediction accuracy.

Among these methods, the following are noteworthy: two-stage and related regression

approaches, nearest neighbor method, decision tree methods such as random forest

method, and support vector machine learning (Adamczak et al., 2004; Joo et al., 2012;

Mizianty and Kurgan, 2012; Pugalenthi et al., 2012). Typically in these types of

methods, the test (experimental) relative surface accessibility (RSA) value is predicted

based on a particular or constraints model, and consensus predictors are generated via the

use of a training data set.

1.2 Sequence Entropy

 Another structural feature extensively used is the identification of the key core of

proteins mostly made up of strongly hydrophobic residues (Berezovsky and Trifonov,

2001; Poupon and Mornon, 1999). The identification of key core residues can help

define key constraints in modeling a protein’s folding and characterization. Shannon

entropies for protein sequences have been used to score amino acid conservation (Koehl

and Levitt, 2002; Shenkin et al., 1991; Valdar, 2002). Sequence entropy (Shannon

entropy) is the ability of a residue in protein sequence to mutate or change. The

correlation of Shannon entropy is greater mutability at a particular amino acid position,

the more able an amino acid is able to adapt to a mutation (Hseih et al., 2002). On one

hand, the core (hydrophobic) regions are usually evolutionarily well conserved; hence,

6

they tend to have low sequence entropy values. On the other hand, the non-hydrophobic

residues are usually solvent accessible, and tend to have higher sequence entropy values.

The sequence entropy, E20, at some residue position k is expressed as

 S! = −Σ!!!,!"!!"!"#! !!" , (1.1)

here probability Pjk at amino acid sequence position k is derived from the frequency for

an amino acid type j for N aligned residues. Here, each amino acid out of the 20

canonical represents individual groups.

There have been studies where sequence entropy information has been greatly

helpful in characterizing protein-protein boundaries (Guharoy and Chakrabarti, 2005).

Koehl and Levitt (2002) described a correlation between thermodynamic and sequence

entropy in proteins. The Lustig group calculated two regions for sequence entropy and

hydrophobicity of individual residues with respect to the inverse of their respective Cα

packing densities (Liao, 2005). Out of these two regions, major region II corresponds to

less than 11 Cα per 9Å radius and is principally flat and consistent with the most flexible

residues. The majority of the most flexible residues display significant exposure to

solvent.

The Lustig group previously reported the addition of a second term that uses the

corresponding probability Pj of an amino acid type j to correct for random substitution

that also does not significantly improve the noise or otherwise change the overall trends

of the correlation plots (Liao, 2005). Although sequence entropy alone is not a unique

identifier of structural features (Guharoy and Chakrabarti, 2005; Oliveira et al., 2002;

Yan et al., 2006), it has shown some potential to illustrate protein-protein interfaces.

7

1.3 Overview

This thesis summarizes calculations that use a set of homology-based parameters to

predict the RSA of protein residues. Thresholds were applied to the RSA values of a

given residue where 1 was assigned as being on the surface and 0 as being buried. After

reproducing and automating the existing training set of 268 protein sequences, a larger

data set comprising 1363 diverse computationally designed proteins (described in

Chapter 2) was incorporated in the calculations. BLASTP was used to align all of the

proteins with known protein sequences from the database. These results were used to

calculate sequence entropy and other homology-based parameters. Packing density was

calculated for each residue in the 1363 data set. Entropy, functional parameters, and

packing density were determined for each residue in the data set to create an aggregate

training set of protein parameters. Once the final aggregate training set was created,

statistical software, R, was used to perform linear regression for a total of 12 models

comprising various combinations of the functional parameters and entropy values. This

linear regression model employs a novel application of a query-based qualitative

predictor in conjunction with quantitative protein sequence homology. The training set

was used to generate coefficients for linear regression models; once these coefficients

were generated, they were applied to the test set to generate estimated RSA values.

Finally, as determined from X-ray 3D structure, accuracy was calculated for the

prediction.

8

1.4 Organization of the Thesis

This thesis is organized into 6 parts: Introduction, Methods, Results, Discussions,

Conclusion, and Future Studies. The second chapter, Methods, details the calculations

and techniques used to come up with the results. This section also explains how linear

regression was performed and how different functional parameters including entropy

values were generated and used. Chapter 2 also contains a detailed description of how

the data sets were generated. The third chapter, Results, includes the key results of the

Methods sections. It contains various tables and figures that summarize outcomes of a

number of experiments performed. The fourth chapter, Discussion, is focused on a

review of available literature. This chapter also notes some areas where calculations

could be improved. Chapter 5 provides concluding remarks regarding the methods and

results and their context within the literature. Possibilities for future studies are described

in the final chapter of this thesis, Chapter 6.

9

2. Methods

In order to study protein structure using sequence information, various homology

parameters were calculated and their relationship with Cα packing density was

investigated. In conjunction with protein sequence homology, a novel application of

query-based qualitative predictors was then used to characterize solvent-accessible

residues. Out of the three diverse sets of proteins, two (1363 and 268) were used as

training sets, and the standard 215 (Naderi-Manesh et al., 2001) was used as a test set.

2.1 Protein Sets and Preparations

The 268 protein set, as the name suggests, is made up of 268 diverse protein

chains (Mishra, 2010). The goal of recreating calculations and recharacterizing the 268

training set was first to automate the various steps involved. Previously, PDB IDs for the

individual 268 training proteins were entered manually in the NCBI website. It was

critical to be able to automate this process; with the development and incorporation of a

larger training set (1363), it would be an extremely daunting and time-consuming task to

manually run BLAST for of each the 1363 PDB IDs. There were instances where NCBI

would take much longer (>5 minutes) to run BLAST manually for some PDB IDs.

Additionally, it was essential to use the FASTA sequence corresponding to the PDB IDs

as the header of the .txt output file for subsequent calculations of various sequence

homology parameters and entropies. The automation of this process allowed for ease of

incorporation of PDB IDs for additional training and test sets and reduced the number of

manually introduced errors.

10

The BLAST output file automation was made possible by the python script

download_blast.py, and the FASTA sequence was downloaded with the aid of

download_blast.py (see Appendix A). Each of these programs can be run in batch, and

the resulting BLAST and FASTA files are saved in an output folder.

The 215 set was used as the test set and was the standard 215-protein list from

Naderi-Manesh et al. (2001). Earlier calculations of surface-accessible residues have

been noted in our previous paper (Rose et al., 2011). The largest set of the three protein

sets, 1363, was used as training data. Bondugula et al. (2011) listed a diverse set of 6511

protein domain with 50 designed sequences per domain. The proteins are designed using

computational sequence design methods to engineer proteins with desired properties such

as increased thermal stability and novel functions.

The 6511 proteins were available in SCOP (Structural Classification of Proteins)

format (Bondugula et al. 2011). Since all of the programs and scripts written worked

with PDB IDs, the SCOP identifiers of the 6511 set were converted to PDB IDs. SCOP

identifiers are made up of 7 characters; the first character is “d,” the subsequent 4 letters

stand for the PDB name, the third part is the DB chain id (“_” if none, “.” if multiple),

and finally a single-digit integer, if needed, uniquely specifies the domain (“_” if not).

All the SCOP identifiers were converted using a python script called

SCOPid_to_PDBid.py, which is listed in Appendix A.

 Each protein had to be entered in the PDB website to validate its identifier.

Again, a python script called common pdbs in the Bondugula set vs PDB library.py (see

Apendix A) was written to address this issue. Steps 1 to 4 in Figure 2.1 describe this

11

validation method. Out of the original list of 6511 proteins, only 5157 were found in the

pbd library, and thus the remaining 1354 PDB names were dropped from the list.

 The list of 5157 proteins (see Figure 2.1) was entered in a protein culling service

called PISCES (Wang and Dunbrack, 2003). The 5157-protein set was culled for PDB

chain identifiers that share ≤ 25% identity, have a structural resolution of 0.0 to 2.5 Å, an

R-factor of ≤ 0.3, and a sequence length of 40 to 10,000. Protein chains with Cα-only

entries were eliminated, and only protein structures determined via X-ray crystallography

methods were selected. The same culling standards were used on the 268 and 215 data

sets as well (Mishra, 2010). The final list of all the PDB IDs that that were part of the

1363 training data set is presented in Appendix B.

12

Step 1
i)	 Open a .txt input file containing all of the 6511 Bondugula PDB IDs, and
read in each line

Step 2
i) Download all of the PDB IDs (June, 2011) present in the PDB library
as a .txt file, output a .txt file with all the PDB IDs downloaded

Step	 3	
i) Check if the first PDB from the Bondugula set (Step 1) is present in the
PDB library (Step 2)
ii) Loop over each of the PDB IDs in the Bondugula set and compare it to
the PDB library

	

Step	 4	
i) Print out all of the common PDB IDs from the Bondugula set and the PDB
Library (= 5157 PDB IDs as of June, 2011)	

Step 5
i) Run PISCES culling service with the following criteria: PDB chain
identifiers that share 25%, have a structural resolution of 0.0 – 2.5 Å, R-
factor of 0.3, sequence length of 40- 10,000.
ii) Protein chains with Cα only entries were eliminated and only protein
structures determined via X-ray crystallography methods were selected

Step 6
i)	 Final List of larger training set achieved
ii) Total number of PDB IDs that passed each of the thresholds and requirements =
1366

Step 7
- 3 PDB IDs (2Q46A, 2CIYA, and 1WTEA) from the 1366 training set had corrupt

PDB file. This resulted in exclusion of these three PDB IDs from the list. Final
training set = 1363 PDB IDs

Figure 2.1 Flowchart of steps involved in the generation of the 1363 training data set
based on the list of proteins from Bondugula et al. (2011).

13

2.2 Residue Packing Density

Residue packing density calculates packing density in a residue’s native state and

is used to measure protein compactness. It is calculated by using X-ray determined Cα

coordinates of a given query protein. To calculate protein residue packing density,

mmCIF of each protein in the protein sets were downloaded from RCSB PDB (2011).

X-ray crystallography is used to determine the atom co-ordinates information of a

protein. Once all the mmCIF files were downloaded, all the Cα coordinates were

extracted at each residue position using the python code calculate_density.py (see

Appendix A). This program calculates density between any two residues using the

following equation:

 Dist (i, j) = ! ! − ! ! ! + (! ! − ! ! ! + (! ! + !(!)! (2.1)

where x, y, and z are the Cα coordinates at that sequence position. Next, the number of

Cα atoms within the radius of 9Å around the residue of interest is calculated. Finally, the

packing density at that residue was calculated by determining all other Cα residue

positions within 9.0 Å from the Cα position of record.

In earlier work conducted by the Lustig group (Mishra, 2010), all the density

values were calculated using PERL scripts. In this thesis, all density values were

calculated via python scripts using similar logic and calculations. The python program

download_mmCIF.py (see Appendix A) downloads each of the mmCIF files for the

corresponding PDB ID listed in the input file. On one hand, the mmCIF has some

residues whose coordinate values are unavailable; these values were assigned NA. On

the other hand, packing density equal to 0 was assigned to the unknown residue such as

14

‘X’. Both NA and 0 density values were excluded from frequency plots and correlation

plots.

2.3 Sequence Variability

Sequence variability for each residue was measured by sequence entropy or

Shannon entropy. Sequence entropy is defined as the measure of disorder or randomness

in a system. A list of PDB names was acquired for all the protein data sets. Each PDB

name was entered in the Basic Local Alignment Search Tool (BLAST 2.2.18+), a protein

database program provided by the National Center for Biotechnology

Information (NCBI). BLAST searched all the databases available for non-redundant

protein sequences using a BLOSUM62 matrix and default gap penalties for each

mutational insertion or deletion. Once the PDB name of a protein of interest was entered

in the BLASTP website, it is referred to as the query sequence. The query sequence is

compared to all of the sequences in the database, referred to as the subject, that are

evolutionarily similar to it. The search was performed using default settings except for

the Max target sequences setting, which was altered from 100 to 10,000. The aligned

residues were extracted from BLASTP results using a python script labeled

blast_to_entropy.py (see Appendix A). BLASTP alignments with bit scores equal to

40% of the highest bit score were only used for entropy calculations. As noted in a

previous thesis, a 40% cut off seemed to provide an ideal balance between homology and

the diversity of sequence variability (Yeh, 2005).

Alternative calculations for sequence entropy were also applied, one involving an

application of a 6-term sequence entropy (Mirnya and Shakhnovich, 1999) to the existing

15

alignments for all of the data sets. The E6 entropy groups amino acids into six groups

and is calculated by:

!! = − !!

!

!!!

! log!!
(2.2)

where pi is the frequency of each of the 6 classes i of residues at position l in multiple

sequence alignment. The 6 classes of residues are aliphatic (AVLIMC), aromatic

(FWYH), polar (STNQ), positive (KR), negative (DE) and special (GP). Once the PDB

name of the protein of interest was entered in the BLASTP website, it was referred to as

the query sequence. The query sequence was compared to all the subject sequences

available in the database that are evolutionary similar to it. The search was performed

using default settings except for the Max target sequence setting, which was altered from

100 to 10,000. The aligned residues were extracted from BLASTP results using a python

script labeled blast_to_entropy.py (see Appendix A).

 BLASTP alignments with bit scores equal to 40% of the highest bit score were

used only for entropy calculations. A 40% cut off seemed to provide an ideal balance

between homology and the diversity of sequence variability (Mishra, 2010).

2.4 Homology-Based Parameters

The development of homology-based parameters was one of the first approaches

used to predict solvent accessibility of residues. Once the training and test sets were

selected, BLASTP (2010) from Genbank was used to align the sequences. The protein of

interest, the query sequence, is aligned with other homologous subject sequences in the

16

database, subject sequences that are closely related. Sequence homology parameters for

the Lustig group used are 20-term entropy (E20), 6-term sequence entropy (E6), aligned

residues that are strongly hydrophobic (FSHP), and aligned small residues (FSR).

Fraction strongly hydrophobic (FSHP) uses strongly hydrophobic residues,

VILFYMW (Poupon and Mornon, 1999). FSHP is calculated in the following manner:

 !"#$%&'(!"#$%&'(ℎ!"#$%ℎ!"#$! (!"#$) =
!"#$%&!"#!

!"#$% !"#$%& !" !"#$%&' !"#$%&"#!
 (2.3)

Where, !"#$%&!"#! is the number of strongly hydrophobic residues at sequence position

i. Fraction small residues (FSR) refer to residues Gly or Ala and are calculated as

follows:

 !"#$%&'(!"#$$!"#$%&"#! (!"#) =
!"#$%&!"!

!"#$% !"#$%& !" !"#$%&' !"#$%&"#!
 (2.4)

Fraction Alanine residues (FA) refer, as their name suggests, to residue Ala and are

represented by:

 !"#$%&'(!"#$%$& (!") = !"#$% !"#$%& !" !"#$%$& !"#$%&"#
!"#$% !"#$%& !" !"#$%&' !"#$%&"#

 (2.5)

Fraction Glycine residues (FG) represent GLY residues and are represented by:

 !"#$%&'(!"#$%&' (!") = !"#$% !"#$%& !" !"#$%&' !"#$%&"#
!"#$% !"#$%& !" !"#$%&' !"#$%&"#

 (2.6)

2.5 RSA Calculations

In this work, residue RSA is calculated with the bioinformatics tool called

NACCESS (Hubbard and Thornton, 1993). The NACCESS program calculates

accessible surface by rolling a probe of a given size around a van der Waals surface. It

also determines a residue accessibility file (.rsa) containing summed atomic-accessible

surface areas over each protein residue. The program also normalizes the accessibility of

17

each residue calculated as the percent of accessibility compared to the accessibility of

that residue type in an extended A-x-A tripeptide format (Hubbard et al., 1991).

The NACCESS RSA values were used as a standard to compare predicted RSA

values generated from calculations for this research. RSA values can range from 0 to,

very occasionally, 150. Anything higher than or equal to 20 is regarded as being on the

surface and anything less than 20 is considered buried (Carugo, 2000). A binary system

was incorporated to support the calculations pertaining to this research. Any RSA value

greater than or equal to 20 was assigned a 1, and RSA values less than 20 were assigned a

0 and labeled as buried. Programmatically, the following python scripts were used to

calculate RSA values: 1. download_pdb.py, 2. run_naccess.py,

3. RUNNACCESSonUnix.pl, 4. extract_data.py. The corresponding python scripts can be

found in the Appendix A section of this thesis.

2.6 Determination of Qualitative Predictors

 Linear regression is a method used to model relationships between a scalar

variable Y and one or more variables denoted as X. In this method, data are modeled

using linear functions, and unknown parameters are estimated from the data. There are

two main kinds of variables used in regression analysis: quantitative variables and

qualitative variables. On one hand, quantitative variables are expressed as numerical

values. Qualitative variables, on the other hand, are categorical expressions. For

example, the corresponding barometric height of mercury for a reaction chamber would

be 153 mm, whereas pressure could be classified qualitatively as either high or low.

Qualitative predictors have been widely used in the social sciences and related fields

18

(Hellevik, 2009), but have been relatively unexplored in molecular science. This novel

method was used to predict RSA values in this research.

In this section, a simple calculation expressing the application of query-related

qualitative predictors for RSA prediction will be illustrated. One of the ways to

quantitatively express categorical information is to use indicator variables that take on

values, or 0 and 1 (Kutner et al., 2004). Two such delimeters will be expressed here:

strongly hydrophobic residues (SHP; VILFYMW) and the remaining non–strongly

hydrophobic residues (NSHP). The general model for a first-order linear regression

model is:

 !! = !! + !!!!! + !!!!! + !! (2.7)

where !! is a straight line with intercept !! , slope !!, and !! as residual error function

(Kutner et al., 2004). For the SHP and NSHP regression calculations, the 73,675 residue

RSA values are fit to the variable Xi1 corresponding to the E6 value at each residue, i.

Here, the two qualitative predictors are SHP (Xi2 is 0) and NSHP (Xi2 is 1). The

generalized response function can be expressed as:

 !{!} = !! + !!!! + !!!! (2.8)

Substituting the SHP and NSHP value, the fit equation for hydrophobic and non-

hydrophobic equation becomes:

 E{Y} = β0 + β1X1 where X2 is 0 (2.9)

 E{Y} = (β0 + β2) + β1X1 where X2 is 1 (2.10)

The regression for these equations was generated using the programming language, R.

Figures 2.2 and 2.3 show the fit for this calculation. To create linear regression plots

19

with qualitative predictors, the training data sets’ .csv files were used as input files. The

input files include one column for NACCESS RSA values and another for the

corresponding E6, E, FSR and FSHP values. Now our model can include 20 qualitative

predictors that are associated with each amino acid type (for example, A) for all the

sequence residues.

2.7 PSI-BLAST Calculations

The NCBI website was used to perform PSI-BLAST searches. The PDB names

were entered in the search field, and this time around PSI-BLAST was chosen under the

algorithm section instead of blastp. Under Algorithm parameter, “Max target sequences”

was altered from 500 to 10,000. After each search result was presented, a second and

third iteration were performed.

20

Figure 2.2. Sample regression fit for 73,734 query residues from the 268 training data
set. Here, the NACCESS RSA values to a variable term Xi1 as E6 and the qualitative
predictor terms having two values, where Xi2 is 0 (top) for strongly hydrophobic (SHP)
query residues and Xi2 is 1 (middle) for non–strongly hydrophobic (NSHP) residues, are
presented. The slope, 15.6, corresponding to the variable term is the same for both plots,
while intercepts are 7.6 and 21.9 for β0 and (β0 + β2), respectively. The aggregate plot
is shown (bottom).

21

Figure 2.3: Sample regression fit for 319,551 query residues from the 1363 training data
set. Here, the NACCESS RSA values to a variable term Xi1 as E6 and the qualitative
predictor terms having two values, where Xi2 is 0 (top) for strongly hydrophobic (SHP)
query residues and Xi2 is 1 (middle) for non–strongly hydrophobic (NSHP) residues, are
presented. The slope, 14.3, corresponding to the variable term is the same for both plots,
while intercepts are 8.8 and 24.1 for β0 and (β0 + β2), respectively. The aggregate plot
is shown (bottom).

22

2.8 Accuracy Calculations

The accuracy for both buried and surface-accessible residues was then calculated

by the standard expression of Richardson and Barlow (1999):

 Accuracy = !"#$%& !" !""#$%&'%(!" !"##$!% !"#$%&'(
!"!#$!"#$%& !" !""#$%&'%(!"#$

 * 100 % (2.11)

To calculate accuracies for each of the models, principally linear regression was applied

to each of the 13 main models used to generate predicted RSA values. These models

were made up of various combinations of the two types of entropy (E and E6), and

homology-based parameters (FSR, FSHP) with amino acids were used as qualitative

predictors. The y-intercept for the line of best fit determined the threshold for the

predicted RSA. With the y-intercept for hydrophobic versus non-hydrophobic linear

regression line of best fit, a threshold of >23 was classified as surface, whereas ≤23 was

classified as being buried. This is a result of internal optimization of the test results. The

accuracy equation above was then applied in a binary fashion. Any NACCESS RSA that

was ≥20 was assigned as 1 meaning on the surface (while 0 was for residues that were

buried), any predicted RSA that was >23 was also assigned as a 1. Next, it was noted

whether a given residue matched as being on the surface or buried when compared to the

NACCESS RSA and predicted RSA. Finally, accuracy was discovered by dividing the

number of correctly assigned residues by the total number of predictions made and

reported as a percent. Programmatically, the generation of linear regression models, the

predicted RSA and accuracy calculations were made possible by R program code

accuracy.R (see Appendix A)

23

2.9 Aggregate Analysis and Correlation Plots

Once correctly aligned, files were obtained for each of the proteins in the protein

sets and additional calculations were conducted. Comparable to procedures listed by

Mishra (2010), at each density position the different homology parameters and entropies

were averaged. This averaging at each density value was obtained with the help of the

python script extract_density_frequency.py (see Appendix A). For example, at the

density 4 average, all of the E values for residues that have a density of 4 are present.

Similarly, averages were filled out for each of the entropies, FSR, and FSHP for each of

the density values. The python script was used to generate a table in .csv format with all

the average values. Finally the .csv files were converted to .xlsx format. These averages

were used to generate different correlation plots by plotting various homology-based

parameters against inverse density.

2.10 Frequency Distributions

 The homology-based parameters (E20, E6, FSHP, FSR) were aligned together

properly together by matching each of the density values with corresponding residue

positions. These homology parameters for each of the proteins in a given training or test

set were then compiled into a single .csv so that frequency distribution histograms could

be generated. As noted in previous work by the Lustig group (Mishra, 2010), each of the

density values equal to 0 and NA were eliminated from the list.

 Query length for each of the proteins in the lists was calculated with the python

script extract_query_length.py (see Appendix A). This program used BLAST output .txt

files as input to extract query length. The length of alignment was also generated with

24

the help of another python program, extract_record_length.py. For the bit score

frequency plot, the frequency of subject proteins at BLAST bit score were generated with

the help of extract_bit_score.py.

2.11 Assimilation of Additional Methods to Improve Accuracy

2.11.1 Incorporation of Tertiary Protein Structure Information

A second-stage prediction method was the use of tertiary protein structure

information to study its impact on prediction accuracy. The goal of this research was to

study whether protein tertiary structure information from a limited subset of proteins can

aid in assigning the solvent-exposed residues of a protein outside the subset. Previous

work from the Lustig group at San Jose State University investigated tertiary contact

information (Nguyen, 2012). As outlined in his thesis, a protein tertiary contact is

defined as a pair of amino acid interactions that are separated by at least 10 residues in

the protein primary sequence (Kallblad and Dean, 2004). The atomic distances of these

two amino acids need to be less than the sum of the van der Waals radii of the 2 atoms

plus 1.0 Å (Kim and Park, 2003). Protein tertiary structures are also critical for protein

stability; while secondary structures are usually unstable, tertiary interactions make them

more stable (Daggett and Fersht, 2003).

 It has been shown that tertiary interactions in a protein are usually buried, well

conserved, and more densely packed than other protein residues (Do, S. and Lustig, B.

San Jose State University, San Jose, CA. Unpublished work, 2010). Furthermore, tertiary

contact information suits secondary protein structure prediction very well in terms of

25

sequence entropy, packing density, and RSA values. Therefore it makes sense to utilize

tertiary contact information as a second filter in RSA prediction.

 Previous research noted that, out of the 268 proteins in the training set, 75 were

known to have tertiary contact (Nguyen, 2012). A 95% confidence interval was applied

to the 75 tertiary contact proteins to derive the appropriate tertiary contact threshold. The

95% confidence interval here implies that, out of all the tertiary contacts presented, 95%

(including false positives) of the lowest-threshold tertiary contact sequence entropy

values are correctly predicted as being buried within a protein. This is because tertiary

contacts are more conserved when compared to other residues, and most likely to be

found buried. Once the threshold was established, it was applied to the entire 215 test

set. This calculation was carried out by dividing each of the proteins into a separate .csv

file that included all of its residues. For example, the first protein in the 215 set is

119LA, which has 162 residues; therefore 119LA.csv would have 162 residues present in

it. Following this, a matrix was created. In this example, the matrix was 162 by 162. For

each possible position in the matrix, entropy was averaged for the two residues involved

(column residue and row residue). If the average entropy of any two residues was greater

than the threshold value, then those two residues were predicted to be on the surface,

denoted by a 1; otherwise, the position was predicted to be buried and assigned a 0. This

information was applied to the predicted RSA values obtained from linear regression

data. Anytime, a given residue position was predicted to be on the surface in the tertiary

contact matrix, the linear regression data was altered to match the prediction of the

tertiary filter. Performing the calculations manually—checking each and every residue

26

assigned a 1 in the matrix and referring back to the prediction Excel file— would have

been not only challenging, but also prone to many errors. Thus, to address this issue, two

R scripts were written: tertiary_contact_filter2.R and accuracy_with_filter_2.R (see

Appendix A). The first program, tertiary_contact_filter2.R, takes entropy data from

multiple residues of a given protein and creates a filter matrix. The second program,

accuracy_with_filter_2.R, imposes the threshold to each matrix value and recalculates

solvent accessibility accuracy. Contrary to our initial hypothesis, the incorporation of

tertiary information in the prediction model did not improve accuracy.

2.11.2 Additional Models Applied

Upon further investigation of individual protein accuracies, it was noticed that the

smallest residues, alanine and glycine, were the most mispredicted amino acid residues.

The small residue fraction was represented as a model in conjunction with the 20 amino

acids as a qualitative predictor. However, the initial 11 models were missing fraction

strongly hydrophobic (FSHP) in combination with amino acids as qualitative predictors.

FSHP + AA was added as a new model. The results of this calculation are presented in

Table 3.4 in the Results Section of this thesis.

Fraction Alanine (FA) was the first tested on the regression models. For the new

model, FSR was replaced with FA. The results of this test are presented later in this

thesis. Again, comparable to FA, model FG also replaced FSR as a model, and accuracy

for all the models with FSR replaced with FG were recalculated. The results of this

calculation are presented in Table 3.4. Finally, it was not sufficient to just substitute FSR

27

with either FG or FA. As a third test to this principle, FSR was swapped with FG + FA;

these results are also presented in Table 3.4.

2.11.3 Incorporation of a Categorized Protein Data Set

An additional approach that incorporated a new data set was used to study any

further impact on the accuracy calculations. In a previous study conducted by Pettit and

co-workers (2007), a set of 618 proteins categorized to 15 different chemical groups was

investigated by a HotPatch study. HotPatch is a statistical analysis system that finds

unusual patches on the surface of proteins and computes just how unusual they are (called

patch rareness), as well as the functional importance of each patch. The set of 618

proteins are divided into 12 different groups: proteases, hydrolases, kinases, transferase,

oxidoreductases, catalytic general, DNA/RNA interacting, negative ion binding, small-

molecule interacting, carbohydrate interacting, lipid interacting, and positive-metal ion

binding. An individual PDB ID from the 618 set could belong to any one of these groups

or multiple groups. For the purpose of this study, the 12 original groups were split into

three simpler groups: oligomers, protein binding, and generic without oligomers and

protein binding. Notably protein binding refers to proteins that transiently bind to other

proteins.

 The main goal of this experiment was to implement the group information to both

the test set and the training set to observe if any progress would be made in the accuracy

numbers. There were multiple sub-sets of calculations carried out with this principle, all

of which are described in the following subsections of this thesis.

28

The first group of proteins investigated was protein binding. The PDB IDs from

the 268 training set, 1363 training set, and 215 test set all shared common PDB IDs with

the 618 set. A group of PDB IDs from the 268 set that overlapped with the protein

binding group was selected; similarly, the PDBs in common between the 215 and 618

protein binding groups were also chosen.

29

3. Results

3.1 Characterization of Protein Lists

The characterization of protein lists based on the method of structure

determination, resolution R-factor, free R value, protein length, and alignment length for

the 268 training set has been presented in an earlier study (Mishra, 2010). For the 268

training set, frequency distributions and correlations found in the previous studies were

extracted from manually derived BLAST output files. In this section, results from the

automated BLAST output files are presented for comparison and validation purposes.

The newly developed training set, 1363, has also been characterized using frequency and

correlation plots in this section.

The automated BLAST-generated frequency distributions for the characterization

of the 268 training set are shown in Figure 3.1. A frequency plot of length of query

protein length with regard to the frequency of occurrence is presented in Figure 3.1A.

The highest and second highest peaks are represented by a frequency of 39 at a 350-

protein length and a frequency of 38 for 200-protein length. The histogram distribution

appears to be distorted and skewed right; the right tail of the graph is considerably longer

than its left tail. The mean value of this histogram was at 283, and the mode was

presented at 340. The length of protein ranges from 50 to 950; however, the majority of

the proteins (95.5%) have lengths between 100 and 600.

Figure 3.1B displays a histogram for density of query residues as a function of

frequency of query residues. The mean and mode for this distribution are 17.5 and 15,

respectively. The histogram has normal distribution, with 95.6% of data points appearing

30

within the intervals of 7 and 22. The highest frequency of query protein density, 6467,

occurred at a density value equal to 15. This corresponds to a normal Gaussian-like

distribution.

The number of alignments as a function of frequency of query residue distribution

plot is presented in Figure 3.1C. The number of alignment ranges from 200 to slightly

over 2000 for the frequency of query proteins. The maximum for the number of

alignments is at 1200 alignment for the frequency of 104. The shape of the distribution is

skewed slightly left, with 69.0% of alignments hovering from 1000 to 1200. The mean,

mode, and median of the distribution are at 962.55, 1000, and 1000, respectively.

The distribution plot of the BLAST bit score (Figure 3.1D) displays a right-

skewed pattern, as expected for such a distribution (Liao et al., 2005). The maximum

BLAST bit score occurs at the value of 1894, with the minimum at 29. The bit score of

100 is the highest, occurring at the frequency of 88,198. The mean BLAST bit score is

224, the mode is 37, and the median is at 164.

The goal of re-characterizing the 268 training set was to compare and validate the

automated BLAST-generated output performed in previous work by the Lustig group

(Mishra, 2010). All four of the distribution plots (length of proteins, density, number of

alignments, and BLAST bit score) are almost identical to the manually generated BLAST

output calculations. Both sets of the distribution plots have the same maxima, minima,

general trend of the histogram, and distribution. This validates the reliability of the

python program download_blast.py to automatically download BLAST files from NCBI

31

website and shows that the outputs are comparable to manually downloaded BLAST

files.

Figure 3.1. Frequency distributions for the characterization of the 268 learning set list of
proteins. The 268 proteins in the list have a total of 73,734 query residues, and a total of
257,963 aligned subject protein sequences were used for these calculations.
A. Frequency of query residues with respect to length of each protein of the 268 learning
set. B. Frequency of 73,734 query residues with respect to each packing density. C.
Frequency of query proteins was plotted against a number of alignments obtained from
NCBI BLASTP outputs for the learning set. D. Frequency of 257,963 aligned subject
sequences with respect to BLAST bit scores.

32

Figure 3.2 displays the frequency characterization of the 1363 training set. Since

the BLAST output for the manual download and automated download were similar, 1363

BLAST files were automatically downloaded with the aid of down_blast.py. The

frequency plot for the 1363 training set (Figure 3.2A) also has length of query protein

with respect to frequency of query proteins. This histogram displays a slightly left-

truncated normal distribution. The most frequent query protein length at 150 is shown at

a frequency of 281. The mean of the query length is at 243.8, and the mode of the

distribution is 129. Comparable to the protein lengths of the 268 training set, the protein

length for the 1363 training data set also ranges from 50 to 950, and the majority of

proteins (95.5%) have lengths between 100 and 550.

The frequency of query residues versus density histogram (Fig 3.2B) displays a

Gaussian-like distribution. Density of 14 seems to be the most frequent density value at

50,833; however, densities 12 and 16 also flag as close values at 50,024 and 50,457,

respectively. It is also evident from the figure that the majority, at 96.2%, of data points

occur at densities between 8 and 23.

The number of alignments associated with the query proteins of the training set

list (Figure 3.2C) ranges from 0 to 2000 or more. The maximum number of alignments

occurs with a frequency of 391 at a sequence alignment of 1000 for 1KJQA. The bit

score distribution plot is right-skewed, as expected (Liao et al., 2005). It indicates a

BLAST bit score maximum at 100 occurring 500,000 times.

33

Figure 3.2. Frequency distributions for the characterization of the 1363 learning set list
of proteins. The 1363 proteins in the list has a total of 319,551 query residues and total of
1,055,920 aligned subject protein sequences were used for these calculations.
A. Frequency of query residues with respect to length of each protein of the 268 learning
set. B. Frequency of 318,840 query residues with respect to each packing density. C.
Frequency of query proteins was plotted against a number of alignments obtained from
NCBI BLASTP outputs for the learning set. D. Frequency of 1,055,920 aligned subject
sequences with respect to BLAST bit scores.

34

Figure 3.3 represents the histograms for frequency distributions for entropies and

homology-based parameters of the 268 training set of proteins. A total of 73,724 query

residues and a total of 257,963 aligned subject protein sequences were used. Figure 3.3A

presents the distribution of the calculated 20-point entropy (E20) value as a function of

frequency of query proteins. An entropy value of 0 occurred at the highest frequency,

with a total of 10,239 residues having this entropy value. The average entropy value for

the residues was 1.10, while the median was 0.972. The histogram indicates multimodal

characteristics. The maximum calculated entropy value was 3.895. The lower entropy

value represents a well-conserved residue. The fact that more than half (51.3%) of the

residues have entropy values between 0 and 1 indicates that half of the residues are well

conserved in the 268 training data set.

The distribution of 6-point entropy (E6) as a function of frequency of query

residues is presented in Figure 3.3B. Similar to E20 distribution, the highest frequency of

entropy values were observed at E6 = 0. However, the average E6 value at 0.64 was

much lower than the E20 average (1.1). The median for this distribution was at 0.397 E6

value. Comparable to the E20 distribution plot in 3.3A, the E6 distribution also appeared

to be multimodal. The maximum E6 value was 2.562.

Figure 3.3C presents the frequency of fraction small residues (FSR) as a function

of frequency of query proteins. The mode of this distribution was at FSR = 0. The

average FSR calculated value was 0.1637, while the median FSR value was 0.006. The

FSR value of 0 occurred at the highest frequency of 31,420 residues. The FSR

distribution plot is also right skewed, with slight increases in frequencies of 1, 1.1, and

35

>1.1. Finally, Figure 3.3D is the frequency plot of fraction strongly hydrophobic residues

(FSHP) as a function of frequency of query residues. The mean, mode, and median of

this distribution were 0.3247, 0, and 0.0271774, respectively. Here 59.06% of residues

observed have FSHP values between 0 and 0.1. For the distributions in Figures 3.3C and

3.3D, there are clear decoupled components, which has been consistently noted with the

manually generated BLAST output calculations (Mishra, 2010) and automated 268

distributions.

36

Figure 3.3. Frequency distributions of entropies and homology-based parameters of the
268 training set list of proteins. The 268 proteins in the list has a total of 73,734 query
residues and total of 257,963 aligned subject protein sequences were used for these
calculations. A. Frequency of query residues with respect to entropy values of the 268
learning set. B. Frequency of query residues with respect to E6 values of the 268
learning set. C. Frequency of query residues with respect to fraction small residues
(FSR). D. Frequency of query residues with respect to fraction strongly hydrophobic
residues (FSHP)

Figure 3.4 shows the frequency distributions of entropies and homology-based

parameters of the automated 268 training set for the two major regions, Region I and

Region II. Figure 3.4A presents the E20 distribution for the two major regions, and 3.4B

presents the E6 distributions for the two regions. It is observed that at lower entropy (0

and 0.3) the majority of residues have RSA value less than 20, whereas at higher entropy

37

most of the residues have RSA ≥ 20 for both E20 and E6 distributions. The frequency

distribution of FSR for the two regions peaks at low FSR value (0 and 0.1) and high FSR

values (1 and 1.1), while the distribution flattens out in the middle ranges. This indicates

that FSRs are found both in the core and surface of the protein. The highest frequency

are observed at FSR of 0.

Finally, Figure 3.4D presents the distribution of the 268 training set for the two

major regions and shows bimodal characteristics. An FSHP value of 0 indicates the

absence of strongly hydrophobic residues. The majority of residues with FSHP = 0

correspond to an RSA ≥ 20; this was expected because during protein folding most of the

hydrophobic residues are buried. When the FSHP = 1 or 1.1, the majority of the query

residues have an RSA value of less than 20. The findings and trends of the automatically

generated BLAST output homology parameters showcase similar trends as reported for

the manual BLAST output calculation (Mishra, 2010).

38

Figure 3.4. Frequency distributions of entropies and homology-based parameters of the
268 data set for the two major regions, Region I and Region II. A total of 73,734
residues were divided into Major Region I (RSA <20) and Major Region II (RSA ≥ 20).
A. E20; B. E6; C. FSR; D. FSHP.

39

The histograms for E20, E6, FSR, and FSHP residue occurrence pertaining to the

1363 training set are presented in Figure 3.5. A total of 319,551 query residues were

used to generate the distribution histograms. In Figure 3.4A, E20 is plotted as a function

of frequency of query residues; the maximum E20 value is at 3.942, and the minimum is

at 0. The distribution of E20 appears to form two clusters, and this suggests two separate

normally-distributed populations. The highest frequency for both of these populations

occurs at an E20 value of 0, with the frequency of 66,199 (20.7% of residues have an E20

value of 0). The maximum frequency of the second cluster appears to have an E20 value

of 1 with 4.9% (15,576) of residues.

Figure 3.5B shows the frequency distribution of E6 for 319,551 query residues

from the 1363 training data set. The E6 plot also displays similar shape and bimodal

distribution as the 268 training set.

The FSR distribution plot as a function of frequency per query residue (Figure

3.5C) does not display patterns similar to those of the E20 and E6 distribution plots. The

mode for FSR occurs at 0.0 with 51% of the residues at frequency of 162,822. Residues

with an FSR value of 0 indicate an absence of small residues, whereas an FSR value of 1

indicates a high number of FSR (A and G). The FSHP distribution plot in Figure 3.5D

also shows FSHP mode at zero, with 40% of the residues (126,484) displaying an FSHP

value of 0. An FSHP value of 0 indicates an absence of substituted strongly hydrophobic

residues.

40

Figure 3.5. Frequency distributions for entropies and homology-based parameters of the
1363 learning set list of proteins. The 1363 proteins in the list have a total of 319,551
query residues, and total of 1,055,920 aligned subject protein sequences were used for
these calculations. A. Frequency of query residues with respect to entropy values of the
1363 learning set. B. Frequency of query residues with respect to E6 values of the 1363
learning set. C. Frequency of query residues with respect to fraction small residues
(FSR). D. Frequency of query residues with respect to fraction strongly hydrophobic
residues (FSHP).

Similar to Figure 3.4, Figure 3.6 presents the frequency distribution of entropies

and homology-based parameters, but for the 1363 training set for the two major regions,

Region I and Region II. Figure 3.6A shows the E20 distribution for the two major

regions, and 3.6B shows is the E6 distributions for the two regions. Similar to the E20,

E6, FSR, and FSHP two-region distributions observed for the 268 training set (Figure

3.4), Figure 3.6 also presents similar trends and distribution plots.

41

Figure 3.6. Frequency distributions of entropies and homology-based parameters of the
1363 training data set for the two major regions, Region I and Region II. A total of
1,055,920 residues were divided into Major Region I (RSA < 20) and Major Region II
(RSA ≥ 20). A. E20; B. E6; C. FSR; D. FSHP.

Figure 3.7 presents the frequency distribution of NACCESS RSA values for

73,734 query residues of the 268 training data set. The mode of the distribution is at a

NACCESS RSA value of 10, with 28.2% of residues (20,815) displaying this value. Any

residue with a NACCESS ≥ 20 is characterized as being on the surface, whereas residues

with a NACCESS value <20 are considered buried. Here in this distribution, the mode is

10, which indicates that a significant number of buried residues have a NACCESS value

of 10. There are 28,256 residues with a NACCESS RSA of <20, indicating that 38.3% of

42

residues in the 268 training set are buried by X-ray. The remaining 61.7% of residues

with NACCESS RSA values ≥ 20 are branded to appear on the surface.

Figure 3.7. Frequency distribution of NACCESS RSA values for various RSA ranges for
the 268 training data set. RSA values for a total of 73734 query residues were used for

this plot.

Similarly to Figure 3.7, Figure 3.8 shows the frequency distribution of NACCESS

RSA values, but for 319,812 residues of the 1363 training data set. In comparison to the

268 NACCESS RSA distribution plot, the 1363 training set also displays a similar trend.

The mode of distribution for the 1363 training set also occurs at a NACCESS RSA value

of 10. The 1363 training set also has 38.3% of residues characterized as buried and

61.7% of residues on the surface. The mean, mode, and median of this distribution are

27.4, 0, and 19.4, respectively.

43

Figure 3.8. Frequency distribution of RSA values for various RSA ranges for the 1363
training data set. RSA values for a total of 319,812 query residues were used for this plot.

Figure 3.9 represents a comparison of RSA distribution of 50,856 residues of the

215 test set for NACCESS RSA and predicted RSA values generated using the 268

training set. The NACCESS RSA value distribution plot is displayed in Figure 3.9. The

NACCESS frequency distribution peaks at a NACCESS value at 5, with a total of 9572

residues (18.8%) displaying this NACCESS value. Both distributions are right-skewed

histograms. The NACCESS threshold for buried resides is ≥ 20, and this distribution

indicates about 48.4% (24,595) of residues can be characterized as buried when derived

from X-ray information. The remaining 51.6% of residues are characterized as appearing

on the surface of the protein. The mean, median, and mode of this distribution are 28.5,

44

21.6, and 0, respectively.

Figure 3.9. Frequency distribution comparison of NACCESS RSA values and predicted
RSA values for the 215 test set using the 268 training set. A total of 50,856 residues for a
total of 215 protein lists were used to generate these plots. Frequency of query residues
with respect to NACCESS RSA values and frequency of query residues with respect to
predicted RSA values generated by linear regression are presented.

The second part of Figure 3.9 shows the distribution of predicted RSA values for

the 50,856 residues of the 215 test set. Unlike the NACCESS plot, the predicted RSA

plot peaks at an RSA value of 10 with a total of 9729 (19.1%), and the second highest

peak is observed at a predicted RSA of 35 with 5097 (10.0%) residues with an RSA of

35. The mean of this distribution is 27.1, the median is 27.4, and the mode is 6.4. Unlike

NACCESS RSA, where there are 4767 residues (9.4%) with NACCESS values greater

than 70, none of the residues in the predicted RSA are forecasted to have RSA value

45

greater than 70. Also, predicted RSA values appear compressed relative to NACCESS

RSA.

The comparison of NACCESS RSA and predicted RSA for the 215 test set using

1363 data as a training set is presented in Figure 3.10. Just as in first part of Figure 3.9,

Figure 3.10 presents NACCESS RSA distribution for the 50,856 residues of the 215 test

set. The second part of Figure 3.10 is the distribution of predicted RSA values for the

215 test set using the 1363 as training set. The highest peak in the predicted RSA

generated via using the 1363 as training set is observed at an RSA value of 10. A total of

8693 residues (17.1%) have predicted RSA values equal to 10. Similar to the distribution

plot of the 215 test set using the 268 as training set (Figure 3.9), very few residues (0.1%)

are predicted to have RSA value equal to 5, the highest corresponding peak in the

NACCESS RSA frequency. Again, none of the residues are predicted to have RSA

values greater than 70. The mean, median, and mode of this distribution are 28.1, 28.7,

and 7.6, respectively. This distribution displays a multimodal distribution pattern.

46

Figure 3.10. Frequency distribution comparison of NACCESS RSA values and predicted
RSA values for the 215 test set using the 1363 training set. A total of 50,856 residues for
215 protein lists were used to generate these plots. Frequency of query residues with
respect to NACCESS RSA values and frequency of query residues with respect to
predicted RSA values generated by linear regression are displayed.

Figure 3.11 presents comparison aggregate correlation plots of sequence entropy

and other homology-based parameters for the 268 training data set. Here is the combined

aggregate correlation plot for the manually generated BLAST output calculation

performed previously by the Lustig group (Mishra, 2010). On the other hand, Figure

3.11B is the combined aggregate correlation plot for automatically generated BLAST

output calculations. This comparison was made to validate the finding of the automated

BLAST output files. Aggregate values for all of the homology-based parameters are

determined by averaging their respective values within the same packing density interval.

47

The standard deviation for both the manually generated and automatic calculations are

comparable, typically 0.3 for E20 and E6, and 0.1 for FSHP and FSR.

Comparable to our previous work (Mishra, 2010; Rose et al., 2011), two major

regions were noted in in both the graphs. Major Region I is associated with a packing

density of 11 to 25 (0.09 to 0.04 of inverse density), and relates to the portion of the

graph where average sequence entropy increases linearly with an increase in packing

density. On the other hand, in Major Region II, associated with a packing density of 4

to10 (0.25 to 0.1 of inverse density), a different trend is observed. In Major Region II,

sequence entropy remains almost the same as packing density increases. Both Figures

3.11A and 3.11B show similar trends and patterns.

48

Figure 3.11. Comparison of combined aggregate correlation plots of sequence entropy
and other homology-based parameters for the 268 training set. Packing density is the
number of Cα within a 9Å radius, and excluded here is the portion of Region II with
packing densities less than 5 (<1% of all residues). Average sequence entropy, E20
(open-square, ordinate) and E6 (closed-diamond), are calculated by averaging the
respective values for 73,727 query residues for each inverse packing density value.
Fraction of strongly hydrophobic residues (asterisk) and fraction of small residues (open-
diamond) are calculated and averaged over a total of 7.12E7 aligned residues, plotted
against inverse packing density. Average values for all the homology-based parameters
are determined by averaging their respective values within the same packing density
interval. Note that the standard deviations for E20 and E6 are comparable (typically 0.3),
while typically 0.1 for FSHP and FSR. A. Combined aggregate correlation plot for the
manually generated BLAST output calculation (Mishra, 2010). B. Combined aggregate
correlation plot for the automatically generated BLAST output calculation.

49

Figure 3.12 shows the aggregate correlation plots of sequence entropy and other

homology based parameters for the 1363 training data set. The presence of the two major

Regions I and II are also observed with comparable trends in the 1363 training set as with

the 268 training data sets.

Figure 3.12. Combined aggregate correlation plots of sequence entropy and other
homology-based parameters for the 1363 training set. Packing density is the number of
Cα within a 9Å radius and that the portion of Region II with a packing density less than 5
is <1% of all residues. Average sequence entropy and E6 are calculated by averaging the
respective values for 73,734 query residues for each inverse packing density value.
Fraction of strongly hydrophobic residues and fraction of small residues are calculated
and averaged over a total of 318,840 aligned residues, plotted against inverse packing
density. Average values for all the homology-based parameters are determined by
averaging their respective values within the same packing density interval. Note that the
standard deviations for E20 and E6 are comparable (typically 0.3), while typically 0.1 for
FSHP and FSR.

Figures 3.13 and 3.14 represent individual plots of RSA as a function of inverse

packing density and packing density for the 268 and 1363 training data sets. Again,

50

similar to the aggregate correlation plots of sequence entropy, two major regions are

observed with aggregate plots of RSA. In the first major region, RSA values decrease

linearly as packing density increases, and in the second major region, RSA values stay

almost constant—close to 0—as packing density increases. Similar trends are observed

in both of the training data sets. These concur with our previous findings (Mishra, 2010)

that residues associated with lower packing densities have higher RSA and are more

likely to be found on the surface of the proteins, whereas residues that have a high

packing density are dense and are usually found in the core of the proteins. The RSA

values for these residues should be closer to 0. Figures 3.12 and 3.13 support this claim,

as high-density values have RSA close to 0. Although majority of protein residues

display this trend, very few residues have RSA values of 0 for a low packing density.

Figures 3.13A and 3.14A simply show this RSA trend as a function of inverse density.

51

Figure 3.13. Density—relative surface accessibility comparison for the 268 training set.
Here the aggregate of RSA values were obtained by averaging a total of 73,734 query
residues at each packing density position. A. Aggregate correlation plot of relative
surface accessibility (RSA) and inverse packing density for the 268 training set of
proteins. B. Aggregate correlation plot of relative surface accessibility (RSA) and
packing density for the 268 training set of proteins.

52

Figure 3.14. Density—relative surface accessibility comparison for the 1363 training set.
Here the aggregate of RSA values was obtained by averaging a total of 318,840 query
residues at each packing density position. A. Aggregate correlation plot of relative
surface accessibility (RSA) and inverse packing density for the 1363 training set of
proteins. B. Aggregate correlation plot of relative surface accessibility (RSA) and
packing density for the 1363 training set of proteins.

53

3.2 Accuracy of Results

 Table 3.1 showcases a comparison of accuracies for the 12 different linear

regression models using the 268 training data set on the 215 test data set for the manually

derived BLAST and automated BLAST outputs. The accuracy for the manually derived

BLAST output is generally lower than the accuracy of its counterpart model using the

automated BLAST output. The accuracies were generated with the same number; 73,734

aligned residues were used for the 268 training data set, and 50,856 aligned residues were

used for the 215 test set. Theoretically, these two sets of accuracies should be identical,

but due to various parameters involved during the process of accuracy calculation they

are not. Previous R scripts (Rose et al., 2011) calculated the manual BLAST output

accuracies. First, linear regression for the training data set was generated, and then β

coefficients that were to be applied to the test set were extracted. The β coefficients were

also manually fed into the 215 data set RSA prediction calculations. This manual

introduction of β coefficients into the code presented room for error in calculation.

Anytime there was an improvement or modification made to the training set, it altered the

β coefficients’ values. Due to the fact that the entries were made manually, these

changes were often not reflected in the application to the test set. The possibility of input

truncation was also introduced.

 However, in the automated BLAST output accuracies, this sort of error in

calculations was eliminated by sequentially generating the linear model using the training

data set and applying the parameters obtained from the regression to the test sets

automatically and internally in the program. Anytime there were any changes implied in

54

the training set, those changes were automatically reflected in the test set. This new

automated accuracy code was also implemented in the manual BLAST output

calculations, and comparable accuracies with the automated BLAST outputs were

observed. The highest accuracy observed was for the E20 + E6 + FSR + FSHP + AA

model at 72.4% and 74.2%, respectively, for the manual and automated version of the

268 training set and the 215 test set. Accuracy of 74.4% was also observed for the E6 +

FSR + FSHP+ AA model. Noteworthy is the fact that the E20 + E6 + AA hovers very

close to the highest accuracy at 74%. This also shows that the addition of a qualitative

predictor, AA, aided in better accuracy prediction because, without AA, the E20 + E6

model has accuracy of 69.1%, which is lower by 4.9%. Also, the model FSHP + AA is

missing from the manual BLAST accuracy because FSHP + AA was incorporated as the

12th model after these values were generated.

55

Table 3.1. Comparison of regression accuracy using manually generated BLAST output
calculation and automatically generated BLAST output calculations.

Models Accuracy
 Manual 268

Training
215 Test

Automated 268 Training
215 Test

E20 63.1 63.0
E6 67.0 68.9
FSHP 67.3 68.2
FSHP + AA 69.8
AA 70.6 70.4
E20 + AA 72.1 72.8
E6 + AA 73.1 74.0
E20 + E6+ AA 72.9 74.0
E20 + E6 67.4 69.1
E20 + FSR + FSHP +
AA

73.4 73.3

E6 + FSR + FSHP +
AA

73.2 74.2

E20 + E6 + FSR +
FSHP + AA

72.4 74.2

 Table 3.2 displays a summary of regression accuracies for 12 models tested for

the 215 test set using 268 as the training set, the 215 test set using 1363 as the training

set, and finally the 215 PSI-BLAST test set using 268 PSI-BLAST as the training set.

This set of 12 models accuracy calculations is also referred to as standard accuracy

calculation for the remainder of this thesis. The NACCESS RSA threshold used for the

268 training set, and the 268 PSI-BLAST training set was >23, while >25.2 was used for

the 1363 training set. These thresholds were determined with the aid of linear regression

line of best fit (Figures 2.2 and 2.3) for each of the training sets.

 Here again as in Table 3.1, we observe similar trends. Consistently, for all of the

training and test set combinations used, E20 + E6 + FSR + FSHP + AA has the highest

prediction accuracy observed. Our findings here indicate that, although the highest

56

accuracy for the PSI-BLAST model does slightly better, at 74.4% vs. 74.2% for regular

BLAST, it does not have a significantly large impact. Also for some models, like E6 +

FSR + FSHP + AA, PSI-BLAST actually results in lower accuracy than BLAST at

69.09% vs. 73.29%. As was seen in Table 3.1, the addition of the qualitative predictor

AA improves accuracy.

Table 3.2. Summary of regression accuracy for the 12 models tested. The three different
sets of numbers represent different training and test set models. The predicted RSA
thresholds for the three sets were slightly different depending on the non-hydrophobic
linear regression intercept for each data set.

Models Accuracy
 268 Training

215 Test1
1363 Training
215 Test2

268 PSI-BLAST Training
215 PSI-BLAST Test3

E20 63.0 63.3 63.1
E6 68.9 68.8 68.8
FSHP 68.3 68.2 68.2
FSHP + AA 69.7 70.8 70.8
AA 70.4 70.4 70.4
E20 + AA 72.8 72.9 72.9
E6 + AA 74.0 74.1 74.1
E20 + E6+ AA 74.0 74.1 74.1
E20 + E6 69.1 69.1 74.1
E20 + FSR + FSHP +
AA

73.3 74.1 69.1

E6 + FSR + FSHP +
AA

74.2 74.4 74.1

E20 + E6 + FSR +
FSHP + AA

74.2 74.4 74.4

1 Predicted RSA threshold used >23.
2 Predicted RSA threshold used >25.2.
3 Predicted RSA threshold used >23.

57

3.3 Outcome of Additional Methods to Improve Prediction Accuracy

3.3.1 Outcome of Additional Models Applied

 Separate predictors for each of the small residues Ala and Gly are worth noting

here. In our previous models, Ala and Gly were incorporated under one sequence

homology parameter, FSR. The fraction of aligned residues that are Gly (FG) and Ala

(FA) were then generated. New models that substituted FSR with FA, FG, and FA + FG

were generated. The accuracies for each of these additional models are presented in

Table 3.3. The highest accuracy observed as a result of the incorporation of these

additional models was 73.6% and 73.4% for the 268 and 1363 training data sets,

respectively. Contrary to our hypothesis, separating the Ala and Gly from the existing

FSR sequence homology did not improve the overall prediction accuracy. Interestingly

for both the 268 and 1363 training sets, the accuracies with the 215 set hovered between

73.0% and 73.6 %. While we observed variant accuracy ranges for all of the other

regression models we applied (see Tables 3.1 and 3.2), it is noteworthy that the range of

accuracies involving FG and FA did not improve over the standard methods.

58

Table 3.3. Regression accuracy table for additional models applied. The two different
sets of numbers represent different training and test set models. The predicted RSA
thresholds for the two sets were slightly different depending on the non-hydrophobic
linear regression intercept for each data set. >23 and >25.2 were used, respectively, for
the 268 BLAST–215 BLAST and1363 BLAST–215 BLAST.

Models Accuracy
 268 Training

215 Test
1363 Training
215 Test

FSHP + AA 69.7 70.8
E20 + FA + FG + FSHP + AA 73.3 73.0
E20 + FA + FSHP + AA 73.3 73.0
E20 + FG + FSHP + AA 73.2 73.0
E6 + FA + FG + FSHP + AA 73.6 73.4
E6 + FA + FSHP + AA 73.6 73.4
E6 + FG + FSHP + AA 73.4 73.4
E20 + E6 + FA + FG + FSHP +
AA

73.6 73.4

E20 + E6 + FA + FSHP + AA 73.6 73.4
E20 + E6 + FA + FSHP + AA 73.5 73.4

3.3.2 Outcome of Categorized Protein Data Set

	 In the Hotpatch study by Petit and coworkers (2007), a total of 618 PDB IDs are

included. Out of the two categories investigated to explore the possibility of accuracy

improvement, only the protein binding group yielded better accuracy. Table 3.4 displays

protein binding PDB ID matches between the 618 set and each of the two training data

sets (268 and 1363) and the test set. There were 13 PDB ID matches between the 618

and 268 training sets, 8 PDB ID matches between the 618 and 1363 training sets, and a

total of 16 PDB ID matches between the 618 and 215 test sets for the protein-binding

category.

	 	

59

Table 3.4. Protein binding category PDB ID matches between the 618 Hotpatch protein
PDB IDs (Petit et al., 2007) and the 268 and 1363 training sets and 215 test set.

	 Protein	 Binding	 PDB	 ID	 Matches	
	 618–268	 matches	 618–1363	 matches	 618–215	 matches	
1. 	 1AK4C	 1BKRA	 1BEOA	
2. 	 1B3AA	 1G3PA	 1BGCA	
3. 	 1BUOA	 1KPTA	 1CFYA	
4. 	 1FINB	 1KWAA	 1CSGA	
5. 	 1KPTA	 1TENA	 1JKWA	
6. 	 1KWAA	 1VCAA	 1KNBA	
7. 	 1M6PA	 2PSPA	 1KPTA	
8. 	 1OSPO	 3SEBA	 1LKIA	
9. 	 1YCSA	 	 1LKKA	
10. 	 1YCSB	 	 1MAZA	
11. 	 2ILKA	 	 1OSPO	
12. 	 2TGIA	 	 1SIGA	
13. 	 2TRCP	 	 1SVPA	
14. 	 	 	 1VCAA	
15. 	 	 	 1WHIA	
16. 	 	 	 2PSPA	

 There were two sets of regressions carried out for the protein binding categories.

For the first set of regression analyses, 618-268 protein binding (PB) matches were used

as the training set and 618-215 protein binding matches were used as the test set. For the

second set of regression analyses, 618-1363 protein binding matches were used as the

training set and 618-215 protein binding matches were used as the test set. The

prediction accuracy for the 12 different models is presented in Table 3.5.

 As observed from the accuracy table (see Table 3.5), the PB category yielded

slightly better prediction accuracy than our previous regression analysis (see Tables 3.1,

3.2, and 3.4). In standard calculation, the highest accuracy achieved was 74.4% for the

1363 training set and the 215 test set calculations. The highest accuracy value for the PB

60

is at 76.3% for 618-268 PB matches as training set and 618-215 PB matches for the test

set. Both E20 + E6 + FSR + FSHP + AA and E6 + FSR + FSHP + AA display the

highest predicted accuracy for this regression analysis at 76.0. Both sets of regressions

display similar patterns and accuracy amounts.

Table 3.5. Regression accuracy table for protein binding model. The two different sets
of numbers represent different training and test set models. The predicted RSA
thresholds for the two sets were >23 and >25.2, respectively, for the 618-268 and 1363-
268 matches. Here, PB stands for protein-binding.

Models Training = 618-268 PB
PDB IDs Matches
Test = 618-215 PB PDB
IDs Matches1

Training = 618-1363 PB
PDB IDs Matches
Test = 618-215 PB PDB
IDs Matches2

E20 60.5 60.5
E6 60.5 60.5
FSHP 73.0 74.3
FSHP + AA 74.2 75.8
AA 73.0 73.4
E20 + AA 74.8 74.5
E6 + AA 75.4 75.4
E20 + E6 + AA 75.0 75.5
E20 + E6 60.1 61.4
E20 + FSR + FSHP + AA 76.0 75.3
E6 + FSR + FSHP + AA 76.2 76.0
E20 + E6 + FSR + FSHP +
AA

76.3 76.0

1 The predicted RSA threshold used for this set of calculations was >23.
2 The predicted RSA threshold used for this set of calculations was >25.2.

3.3.3 Use of All 618 PDB IDs as Training and 215 as Test

 Another test performed on the 618 set was the use of all 618 proteins as the

training set and the 215 as the test set. There were four different sets of linear regression

calculations involving the 618 and 215 protein sets: 1.generic, 2. protein binding,

61

3. Oligomers, 4. generic without PB and Oligomers. Table 3.6 includes a comprehensive

presentation of the actual application of these sets of calculations.

Table 3.6. Description of 618 PDB IDs as training and 215 PDB IDs as test regression
analysis calculations. This table summarizes the different groups of PDB IDs used as
training and test sets for this analysis.

 Training Test
1) Generic All of the 618 protein All the PDBs in the 215 set

that match 618 set
2) Protein Binding (PB) PB PDB IDs from 618 Set1 PB PDBs matches between

the 618 and 215 sets
3) Oligomers Oligomer PDB IDs from

the 6182
Oligomer PDBs matches
between the 618 and 215
sets

4) Generic without PB
and Oligomers

618 PDBs excluding PB
and oligomers3

All 618 – 215 matches
without PB and oligomers

1618–215 PB matches were excluded.
2618–215 Oligomer matches were excluded.
3618–215 matches were excluded.

Table 3.7 is the regression accuracy results of the different set calculations presented

in Table 3.6. Out of the four categories, protein binding consistently had higher

accuracies for each of 12 models tested, while oligomers reliably had lower accuracies

for each model. Protein binding model, RSA = E20 + FSR + FSHP + AA, had the

utmost accuracy, 77.7%, of all the models for the various categories tested. The addition

of the amino acid (AA) qualitative predictors to each of the homology-based parameters

used as models generally resulted in higher accuracies compared to the same model

without an AA qualitative predictor.

62

Table 3.7. Regression accuracy table of PDB IDs of the four groups: 1. generic 2. protein
binding 3. oligomers 4. and generic without PB and Oligomers used in the regression
analysis. Here the entire categorized 618-protein sets were used as training, and

categorized PDB IDs from the 215 were used as test set.

3.4 Incorporation of the Categories to the Existing Data Sets

 There are several PDB IDs that match PDB IDs in the 268, 215, and 1363 data

sets. The last set of regression analyses took advantage of the PDB IDs that overlap

between the different data sets with 618. Similar to the previous set of calculations with

Model Generic Protein
Binding (PB)

Oligomer

Generic
without PB and
Oligomer

RSA = E20 62.1 60.5 61.0 63.3
RSA = E6 68.8 60.5 68.2 70.1
RSA = FSHP 69.8 74.0 68.3 71.9
RSA = FSHP
+ AA

71.0 75.8 69.8 72.3

RSA = AA 71.2 74.4 70.3 70.9
RSA = E20 +
AA

73.5 76.0 72.3 74.6

RSA = E6 +
AA

74.6 76.9 73.1 75.1

RSA = E20 +
E6 + AA

74.5 76.7 73.2 75.2

RSA = E20 +
E6

69.1 63.1 68.7 70.3

RSA = E20 +
FSR + FSHP
+ AA

74.0 76.9 72.7 75.1

RSA = E6+
FSR + FSHP
+ AA

74.7 77.2 73.5 75.3

RSA = E20 +
E6 + FSR +
FSHP + AA

74.7 77.3 73.4 75.4

63

the 618 data set, these regression calculations were also calculated for four categories of

PDB ID: 1. Generic, 2. protein binding (PB), 3. Oligomers, 4. generic without PB and

oligomers.

 As the first task, all the PDB IDs that were common between the 618 and 215

data set, 618 and 268 data set, and 618 and 1363 data set were extracted for each of the

categories. The protein binding category had a total of 17 PDB IDs in 215, 12 in 268,

and 8 in 1363 common with the 618 protein binding category. The oligomer category

shared 30 PDB IDs in 215, 25 in 268, and 12 in 1363 with 618 in the oligomer category.

Generic PDB IDs are all of the PDB IDs in the various categories in the 618 data set.

Generic matches between each of the data sets simply are the number of PDB IDs

common between each of the data sets with the 618 data set. All PDB ID matches

between the 618 data set and each of the three data sets (268, 215, and 1363) are

presented in Tables 3.8 through 3.10.

 Tables 3.11 through 3.14 are the regression accuracies for the different categories

using PDB IDs that are common between the 618 data set and each of the three original

data sets (268, 1363, and 215). Table 3.11 is the regression accuracy for the generic

category. Generic PDBs are the PDBs that were found in common between the 618 data

set and the 268, 215, and 1363 group for all of the categories listed in the 618 data set.

The highest accuracy for the generic category was achieved at 74.8% for the RSA = E20

+ E6 + FSR + FSHP + AA model using all of the 618-268 common PDBs as the training

set and all of the 618-215 common PDBs as the test set.

64

The regression accuracies for the 12 models for the protein binding category are

presented in presented in Table 3.12. The highest accuracy for the protein binding

category is 76.9% for the RSA = E20 + E6 + FSR + FSHP + AA model using protein

binding from 1363 as the training set and protein binding from 215 as the test set.

Similar to earlier calculations, the protein binding category yielded the overall highest

prediction accuracies.

65

Table 3.8. PDB ID matches between the 618 data set with three data sets (215, 268, and
1363) for the protein binding and oligomer categories. Note: A PDB ID categorized as
protein binding can also be categorized as oligomer.

Protein	 Binding	 Oligomers	
215	 268	 1363	 215	 268	 1363	

1BEOA	 1YCSB	 1BKRA	 1QAPA	 1KPFA	 2PSPA	
1BGCA	 1OSPO	 2PSPA1	 1DOSA	 3CLAA	 1A73A	
1CFYA	 1AK4C	 3SEBA	 1HGXA	 1AJSA	 1HFES	
1CSGA	 1BUOA	 1KPTA	 2PSPA1	 2SICI	 1UTGA	
1DKTB	 1B3AA	 1TENA	 1SVPA1	 1BD0A	 1MTYB	
1JKWA	 2TGIA	 1KWAA	 1BBPA	 1BUOA	 1B5EA	
1KNBA1	 1KPTA	 1VCAA	 1TFEA	 1VLBA	 3CHBD	
1KPTA	 1FINB	 1G3PA	 1BTMA	 1AORA	 1PSRA	
1LKIA	 1M6PA	 	 	 1GSAA	 1B3AA	 1BEBA	
1LKKA	 1KWAA	 	 	 1KNYA	 1UTGA	 1REGX	
1MAZA	 2ILKA	 	 	 3SDHA	 2TGIA	 2SQCA	
1OSPO	 2TRCP	 	 	 1ABRB	 3SDHA	 1OTFA	
1SIGA	 	 	 	 	 1IDAA	 1B5EA	 	 	
1SVPA1	 	 	 	 	 1ECPA	 1GOTB	 	 	
1VCAA	 	 	 	 	 1DELA	 1GVPA	 	 	
1WHIA	 	 	 	 	 3MINB	 1CG2A	 	 	
2PSPA1	 	 	 	 	 1GOTB	 1NOXA	 	 	
	 	 	 	 	 	 1PDOA	 1M6PA	 	 	
	 	 	 	 	 	 1DKZA	 3DAPA	 	 	
	 	 	 	 	 	 1NOXA	 2ILKA	 	 	
	 	 	 	 	 	 1PEAA	 12ASA	 	 	
	 	 	 	 	 	 2TYSA	 1REGX	 	 	
	 	 	 	 	 	 1FDSA	 1HJRA	 	 	
	 	 	 	 	 	 1XVAA	 1DPGA	 	 	
	 	 	 	 	 	 1AFRA	 2SQCA	 	 	
	 	 	 	 	 	 1HSBA	 	 	 	 	
	 	 	 	 	 	 1OFGA	 	 	 	 	
	 	 	 	 	 	 1YASA	 	 	 	 	
	 	 	 	 	 	 1DHRA	 	 	 	 	
	 	 	 	 	 	 1KNBA1	 	 	 	 	

 1 Represents PDB IDs that is common between the protein binding category and
Oligomer Category.

66

Table 3.9. PDB ID matches between the 618 data set with three data sets (215, 268,
1363) between all categories.

Generic	 	
215	 268	 1363	

1LKKA	 3SDHA	 1ABRB	 1YCSB	 1KWAA	 1BKRA	 2PIAA	
1MAIA	 5P21A	 1AFRA	 1KPFA	 1AYLA	 1XFFA	 1REGX	
1MAZA	 1KTEA	 1AXNA	 3CLAA	 1THTA	 1PINA	 1G3PA	
1NOXA	 1LBAA	 1BBPA	 1FJMA	 2ILKA	 2PSPA	 2SQCA	
1OFGA	 1LCLA	 1BEOA	 1OSPO	 12ASA	 2SCPA	 1OTFA	
1OSPO	 1LKIA	 1BGCA	 1AK4C	 2TRCP	 256BA	 	 	
1PDOA	 2PSPA	 1BIBA	 2SCPA	 1REGX	 1A73A	 	 	
1PEAA	 2RN2A	 1BTMA	 1AJSA	 1NO3A	 1IXHA	 	 	
1POCA	 2SCPA	 1BTNA	 2SICI	 1HJRA	 3SEBA	 	 	
1POTA	 2TYSA	 1CFYA	 1TX4A	 1DPGA	 1UTGA	 	 	
1QAPA	 3CHYA	 1CHDA	 256BA	 1STFI	 2FDNA	 	 	
1RCFA	 3MINB	 1CNVA	 1NP4A	 2SQCA	 1A62A	 	 	
1RECA	 1IDAA	 1CSGA	 2LIVA	 2MBRA	 1MTYB	 	 	
1RSYA	 1IDOA	 1DELA	 1BD0A	 1A48A	 1B5EA	 	 	
1SBPA	 1JKWA	 1DHRA	 1BUOA	 1A6QA	 1KPTA	 	 	
1SIGA	 1KNBA	 1DKTB	 1VLBA	 1GVPA	 1AMUA	 	 	
1SMEA	 1KNYA	 1DKZA	 1HIAI	 2RN2A	 1MPGA	 	 	
1SRAA	 1KPTA	 1DOSA	 1AORA	 1CG2A	 1IIBA	 	 	
1STFI	 	 	 1ECEA	 1BLZA	 1NOXA	 1FDRA	 	 	
1SVPA	 	 	 1ECPA	 4HTCI	 1FINB	 3CHBD	 	 	
1TFRA	 	 	 1EXNB	 1B3AA	 1M6PA	 1NBCA	 	 	
1VCAA	 	 	 1FDSA	 1UTGA	 3DAPA	 1CIPA	 	 	
1WHIA	 	 	 1FJMA	 2TGIA	 2TPSA	 1TENA	 	 	
1XVAA	 	 	 1FTPA	 1AK0A	 	 	 2TPSA	 	 	
1YASA	 	 	 1GAIA	 3SDHA	 	 	 1KWAA	 	 	
256BA	 	 	 1XFFA	 1B5EA	 	 	 1JFRA	 	 	
2AYHA	 	 	 1GPCA	 1AH7A	 	 	 1PSRA	 	 	
2GDMA	 	 	 1GSAA	 13PKA	 	 	 1VCAA	 	 	
2LIVA	 	 	 1HGXA	 1KPTA	 	 	 1A8LA	 	 	
2MTAC	 	 	 1HLBA	 1AMUA	 	 	 1BEBA	 	 	
2PIAA	 	 	 1HSBA	 1MPGA	 	 	 2GDMA	 	 	

67

Table 3.10. PDB ID matches between the 618 data set and the three data sets (215, 268,
and 1363) between all categories without the protein binding and oligomer matches.

Generic	 without	 Protein	 Binding	 and	 Oligomers	 	
215	 268	 1363	

1AXNA	 1SBPA	 1FJMA	 	 	
1BIBA	 1SMEA	 2SCPA	 1XFFA	
1BTNA	 1SRAA	 1TX4A	 1PINA	
1CHDA	 1STFI	 256BA	 2SCPA	
1CNVA	 1TFRA	 1NP4A	 256BA	
1ECEA	 256BA	 2LIVA	 1IXHA	
1EXNB	 2AYHA	 1HIAI	 2FDNA	
1FJMA	 2GDMA	 1BLZA	 1A62A	
1FTPA	 2LIVA	 4HTCI	 1AMUA	
1GAIA	 2MTAC	 1AK0A	 1MPGA	
1XFFA	 2PIAA	 1AH7A	 1IIBA	
1GPCA	 2RN2A	 13PKA	 1FDRA	
1HLBA	 2SCPA	 1AMUA	 1NBCA	
1IDOA	 3CHYA	 1MPGA	 1CIPA	
1KTEA	 5P21A	 1A48A	 2TPSA	
1LBAA	 	 	 1A6QA	 1JFRA	
1LCLA	 	 	 2RN2A	 1A8LA	
1MAIA	 	 	 2TPSA	 2GDMA	
1POCA	 	 	 1AYLA	 2PIAA	
1POTA	 	 	 1THTA	 	 	
1RCFA	 	 	 1NO3A	 	 	
1RECA	 	 	 1STFI	 	 	
1RSYA	 	 	 2MBRA	 	 	

68

Table 3.11. Regression accuracy for generic category using common PDB IDs between
the 618 data set and the 215, 268, and 1363 data sets for the two regression models. The
respective training set and test set used for each of these calculations are also presented in
the table.

Models Generic

 Training =
Generic 268
Test = Generic
215

Training = Generic
1363
Test = Generic 215

Training= Generic
268 and Generic 1363
Test = Generic 215

RSA= E20 62.2 61.6 62.01
RSA = E6 68.4 68.5 68.5
RSA = FSHP 70.0 70.1 70.0
RSA = FSHP + AA 71.1 71.3 71.3
RSA = AA 71.4 70.2 71.4
RSA = E20 + AA 73.5 73.3 73.6
RSA = E6 + AA 74.6 73.7 74.4
RSA = E20 + E6 +
AA

74.6 73.7 74.4

RSA = E20 + E6 68.8 68.7 68.9
RSA = E20 + FSR +
FSHP + AA

74.6 73.7 74.1

RSA = E6 + FSR +
FSHP + AA

74.7 73.8 74.5

RSA = E20 + E6 +
FSR + FSHP + AA

74.8 73.9 74.5

69

Table 3.12. Regression accuracy for the protein binding category using common PDB
IDs between the 618 data set and the 215, 268, and 1363 data sets for the two regression
models. The respective training set and test set used for each of these calculations are
also presented in the table.

Table 3.13 is the regression accuracy for oligomer category. Similar to the

previous calculations, the oligomer category is the least well-predicted group because

accuracies are consistently lower for each of the related models. The highest accuracy

for the oligomer category is 73.6% for the RSA = E20 + E6 + FSR + FSHP + AA model

using oligomers from 268 as the training and oligomers from 215 as the test set.

Models Protein Binding

 Training =
Protein Binding
268
Test = Protein
Binding 215

Training = Protein
Binding 1363
Test = Protein
Binding 215

Training= Protein
Binding 268 and
Protein Binding 1363
Test = Protein Binding
215

RSA= E20 60.9 60.9 60.9
RSA = E6 60.9 60.9 60.9
RSA = FSHP 75.1 75.0 75.0
RSA = FSHP + AA 74.5 76.2 74.5
RSA = AA 73.4 73.7 73.4
RSA = E20 + AA 74.8 76.0 75.6
RSA = E6 + AA 75.2 77.3 76.7
RSA =E20 + E6 +
AA

75.0 77.2 76.3

RSA = E20 + E6 60.9 62.3 60.9
RSA = E20 + FSR +
FSHP + AA

76.0 76.2 77.0

RSA = E6+ FSR +
FSHP + AA

75.9 76.7 77.9

RSA = E20 +
E6 +FSR +FSHP +
AA

76.2 76.9 77.3

70

Table 3.13. Regression accuracy for the oligomer category using common PDB IDs
between the 618 data sets and the 215, 268, and 1363 data sets for the two regression
models.

Table 3.14 represents regression accuracies for the generic category excluding

PDB IDs categorized as protein binding and oligomers. The key difference between

Table 3.12 generic accuracy and Table 3.14 is that Table 3.12 includes protein binders

and oligomers as part of the list. In contrast, for the calculations presented in Table 3.14,

these two groups are removed. The highest accuracy for the generic category without the

Models Oligomer

 Training =
Oligomer 268
Test = Oligomer
215

Training =
Oligomer 1363
Test = Oligomer
215

Training= Oligomer
268 and Oligomer
1363
Test = Oligomer 215

RSA= E20 61.5 60.4 61.2
RSA = E6 68.3 68.5 68.3
RSA = FSHP 67.0 67.1 67.1
RSA = FSHP + AA 69.4 69.4 68.5
RSA = AA 72.4 69.4 68.4
RSA = E20 + AA 73.7 72.1 72.6
RSA = E6 + AA 73.6 73.1 73.5
RSA =E20 + E6 +
AA

73.6 73.0 73.4

RSA = E20 + E6 68.9 68.8 68.8
RSA = E20 + FSR +
FSHP + AA

73.1 72.1 72.9

RSA = E6+ FSR +
FSHP + AA

73.6 73.1 73.5

RSA = E20 +
E6 +FSR +FSHP +
AA

73.6 73.0 73.4

71

protein binders and oligomers categories is 76.0% for the RSA = E20 + E6 + FSR +

FSHP + AA model.

Table 3.14. Regression accuracy for generic category excluding protein binding and
oligomer categories using common PDB IDs between the 618 data sets with 215, 268 and
1363 data sets for the two regression models. The respective training set and test set used
for each of these calculations are also presented in the table.

Models Generic – Protein Binding - Oligomer

 Training =
Generic –
Protein
Binding –
Oligomer
(268)
Test =
Generic –
Protein
Binding –
Oligomer
(215)

Training =
Generic –
Protein Binding
– Oligomer
(1363)
Test = Generic
– Protein
Binding –
Oligomer
(1363)

Training= Generic
– Protein Binding
– Oligomer (268
and 1363)
Test = Generic –
Protein Binding –
Oligomer (215)

RSA= E20 64.0 63.5 64.1
RSA = E6 69.9 69.9 69.8
RSA = FSHP 70.7 70.9 70.8
RSA = FSHP +
AA

71.8 72.1 72.1

RSA = AA 71.9 70.7 70.7
RSA = E20 +
AA

74.6 74.3 74.4

RSA = E6 + AA 75.4 74.7 75.4
RSA =E20 + E6
+ AA

75.4 74.7 75.4

RSA = E20 + E6 70.1 70.1 70.0
RSA = E20 +
FSR + FSHP +
AA

75.6 74.9 75.7

RSA = E6+ FSR
+ FSHP + AA

75.9 75.4 75.9

RSA = E20 +
E6 +FSR
+FSHP + AA

76.0 75.4 75.9

72

4. Discussion

 The aggregate and correlation plots of the first of all of the data sets used for this

work, the 268 training set, were presented in previous work by the Lustig group

(Mishra, 2010). The earlier calculations derived by manually downloaded BLAST files

for each PDB ID in the 268 data set has been presented for comparison and validation

purposes of the automatically downloaded BLAST output files. The earlier manually

presented data and the automated results presented in the results section of this thesis

were identical, confirming the validity of the automated system. The automation of

downloading BLAST files was then applied toward development of a larger data set. The

1363 training set filled the need for a larger training set. The 1363 set presented trends

for all the distribution and correlation plots similar to both the automated and manual 268

training set. Also similar to the 268 training data set, the 1363 aggregate plots displayed

the characteristics of two major regions for sequence homology parameters when plotted

against inverse Cα packing density.

4.1 Prediction of RSA

 The primary focus of this study was to accurately predict solvent accessibility of a

given protein residue using a sequence qualitative predictor. The significance of linear

regression in conjunction with the amino acid as qualitative predictors lies in the fact that,

with a very limited number of sequence homology parameters, one can reasonably

predict the likelihood of a residue being either buried or on the surface as a part of binary

classification. The prediction accuracy ranged from 73 - 78% with models, and the

combination of E20, E6, FSR, FSHP, and AA resulted in the highest accuracy achieved

73

for most of the subset of calculations performed. The direct introduction of secondary

subclass information as qualitative predictors did not improve prediction results. The

sequence qualitative predictors directly introduce the actual query information into the

analysis. By themselves, they offer significant prediction accuracy. However, our first

attempts at nearest neighbor analysis using query sequence information, at least implicitly

in averaging flanking of RSA values, did not improve accuracy (Nepal, R. and Lustig, B.

San Jose State University, San Jose, CA. Unpublished work, 2011). This approach is a

common one in k-nearest neighbor analysis (Joo et al., 2012; Sim et al., 2006).

 There appears to be a fundamental limitation of prediction accuracy for solvent-

accessible residues. This involves having to deal with the association of solvent

accessibility with quaternary structure. Similar intrinsic limitation is also noticed in

secondary structure prediction (Kihara, 2005; Rost, 2001) with respect to tertiary

structure. Though we calculated a 40% alignment score as a threshold, this is comparable

to a sequence identity score of 40% (Yeh, 2005). But truncating sequences has its own

problems including losing valuable information about the nature of certain substituted

residues. Although sequence alignment helps identify differences between protein pairs

of similar and non-similar structures in high sequence identity (>40% for long

alignment), the signal gets less clear in 20–35% sequence identity (Jaroszewski et al.,

2002; Rost, 1999; Schwarz et al., 2010). This blurring should have an impact on solvent

accessibility.

There have been some additional improvements in solvent accessibility

predictions using support vector machines (Adamczak et al., 2004) and other learning-

74

based approaches, such as the random forest method to determine specific accessible

surface area (Pugalenthi et al., 2012). These calculations still remain very

computationally intensive and somewhat obscure in the physical interpretation of

individual parameters. However, even under optimal threshold RSA criteria, the overall

binary prediction limits remain just at or below the 78% accuracy. One parameter that

could have an impact is the quality of a learning set. Assuming this source of error is

addressed, the intrinsic limitations from coupling of local secondary and higher orders of

3D structure will likely still remain.

The most significant limitation for the prediction of residue solvent accessibility

may be attributed to the coupling between residue surface accessibility and

protein-protein contacts including quaternary structure. Although the majority of

hydrophobic residues are found buried in the core of the protein structure, there are some

hydrophobic residues on the surface of the protein involved in interaction with other

proteins (Yan et al., 2008). Earlier work by the Lustig group presented a linear

correlation between query hydrophobicity and inverse packing density in most of the

Major Region I (Liao et al., 2005). On the other hand, 10% of Major Region II query

residues were identified as strongly hydrophobic.

Although the accuracies calculated by linear regression model as described in this

thesis are slightly lower, it is comparable to the most utilized RSA accuracy calculation

reported in the literature (Adamczak et al., 2004). The former uses a complicated system

built upon neural networks that involve multilayered feed. A continuous approximation

of the real-value RSA using nonlinear regression was used with several feed-forward and

75

recurrent neural networks that were then combined into a consensus predictor. We

employed a simple two-step linear regression method for RSA prediction. Also, it was

reported that the use of Position-Specific Iterative BLAST (PSI-BLAST) resulted in

better accuracy. Our calculations resulted in similar accuracies with PSI-BLAST and did

not improve the accuracy predictions.

We have found that a very limited number of parameters can result in significant

prediction accuracy. These parameters include direct descriptor of actual sequence and

the various Shannon entropies associated with their substitution. The inclusion of 20-

point sequence entropy displayed the flexibility of a given amino acid to change or

mutate (Koehl and Levitt, 2001). Also noteworthy is that the addition of parameters

involving the classification of strongly hydrophobic or small residues add some

incremental value to the prediction. However, once one achieves accuracy approaching

mid 70%, additional parameter components add very little incrementally to the prediction

accuracy.

Various surface accessibility prediction methods applying the two-state (buried

and on the surface) have been recently developed. The use of SVM has been explored to

improve solvent accessibility prediction accuracies (Kim and Park, 2003; Wang et al.,

2007; Yuan et al., 2002). Typically, SVM constructs extended representation of data and

then classifies them into groups. This requires the use of a training set to inform the

boundaries of the classifier. Another method extensively applied to solvent accessibility

prediction is the utilization of neural networks (Adamczak et al., 2004; Ahmad and

Gromiha, 2002; Kim and Park, 2003; Rost and Sander, 1994). In neural networks

76

methods, RSA is predicted using a non-linear regression method instead of a

classification method. Unlike in SVM methods, here a continuous approximation and

evaluation of the real-value RSA is produced instead, imposing an arbitrary threshold to

the RSA (Adamczak et al., 2004). One such application in surface accessibility

prediction is the fuzzy k-nearest method applied to sequence information (FKNN) by Sim

et al. (2006); Joo et al. (2012) presented an additional application of the nearest neighbor

method where a database is constructed based on sequence information of residues and

its neighbors. Accuracy in all of these methods typically stays near 80%, and this is

consistent with the intrinsic problem at hand.

From a limited set of known quaternary contacts (Do, S.and Lustig, B. San Jose

State University, San Jose, CA. Unpublished work, 2010) it was concluded that RSA

prediction of residues on the surface is problematic. The RSA prediction of residues is

challenging primarily due to the presence of hydrophobic patches on the surface of the

protein. However, it is known in general that 50% of the globular protein’s surface is

non-polar, making “hydrophobic patches” inevitable even if protein does not interact with

other proteins (Eisenhaber and Argos, 1996; Lins et al., 2003). Although the majority of

hydrophobic residues are found buried deep within a protein structure, some are present

on the surface of the protein interacting with other complexes. To address this issue in

solvent accessibility prediction, Bahadur et al. (2004) described a method in which

surface residues are divided into two groups: the “core” and the “rim” set. This core is

not necessarily what is descriptive of the core in buried residues of the folded protein.

The core residues present in surface-accessible patches include interfaces with quaternary

77

interaction, and a mere presence of one buried interface atom is enough to categorize a

given residue as a core residue (Chakrabarti and Janin, 2002).

The incorporation of 618 categorical PDB IDs (Petit et al., 2007) was performed

in an attempt to improve RSA prediction accuracies. These proteins are in context of an

algorithm to predict, from X-ray structure, functionally relevant patches on the surface of

various classes of proteins. It was observed that, out of all the calculations performed,

our method consistently resulted in a better prediction for the protein binding category

better than any other group, whereas the oligomer group dependently resulted in lower

accuracies. The difference between the highest protein binding category and the highest

oligomer category was about 4.5%. Noteworthy, the remaining of the 618 PDB IDs

excluding protein binding PDB IDs, and oligomeric IDs, resulted in prediction accuracies

better than the oligomeric category, but not as good as protein binding. Here the

difference between protein binding and this group was around 2%.

In this thesis we have outlined a reliable RSA prediction method, and further

enhancements in this scheme have a potential to be a novel simple binary RSA

predictions method as a gold standard for the field. Incorporation of a larger training data

set (i.e., 1363) did not yield a drastic improvement over RSA prediction. Unlike Joo et

al. (2012), who claimed the larger data set improved results drastically, our results do not

indicate such. The original size of the data set for the 1363 PDB IDs in the 1363 training

set was 6511 proteins (Bondugula et al., 2011), and similar PISCES culling parameters

were applied to this list as stated in the Joo et al. paper. After the application of PISCES,

the original list of 5157 (subset of the 6511 PDBs that were part of NCBI PDB library)

78

was reduced to 1363 of structurally diverse set. Even though, Joo et al. (2012) found

5717 proteins, after application of the culling service PISCES, it is hard to imagine that

the list is not structurally redundant.

Our results have indicated that dividing the proteins into various structural

categories holds itself as a promising new direction for RSA predictions. The role of

solvent accessibility in protein binding categories and oligomers needs to be further

investigated to discover why the latter results in poor prediction accuracy while the

former does not. Currently for this work, the incorporation of structural information (i.e.,

protein binding, oligomers) to the existing data sets (268, 1363, and 215) could only be

applied to PDB IDs that were present in the 618 data set. As a future direction to the

project, a reliable method to apply structure information to every PDB ID in the existing

data sets needs to be assimilated. Once this has been done, the RSA prediction

calculations need to be recalculated, and any changes observed could be noteworthy.

Also, multiple stages have displayed some level of advantage in terms of RSA prediction

with SVM and linear regressions (Adamczak et al., 2005). A second-stage

implementation of the existing first-stage qualitative predictor methodology may present

itself as a new improvement to the existing systems.

79

5. Future Studies

	 Additional studies to further the work described in this thesis are listed below:

• Investigate the reasons why the protein binding category consistently results in

higher prediction accuracy, whereas the oligomer category yields a lower range of

prediction accuracy.

• Protein binding and oligomeric classifications should be made for all of the three

different data sets (268, 1363, and 215).

• A second stage regression method should be incorporated into the existing

regression approach. Our preliminary results indicated the incorporation of a

distant homolog as a second filter yielded higher accuracy; this approach needs to

be further analyzed.

• The possibility of application of logistic regression where an outcome is predicted

on the basis of categorical dependent variable in the presence of one or more

predictor variables should be explored for better accuracy predictions.

• Further in-depth exploration of the current method should be implemented to

recognize amino acid residues and RSA values that are most mispredicted with

the existing method.

• Further investigate a larger training NACCESS threshold than the 20 that is

currently being used.	

80

6. Conclusions

 Query-based qualitative predictors with protein sequence information were

utilized to predict protein residue solvent accessibility. An automated system to

download, integrate, and analyze various homology-based parameters and calculations

was developed. The manual and automated characterization were deemed to be identical,

thereby validating the later method. A novel and larger training data set (1363 training)

was developed. The distribution plots of both the 268 and 1363 training data sets

displayed a bimodal frequency distribution of residues, indicating the presence of highly

hydrophobic residues on the surface. This is consistent with the notion of intrinsic

limitations in predicting surface-accessible residues with only one chain.

A total of 12 main regression models utilizing various combinations of the two

types of entropies (E20 and E6), homology-based parameters (FSR, FSHP) as

quantitative predictors, and direct 20 amino acid information as qualitative predictors

were created. Our results indicate consistently that E20 + E6 + FSR + FSHP + AA

resulted in the highest accuracy compared to all the other models for all the tests

performed. Interestingly, 6-point entropy (E6) with the qualitative predictor (AA)

resulted in better prediction than the use of 20-point entropy (E20). In fact, in some sets

of linear regression accuracy calculations, E6 + AA did almost as well as the best model.

And breaking the FSR qualitative predictor into its two individual components (FA and

FG) did not improve prediction accuracy. The incorporation of a larger training data set

did not improve the accuracy prediction of the test set but actually resulted in accuracies

comparable to the smaller training data set.

81

 Categorical regressions, where the proteins are divided into groups such as protein

binding and oligomer, bring about some interesting information. The linear regression

method imposed in this thesis seemed to consistently yield higher prediction accuracy for

the protein binding category. On the other hand, the oligomeric category resulted in

slightly lower prediction accuracies.

82

Bibliography

Adamczak, R.; Porollo, A.; Meller, J. Proteins 2004, 56, 753-767.

Adamczak, R.; Porollo, A.; Meller, J. Proteins 2005, 59, 467-475.

Ahmad S.; Gromiha, M.M. Bioinformatics 2002, 18, 819-824

Bahadur, R. P.; Chakrabarti, P.; Rodier, F.; Janin J. J. Mol. Biol. 2004, 336, 943-955.

Berezovsky. I. N.; Trifonov, E. N. J. Mol. Biol. 2001, 307, 1419-1426.

Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.;
Shindyalov, I. N.; Bourne, P. E. Nucl. Acids. Res. 2000, 28, 235-242.

Berman, H. Structure. 2008, 16, 16-18.

Bondugula, R.; Wallqvist, A.; Lee, M. S. Protein Eng. Des. Sel. 2011, 24, 455-461.

Carugo, O. Protein Eng. 2000, 13, 607-609.

Chakrabarti, P.; Janin, J. Proteins 2002, 47, 334-343.

Chayen, N. E.; Saridakis, E. Nature Methods. 2008, 5, 147-153.

Daggett, V.; Fersht, A. Nature Rev. Mol. Cell Biol. 2003, 4, 497-502.

Dale, G. E.; Oefner, C.; d’Arcy, A. J. Struct. Biol. 2003, 142, 88-97.

Eisenhaber, F.; Argos, A. Protein Eng. 1996, 9, 1121-1133.

Eswar, N.; Marti-Renom, M. A.; Webb, B.; Madhusudhan, M. S.; Eramian, D.; Shen,
M.; Pieper, U.; Sali. Curr. Protoc. Bioinformatics 2006, Supplement 15, 5.6.1-5.6.30.

Gluehmann, M.; Zarivach, R.; Bashan, A.; Harms, J.; Schluenzen, F.; Bartels, H.;
Agmon, I.; Rosenblum, G.; Pioletti, M.; Auerbach, T.; Avila, H.; Hansen, H. A. S.;
Franceschi, F.; Yohnath, A. Methods 2001, 25, 292-302.

Graebsch, A.; Roche, S.; Kostrewa, D.; Soding, J.; Niessing, D. PLos One. 2010, 5 10.

Guharoy, M.; Chakrabarti, P. Natl. Acad. Sci. USA 2005, 102, 15447-15452.

Hellevik, O. Qual. Quant. 2009, 43, 59-74.

83

Hsieh, M.; Collins, E. D.; Blomquist, T.; Lustig, B. J. Biomol. Struct. Dyn. 2002, 20,
243-251.

Hubbard, S. J.; Campbell, S. F.; Thornton, J. M. J. Mol. Biol.1991, 220, 507-530.

Hubbard, S. J.; Thornton, J. M. NACCESS, Computer Program, Department of
Biochemistry and Molecular Biology, University College
London.http://www.bioinf.manchester.ac.uk/naccess/, 1993.

Jaroszewski, L.; Li, W.; Godzik, A. Protein Sci. 2002, 11, 1702-1713.

Joo, K.; Lee, S. J.; Lee, J. Proteins 2012, 80, 1791-1797.

Kallblad, P.; Dean, P. M. Proteins 2004, 56, 693-703.

Kihara, D. Protein Sci. 2005, 14, 1955-1963.

Kim, H.; Park, H. 2003, Protein Eng. 2003, 16, 553-560.

Koehl, P.; Levitt, M. Proc. Natl. Acad. Sci. USA 2002, 99, 1280-1285.

Kutner, M. H, Nachshelm, C. J, Neter, J. Applied Linear Statistical Models; McGraw-
Hill, New York, CA, 2004, Vol. 5, Chapter 8.

 Liao, H.; Yeh, W.; Chiang, D.; Jernigan, R. L.; Lustig, B. Protein Eng. 2005, 18, 59–64.

Lins, L.; Thomas, A.; Brasseur, R. Protein Sci.2003, 12, 1406-1417.

Mishra, R. Characterization of Protein Residue Structural Accessibility Using Sequence
Entropy; M.S. Thesis, San Jose State University, San Jose, CA, 2010.

Mizianty, J.; Kurgan, L. Bioinformatics 2011, 27, i24-i33.

Mizianty, M. J.; Kurgan, L. A. Protein Pept. Lett. 2012, 19, 40-49.

Naderi-Manesh, H.; Sadeghi, M.; Arab, S.; Movahedi, A. A. M. Proteins 2001, 42, 452-
459.

National Center for Biotechnology Information (NCBI), Protein Blast (BLASTP),
http://www.ncbi.nlm.nih.gov. Accessed 2011.

Oliveira, L.; Paiva, A. C. M.; Vriend, G. ChemBioChem. 2002, 3, 1010-1017.

Panchenko, A. R.; Kondrashov, F.; Bryant, S. Prot. Sci. 2004, 13, 884-892.

Petrova, N. V.; Wu, C. H. BMC Informatics 2006, 7, 313-323.

84

Pettit, F. K.; Tsa, A.; Bowie, J. U. J. Mol. Biol. 2007, 369, 863- 879.

Porollo, A.; Meller, J. Proteins 2007, 66, 630-645.

Poupon, A.; Mornon, J. P. FEBS Lett. 1999, 452, 283-289.

Pugalenthi, G.; Kandaswamy, K. K.; Chou, K.; Vivekanandan, S.; Kolatkar, P. Protein
Pept. Lett. 2012, 19, 50-56.

Richardson, C. J.; Barlow, D. J. Prot. Engr. 1999, 12, 1051-1054.

Rose, D. A.; Nepal, R.; Mishra, R.; Lau, R.; Gholizadeh, S.; Lustig, B. Conference in
Twenty-Secondary International Workshop on Database and Expert Systems
Applications, DEXA, Toulouse, France, September 29, 2011; Morvan, F.; Tjoa, A. M.;
Wagner, R. R., Eds.; IEEE Computer Society, Los Alamitos, 2011, 70-74.

Rost, B. J. Struct. Biol. 2001, 134, 204-218.

Rost, B.; Sander, C. Proteins 1994, 20, 216-226.

Savchenko, A.; Yeh, A.; Khachatryan, A.; Evdokimova, E.; Pavlova, M.; Semes, A.;
Northey, J.; Beasley, S.; Lan, N.; Das, R.; Gerstein, M.; Arromith, C.H.; Edwards, A.M.
Proteins 2003, 50, 392-399.

Schwarz, R.F.; Fletcher, Wi.; Forster, F.; Merget, B.; Wolf, M.; Schultz, J.; Markowetz,
F. PLoS One. 2010, 5, 12.

Shenkin, P. S.; Erman, B.; Mastrandrea, L.D. 1991, Proteins, 11, 297-313.

Sim, J.; Kim, S.Y.; Lee, J. Bioinfomatics. 2006, 21, 2844-2849.

Structural Classification of Proteins (SCOP), http://scop.mrc-lmb.cam.ac.uk/scop/.
Accessed 2011.

Valdar, W. S. J. Proteins 2002, 48, 227-241.

Wagner, M.; Adamczak, R.; Porollo, A.; Meller, J. J. Comput. Biol. 2005, 12, 355-369.

Wang, G.; Roland L. Dunbrack, J. Bioinformatics 2003, 19, 1589–1591.

Wang, J.Y.; Lee, H.; Ahmad, S. Proteins 2007, 68, 82-91.

Yan, C.; Terribilini, M.; Wu, F.; Jernigan, R. L.; Dobbs, D.; Honavar, V. BMC
Bioinformatics 2006, 7, 262-271.

Yan, C.; Wu, F.; Jerrigan, R. L.; Dobbs, D.; Honavar, V. Prot J. 2008, 27, 59-70.

85

Yeh, W. Detailed analysis of protein sequence entropy, hydrophobicity, and flexibility;
MS Thesis, San Jose State University, San Jose, 2005.

Yuan, Z.; Burrage, K.; Mattick, J.S. Proteins 2002, 48, 566-570.

86

Appendices

A. Program Listings

Author: Reecha Nepal
Date: May 6, 2012
Purpose: This script downloads the blast results for all pdb names in a
given file. To run this script do the following:
python download_blast.py pdb_names.txt
or
python download_blast.py 119LA
The output files will be created in a directory called "blast".
File: download_blast.py

import os
import sys

Returns the blast results for the given GI number.

def download_blast_for_gi_number(gi_number):
 from Bio.Blast import NCBIWWW
 blast_result_handle = NCBIWWW.qblast('blastp', 'nr', gi_number, \
 format_type="Text", alignments="1000",
 descriptions="10000",
 hitlist_size="10000")
 blast_text = blast_result_handle.read()
 blast_result_handle.close()
 return blast_text

Reads the fasta file for the given pdb name.

def read_fasta_file_for_pdb_name(pdb_name):
 file_name = os.path.join("fasta", pdb_name + ".fasta")
 if not os.path.exists(file_name):
 print "Error: Couldn't find file:", file_name
 print "Did you run the download_fasta.py script?"
 sys.exit(-1)

 input_file_handle = open(file_name, "r")
 input_data = input_file_handle.read()
 input_file_handle.close()
 return input_data

Gets the output path for the given pdb_name. For example, if the PDB name
is 1HGXA then the output path would be:
blast/1HGXA.txt

def get_output_path(pdb_name):
 # put the file in a directory named "blast"
 if not os.path.exists("blast"):
 os.makedirs("blast")

 output_path = os.path.join("blast", pdb_name + ".txt")
 return output_path

Saves the blast data with the fasta data at the top.

87

def save_blast_data(fasta_data, blast_data, output_path):
 out_file_handle = open(output_path, "wb")
 out_file_handle.write(fasta_data)
 out_file_handle.write(blast_data)
 out_file_handle.close()

Gets the GI number from a fasta file.

def get_gi_number_from_fasta(fasta_data):
 # The fasta_data should look like this:
 # >gi|1827785|pdb|1HGX|A Chain
 words = fasta_data.split("|")

 # If there are less than 4 words then this fasta file has errors in it.
 if len(words) < 4:
 print "Error: The fasta file for this PDB has errors in it."
 sys.exit(-1)

 return words[1]

Get a list of pdb names from the a file.

def get_pdb_list():
 if len(sys.argv) != 2:
 print "To run this script do the following:\n" \
 "\tpython download_blast.py pdb_names.txt\n" \
 "\tor python download_blast.py 119LA"
 sys.exit(-1)

 pdb_list = []
 if os.path.exists(sys.argv[1]):
 input_file_handle = open(sys.argv[1], "r")
 lines = input_file_handle.readlines()
 for line in lines:
 pdb_name = line.strip()
 if len(pdb_name) > 1:
 pdb_list.append(pdb_name)
 else:
 pdb_list.append(sys.argv[1])

 return pdb_list

Runs the main script.

def run(pdb_name):
 output_path = get_output_path(pdb_name)
 if os.path.exists(output_path):
 return

 fasta_data = read_fasta_file_for_pdb_name(pdb_name)
 gi_number = get_gi_number_from_fasta(fasta_data)
 blast_data = download_blast_for_gi_number(gi_number)
 save_blast_data(fasta_data, blast_data, output_path)

The main function, this gets run first when the program is run from the
command line.

if __name__ == "__main__":
 pdb_list = get_pdb_list()
 for index in range(0, len(pdb_list)):
 pdb_name = pdb_list[index]

 # Show how much is done

88

 percent_done = (index + 1.0) / len(pdb_list)
 percent_done = int(percent_done * 100.0)
 print index + 1, percent_done, "%", pdb_name

 run(pdb_name)

Author: Reecha Nepal
Date: May 6, 2012
Purpose: This script downloads the fasta files for all pdb names in a given
file. To run this script do the following:
python download_fasta.py pdb_names.txt
or
python download_fasta.py 119LA
The output files will be created in a directory called "fasta".
File: download_fasta.py

from urllib import urlopen
import os
import time
import sys

Download and return the fasta file for the given GI number.

def download_fasta_for_gi_number(gi_number):
 url = "http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?" \
 "db=nucleotideandid=" + gi_number + "andrettype=fasta"
 url_file_handle = urlopen(url)
 fasta_data = url_file_handle.read()
 url_file_handle.close()
 return fasta_data

Gets the output path for the given pdb_name. For example, if the PDB name
is 1HGXA then the output path would be:
fasta/1HGXA.fasta

def get_output_path(pdb_name):
 # put the file in a directory named "blast"
 if not os.path.exists("fasta"):
 os.makedirs("fasta")

 output_path = os.path.join("fasta", pdb_name + ".fasta")
 return output_path

Save the fasta file in a directory called fasta.

def save_fasta_data(fasta_data, output_path):
 out_file_handle = open(output_path, "wb")
 out_file_handle.write(fasta_data)
 out_file_handle.close()

Checks if the fasta data is valid. A valid fasta data should look like this:
>gi|1827785|pdb|1HGX|A Chain
If there's a server error then we sometimes get data that looks like this:
Error:Cannot connect to database

def fasta_data_is_valid(fasta_data):
 fasta_data_string = fasta_data.decode("utf-8")
 words = fasta_data_string.split("|")
 if len(words) < 4:
 return False
 else:

89

 return True

Get a list of pdb names from a file.

def get_pdb_list():
 if len(sys.argv) != 2:
 print "To run this script do the following:\n" \
 "\tpython download_fasta.py pdb_names.txt\n" \
 "\tor python download_fasta.py 119LA"
 sys.exit(-1)

 pdb_list = []
 if os.path.exists(sys.argv[1]):
 input_file_handle = open(sys.argv[1], "r")
 lines = input_file_handle.readlines()
 for line in lines:
 pdb_name = line.strip()
 if len(pdb_name) > 1:
 pdb_list.append(pdb_name)
 else:
 pdb_list.append(sys.argv[1])

 return pdb_list

Gets the GI number for the given PDB name.

def get_gi_number(pdb_name):
 file_name = os.path.join("gi_number", pdb_name + ".txt")
 if not os.path.exists(file_name):
 print "Error: Couldn't find file:", file_name
 print "Did you run the download_gi_number.py script?"
 sys.exit(-1)

 input_file_handle = open(file_name, "r")
 input_data = input_file_handle.read()
 input_file_handle.close()
 return input_data.strip()

Runs the main script.

def run(pdb_name):
 output_path = get_output_path(pdb_name)
 if os.path.exists(output_path):
 return

 gi_number = get_gi_number(pdb_name)

 retry_count = 0
 while True:
 # Download and save the fasta file
 fasta_data = download_fasta_for_gi_number(gi_number)
 if fasta_data_is_valid(fasta_data):
 if retry_count > 0:
 print "Downloading fasta data succeeded after", \
 retry_count, "tries"
 save_fasta_data(fasta_data, output_path)
 break

 # If there was an error then retry up to 8 times.
 if retry_count == 0:
 print "Warning: Downloading fasta data failed, retrying"
 elif retry_count > 8:
 print "Error: Unable to download fasta file for pdb:", \
 pdb_name, "quitting."

90

 sys.exit(-1)
 else:
 print "Retrying", retry_count
 retry_count = retry_count + 1

 # Wait 0.1 seconds before trying again incase we're overloading
 # the server.
 time.sleep(0.1)

The main function, this gets run first when the program is run from the
command line.

if __name__ == "__main__":
 pdb_list = get_pdb_list()

 for index in range(0, len(pdb_list)):
 pdb_name = pdb_list[index]

 # Show how much is done
 percent_done = (index + 1.0) / len(pdb_list)
 percent_done = int(percent_done * 100.0)
 print index + 1, percent_done, "%", pdb_name

 run(pdb_name)

Author: Reecha Nepal
Date: July 24, 2012
Purpose: This script downloads the GI number for all pdb names in a given
file. To run this script do the following:
python download_gi_number.py pdb_names.txt
or
python download_gi_number.py 119LA
The output files will be created in a directory called "gi_number".
File: download_gi_number.py

from urllib import urlopen
from xml.dom.minidom import parseString
import os
import time
import sys

Download and return the GI number file for the given pdb name.

def download_gi_number_for_pdb_name(pdb_name):
 url = "http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?" \
 "db=proteinandterm=" + pdb_name + "andretmode=xml"
 url_file_handle = urlopen(url)
 gi_number_data = url_file_handle.read()
 url_file_handle.close()
 return gi_number_data

Gets the output path for the given pdb_name. For example, if the PDB name
is 1HGXA then the output path would be:
gi_number/1HGXA.txt

def get_output_path(pdb_name):
 # put the file in a directory named "blast"
 if not os.path.exists("gi_number"):
 os.makedirs("gi_number")

 output_path = os.path.join("gi_number", pdb_name + ".txt")
 return output_path

91

Save the GI number in a directory called gi_number.

def save_gi_number_data(gi_number, output_path):
 out_file_handle = open(output_path, "wb")
 out_file_handle.write(gi_number)
 out_file_handle.close()

Checks if the GI number data is valid. Valid data should look like this:
<eSearchResult>
<Count>1</Count>
<RetMax>1</RetMax>
<RetStart>0</RetStart>
<IdList>
<Id>157829547</Id>
</IdList>
<TranslationSet/>
<QueryTranslation/>
</eSearchResult>
If there's a server error then we sometimes get data that looks like this:
Error:Cannot connect to database
If the data is valid then returns the GI number.

def parse_gi_number_from_data(data):
 string = data.decode("utf-8")
 if string.find("eSearchResult") == -1:
 return -1

 dom = parseString(data)
 id_list = dom.getElementsByTagName("Id")
 if not id_list or len(id_list) == 0:
 return -1
 return id_list[0].childNodes[0].nodeValue

Get a list of pdb names from a file.

def get_pdb_list():
 if len(sys.argv) != 2:
 print "To run this script do the following:\n" \
 "\tpython download_gi_number.py pdb_names.txt\n" \
 "\tor python download_gi_number.py 119LA"
 sys.exit(-1)

 pdb_list = []
 if os.path.exists(sys.argv[1]):
 input_file_handle = open(sys.argv[1], "r")
 lines = input_file_handle.readlines()
 for line in lines:
 pdb_name = line.strip()
 if len(pdb_name) > 1:
 pdb_list.append(pdb_name)
 else:
 pdb_list.append(sys.argv[1])

 return pdb_list

Runs the main script.

def run(pdb_name):
 output_path = get_output_path(pdb_name)
 if os.path.exists(output_path):
 return

92

 retry_count = 0
 while True:
 # Download and save the gi number
 gi_number_data = download_gi_number_for_pdb_name(pdb_name)
 gi_number = parse_gi_number_from_data(gi_number_data)
 if gi_number != -1:
 if retry_count > 0:
 print "Downloading gi number data succeeded after", \
 retry_count, "tries"
 save_gi_number_data(gi_number, output_path)
 break

 # If there was an error then retry up to 8 times.
 if retry_count == 0:
 print "Warning: Downloading GI number failed, retrying"
 elif retry_count > 8:
 print "Error: Unable to download GI number for pdb:", \
 pdb_name, "quitting."
 sys.exit(-1)
 else:
 print "Retrying", retry_count
 retry_count = retry_count + 1

 # Wait 0.5 seconds before trying again incase we're overloading
 # the server.
 time.sleep(0.5)

The main function, this gets run first when the program is run from the
command line.

if __name__ == "__main__":
 pdb_list = get_pdb_list()

 for index in range(0, len(pdb_list)):
 pdb_name = pdb_list[index]

 # Show how much is done
 percent_done = (index + 1.0) / len(pdb_list)
 percent_done = int(percent_done * 100.0)
 print index + 1, percent_done, "%", pdb_name

 run(pdb_name)

Author: Reecha Nepal
Date: July 18, 2012
Purpose: Convert SCOP (Structural Classification of Proteins) ids to PDB ids.
File: SCOPid_to_PDBid.py

input_file = open("260 Similarity log.txt", "r");
pdb_names = []
pdb_rejected_mapping = { }
for line in input_lines:
 # line is something like "reject 1CSEE 2PRKA 38"
 words = line.split(" ")
 # words is something like ["reject", "1CSEE", "2PRKA", "38"]
 number_of_words = len(words)
 if number_of_words >= 4:
 current_pdb_name = words[1]
 rejected_pdb_name = words[2]
 # at this point, current_pdb_name is something like "1CSEE"
 if not current_pdb_name in pdb_names:
 # this is a new pdb name
 pdb_names.append(words[1])

93

 pdb_rejected_mapping[current_pdb_name]= [rejected_pdb_name]
 else:
 # give me the list of rejected pdb names for current_pdb_name
 rected_pdb_names = pdb_rejected_mapping[current_pdb_name]
 # add the rejected pdb name
 rected_pdb_names.append(rejected_pdb_name)
 # update our mapping
 pdb_rejected_mapping[current_pdb_name] = rected_pdb_names

for pdb_name in pdb_names:
 print(pdb_name)
 if False:
 print(" The rejected pdbnames are ")
 # print the rejected pdb names for this pdb_name
 list_of_rejected_names = pdb_rejected_mapping[pdb_name]
 for a in list_of_rejected_names:
 print(" ")
 print(a)

 print("\n")

Author: Reecha Nepal
Date: July 18, 2012
Purpose: Takes pdb name from the 6511 total Bondugula set, checks if each of
those proteins are listed in pdb website or not, and finally print out an
output file consisting of just the pdb names found in pdb website
File: common pubs in the Bondugula set vs pdb library.py

step 1A

list of pdb names from the Bondugulla paper
input_file_Bondugulla = open("Bondugulla_pdbid_4letters.txt", "r");
source_pdb_lines = input_file_Bondugulla.readlines()
There's only one line in the file, so just split that one line
into words and save it into the variable source_pdb_list
source_pdb_first_line = source_pdb_lines[0]
source_pdb_list= source_pdb_first_line.split(", ")

step 1B
list of all the pdb names from the RCSB database
input_file_pdb = open("list of all pdbs in RCSB as of July8,2011.txt", "r");
master_pdb_list = input_file_pdb.readlines()
There's only one line in the file, so just split that one line
into words and save it into the variable source_pdb_list
master_pdb_first_line = master_pdb_list[0]
master_pdb_list = master_pdb_first_line.split(", ")

#Step 2
matched_pdb_name_list= []
for current_pdb in source_pdb_list:
 if current_pdb in master_pdb_list:
 matched_pdb_name_list.append(current_pdb)

#Step 3
output_file = open("Common pdbs between the Bondugulla set and pdb library.txt", "w")
for matched_pdb_name in matched_pdb_name_list:
 output_file.write(matched_pdb_name)
 output_file.write("\n ")

output_file.close()

94

Author: Reecha Nepal
Date: July 22, 2012
Purpose: This script calculates packing density.
To run this script do the following:
python calculate_density.py pdb_names.txt
The output files will be created in a directory called "density".

This script is adapted from:
cif2den.pl written by Radhika Pallavi Mishra
pdb2denMOD2-2 written by William Yeh
File: calculate_density.py

import os
import sys
import math
import exceptions

User Specified Variables to Control Analysis and Output
For each Value, calc's #dist <= Value
TAB_VALUES = [6, 7, 8, 9, 10, 11, 12]

Must be increasing in value.
Defines which TAB_VALUES should be printed.
TAB_PRINT = [0, 1, 2, 3, 4, 5, 6]

Initialize Amino Acid 3-letter to 1-letter associative list
AA_DICTIONARY = {
 'GLY': 'G', 'ALA': 'A', 'VAL': 'V', 'LEU': 'L',
 'ILE': 'I', 'MET': 'M', 'PRO': 'P', 'PHE': 'F',
 'TRP': 'W', 'SER': 'S', 'THR': 'T', 'ASN': 'N',
 'GLN': 'Q', 'TYR': 'Y', 'CYS': 'C', 'LYS': 'K',
 'ARG': 'R', 'HIS': 'H', 'ASP': 'D', 'GLU': 'E'
}

def get_int(str_value):
 try:
 return int(str_value)
 except exceptions.ValueError:
 return 0

def get_float(str_value):
 try:
 return float(str_value)
 except exceptions.ValueError:
 return 0.0

class AminoAcidSeqRes:
 def __init__(self):
 # Should be something like "A"
 self.amino_acid_short = ""
 # FASTA position.
 self.fasta_pos = 0
 # PDB position
 self.pdb_pos = 0

class AlphaC:
 def __init__(self):
 # Amino acid, should be something like "LYS"
 self.amino_acid = ""
 # Short form, should be something like "A"
 self.amino_acid_short = ""
 # (x, y, z) coordinates from ATOM statement
 self.x = 0
 self.y = 0

95

 self.z = 0
 # PDB position
 self.pdb_pos = 0

Extract Amino Acid seq from SEQRES statements.

def extract_amino_acid_seqres(input_lines, i, chain_name):
 array = []

 i = i + 1
 line = input_lines[i]
 while i < len(input_lines) and line != "loop_":
 words = line.split()
 if len(words) > 9 and words[9] == chain_name:
 aa = AminoAcidSeqRes()
 if words[3] in AA_DICTIONARY:
 aa.amino_acid_short = AA_DICTIONARY[words[3]]
 else:
 aa.amino_acid_short = "NA"
 aa.fasta_pos = get_int(words[4])
 if words[6].isdigit():
 aa.pdb_pos = get_int(words[6])
 else:
 aa.pdb_pos = -1
 array.append(aa)
 i = i + 1
 line = input_lines[i]
 return i, array

Extract alpha-C (x,y,z) from ATOM statements

def extract_alpha_c(input_lines, i, chain_name):
 array = []

 i = i + 1
 line = input_lines[i]
 count_1 = 0
 count_2 = 0
 count_3 = 0
 while i < len(input_lines) and not line.startswith("#"):
 count_1 = count_1 + 1
 words = line.split()
 # Find alpha-Carbon ATOM lines
 if words[0] == "ATOM" and words[3] == "CA":
 count_2 = count_2 + 1
 aa_ref = words[5]
 aa_refi = words[23]
 if aa_ref in AA_DICTIONARY and aa_refi == chain_name:
 count_3 = count_3 + 1
 alphac = AlphaC()
 alphac.amino_acid = aa_ref
 alphac.amino_acid_short = aa_refi
 alphac.x = get_float(words[10])
 alphac.y = get_float(words[11])
 alphac.z = get_float(words[12])
 alphac.pdb_pos = get_int(words[21])
 array.append(alphac)
 # TODO: This line is probably a bug and should be removed.
 i = i + 1
 i = i + 1
 line = input_lines[i]

 return i, array

96

Extracts all the data from the given file.

def extract_all(input_lines, chain_name):
 aa_seqres_array = []
 alphac_array = []
 pdb_name = ""

 i = 0
 while i < len(input_lines):
 line = input_lines[i]
 if line.startswith("_pdbx_poly_seq_scheme.pdb_ins_code"):
 i, array = extract_amino_acid_seqres(input_lines, i, chain_name)
 aa_seqres_array.extend(array)

 line = input_lines[i]
 if line.startswith("_atom_site.pdbx_PDB_model_num"):
 i, array = extract_alpha_c(input_lines, i, chain_name)
 alphac_array.extend(array)

 # extract the PDB name from the header line
 line = input_lines[i]
 if line.startswith("data_"):
 pdb_name = line.split("_")[1]
 pdb_name = pdb_name.lower()
 i = i + 1

 return aa_seqres_array, alphac_array, pdb_name

Calculate distances and tabulate.

def calculate_densities(alphac_array):
 pos_den_hash = {}

 for i in range(0, len(alphac_array)):
 # Calculate distances
 distances = []
 for j in range(0, len(alphac_array)):
 x = alphac_array[j].x - alphac_array[i].x
 y = alphac_array[j].y - alphac_array[i].y
 z = alphac_array[j].z - alphac_array[i].z
 value = math.sqrt(x * x + y * y + z * z)
 distances.append(math.sqrt(x * x + y * y + z * z))

 # Sort and tabulate according to distance
 tab_count = []
 for tab_value in TAB_VALUES:
 count = 0
 for distance in distances:
 if distance <= tab_value:
 count = count + 1
 tab_count.append(count)

 # store density values in a hash corresponding to their PDB position
 pos_den_hash[alphac_array[i].pdb_pos] = tab_count

 return pos_den_hash

Prints the density values to the given file.

def print_densities(cif_pdb_name, aa_seqres_array, pos_den_hash):
 lines = []
 for aa_seqres in aa_seqres_array:
 value = ("D %s_%03d_%1s ") % (cif_pdb_name, aa_seqres.fasta_pos, \
 aa_seqres.amino_acid_short)
 if aa_seqres.pdb_pos == -1 or not aa_seqres.pdb_pos in pos_den_hash:

97

 # output count C() = NA
 for index in TAB_PRINT:
 value = value + "C(%d) = NA " % TAB_VALUES[index]
 value = " ?"
 else:
 density_array = pos_den_hash[aa_seqres.pdb_pos]
 for index in TAB_PRINT:
 value = value + "C(%d)= % 3d " % \
 (TAB_VALUES[index], density_array[index])
 value = value + " %d" % aa_seqres.pdb_pos
 lines.append(value + "\n")
 return lines

Reads a mmCIF for the given PDB name.

def read_mmcif_file(pdb_name):
 file_name = os.path.join("mmCIF", pdb_name + ".cif")
 if not os.path.exists(file_name):
 print "Error: Couldn't find file:", file_name
 print "Did you forget to run the download_mmCIF.py script?"
 sys.exit(-1)

 input_file_handle = open(file_name, "r")
 input_lines = input_file_handle.readlines()
 input_file_handle.close()

 clean_lines = []
 for line in input_lines:
 clean_lines.append(line.strip())
 return clean_lines

Get a list of pdb names from the a file.

def get_pdb_list():
 if len(sys.argv) != 2:
 print "To run this script do the following:\n" \
 "\tpython calculate_density.py pdb_names.txt\n" \
 "\tor python calculate_density.py 119LA"
 sys.exit(-1)

 pdb_list = []
 if os.path.exists(sys.argv[1]):
 input_file_handle = open(sys.argv[1], "r")
 lines = input_file_handle.readlines()
 for line in lines:
 pdb_name = line.strip()
 if len(pdb_name) > 1:
 pdb_list.append(pdb_name)
 else:
 pdb_list.append(sys.argv[1])

 return pdb_list

Gets the output path for the given pdb_name. For example, if the PDB name
is 1HGXA then the output path would be:
density/1HGXA.den

def get_output_path(pdb_name):
 # put the file in a directory named "density"
 if not os.path.exists("density"):
 os.makedirs("density")

 output_path = os.path.join("density", pdb_name + ".den")
 return output_path

98

Runs the main script.

def run(pdb_name):
 output_path = get_output_path(pdb_name)
 if os.path.exists(output_path):
 return

 input_lines = read_mmcif_file(pdb_name)
 # The chain name is the last letter of the PDB name in upper case.
 chain_name = pdb_name[-1].upper()

 # Extra data and calculate densities
 aa_seqres_array, alphac_array, cif_pdb_name = \
 extract_all(input_lines, chain_name)
 pos_den_hash = calculate_densities(alphac_array)
 lines = print_densities(cif_pdb_name, aa_seqres_array, pos_den_hash)

 # Save to file
 output_file = open(output_path, "w")
 output_file.write("Number of residues in Sequence = %d\n" %\
 len(aa_seqres_array))
 output_file.writelines(lines)
 output_file.close()

The main function, this gets run first when the program is run from the
command line.

if __name__ == "__main__":
 pdb_list = get_pdb_list()

 for index in range(0, len(pdb_list)):
 pdb_name = pdb_list[index]
 # Use lower case name and strip white space.
 pdb_name = pdb_name.lower().strip()

 # Show how much is done
 percent_done = (index + 1.0) / len(pdb_list)
 percent_done = get_int(percent_done * 100.0)
 print index + 1, percent_done, "%", pdb_name

 run(pdb_name)

Author: Reecha Nepal
Date: May 6, 2012
Purpose: This script downloads a mmCIF file from the wwpdb FTP site.
To run this script do the following:
python download_mmCIF.py pdb_names.txt
or
python download_mmCIF.py 119LA
The output files will be created in a directory called "mmCIF".
File: download_mmCIF.py

import os
import sys
import gzip
from ftplib import FTP

FTP_ADDRESS = "ftp.wwpdb.org"
FTP_FOLDER = "/pub/pdb/data/structures/divided/mmCIF/"

Gets the output path for the given pdb_name. For example, if the PDB name

99

is 1HGXA then the output path would be:
mmCIF/1HGXA.cif

def get_output_path(pdb_name):
 # put the file in a directory named "pdb"
 if not os.path.exists("mmCIF"):
 os.makedirs("mmCIF")

 output_path = os.path.join("mmCIF", pdb_name + ".cif")
 return output_path

Download and save the mmCIF file for the given pdb

def download_mmCIF_for_pdb_name(pdb_name, ftp, output_path):
 # The name of the folder on the FTP site is the 2nd and 3rd character of
 # of the PDB name. For example, for 1r6ja the folder is r6.
 ftp_path = pdb_name[1:3] + "/"

 # The name of the file on the FTP site is the first 4 characters of the
 # PDB name plus the extension ".cif.gz". For example, for 1r6ja, the file
 # name is 1r6j.cif.gz.
 ftp_path = ftp_path + pdb_name[0:4] + ".cif.gz"

 # Start the download.
 zip_path = output_path + ".gz"
 ftp.retrbinary('RETR %s' % ftp_path, open(zip_path, 'wb').write)

 # Unzip the download.
 unzip_file(zip_path)

 # Delete the zip file
 os.remove(zip_path)

Unzip a file and save it to disk.

def unzip_file(in_file_path):
 # If in_file_path is "a/b.cif.gz" then dst_file_path becomes "a/b.cif".
 dst_file_path, file_extension = os.path.splitext(in_file_path)

 src_zip_file = gzip.open(in_file_path, "rb")
 dst_unzip_file = open(dst_file_path, "wb")
 dst_unzip_file.writelines(src_zip_file)
 dst_unzip_file.close()
 src_zip_file.close()

Get a list of pdb names from the a file.

def get_pdb_list():
 if len(sys.argv) != 2:
 print "To run this script do the following:\n" \
 "\tpython download_mmCIF.py pdb_names.txt\n" \
 "\tor python download_mmCIF.py 119LA"
 sys.exit(-1)

 pdb_list = []
 if os.path.exists(sys.argv[1]):
 input_file_handle = open(sys.argv[1], "r")
 lines = input_file_handle.readlines()
 for line in lines:
 pdb_name = line.strip()
 if len(pdb_name) > 1:
 pdb_list.append(pdb_name)
 else:
 pdb_list.append(sys.argv[1])

100

 return pdb_list

Creates a FTP connection

def create_ftp_connection():
 # Login to the FTP site as anonymous
 ftp = FTP(FTP_ADDRESS)
 ftp.login()
 ftp.cwd(FTP_FOLDER)
 return ftp

Runs the main script.

def run(pdb_name, ftp=None):
 # Use lower case name and strip white space.
 pdb_name = pdb_name.lower().strip()

 output_path = get_output_path(pdb_name)
 if os.path.exists(output_path):
 return

 should_close_ftp = False
 if not ftp:
 ftp = create_ftp_connection()
 should_close_ftp = True

 download_mmCIF_for_pdb_name(pdb_name, ftp, output_path)

 if should_close_ftp:
 ftp.quit()

The main function, this gets run first when the program is run from the
command line.

if __name__ == "__main__":
 pdb_list = get_pdb_list()
 ftp = None

 for index in range(0, len(pdb_list)):
 pdb_name = pdb_list[index]

 # Show how much is done
 percent_done = (index + 1.0) / len(pdb_list)
 percent_done = int(percent_done * 100.0)
 print index + 1, percent_done, "%", pdb_name

 if not ftp:
 ftp = create_ftp_connection()
 run(pdb_name, ftp)

 if ftp:
 ftp.quit()

Author: Reecha Nepal
Date: May 6, 2012
Purpose: This script downloads the pdb files for all pdb names in a given
file. To run this script do the following:
python download_pdb.py pdb_names.txt
or
python download_pdb.py 119LA
The output files will be created in a directory called "pdb".
File: download_pdb.py

101

from urllib import urlopen
import os
import time
import sys

Download and return the pdb file for the given pdb name.

def download_pdb_for_pdb_name(pdb_name):
 # The pdb files are stored online with the last letter of the pdb name
 # removed. For example, 119LA becomes 119L.pdb
 pdb_name = pdb_name[:-1]
 url = "http://www.pdb.org/pdb/files/" + pdb_name + ".pdb"
 url_file_handle = urlopen(url)
 pdb_data = url_file_handle.read()
 url_file_handle.close()
 return pdb_data

Gets the output path for the given pdb_name. For example, if the PDB name
is 1HGXA then the output path would be:
pdb/1HGXA.pdb

def get_output_path(pdb_name):
 # put the file in a directory named "pdb"
 if not os.path.exists("pdb"):
 os.makedirs("pdb")

 output_path = os.path.join("pdb", pdb_name + ".pdb")
 return output_path

Save the pdb file in a directory called pdb.

def save_pdb_data(pdb_data, output_path):
 out_file_handle = open(output_path, "wb")
 out_file_handle.write(pdb_data)
 out_file_handle.close()

Checks if the pdb data is valid. A valid pdb data should look like this:
>HEADER HYDROLASE(O-GLYCOSYL) 28-MAY-93 119L
If there's a server error then we sometimes get data that looks like this:
Error:Cannot connect to database

def pdb_data_is_valid(pdb_data):
 pdb_data_string = pdb_data.decode("utf-8")
 if pdb_data_string[:6] == "HEADER":
 return True
 else:
 return False

Get a list of pdb names from a file.

def get_pdb_list():
 if len(sys.argv) != 2:
 print "To run this script do the following:\n" \
 "\tpython download_pdb.py pdb_names.txt\n" \
 "\tor python download_pdb.py 119LA"
 sys.exit(-1)

 pdb_list = []
 if os.path.exists(sys.argv[1]):
 input_file_handle = open(sys.argv[1], "r")

102

 lines = input_file_handle.readlines()
 for line in lines:
 pdb_name = line.strip()
 if len(pdb_name) > 1:
 pdb_list.append(pdb_name)
 else:
 pdb_list.append(sys.argv[1])

 return pdb_list

Runs the main script.

def run(pdb_name):
 output_path = get_output_path(pdb_name)
 if os.path.exists(output_path):
 return

 retry_count = 0
 while True:
 # Download and save the pdb file
 pdb_data = download_pdb_for_pdb_name(pdb_name)
 if pdb_data_is_valid(pdb_data):
 if retry_count > 0:
 print "Downloading pdb data succeeded after", \
 retry_count, "tries"
 save_pdb_data(pdb_data, output_path)
 break

 # If there was an error then retry up to 8 times.
 if retry_count == 0:
 print "Warning: Downloading pdb data failed, retrying"
 elif retry_count > 8:
 print "Error: Unable to download pdb file for pdb:", \
 pdb_name, "quitting."
 sys.exit(-1)
 else:
 print "Retrying", retry_count
 retry_count = retry_count + 1

 # Wait 0.1 seconds before trying again incase we're overloading
 # the server.
 time.sleep(0.1)

The main function, this gets run first when the program is run from the
command line.

if __name__ == "__main__":
 pdb_list = get_pdb_list()

 for index in range(0, len(pdb_list)):
 pdb_name = pdb_list[index]

 # Show how much is done
 percent_done = (index + 1.0) / len(pdb_list)
 percent_done = int(percent_done * 100.0)
 print index + 1, percent_done, "%", pdb_name

 run(pdb_name)

Author: Reecha Nepal
Date: May 6, 2012
Purpose: Open the output of the naccess program (a .rsa file) and extract
data from it.
File: extract_data.py

103

#!/usr/bin/python

import os

Initialize Amino Acid 3-letter to 1-letter associative list
AA_DICTIONARY = {
 'GLY': 'G', 'ALA': 'A', 'VAL': 'V', 'LEU': 'L',
 'ILE': 'I', 'MET': 'M', 'PRO': 'P', 'PHE': 'F',
 'TRP': 'W', 'SER': 'S', 'THR': 'T', 'ASN': 'N',
 'GLN': 'Q', 'TYR': 'Y', 'CYS': 'C', 'LYS': 'K',
 'ARG': 'R', 'HIS': 'H', 'ASP': 'D', 'GLU': 'E'
}

def GetQueryLetter(aa):
 if aa in AA_DICTIONARY:
 return AA_DICTIONARY[aa]
 else:
 return '?'

Reads the .rsa file from the naccess program.

def GetNaccessValuesForPDB(pdb_name):
 rsa_file_path = os.path.join("naccess", pdb_name + ".rsa")
 input_file = open(rsa_file_path, "r")
 lines = input_file.readlines()
 input_file.close()

 naccess_table = []
 chain_letter = pdb_name[-1:]

 for line in lines:
 words = line.split()

 if len(words) < 5 or words[0] != "RES":
 continue

 residue = words[1].strip()
 aa = words[2].strip()
 if len(aa) == 1:
 rel = words[5].strip()
 else:
 aa = aa[0]
 rel = words[4].strip()

 if aa != chain_letter:
 continue

 naccess_entry = {}
 naccess_entry["AA"] = residue
 naccess_entry["QueryLetter"] = GetQueryLetter(residue)
 naccess_entry["REL"] = rel
 naccess_entry["CATH"] = aa
 naccess_table.append(naccess_entry)
 return naccess_table

def save_naccess_to_csv(pdb_name, data, output_path):
 f = open(output_path, "w")
 f.write(",AA,REL,CATH\n")
 size = len(data["REL"])

104

 for i in range(0, size):
 f.write("%d," % (i+1))
 f.write("%s," % data[i]["AA"])
 f.write("%s," % data[i]["REL"])
 f.write("%s" % data[i]["CATH"])
 f.write("\n")
 f.close()

if __name__ == "__main__":
 pdb_name = "1A4IA"
 data = GetNaccessValuesForPDB(pdb_name)
 save_naccess_to_csv(pdb_name, data, "/Users/reecha/Desktop/a.csv")

Author: Reecha Nepal
Date: May 6, 2012#
Purpose: This script runs the naccess program.
To run this script do the following:
python run_naccess.py pdb_names.txt
or
python run_naccess.py 119LA
The output files will be created in a directory called "naccess".
The .rsa files in the output folder contain REL values as calculated by
the naccess program. These REL values are used to compare against predicted
REL values based on the entropy regression.
File: run_naccess.py

import os
import sys
import platform
import tempfile
import shutil

Gets the output path for the given pdb_name. For example, if the PDB name
is 1HGXA then the output path would be:
naccess/1HGXA.rsa

def get_output_path(pdb_name):
 # put the file in a directory named "blast"
 if not os.path.exists("naccess"):
 os.makedirs("naccess")

 output_path = os.path.join("naccess", pdb_name + ".rsa")
 return output_path

Get a list of pdb names from the a file.

def get_pdb_list():
 if len(sys.argv) != 2:
 print "To run this script do the following:\n" \
 "\tpython run_naccess.py pdb_names.txt\n" \
 "\tor python run_naccess.py 119LA"
 sys.exit(-1)

 pdb_list = []
 if os.path.exists(sys.argv[1]):
 input_file_handle = open(sys.argv[1], "r")
 lines = input_file_handle.readlines()
 for line in lines:
 pdb_name = line.strip()
 if len(pdb_name) > 1:
 pdb_list.append(pdb_name)
 else:
 pdb_list.append(sys.argv[1])

105

 return pdb_list

Gets the path to folder that contains the naccess code.

def get_naccess_code_path():
 script_path = os.path.realpath(__file__)
 parent_directory = os.path.dirname(script_path)
 return os.path.join(parent_directory, "NACCESS_Code")

Gets the path the .pdb file.

def get_pdb_file_path(pdb_name):
 pdb_file_path = os.path.join("pdb", pdb_name + ".pdb")
 if not os.path.exists(pdb_file_path):
 print "Couldn't find pdb file: ", pdb_file_path
 print "Run the download_pdb.py script to download the pdb file first."
 sys.exit(-1)
 return os.path.abspath(pdb_file_path)

Runs the naccess program

def run_naccess(pdb_name, pdb_file_path, naccess_code_path):
 old_working_directory = os.getcwd()
 temp_dir = tempfile.mkdtemp()
 os.chdir(temp_dir)

 if platform.system() == "Windows":
 naccess_program = os.path.join(naccess_code_path, "naccess_win.exe")
 else:
 naccess_program = os.path.join(naccess_code_path, "naccess")
 vdw_file_path = os.path.join(naccess_code_path, "vdw.radii")
 os.system(naccess_program + " " + pdb_file_path + " -r " + vdw_file_path)

 file_name = pdb_name + '.rsa'
 shutil.copy(file_name, os.path.join(old_working_directory, 'naccess'))
 os.chdir(old_working_directory)
 shutil.rmtree(temp_dir, ignore_errors=True)

Runs the main script.

def run(pdb_name, naccess_code_path=None):
 if not naccess_code_path:
 naccess_code_path = get_naccess_code_path()
 os.environ["NACCESS_EXE_PATH"] = naccess_code_path

 output_path = get_output_path(pdb_name)
 if os.path.exists(output_path):
 return

 pdb_file_path = get_pdb_file_path(pdb_name)
 run_naccess(pdb_name, pdb_file_path, naccess_code_path)

The main function, this gets run first when the program is run from the
command line.

if __name__ == "__main__":
 naccess_code_path = get_naccess_code_path()

 pdb_list = get_pdb_list()
 for index in range(0, len(pdb_list)):
 pdb_name = pdb_list[index]

106

 # Show how much is done
 percent_done = (index + 1.0) / len(pdb_list)
 percent_done = int(percent_done * 100.0)
 print index + 1, percent_done, "%", pdb_name

 run(pdb_name, naccess_code_path)

Author: Reecha Nepal
Date: July 23, 2012
Purpose: Convert blast data to entropy data.
Usage: import parse_blast
data = BlastData()
data.ParseQueryAndSubject("nblast_all/1A2KAblast.txt")
entropyRecordList = EntropyRecordsForBlastData(blastData)

At this point entropyRecordList will contain a list of entropy
records. Each record contains the entropy value and sequence
for a single letter in the blast query sequence.

Revision History
v.1.0 11/23/10 Inital version by Reecha Nepal.
This is a python translation of
Radhika-6pointPsiBlastentropy.pl. The original script
was written by D.Chiang and modified by
Radhika Pallavi Mishra. If use6Point is set to False then
this script is equivalent to the bst2entMOD2psiEntropy.pl
perl script.
File: blast_to_entropy.py

import parse_blast
import sys
import string
import math

Specify User Parameters
SCORE_CUT_OFF_PERCENT = 40
HOMOLOG_MIN = 1

Stores information about a single entropy sequence.

class EntropyRecord:
 def __init__(self):
 self.queryLetter = ""
 self.queryLetterIndex = 0
 self.entropyValue = 0.0
 self.entropySequence = ""

 ###
 # Gets the blast query.
 ###
 def CalculateWithSequence(self, letter, letterIndex, sequence, use6Point):
 self.queryLetter = letter.strip()
 self.queryLetterIndex = letterIndex
 self.entropySequence = sequence
 if use6Point:
 self.entropyValue = Calculate6PointEntropy(self.entropySequence, HOMOLOG_MIN)
 else:
 self.entropyValue = CalculateAllPointEntropy(self.entropySequence, HOMOLOG_MIN)

This function uses the query in the blast data to calculate

107

the entropy for each letter in the blast query sequence.

def EntropyRecordsForBlastData(blastData, use6Point):
 entropyRecordList = []
 query = GetQuery(blastData)

 subjectSequenceList = GetQualifyingSubjectSequenceList(
 query, blastData.recordList)

 # Calculate the entropy for each letter in the query.
 for letterIndex in range(0, len(query)):
 entropySequence = ""
 for subjectSequence in subjectSequenceList:
 entropySequence += subjectSequence[letterIndex]

 record = EntropyRecord()
 record.CalculateWithSequence(query[letterIndex], letterIndex, entropySequence,
use6Point)
 entropyRecordList.append(record)

 return entropyRecordList

Gets the blast query.

def GetQuery(blastData):
 query = blastData.firstQuerySequence
 # If the blast parser didn't find the query at the top of the
 # blast file then use the query in the first record instead.
 if len(query) == 0 and len(blastData.recordList) > 0:
 query = blastData.recordList[0].querySequence

 # Note that BLAST can substitute 'X' (proteins) or 'N' (nucleotides) into
 # the Query sequence to filter out "low complexity" regions. These
 # residues are kept as X or N in the entropy calculation. However, they
 # can be post-processed when correlated with the PDB information using
 # the residue position number. They are converted to lower case
 # in the output (trick to help merging with pdb2den.pl output,
 # since lowercase sorts after all upper case).
 query = query.replace("X", "x")
 # (Should be removed, N is used for nucleotides only)
 #query = query.replace("N", "n")

 # Extracted all '-' from Query sequence reported from 1st
 # match in BLAST, to take care of case when the 1st match
 # includes insertions (ie the query itself is not found).
 query = query.replace("-", "")

 return query

Gets the compacted version of the subject sequence.

def GetCompactedSubjectSequence(query, record):
 # The record's query sequence starts at a certain offset from the
 # original query. Fill in the compactQuery with the original query.
 # Fill in the subject sequence with dash characters.
 fillLength = record.queryOffset - 1
 compactQuery = query[0:fillLength] + record.querySequence
 compactSubject = "".ljust(fillLength, '-') + record.subjectSequence

 # Find and delete insertions
 i = 0
 while i < len(compactQuery):
 if compactQuery[i] == "-":

108

 compactQuery = compactQuery[:i] + compactQuery[i+1:]
 compactSubject = compactSubject[:i] + compactSubject[i+1:]
 else:
 i += 1

 # If compactQuery is shorter than the query then fill it in with the
 # end of the original query. Fill in the compactSubject with dash
 # characters.
 lengthDiff = len(query) - len(compactSubject)
 if lengthDiff > 0:
 compactQuery = compactQuery + query[-lengthDiff:]
 compactSubject = compactSubject + "".ljust(lengthDiff, "-")

 return compactSubject

Gets a list of compacted subject sequences.

def GetQualifyingSubjectSequenceList(query, recordList):
 scoreMin = 100
 if len(recordList) > 0:
 scoreMin = recordList[0].scoreBits * SCORE_CUT_OFF_PERCENT / 100.0;

 subjectSequenceList = []
 for record in recordList:
 # If this sequence doesn't qualify, skip
 if record.scoreBits < scoreMin:
 continue
 subjectSequenceList.append(GetCompactedSubjectSequence(query, record))
 return subjectSequenceList

Calculates entropy from the given sequence. The calculation
is done by grouping items in the sequence into one of 6
points.

def Calculate6PointEntropy(sequence, homologMin):
 totalCount = 0
 categoryCount = {"aliphatic" : 0,
 "aromatic" : 0,
 "polar" : 0,
 "positive" : 0,
 "negative" : 0,
 "special" : 0}

 for letter in sequence:
 # Ignore any letters that are not upper case
 if letter not in string.ascii_uppercase:
 continue
 totalCount += 1
 if letter in "AVLIMC":
 categoryCount["aliphatic"] += 1
 elif letter in "FWYH":
 categoryCount["aromatic"] += 1
 elif letter in "STNQ":
 categoryCount["polar"] += 1
 elif letter in "KR":
 categoryCount["positive"] += 1
 elif letter in "DE":
 categoryCount["negative"] += 1
 elif letter in "GP":
 categoryCount["special"] += 1

 # If too few homologs then flag as error.
 if totalCount < homologMin:

109

 return -1

 entropy = 0.0
 for categoryValue in categoryCount.values():
 if categoryValue > 0:
 prob = float(categoryValue) / totalCount
 entropy = entropy - (prob * (math.log(prob)/math.log(2)))
 return entropy

Calculates entropy from the given sequence. The calculation
is done without groping items in the sequence.

def CalculateAllPointEntropy(sequence, homologMin):
 totalCount = 0
 categoryCount = {}

 for letter in sequence:
 # Ignore any letters that are not upper case
 if letter not in string.ascii_uppercase:
 continue
 totalCount += 1
 if letter in categoryCount:
 categoryCount[letter] += 1
 else:
 categoryCount[letter] = 1

 # If too few homologs then flag as error.
 if totalCount < homologMin:
 return -1

 entropy = 0.0
 for categoryValue in categoryCount.values():
 if categoryValue > 0:
 prob = float(categoryValue) / totalCount
 entropy = entropy - (prob * (math.log(prob)/math.log(2)))
 return entropy

Normally this script is not run directly. Callers should just
use the EntropyRecordsForBlastData function to get the
entropy data that they need.
For debuging purposes though you can call this as follows:
python blast_to_entropy.py <pdb_name> <blast_file_name>
<fasta_file_name> <out_file_name>
This will calculate the entropy and save it in
<out_file_name>.

if __name__ == "__main__":
 pdb_name = sys.argv[1]
 blast_file_name = sys.argv[2]
 fasta_file_name = sys.argv[3]
 out_file_name = sys.argv[4]

 # Parse the blast file.
 blastData = parse_blast.BlastData()
 blastData.ParseQueryAndSubject(blast_file_name, fasta_file_name)
 entropyRecordList = EntropyRecordsForBlastData(blastData, True)

 out_file = open(out_file_name, "w")
 for r in entropyRecordList:
 # Print the entropy and sequence
 out_file.write("D %s_%03d_%s E = % .3f A= %s\n" %
 (pdb_name, r.queryLetterIndex + 1, r.queryLetter,
 r.entropyValue, r.entropySequence))

110

 out_file.close()

Author: Reecha Nepal
Date: July 17, 2012
Purpose: This script prints the bit score for each record in each protein.
The bit score is the "Score = 780 bits" part in the blast file.
To run this script do the following:
python extract_bit_score.py pdb_names.txt
or
python extract_bit_score.py 119LA
File: extract_bit_score.py

import parse_blast
import sys
import os

Get a list of pdb names from the a file.

def get_pdb_list():
 if len(sys.argv) != 2:
 print "To run this script do the following:\n" \
 "\tpython extract_query_length.py pdb_names.txt\n" \
 "\tor python run_all.py 119LA"
 sys.exit(-1)

 pdb_list = []
 if os.path.exists(sys.argv[1]):
 input_file_handle = open(sys.argv[1], "r")
 lines = input_file_handle.readlines()
 for line in lines:
 pdb_name = line.strip()
 if len(pdb_name) > 1:
 pdb_list.append(pdb_name)
 else:
 pdb_list.append(sys.argv[1])
 return pdb_list

Author: Reecha Nepal
Date: August 13, 2012
Purpose: Extract data from blast results.
File: extract_data.py

#!/usr/bin/python
File: extract_data.py

import parse_blast
import blast_to_entropy
import fractional_analysis
import parse_density
import sys
import os

def save_entropy_to_csv(pdb_name, data, output_path):
 f = open(output_path, "w")
 f.write(",RES,E,E6,FSR,FSHP,AA,REL,CATH\n")
 size = len(data["E"])
 for i in range(0, size):
 f.write("%d," % (i+1))
 f.write("%s," % pdb_name)

111

 f.write("%.3f," % data[i]["E"])
 f.write("%.3f," % data[i]["E6"])
 f.write("%f," % data[i]["FSR"])
 f.write("%f," % data[i]["FSHP"])
 f.write("%s," % "NA")
 f.write("%s," % "NA")
 f.write("%s" % "NA")
 f.write("\n")
 f.close()

def save_density_to_csv(pdb_name, data, output_path):
 f = open(output_path, "w")
 f.write(",denB\n")
 size = len(data["denB"])
 for i in range(0, size):
 f.write("%d," % (i+1))
 f.write("%s" % data[i]["denB"])
 f.write("\n")
 f.close()

Calculates the entropy and density values and returns them.

def GetEntropyAndDensityValuesForPDB(pdb_name):
 blast_file_path = os.path.join("blast", pdb_name + ".txt")
 fasta_file_path = os.path.join("fasta", pdb_name + ".fasta")
 density_file_path = os.path.join("density", pdb_name + ".den")

 densityRecordList = parse_density.ParseDensityFile(density_file_path)
 blastData = parse_blast.BlastData()
 blastData.ParseQueryAndSubject(blast_file_path, fasta_file_path)
 entropyRecordList = blast_to_entropy.EntropyRecordsForBlastData(
 blastData, False)
 entropyRecordList_6_point = blast_to_entropy.EntropyRecordsForBlastData(
 blastData, True)

 density_table = []
 for record in densityRecordList:
 density_entry = {}
 density_entry["denB"] = record.density_value
 density_entry["QueryLetter"] = record.query_letter
 density_table.append(density_entry)

 entropy_table = []
 for i in range(0, len(entropyRecordList)):
 # Calculate franctions from the entropy record
 f = fractional_analysis.FractionRecord()
 f.CalculateWithEntropyRecord(entropyRecordList[i])
 f6 = fractional_analysis.FractionRecord()
 f6.CalculateWithEntropyRecord(entropyRecordList_6_point[i])

 entropy_entry = {}
 entropy_entry["E"] = entropyRecordList[i].entropyValue
 entropy_entry["E6"] = entropyRecordList_6_point[i].entropyValue
 entropy_entry["QueryLetter"] = entropyRecordList[i].queryLetter
 entropy_entry["FSR"] = f.small_residues_fraction
 entropy_entry["FA"] = f.ala_residue_fraction
 entropy_entry["FG"] = f.gly_residue_fraction
 entropy_entry["FSHP"] = f.strongly_hydrophobic_fraction
 entropy_table.append(entropy_entry)

 return (density_table, entropy_table)

112

Author: Reecha Nepal
Date: July 28, 2012
Purpose: This script prints the query length for each protein. The query is the
sequence at the top of the blast file.
To run this script do the following:
python extract_query_length.py pdb_names.txt
or
python extract_query_length.py 119LA
File: extract_density_frequency.py

import parse_blast
import sys
import os
import exceptions

def get_int(str_value):
 try:
 return int(str_value)
 except exceptions.ValueError:
 return 0

def get_float(str_value):
 try:
 return float(str_value)
 except exceptions.ValueError:
 return 0.0

def parse_csv_data(file_path, pdb_name):
 input_file_handle = open(file_path, "r")
 lines = input_file_handle.readlines()
 csv_data = []

 header = None
 for line in lines:
 words = line.strip().split(',')
 if header == None:
 header = words
 elif len(words) > 1:
 record = {}
 for i in range(0, len(words)):
 record[header[i]] = words[i]
 assert record['RES'] == pdb_name
 csv_data.append(record)
 return csv_data

Get a list of pdb names from the a file.

def get_pdb_list():
 if len(sys.argv) != 2:
 print "To run this script do the following:\n" \
 "\tpython extract_density_frequency.py pdb_names.txt\n" \
 "\tor python run_all.py 119LA"
 sys.exit(-1)

 pdb_list = []
 if os.path.exists(sys.argv[1]):
 input_file_handle = open(sys.argv[1], "r")
 lines = input_file_handle.readlines()
 for line in lines:
 pdb_name = line.strip()
 if len(pdb_name) > 1:
 pdb_list.append(pdb_name)

113

 else:
 pdb_list.append(sys.argv[1])
 return pdb_list

if __name__ == "__main__":
 pdb_list = get_pdb_list()
 density_frequence = {}
 max_density = -1
 min_density = 123456

 keys = ["E", "E6", "FSR", "FSHP", "REL"]

 for pdb_name in pdb_list:
 fasta_file_path = os.path.join("csv", pdb_name + ".csv")
 csv_data = parse_csv_data(fasta_file_path, pdb_name)

 for csv_record in csv_data:
 density = get_int(csv_record['denB'])

 if density in density_frequence:
 density_record = density_frequence[density]
 else:
 density_record = {'count':0}

 for key in keys:
 value = get_float(csv_record[key])
 if key in density_record:
 r = density_record[key]
 else:
 r = {'count':0, 'sum':0.0}
 r['count'] = r['count'] + 1
 r['sum'] = r['sum'] + value
 density_record[key] = r
 density_record['count'] = density_record['count'] + 1
 density_frequence[density] = density_record

 if density > max_density:
 max_density = density
 if density < min_density:
 min_density = density

 print "min_density,%d" % min_density
 print "max_density,%d" % max_density

 sys.stdout.write("density,count")
 for key in keys:
 sys.stdout.write(",")
 sys.stdout.write(key)
 sys.stdout.write("\n")

 for i in range(-1, max_density):
 if i in density_frequence:
 density_record = density_frequence[i]
 sys.stdout.write(str(i))
 sys.stdout.write(",")
 sys.stdout.write(str(density_record['count']))
 for key in keys:
 sys.stdout.write(",")
 r = density_record[key]
 average = r['sum'] / r['count']
 sys.stdout.write(str(average))
 sys.stdout.write("\n")
 else:
 sys.stdout.write("%d,0" % i)
 for key in keys:
 sys.stdout.write(",0")
 sys.stdout.write("\n")

114

Author: Reecha Nepal
Date: July 17, 2012
Purpose: This script prints the query length for each protein. The query is
the sequence at the top of the blast file.
To run this script do the following:
python extract_query_length.py pdb_names.txt
or
python extract_query_length.py 119LA
File: extract_query_length.py

import parse_blast
import sys
import os

Get a list of pdb names from the a file.

def get_pdb_list():
 if len(sys.argv) != 2:
 print "To run this script do the following:\n" \
 "\tpython extract_query_length.py pdb_names.txt\n" \
 "\tor python run_all.py 119LA"
 sys.exit(-1)

 pdb_list = []
 if os.path.exists(sys.argv[1]):
 input_file_handle = open(sys.argv[1], "r")
 lines = input_file_handle.readlines()
 for line in lines:
 pdb_name = line.strip()
 if len(pdb_name) > 1:
 pdb_list.append(pdb_name)
 else:
 pdb_list.append(sys.argv[1])
 return pdb_list

if __name__ == "__main__":
 pdb_list = get_pdb_list()
 for pdb_name in pdb_list:
 fasta_file_path = os.path.join("fasta", pdb_name + ".fasta")
 query = parse_blast.ParseQueryFromFastaFile(fasta_file_path)
 print "%s,%s" % (pdb_name, len(query))

Author: Reecha Nepal
Date: July 17, 2012
Purpose: This script prints the record length for each protein.
sequence at the top of the blast file.
To run this script do the following:
python extract_record_length.py pdb_names.txt
or
python extract_record_length.py 119LA
File: extract_record_length.py

import parse_blast
import sys
import os

Get a list of pdb names from the a file.

def get_pdb_list():
 if len(sys.argv) != 2:

115

 print "To run this script do the following:\n" \
 "\tpython extract_query_length.py pdb_names.txt\n" \
 "\tor python run_all.py 119LA"
 sys.exit(-1)

 pdb_list = []
 if os.path.exists(sys.argv[1]):
 input_file_handle = open(sys.argv[1], "r")
 lines = input_file_handle.readlines()
 for line in lines:
 pdb_name = line.strip()
 if len(pdb_name) > 1:
 pdb_list.append(pdb_name)
 else:
 pdb_list.append(sys.argv[1])
 return pdb_list

if __name__ == "__main__":
 pdb_list = get_pdb_list()
 for pdb_name in pdb_list:
 blast_file_path = os.path.join("blast", pdb_name + ".txt")
 fasta_file_path = os.path.join("fasta", pdb_name + ".fasta")
 blastData = parse_blast.BlastData()
 blastData.ParseQueryAndSubject(blast_file_path, fasta_file_path)
 print "%s,%s" % (pdb_name, len(blastData.recordList))

Author: Reecha Nepal
Date: July 28, 2012
Purpose: This script prints the query length for each protein. The query
is the sequence at the top of the blast file.
To run this script do the following:
python extract_query_length.py pdb_names.txt
or
python extract_query_length.py 119LA
File: extract_rel_frequency.py

import math
import parse_blast
import sys
import os
import exceptions

def get_int(str_value):
 try:
 return int(str_value)
 except exceptions.ValueError:
 return 0

def get_float(str_value):
 try:
 return float(str_value)
 except exceptions.ValueError:
 return 0.0

def parse_csv_data(file_path, pdb_name):
 input_file_handle = open(file_path, "r")
 lines = input_file_handle.readlines()
 csv_data = []

 header = None
 for line in lines:
 words = line.strip().split(',')

116

 if header == None:
 header = words
 elif len(words) > 1:
 record = {}
 for i in range(0, len(words)):
 record[header[i]] = words[i]
 assert record['RES'] == pdb_name
 csv_data.append(record)
 return csv_data

Get a list of pdb names from the a file.

def get_pdb_list():
 if len(sys.argv) != 2:
 print "To run this script do the following:\n" \
 "\tpython extract_rel_frequency.py pdb_names.txt\n" \
 "\tor python run_all.py 119LA"
 sys.exit(-1)

 pdb_list = []
 if os.path.exists(sys.argv[1]):
 input_file_handle = open(sys.argv[1], "r")
 lines = input_file_handle.readlines()
 for line in lines:
 pdb_name = line.strip()
 if len(pdb_name) > 1:
 pdb_list.append(pdb_name)
 else:
 pdb_list.append(sys.argv[1])
 return pdb_list

def get_bucket(rel):
 if rel <= 0:
 return 1
 a = rel / 10.0
 return int(math.ceil(a) + 1.0)

def get_bucket_range(bucket):
 if bucket == 1:
 return "0"
 else:
 rel = (bucket - 1) * 10
 return str(rel - 10) + " < rel <= " + str(rel)

if __name__ == "__main__":
 pdb_list = get_pdb_list()
 rel_frequence = {}
 max_rel = -1
 min_rel = 1234567

 keys = ["denB", "E", "E6", "FSR", "FSHP", "REL"]

 for pdb_name in pdb_list:
 fasta_file_path = os.path.join("csv", pdb_name + ".csv")
 csv_data = parse_csv_data(fasta_file_path, pdb_name)

 for csv_record in csv_data:
 rel = get_float(csv_record['REL'])
 rel_bucket = get_bucket(rel)

 if rel_bucket in rel_frequence:

117

 rel_record = rel_frequence[rel_bucket]
 else:
 rel_record = {'count':0}

 for key in keys:
 value = get_float(csv_record[key])
 if key in rel_record:
 r = rel_record[key]
 else:
 r = {'count':0, 'sum':0.0}
 r['count'] = r['count'] + 1
 r['sum'] = r['sum'] + value
 rel_record[key] = r
 rel_record['count'] = rel_record['count'] + 1
 rel_frequence[rel_bucket] = rel_record

 if rel > max_rel:
 max_rel = rel
 if rel < min_rel:
 min_rel = rel

 print "min_rel,%d" % min_rel
 print "max_rel,%d" % max_rel

 sys.stdout.write("REL bucket,REL range,count")
 for key in keys:
 sys.stdout.write(",")
 sys.stdout.write(key)
 sys.stdout.write("\n")

 max_rel_bucket = get_bucket(max_rel)
 for i in range(1, max_rel_bucket):
 sys.stdout.write(str(i))
 sys.stdout.write(",")
 sys.stdout.write(get_bucket_range(i))
 sys.stdout.write(",")
 if i in rel_frequence:
 rel_record = rel_frequence[i]
 sys.stdout.write(str(rel_record['count']))
 for key in keys:
 sys.stdout.write(",")
 r = rel_record[key]
 average = r['sum'] / r['count']
 sys.stdout.write(str(average))
 sys.stdout.write("\n")
 else:
 sys.stdout.write("0")
 for key in keys:
 sys.stdout.write(",0")
 sys.stdout.write("\n")

Author: Reecha Nepal
Date: August 13, 2012
Purpose: Calculate fraction record for blast data.
Usage: import parse_blast
import blast_to_entropy
data = parse_blast.BlastData()
data.ParseQueryAndSubject("nblast_all/1A2KAblast.txt")
entropyRecordList = EntropyRecordsForBlastData(blastData)
fractionRecord = FractionRecord()
fractionRecord.CalculateWithEntropyRecord(entropyRecordList[0])

At this point fractionRecord will contain fraction values for the
first entropy record.

Revision History

118

v.1.0 11/23/10 Inital version by Reecha Nepal.
This is a python translation of
extract_fractanalysis_entropy_aggr.pl. The original script
was written by Radhika Pallavi Mishra.
File: fractional_analysis.py

import parse_blast
import blast_to_entropy
import sys

Stores fractions computed from a single entropy record.

class FractionRecord:
 def __init__(self):
 self.gap_fraction = 0.0
 self.small_residues_fraction = 0.0
 self.ala_residue_fraction = 0.0
 self.gly_residue_fraction = 0.0
 self.strongly_hydrophobic_fraction = 0.0
 self.non_strongly_hydrophobic_fraction = 0.0

 ###
 # Fills in the FractionRecord object using fractions computed
 # from the given entropy record.
 ###
 def CalculateWithEntropyRecord(self, entropyRecord):
 gap_count = 0
 small_residues_count = 0
 ala_residue_count = 0
 gly_residue_count = 0
 strongly_hydrophobic_count = 0
 total_length = len(entropyRecord.entropySequence)
 for letter in entropyRecord.entropySequence:
 if letter in "-":
 gap_count += 1
 elif letter in "AG":
 small_residues_count += 1
 if letter == "A":
 ala_residue_count += 1
 else:
 gly_residue_count += 1
 elif letter in "VILFYMW":
 strongly_hydrophobic_count += 1

 num_non_gap_amino_acids = total_length - gap_count
 if num_non_gap_amino_acids > 0:
 self.gap_fraction = float(gap_count) / num_non_gap_amino_acids
 self.small_residues_fraction = float(small_residues_count) /
num_non_gap_amino_acids
 self.ala_residue_fraction = float(ala_residue_count) / num_non_gap_amino_acids
 self.gly_residue_fraction = float(gly_residue_count) / num_non_gap_amino_acids
 self.strongly_hydrophobic_fraction = float(strongly_hydrophobic_count) /
num_non_gap_amino_acids
 self.non_strongly_hydrophobic_fraction = 1.0 -
self.strongly_hydrophobic_fraction
 else:
 self.gap_fraction = 0.0
 self.small_residues_fraction = 0.0
 self.ala_residue_fraction = 0.0
 self.gly_residue_fraction = 0.0
 self.strongly_hydrophobic_fraction = 0.0
 self.non_strongly_hydrophobic_fraction = 0.0

119

Normally this script is not run directly. Callers should just
use the FractionRecord class to get the fraction data that
they need.
For debuging purposes though you can call this as follows:
python fractional_analysis.py <pdb_name> <blast_file_name> <out_file_name>
This will compute fraction values for each letter in the
blast query and save the result to <out_file_name>.

if __name__ == "__main__":
 pdb_name = sys.argv[1]
 blast_file_name = sys.argv[2]
 out_file_name = sys.argv[3]

 # Parse the blast file.
 blastData = parse_blast.BlastData()
 blastData.ParseQueryAndSubject(blast_file_name)
 entropyRecordList = blast_to_entropy.EntropyRecordsForBlastData(blastData, False)

 out_file = open(out_file_name, "w")
 for entropyRecord in entropyRecordList:
 f = FractionRecord()
 f.CalculateWithEntropyRecord(entropyRecord)
 # Print the entropy and fractions
 out_file.write("E=%.3f,FG=%f,FSR=%f,FSHP=%f,FNSHP=%f\n" %
 (entropyRecord.entropyValue,
 f.gap_fraction,
 f.small_residues_fraction,
 f.strongly_hydrophobic_fraction,
 f.non_strongly_hydrophobic_fraction))
 out_file.close()

Author: Reecha Nepal
Date: July 17, 2012
Purpose: Parse blast file data.
Usage: data = BlastData()
data.ParseQueryAndSubject("nblast_all/1A2KAblast.txt",
"fasta/1A2kA.fasta")

At this point data.firstQuerySequence will contain the
blast query. For example "MGDKPIWEQ..."
The query subject and records are stored in data.recordList.

Revision History
v.1.0 11/23/10 Inital version by Reecha Nepal.
This is a python translation of
Radhika-6pointPsiBlastentropy.pl. The original script
was written by D.Chiang and modified by
Radhika Pallavi Mishra.
File: parse_blast.py

import sys

Stores a single query and subject record.

class QueryAndSubjectRecord:
 def __init__(self):
 self.scoreBits = 0.0
 self.percentIdentities = 0.0
 self.percentPositives = 0.0
 self.expectValue = 0
 self.querySequence = ""
 self.subjectSequence = ""
 self.queryOffset = 0

120

 self.lineStartIndex = 0

 ##
 # Fills in the QueryAndSubjectRecord object by parsing data
 # in the given lines.
 ##
 def ParseLines(self, lines, lineStartIndex):
 # First line should look like this
 # Score = 187 bits (475), Expect = 4e-46, Method: Composition-based stats.
 words = lines[0].split()
 self.scoreBits = ParseFloat(words[2])
 self.expectValue = ParseFloat(words[7])
 self.lineStartIndex = lineStartIndex

 # Second line should look like this:
 # Identities = 122/127 (97%), Positives = 126/127 (99%), Gaps = 0/127 (0%)
 words = lines[1].split()
 self.percentIdentities = ParseFloat(words[3]) / 100.0
 self.percentPositives = ParseFloat(words[7]) / 100.0

 # Read the query sequence. The lines look like this:
 # Query 121 LALHNFG 127
 for line in lines:
 if line[:5] == "Query":
 words = line.split()
 self.querySequence = self.querySequence + words[2]
 if self.queryOffset == 0:
 self.queryOffset = int(words[1])

 # Read the subject sequence. The lines look like this:
 # Sbjct 121 LALHNFG 127
 for line in lines:
 if line[:5] == "Sbjct":
 words = line.split()
 self.subjectSequence = self.subjectSequence + words[2]

This class stores data from the results of a blast query.
It stores the original query and a list of query and subject
records.

class BlastData:
 def __init__(self):
 self.recordList = []
 self.firstQuerySequence = ""

 ##
 # Fills in the BlastData object by parsing the data in the
 # given blast file.
 ##
 def ParseQueryAndSubject(self, blast_file_name, fasta_file_name):
 self.firstQuerySequence = ParseQueryFromFastaFile(fasta_file_name)

 input_file = open(blast_file_name, "r")
 lines = input_file.readlines()
 input_file.close()

 # Parse the subject and query records.
 lineIndex = 0
 while True:
 (startIndex, endIndex) = FindNextQueryAndSubjectLines(lines, lineIndex)
 if startIndex == -1:
 break
 record = QueryAndSubjectRecord()
 record.ParseLines(lines[startIndex:endIndex+1], startIndex)

121

 self.recordList.append(record)
 lineIndex = endIndex + 1

Reads a fast file and returns the query sequence from it.

def ParseQueryFromFastaFile(fasta_file_name):
 input_file = open(fasta_file_name, "r")
 lines = input_file.readlines()
 input_file.close()

 query = ""
 for line in lines:
 if line[:1] == '>':
 continue;
 query = query + line.strip()
 return query

Change values from string to float.

def ParseFloat(floatString):
 # If the string is "e-10" then change it to "1e-10". Otherwise python
 # won't be able to parse it.
 if floatString[:1] == "e":
 floatString = "1" + floatString
 # Remove any trailing commas and brackets and percent signs
 floatString = floatString.strip(",()%")
 return float(floatString)

Finds the next Query and Subject record in the given lines.
Returns a tuple with the start and end line indexes for the
record. If no record is found then it returns (-1, -1).

def FindNextQueryAndSubjectLines(lines, startIndex):
 recordStartIndex = 0
 recordEndIndex = 0

 # Find the start of the next record
 for lineIndex in range(startIndex, len(lines)):
 line = lines[lineIndex]
 if line.find("Score = ") != -1:
 break
 if lineIndex >= len(lines) - 1:
 return (-1, -1)
 else:
 recordStartIndex = lineIndex

 # Find the end of the next record
 blankLineCount = 0
 for lineIndex in range(recordStartIndex, len(lines)):
 line = lines[lineIndex].strip()
 if len(line) == 0:
 blankLineCount += 1
 else:
 blankLineCount = 0
 if blankLineCount == 2:
 break
 if lineIndex >= len(lines) - 1:
 return (-1, -1)
 else:
 recordEndIndex = lineIndex

 return (recordStartIndex, recordEndIndex-2)

122

Normally this script is not run directly. Callers should just
use the BlastData object to get the data they need.
For debuging purposes though you can call this as follows:
python parse_blast.py <blast_file_name> <fasta_file_name>
This will print the first query sequence, the first record,
and the total number of records.

if __name__ == "__main__":
 blast_file_name = sys.argv[1]
 fasta_file_name = sys.argv[2]

 data = BlastData()
 data.ParseQueryAndSubject(blast_file_name, fasta_file_name)
 print "First query sequence is", data.firstQuerySequence
 print "found", len(data.recordList), "records"
 record = data.recordList[0]
 print "The first record is"
 print "scoreBits", record.scoreBits
 print "percentIdentities", record.percentIdentities
 print "percentPositives", record.percentPositives
 print "expectValue", record.expectValue
 print "querySequence", record.querySequence
 print "subjectSequence", record.subjectSequence
 print "queryOffset", record.queryOffset

Author: Reecha Nepal
Date: May 6, 2012
"Parse Density"

Purpose: Parse the density file.
Usage: import parse_density
densityRecordList = parse_density.ParseDensityFile("1a1ia.den")
At this point densityRecordList will contain a list of density values.

Revision History
v.1.0 11/23/10 Inital version by Reecha Nepal.
This is a python translation of
svm_extract_fractentropy_density_aggr.py. The original script
was written by Radhika Pallavi Mishra.
File: parse_density.py

import sys

Stores a single density value and the pdb position for that
value.

class DensityRecord:
 def __init__(self):
 density_value = ""
 pdb_pos = ""
 query_letter = ""

 ##
 # Fills in the DensityRecord object by parsing data in the
 # given line.
 ##
 def ParseLine(self, line):
 words = line.split()
 self.density_value = words[9].strip()
 self.pdb_pos = words[16].strip()
 query_words = words[1].split('_')

123

 self.query_letter = '?'
 if len(query_words) == 3:
 query_word = query_words[2].strip().upper()
 if len(query_word) == 1:
 self.query_letter = query_word

Parses the given density file and returns a list of density
records.

def ParseDensityFile(density_file_name):
 density_file = open(density_file_name, "r")
 lines = density_file.readlines()
 density_file.close()

 densityRecordList = []
 for line in lines:
 if line.find("C(9)") != -1:
 densityRecord = DensityRecord()
 densityRecord.ParseLine(line)
 densityRecordList.append(densityRecord)
 return densityRecordList

Normally this script is not run directly. Callers should just
use the DensityRecord object to get the data they need.
For debuging purposes though you can call this as follows:
python parse_density.py <density_file_name>
This will print the number of density records, and the
density value and pdb position of the first density record.

if __name__ == "__main__":
 density_file_name = sys.argv[1]

 densityRecordList = ParseDensityFile(density_file_name)
 print "found", len(densityRecordList), "records"
 record = densityRecordList[10]
 print "The first record is"
 print "density_value", record.density_value
 print "pdb_pos", record.pdb_pos

Author: Reecha Nepal
Date: November 23, 2010
Purpose: This script prints the density and entropy values for all density and
blast files in the given directory.
Usage: python svm_extract_fractentropy_density_aggr.py <density_directory>
<blast_directory> <out_file_name> <6Point|AllPoint>
The last parameter to this script should either be 6Point or AllPoint.
If 6Point is specified then the entropy value will be calculated
by grouping items in the sequence into one of six categories.
If AllPoint is specified then items in the sequence will not be
grouped when calculating the entropy.

Revision History
v.1.0 11/23/10 Inital version by Reecha Nepal.
This is a python translation of
svm_extract_fractentropy_density_aggr.py. The original script
was written by Radhika Pallavi Mishra.
File: svm_extract_fractentropy_density_aggr.py

import parse_blast
import blast_to_entropy
import fractional_analysis
import parse_density

124

import sys
import os

Prints density and entropy fraction values for the given
blast file and density file.

def PrintDensityAndEntropyValue(out_file, pdb_name, density_file_name, blast_file_name,
use6Point):
 # Read the density data
 densityRecordList = parse_density.ParseDensityFile(density_file_name)

 # Read the entropy data
 blastData = parse_blast.BlastData()
 blastData.ParseQueryAndSubject(blast_file_name)
 entropyRecordList = blast_to_entropy.EntropyRecordsForBlastData(blastData, use6Point)

 # TODO The density record list should be the same size as the entropy
 # record list. Unfortunately there are some bugs in the script that creates
 # the density record list so the two lists are not always the same size.
 # Until this is fixed just ignore the extra data.
 recordCount = len(densityRecordList)
 if recordCount > len(entropyRecordList):
 recordCount = len(entropyRecordList)

 # Print a line for each density
 for i in range(0, recordCount):
 densityRecord = densityRecordList[i]
 entropyRecord = entropyRecordList[i]

 # Calculate franctions from the entropy record
 f = fractional_analysis.FractionRecord()
 f.CalculateWithEntropyRecord(entropyRecord)

 # Print everything

out_file.write("ProtName=%s,PDBPos=%s,Den=%s,E=%.3f,FG=%f,FSR=%f,FSHP=%f,FNSHP=%f\n" %
 (pdb_name,
 densityRecord.pdb_pos,
 densityRecord.density_value,
 entropyRecord.entropyValue,
 f.gap_fraction,
 f.small_residues_fraction,
 f.strongly_hydrophobic_fraction,
 f.non_strongly_hydrophobic_fraction));

Prints density and entropy fraction values for all density
and blast files in the given directories.

def PrintDensityAndEntropyForDirectory(out_file, density_directory, blast_directory,
use6Point):
 density_file_list = os.listdir(density_directory)
 blast_file_list = os.listdir(blast_directory)

 for index in range(0, len(density_file_list)):
 file_name = density_file_list[index]
 pdb_name = file_name[0:5].upper()
 blast_file_name = FindFileWithPDBNameInDirectory(blast_directory, blast_file_list,
pdb_name)
 if len(blast_file_name) == 0:
 continue

 print index + 1, "of", len(density_file_list), pdb_name

125

 density_file_name = os.path.join(density_directory, file_name)
 PrintDensityAndEntropyValue(out_file, pdb_name, density_file_name, blast_file_name,
use6Point)

Finds a file in the given directory that starts with the
pdb name.

def FindFileWithPDBNameInDirectory(directory_name, direstory_file_list, pdb_name):
 pdb_name = pdb_name.upper()
 pdb_len = len(pdb_name)
 for file_name in direstory_file_list:
 name_prefix = file_name[0:pdb_len].upper()
 if name_prefix == pdb_name:
 return os.path.join(directory_name, file_name)
 return ""

This script prints the density and entropy values for all
density and blast files in the given directory. To use
this script call it as follows:
python svm_extract_fractentropy_density_aggr.py <density_directory>
<blast_directory> <out_file_name> <6Point|AllPoint>

if __name__ == "__main__":
 density_directory = sys.argv[1]
 blast_directory = sys.argv[2]
 out_file_name = sys.argv[3]
 entropyGroupType = sys.argv[4]
 use6Point = entropyGroupType == "6Point"

 out_file = open(out_file_name, "w")
 PrintDensityAndEntropyForDirectory(out_file, density_directory, blast_directory,
use6Point)
 out_file.close()

Author: Reecha Nepal
Date: July 24, 2012
Purpose: Align two tables based on QueryLetter.
File: align_tables.py

from difflib import SequenceMatcher
import copy

def get_sequence_from_table(table):
 result = ''
 index = 0
 for entry in table:
 assert len(entry['QueryLetter']) == 1
 result = result + entry['QueryLetter']
 index = index + 1
 return result

def join_dictionaries(dict1, dict2):
 result = {}
 if dict1:
 result = copy.deepcopy(dict1)
 if dict2:
 tmp_dict = copy.deepcopy(dict2)
 for key in tmp_dict.keys():
 result[key] = tmp_dict[key]
 return result

def get_nil_entry(table):

126

 if len(table) > 0:
 result = {}
 entry = table[0]
 for key in entry.keys():
 result[key] = '-1'
 return result
 else:
 return {}

def get_aligned_index(naccess_sequence, naccess_index,
 entropy_sequence, entropy_index,
 sequence_matcher):
 if len(naccess_sequence) <= naccess_index:
 return -1
 if len(entropy_sequence) <= entropy_index:
 return -1
 if naccess_sequence[naccess_index] == '?':
 return -1
 if naccess_sequence[naccess_index] == entropy_sequence[entropy_index]:
 return entropy_index

 match_naccess, match_entropy, match_len = sequence_matcher.find_longest_match(
 naccess_index, len(naccess_sequence),
 entropy_index, len(entropy_sequence))

 for cur_entropy_index in range(entropy_index, match_entropy + 1):
 if naccess_sequence[naccess_index] == entropy_sequence[cur_entropy_index]:
 return cur_entropy_index
 return -1

def align_entropy_to_table(entropy_table, naccess_table):
 entropy_sequence = get_sequence_from_table(entropy_table)
 naccess_sequence = get_sequence_from_table(naccess_table)
 sequence_matcher = SequenceMatcher(None, naccess_sequence, entropy_sequence, False)

 aligned_table = []
 entropy_index = 0
 for naccess_index in range(0, len(naccess_sequence)):
 new_entropy_index = get_aligned_index(naccess_sequence, naccess_index,
 entropy_sequence, entropy_index,
 sequence_matcher)
 if new_entropy_index == -1:
 continue

 aligned_table.append(join_dictionaries(entropy_table[new_entropy_index],
 naccess_table[naccess_index]))
 entropy_index = new_entropy_index + 1
 return aligned_table

def align_density_to_table(density_table, naccess_table):
 density_sequence = get_sequence_from_table(density_table)
 naccess_sequence = get_sequence_from_table(naccess_table)
 sequence_matcher = SequenceMatcher(None, naccess_sequence, density_sequence, False)

 nil_density_entry = get_nil_entry(density_table)

 aligned_table = []
 block_index = 0
 matching_blocks = sequence_matcher.get_matching_blocks()
 match_naccess, match_density, match_len = matching_blocks[block_index]

 for naccess_index in range(0, len(naccess_sequence)):
 if (naccess_index >= (match_naccess + match_len) and
 block_index < (len(matching_blocks) - 1)):
 block_index = block_index + 1
 match_naccess, match_density, match_len = matching_blocks[block_index]

127

 if naccess_index < match_naccess:
 aligned_table.append(join_dictionaries(nil_density_entry,
 naccess_table[naccess_index]))
 elif naccess_index >= (match_naccess + match_len):
 aligned_table.append(join_dictionaries(nil_density_entry,
 naccess_table[naccess_index]))
 else:
 delta = naccess_index - match_naccess
 density_index = match_density + delta
 aligned_table.append(join_dictionaries(density_table[density_index],
 naccess_table[naccess_index]))
 return aligned_table

def align_tables(density_table, entropy_table, naccess_table):
 result = align_entropy_to_table(entropy_table, naccess_table)
 result = align_density_to_table(density_table, result)
 return result

Author: Reecha Nepal
Date: May 6, 2012
Purpose: Combine all .csv files in the current directory.
File: combine_csv_files.py

import os
import sys

header = None
output_lines = []

files = os.listdir(".")
for file in files:
 words = file.split(".")
 if len(words) != 2 or words[1] != "csv":
 continue
 file = open(file, "r")
 input_lines = file.readlines()
 file.close()

 if len(input_lines) == 0:
 print "file", file, "is empty"
 continue

 if not header:
 header = input_lines[0].strip()
 output_lines.append(header + "\n")

 for index in range(1, len(input_lines)):
 line = input_lines[index].strip()
 output_lines.append(line + "\n")

output_file = open("combined.csv", "w")
output_file.writelines(output_lines)
output_file.close()

Author: Reecha Nepal
Date: April 16, 2012
Purpose: This program calculates the relative solvent accessibility (REL)
using the following models such as:
REL ~ E20 + E6 + FSR + FSHP + as.factor(AA)
The coefficient for the above model are caclulated using training data
(Brel2Data268.csv). This model is then applied to the experimental data
(Brel2Data215.csv or other files) to predict new REL values.

The predicted REL values and the actual REL values are then converted to

128

binary using the following forumal:
if (binary_actual_REL >= 20)
binary_actual_REL = 1
else
binary_actual_REL = 0

if (binary_predicted_REL >= 20)
binary_predicted_REL = 1
else
binary_predicted_REL = 0

The accuracy of the model is then calculated by comparing
binary_predicted_REL with binary_actual_REL.

To run this program do the following:
> R -f accuracy_v2.R <folder for training data> <folder for experimental data>
for example:
> R -f accuracy_v2.R --args 268_csv_folder 215_csv_folder

File:accuracy.R

Reads all the CSV files in the given folder and creates a single data frame.

read_data_from_files <- function(folder_name) {
 file_list = list.files(folder_name, pattern="*.csv", full.names=TRUE)
 E20 = c()
 E6 = c()
 FSR = c()
 #FA = c()
 #FG = c()
 FSHP = c()
 AA = c()
 REL = c()
 RES = c()
 for (file in file_list) {
 data = read.csv(file, sep = ",", header = TRUE)
 E20 = c(E20, data$E)
 E6 = c(E6, data$E6)
 FSR = c(FSR, data$FSR)
 #FA = c(FA, data$FA)
 #FG = c(FG, data$FG)
 FSHP = c(FSHP, data$FSHP)
 AA = c(AA, as.vector(data$AA))
 REL = c(REL, data$REL)
 RES = append(RES, as.vector(data$RES))
 }

 return (data.frame(E20 = E20,
 E6 = E6,
 FSR = FSR,
 #FA = FA,
 #FG = FG,
 FSHP = FSHP,
 AA = AA,
 REL = REL,
 RES = RES))
}

Applies the given model the experimental data. Returns the number of REL
values where the predicted value matches the actual values.
Use the following formula:
Predicted REL > 23
NACCESS REL >= 20

129

apply_model <- function(model, exp_data) {
 match_count = 0
 predicted_values = predict(model, exp_data)
 for (i in 1:length(predicted_values)) {
 actual_REL = exp_data$REL[i]
 if (actual_REL >= 20)
 actual_REL_Binary = 1
 else
 actual_REL_Binary = 0

 predicted_REL = predicted_values[i]
 if (predicted_REL > 23) # 25.2
 predicted_REL_Binary = 1
 else
 predicted_REL_Binary = 0

 if (actual_REL_Binary == predicted_REL_Binary)
 match_count = match_count + 1
 }
 return(match_count)
}

Save the predicted values in a CVS file for each PDB name.

save_predicted_values <- function(i, model, exp_data) {
 folder_name = paste("predicted_", i, sep="")
 dir.create(folder_name, showWarnings=FALSE)

 predicted_values = predict(model, exp_data)
 for (i in 1:length(predicted_values)) {
 pdb_name = exp_data$RES[i]
 # remove any white space
 pdb_name = gsub(" +", "", pdb_name)
 file_name = paste(folder_name, "/", pdb_name, ".txt", sep="")
 cat(predicted_values[i], file=file_name, sep="\n", append=TRUE)
 }
}

Read all the training csv files and setup models based on the data.

args = commandArgs(trailingOnly = TRUE)
training_data = read_data_from_files(args[1])

models = list()
model_names = c()
models[[1]] = lm(REL ~ E20, training_data)
model_names[1] = "REL ~ E20"
models[[2]] = lm(REL ~ E6, training_data)
model_names[2] = "REL ~ E6"
models[[3]] = lm(REL ~ FSHP, training_data)
model_names[3] = "REL ~ FSHP"
models[[4]] = lm(REL ~ FSHP + as.factor(AA), training_data)
model_names[4] = "REL ~ FSHP + as.factor(AA)"
models[[5]] = lm(REL ~ AA, training_data)
model_names[5] = "REL ~ AA"
models[[6]] = lm(REL ~ E20 + as.factor(AA), training_data)
model_names[6] = "REL ~ E20 + as.factor(AA)"
models[[7]] = lm(REL ~ E6 + as.factor(AA), training_data)
model_names[7] = "REL ~ E6 + as.factor(AA)"
models[[8]] = lm(REL ~ E20 + E6 + as.factor(AA), training_data)
model_names[8] = "REL ~ E20 + E6 + as.factor(AA)"
models[[9]] = lm(REL ~ E20 + E6, training_data)

130

model_names[9] = "REL ~ E20 + E6"
models[[10]] = lm(REL ~ E20 + FSR + FSHP + as.factor(AA), training_data)
model_names[10] = "REL ~ E20 + FSR + FSHP + as.factor(AA)"
models[[11]]= lm(REL ~ E6 + FSR + FSHP + as.factor(AA), training_data)
model_names[11] = "REL ~ E6 + FSR + FSHP + as.factor(AA)"
models[[12]] = lm(REL ~ E20 + E6 + FSR + FSHP + as.factor(AA), training_data)
model_names[12] = "REL ~ E20 + E6 + FSR + FSHP + as.factor(AA)"

#models[[13]] = lm(REL ~ E20 + FA + FG + FSHP + as.factor(AA), training_data)
#model_names[13] = "REL ~ E20 + FA + FG + FSHP + as.factor(AA)"
#models[[14]] = lm(REL ~ E20 + FA + FSHP + as.factor(AA), training_data)
#model_names[14] = "REL ~ E20 + FA + FSHP + as.factor(AA)"
#models[[15]] = lm(REL ~ E20 + FG + FSHP + as.factor(AA), training_data)
#model_names[15] = "REL ~ E20 + FG + FSHP + as.factor(AA)"

#models[[16]]= lm(REL ~ E6 + FA + FG + FSHP + as.factor(AA), training_data)
#model_names[16] = "REL ~ E6 + FA + FG + FSHP + as.factor(AA)"
#models[[17]]= lm(REL ~ E6 + FA + FSHP + as.factor(AA), training_data)
#model_names[17] = "REL ~ E6 + FA + FSHP + as.factor(AA)"
#models[[18]]= lm(REL ~ E6 + FG + FSHP + as.factor(AA), training_data)
#model_names[18] = "REL ~ E6 + FG + FSHP + as.factor(AA)"

#models[[19]] = lm(REL ~ E20 + E6 + FA + FG + FSHP + as.factor(AA), training_data)
#model_names[19] = "REL ~ E20 + E6 + FA + FG + FSHP + as.factor(AA)"
#models[[20]] = lm(REL ~ E20 + E6 + FA + FSHP + as.factor(AA), training_data)
#model_names[20] = "REL ~ E20 + E6 + FA + FSHP + as.factor(AA)"
#models[[21]] = lm(REL ~ E20 + E6 + FG + FSHP + as.factor(AA), training_data)
#model_names[21] = "REL ~ E20 + E6 + FG + FSHP + as.factor(AA)"

Read all the experimental CSV files and apply the models.

exp_data = read_data_from_files(args[2])
count = c()

i = 1
for (model in models) {
 count[i] = apply_model(model, exp_data)

 if (i >= 12)
 save_predicted_values(i, model, exp_data)

 i = i + 1
}

Print the accuracy

cat("start_accuracy_values\n")
total_count = length(exp_data$REL)
for (i in 1:length(model_names)) {
 cat(i)
 cat(" ")
 cat(model_names[i])
 cat(" ")
 cat(count[i] / total_count)
 cat("\n")
}

Author: Reecha Nepal
Date: August 13, 2012
Purpose: This script runs all the other scripts (blast, density, etc..). It
creates a CSV file for each protein.

131

To run this script do the following:
python run_all.py pdb_names.txt
or
python run_all.py 119LA
The output files will be created in a directory called "csv".
File: run_all.py

import os
import sys

import A_Download_Blast.download_gi_number
import A_Download_Blast.download_fasta
import A_Download_Blast.download_blast
import B_Download_Density.download_mmCIF
import B_Download_Density.calculate_density
import C_NACCESS.download_pdb
import C_NACCESS.run_naccess
import C_NACCESS.extract_data
import D_Entropy.extract_data
import E_Misc.align_tables
from multiprocessing import Pool

Gets the output path for the given pdb_name. For example, if the PDB name
is 1HGXA then the output path would be:
csv/1HGXA.csv

def get_output_path(pdb_name):
 output_path = os.path.join("csv", pdb_name + ".csv")
 return output_path

Get a list of pdb names from the a file.

def get_pdb_list():
 if len(sys.argv) != 2:
 print "To run this script do the following:\n" \
 "\tpython run_all.py pdb_names.txt\n" \
 "\tor python run_all.py 119LA"
 sys.exit(-1)

 pdb_list = []
 if os.path.exists(sys.argv[1]):
 input_file_handle = open(sys.argv[1], "r")
 lines = input_file_handle.readlines()
 for line in lines:
 pdb_name = line.strip()
 if len(pdb_name) > 1:
 pdb_list.append(pdb_name.upper())
 else:
 pdb_list.append(sys.argv[1])
 return pdb_list

Gets the path to folder that contains the naccess code.

def get_python_code_path():
 script_path = os.path.realpath(__file__)
 parent_directory = os.path.dirname(script_path)
 return os.path.dirname(parent_directory)

Runs the main script.

def save_data_to_csv(pdb_name, data, output_path):
 f = open(output_path, 'w')

132

 f.write('Num,denB,RES,E,E6,FSR,FA,FG,FSHP,EntropyQueryLetter,AA,REL,CATH\n')
 index = 0
 for record in data:
 index = index + 1
 f.write('%d,' % (index))
 f.write('%s,' % record['denB'])
 f.write('%s,' % pdb_name)
 f.write('%.3f,' % record['E'])
 f.write('%.3f,' % record['E6'])
 f.write('%f,' % record['FSR'])
 f.write('%f,' % record['FA'])
 f.write('%f,' % record['FG'])
 f.write('%f,' % record['FSHP'])
 f.write('%s,' % record['QueryLetter'])
 f.write('%s,' % record['AA'])
 f.write('%s,' % record['REL'])
 f.write('%s' % record['CATH'])
 f.write('\n')
 f.close()

Runs the main script.

def run(pdb_name):
 output_path = get_output_path(pdb_name)
 if os.path.exists(output_path):
 return

 A_Download_Blast.download_gi_number.run(pdb_name)
 A_Download_Blast.download_fasta.run(pdb_name)
 A_Download_Blast.download_blast.run(pdb_name)
 B_Download_Density.download_mmCIF.run(pdb_name)
 B_Download_Density.calculate_density.run(pdb_name)
 C_NACCESS.download_pdb.run(pdb_name)
 C_NACCESS.run_naccess.run(pdb_name)

 (density_table, entropy_table) = \
 D_Entropy.extract_data.GetEntropyAndDensityValuesForPDB(pdb_name)
 naccess_table = C_NACCESS.extract_data.GetNaccessValuesForPDB(pdb_name)
 aligned_table = E_Misc.align_tables.align_tables(density_table,
 entropy_table,
 naccess_table)
 save_data_to_csv(pdb_name, aligned_table, output_path)

The main function, this gets run first when the program is run from the
command line.

if __name__ == "__main__":
 python_code_path = get_python_code_path()

 # put the file in a directory named "csv"
 if not os.path.exists("csv"):
 os.makedirs("csv")

 pdb_list = get_pdb_list()
 pool = Pool(processes=8)
 pool.map(run, pdb_list)
 #for pdb in pdb_list:
 # print pdb
 # run(pdb)

Author: Reecha Nepal
Date: February 5, 2012
Purpose: This program takes entropy data for multiple residues and for each residue

133

creates a filter matrix. For example, if residue 119LA had entropy data for
124 amino acids then a 124x124 matrix would be saved in matrix/119LA.csv.

Required input file for this program:
Brel2Data215.csv
To run this program do the following:
> R -f tertiary_contact_filter2.R
File: tertiary_contact_filter2.R

Read the CSV file

replace this with file.choose() to manually choose the CSV file
file_name = "Brel2Data215.csv"
csv_data = read.csv(file_name, sep= ",", header =TRUE)

Save the matrix output to a folder named "matrix"
dir.create("matrix", showWarnings=FALSE)

For each residue (119LA, 153LA, etc...) compute the filter matrix

residue_list = unique(csv_data$RES)
for (residue in residue_list) {
 residue_data = subset(csv_data, RES==residue)
 AA = residue_data$AA
 Entropy_20 = residue_data$E

 len = length(AA)
 m = matrix(nrow=len, ncol=len)
 for (i in 1:len) {
 current_entropy = Entropy_20[i]
 for (j in 1:len) {
 new_entropy = Entropy_20[j]
 multiplied_entropy = (current_entropy + new_entropy)/2
 if (i == j)
 m[i, j] = "N/A"
 else if (multiplied_entropy < 1.3025)
 m[i, j] = 0
 else
 m[i, j] = 1
 }
 }

 # Add amino acid names as heads (in the first row and first column)
 header_row = c()
 for (cur_aa in AA) {
 header_row = c(header_row, toString(cur_aa))
 }
 m = rbind(header_row, m)
 # Add one extra item to the column since the size of the matrix is 1 biger
 header_col = c("", header_row)
 m = cbind(header_col, m)

 # Save the matrix to a csv file (119LA.csv, etc...)
 file_name = paste(residue, ".csv", sep="")
 file_path = file.path("matrix", file_name)
 write(m, file_path, ncolumns=len + 1, sep=",")
}

Author: Reecha Nepal
Date: May 6, 2012
Purpose: This program calculates the relative solvent accessibility (REL)
using the following model:

134

REL ~ E20 + E6 + FSR + FSHP + as.factor(AA)
The coefficient for the above model are caclulated using training data
(Brel2Data268.csv). This model is then applied to the experimental data
(Brel2Data215.csv) to predict new REL values.

The predicted REL values and the actual REL values are then converted to
binary using the following forumal:
if (binary_actual_REL >= 20)
binary_actual_REL = 1
else
binary_actual_REL = 0

if (binary_predicted_REL >= 20)
binary_predicted_REL = 1
else
binary_predicted_REL = 0

This accuracy of binary_predicted_REL vs binary_actual_REL is then printed.

Additonally this program can also apply a tertiary contact filter. See
bellow for how the filter works.

Required input files for this program:
Brel2Data215.csv
Brel2Data268.csv
matrix/ (output from tertiary_contact_filter2.R)
To run this program do the following:
> R -f accuracy.R
File: accuracy_with_filter_2.R

Read the training and experimental data.

replace this with file.choose() to manually choose the CSV file
file_name_268 = "Brel2Data268.csv"
file_name_215 = "Brel2Data215.csv"
blast_268_data = read.csv(file_name_268, sep = ",", header = TRUE)
blast_215_data = read.csv(file_name_215, sep = ",", header = TRUE)
blast_268_data_frame = data.frame(E20 = blast_268_data$E,
 E6 = blast_268_data$E6,
 FSR = blast_268_data$FSR,
 FSHP = blast_268_data$FSHP,
 AA = blast_268_data$AA,
 REL = blast_268_data$REL)
blast_215_data_frame = data.frame(E20 = blast_215_data$E,
 E6 = blast_215_data$E6,
 FSR = blast_215_data$FSR,
 FSHP = blast_215_data$FSHP,
 AA = blast_215_data$AA,
 REL = blast_215_data$unREL,
 RES = blast_215_data$RES)

Use our model to predict the REL values for the experimental data.

lm_268 = lm(REL ~ E20 + E6 + FSR + FSHP + as.factor(AA), blast_268_data_frame)
predicted_215_rel = predict(lm_268, blast_215_data_frame)

Map REL values to binary.

binary_actual_REL_215 = c()
for (rel in blast_215_data_frame$REL) {
 if (rel >= 20)
 X2 = 1
 else

135

 X2 = 0
 binary_actual_REL_215 = c(binary_actual_REL_215, X2)
}

binary_predicted_REL_215 = c()
for (rel in predicted_215_rel) {
 if (rel > 23)
 X2 = 1
 else
 X2 = 0
 binary_predicted_REL_215 = c(binary_predicted_REL_215, X2)
}

Calculate accuracy

match_count = 0
len = length(binary_actual_REL_215)
for (i in 1:len) {
 if (binary_actual_REL_215[i] == binary_predicted_REL_215[i]) {
 match_count = match_count + 1
 }
}
accuracy = (match_count / len) * 100
print(accuracy)

Apply the tertiary contact filter.

filtered_values = binary_predicted_REL_215
residue_list = unique(blast_215_data_frame$RES)
for (residue in residue_list) {
 print(paste("Processing matrix: ", residue))
 residue_index = 0
 data_len = length(blast_215_data_frame$RES)
 for (i in 1:data_len) {
 if (blast_215_data_frame$RES[i] == residue) {
 residue_index = i;
 break;
 }
 }

 matrix_file_name = paste(residue, ".csv", sep="")
 matrix_file_path = file.path("matrix", matrix_file_name)
 filter_matrix = read.csv(matrix_file_path, sep=",", header=FALSE)

 row_count = length(filter_matrix)
 col_count = row_count

 for (row in 1:row_count) {
 for (col in 1:col_count) {
 distance = 0
 if (row > col) {
 distance = row - col
 } else {
 distance = col - row
 }

 if (filter_matrix[row, col] == 1 andand distance > 10) {
 filtered_values[residue_index + row] = 1
 filtered_values[residue_index + col] = 1
 }
 }
 }
}

136

Calculate accuracy with the filter applied

match_count = 0
for (i in 1:len) {
 if (binary_actual_REL_215[i] == filtered_values[i]) {
 match_count = match_count + 1
 }
}
accuracy = (match_count / len) * 100
print(accuracy)

B. 1363 PDB Table

Table B.1: List of 1363 PDB IDs used in the 1363 training data set.

2VB1A 1KQPA 1R0RI 2R2ZA 1OQVA 1V9YA 2GYQA 1O04A 1UPQA
2DSXA 1UOWA 1JM1A 2BMOA 1F4PA 1PLCA 3EJVA 2F22A 3SEBA
1R6JA 3C70A 1K7CA 1FYEA 1G61A 1KKOA 2P8IA 1PZ7A 3C9UA
2B97A 1PSRA 1H1NA 1NZ0A 2C4BA 1VH5A 1U7IA 2HQXA 1WPUA
1GCIA 1YQSA 1SU7A 1TU9A 1FCYA 1UTGA 2FTRA 2CJTA 1H41A
2F01A 3SILA 2EUTA 1QU9A 1XUBA 1EAJA 2J5YA 1E6UA 1UUQA
1G6XA 1FSGA 1U07A 1QW9A 1K3YA 2IYVA 1ODZA 1JBOA 1OF8A
1MUWA 1R2QA 1P6OA 2A26A 2PRVA 2FS6A 2J73A 2GDGA 1HD2A
1DY5A 1RQWA 2UUYA 2IFQA 1OX0A 1WDDA 1EZGA 1Z72A 1OCYA
1G66A 1LQTA 2V7FA 1I24A 1WPNA 1WDDS 1M1FA 1FM0D 1OFZA
1IX9A 1M2DA 1I8OA 1O7IA 1LQ9A 2PHNA 1Q5YA 1WL8A 3BI1A
1VYRA 1EUWA 1VZIA 1V8HA 1NXMA 1U9CA 2HIYA 1W1HA 1ZKPA
2BW4A 2AXWA 1I4UA 1LC0A 1J2RA 2FXUA 256BA 1KW3B 2O02A
1OEWA 1KJQA 1XODA 1MJUL 2F69A 1WZDA 2ACFA 1Q0RA 2OPLA
1N9BA 1PMHX 1H4AX 1W7CA 1FLMA 2PIEA 2IVYA 2O9CA 2FNUA
2PVBA 2C9VA 2D8DA 1OI7A 1R0MA 1P4CA 2HOXA 2HEWF 1LV7A
2PPNA 1XJUA 1M1NB 1WMAA 2I6CA 1PZ4A 2UX9A 2GLZA 1KM4A
2FDNA 1JBEA 1M1NA 1USCA 1SG4A 1UZKA 1L6RA 1ABAA 1VL7A
1NLSA 1UWCA 1HBNA 1M4LA 1KMTA 1PINA 1YE8A 1XD3A 1J8UA
2GUDA 1W23A 1HBNB 1RWHA 2NR7A 3BUXB 1K3IA 1XD3B 1P3CA
7A3HA 1DS1A 1HBNC 1GNLA 2Q9OA 1IJYA 1KS8A 1GVDA 2PBDP
1RTQA 1K5NA 1H4XA 3CHBD 2GF3A 1KUFA 1M55A 1OS6A 1M7JA
1NKIA 1QLWA 1X9IA 2HBAA 1RYAA 2AKZA 1UQ5A 1JI7A 1DJ0A
2Z6WA 1N62B 1C9OA 1K3XA 1JNDA 1RHSA 2GMNA 1DI6A 2HSJA
1AHOA 1N62C 1KQ6A 1EAQA 2NLVA 1VIMA 1Y8AA 2CVDA 1X82A
1XG0C 1N62A 1UWKA 1OOHA 3BBBA 1JO0A 2QFAA 1HZTA 2BT6A
1XG0A 1ZL0A 2CS7A 1MF7A 1O8XA 1F1EA 1EW4A 1W5RA 2J2JA
2NMZA 1ITXA 1WRIA 2C60A 3D32A 3CJSB 1UWWA 1THFD 2F62A
1IXHA 1I40A 1MJ4A 2B82A 1HYOA 3CJSA 1JUBA 1IDPA 1O9GA

137

1MWQA 2V9VA 1VR7A 2FVVA 1ES9A 1GVEA 1T7RA 1IO0A 2IMJA
1P1XA 2V89A 1WM3A 2QJZA 2FCJA 1RYQA 2C78A 1V4PA 1KQ3A
1JFBA 2BHUA 1XDNA 2TPSA 1I0DA 1JKVA 1PFBA 1URSA 1ISUA
1O7JA 1G8TA 1KG2A 1C1DA 1HDHA 2BFDA 2TNFA 2RL8A 2BRJA
1GA6A 1SBYA 2BLNA 2G3RA 1UCDA 2BFDB 1NYCA 1VE1A 2J8KA
1Q6ZA 1Z2UA 1UCRA 2GOMA 1V70A 1N8VA 2OHWA 1VMGA 2Z3GA
2RBKA 2ABSA 1Q6OA 1O8BA 2GECA 1I1JA 1PWBA 1HNJA 1XRKA
2JHFA 1LS1A 2VPAA 1QAUA 1VDWA 1SJYA 1GP0A 1QREA 1CRUA
2IIMA 1CTJA 1NWWA 1RDQE 2PV2A 1WB4A 1NG6A 1G3PA 2A35A
1NQJA 1BKRA 2IJ2A 1GXUA 1VD6A 2G84A 1ES5A 2R8OA 2PYQA
1OAIA 1T2DA 1W6SA 2J8WA 1JL1A 2ODKA 1FP2A 1JU2A 2IBAA
1C7KA 1UZ3A 1W6SB 1GKPA 1GXMA 2G7SA 2POFA 1O4YA 2FOMB
1CXQA 1RG8A 2DLBA 2AEBA 1E7LA 1K0MA 1XSZA 1VM9A 3ER7A
1JR8A 1F0LA 2F1KA 1HFES	 1WQJB	 2JE6I	 2AALA	 1VJOA	 1PFVA	

1IRQA 1SMBA 2F6UA 2EZ9A	 1WQJI	 1Y1PA	 2D29A	 2JE8A	 1V58A	

1CIPA 2ZKDA	 2HX0A 1MXGA	 1V2BA	 1RYLA	 1VKFA	 2A9DA	 1WO8A	

1NTVA 1PTFA	 2V33A	 3ETJA	 1G8QA	 1JKXA	 2QEEA	 2GDMA	 1B2PA	

1SX5A 1Y7BA	 2NMLA	 2GUIA	 1B5EA	 1I58A	 1HX6A	 2OD4A	 3BYPA	

1JX6A 2FHPA	 1MG7A	 1K92A	 1IU8A	 1N08A	 2EX0A	 2NXFA	 1YDYA	

1JYKA 2D5JA	 1IX2A	 2PY5A	 1LQVA	 1XPPA	 1Y7TA	 1EEXA	 1XSVA	

1FL0A 1RKIA	 1JKEA	 1U8VA	 1J1NA	 1KAFA	 1OK7A	 1EEXB	 1RXQA	

1Y5HA 2FL4A	 2HHVA	 1S1DA	 1QGIA	 1YD9A	 2EV0A	 1EEXG	 1BUPA	

1GMUA 1W0PA	 1A62A	 2VLQB	 1WS8A	 1M4JA	 2DEKA	 2ONFA	 1NVMB	

2INWA 2G5RA	 1UGIA	 2VLQA	 1YXYA	 1U60A	 1UEBA	 2RLDA	 1DC1A	

1V2XA 3DMCA	 1OQJA	 1D3GA	 1T9IA	 1XKGA	 1VHQA	 2ID3A	 1XCRA	

1QS1A 2FHFA	 1BI5A	 1TJOA	 3C8WA	 2QFKA	 1GXRA	 1VCLA	 1OGQA	

1NLQA 2FMPA	 2V3ZA	 1P0ZA	 1QMGA	 2ZKMX	 1VI0A	 1JHDA	 2FA1A	

1OMRA 1FDRA	 1VKEA	 2ITEA	 1YT3A	 2CJ4A	 1UFIA	 2R85A	 1QD1A	

1C4OA 1OQ1A	 1SXRA	 2BZ6L	 1E2WA	 1E5PA	 1FXOA	 1YOCA	 1H03P	

3BEXA 1DMHA	 2AFWA	 1F74A	 2IU5A	 2ICTA	 1VPMA	 1U5DA	 1G3MA	

2OOCA 1S5UA	 2BKFA	 1T92A	 1PE9A	 2FBNA	 1GZGA	 1WDVA	 1HZ6A	

1C4QA 1T1JA	 2F9HA	 1T4BA	 2BDRA	 1PU6A	 1L3LA	 1P3DA	 1RH6A	

2FSRA 1NKRA	 1JOVA	 1X7DA	 1J2JA	 1G8KA	 2AJ7A	 1D1QA	 1DUVG	

2JFGA 1NSZA	 2GUYA	 1S95A	 1WLZA	 3ELGA	 1N1JA	 2IDLA	 2DUCA	

1QQ5A 2O62A	 2IA1A	 2NW8A	 1ZKEA	 1YLLA	 2R7GA	 2BKYA	 2NUGA	

1W7BA 2I6HA	 1VIOA	 1FIUA	 1J2JB	 1VPDA	 1UD9A	 1GU7A	 1T82A	

2R1JL 2J9UA	 1K7IA	 1TQJA	 1GY7A	 1DWKA	 1TH7A	 2AVDA	 1IGQA	

1L2HA 2J9UB	 2NNUA	 1Y0UA	 1RFYA	 2G50A	 1JP4A	 1P1JA	 3BOFA	

1VHWA 1GXJA	 1CCWB	 1T0AA	 1T1VA	 1W2YA	 2I8DA	 1OOYA	 1UV7A	

138

2B5AA 1WMXA	 1CCWA	 1X6OA	 2CPGA	 1IM5A	 1JY1A	 2EG6A	 1SGWA	

2GHSA 1G73A	 2OKFA	 1OW4A	 1O26A	 2G82A	 2HFTA	 1JW9B	 1VFJA	

1SFXA 1JC4A	 1LQAA	 1KQFA	 1M7YA	 1O54A	 2QIYC	 2IGIA	 1DQGA	

2F71A 1DQTA	 1T9HA	 2P0SA	 2F23A	 2P97A	 3BYQA	 1QXMA	 1P99A	

2BEMA 1X0PA	 2APJA	 1JNRA	 1WC9A	 3CLSD	 1T0BA	 2DVTA	 1V9FA	

1WBHA 2PI2A	 2I0KA	 1ELWA	 2V5ZA	 3CLSC	 1YKIA	 1D02A	 1KZQA	

1W6GA 1TJLA	 2BO9B	 1L9XA	 1JHJA	 1QSAA	 2I5IA	 2VAPA	 1XKPA	

1MV8A 2PI2E	 2CL5A	 2J43A	 2OY9A	 2IMLA	 2CCHB	 1MTYD	 1P5VA	

2FP1A 1H3FA	 1VKIA	 1UKKA	 1OU8A	 1KOLA	 1TXGA	 1MTYB	 2OX6A	

1EJDA 1YOZA	 2OMZA	 1AOPA	 1IT2A	 1NNHA	 2B8MA	 2CB2A	 1ZMTA	

2ELCA 1F2LA	 2OMZB	 1V7ZA	 2B9DA	 1S99A	 1Q8FA	 1MTYG	 1K94A	
1VLPA	 2OX7A	 2NP5A	 2FBHA	 2A1HA	 1Q33A	 1T15A	 2JDIA	 1CB8A	
2I74A	 2GIYA	 1TDZA	 1OB8A	 1A73A	 2QJ2A	 3ENBA	 2JDID	 1UHGA	
2F1FA	 2BS2A	 1Y0BA	 1Q9UA	 1I4JA	 1GQEA	 1U7KA	 1Q0QA	 1T06A	
1KPTA	 2BS2C	 1BEBA	 3ERJA	 1PVGA	 2JI7A	 2B3YA	 1CHMA	 2PF5A	
1JAKA	 2BS2B	 2IT9A	 1ORUA	 1V4VA	 1B65A	 1CQ3A	 2JDIG	 1FL2A	
2FPWA	 1X74A	 1N7HA	 2VO9A	 1Q0PA	 1RY9A	 1VCTA	 2JDIH	 1M6YA	
1CV8A	 2NT0A	 1CMCA	 2O70A	 1KXOA	 1WURA	 2H62A	 1QB5D	 1YQGA	
2O3FA	 2PBLA	 1FNLA	 1QWRA	 2B8UA	 1H8PA	 2CWZA	 2JDII	 1AYOA	
1PG4A	 1O5KA	 1WEHA	 2PNXA	 1UUZA	 1VLRA	 1J75A	 1UYPA	 1OBBA	
1PM4A	 1VK8A	 2C2IA	 2GDQA	 1K6KA	 1H7EA	 2QMMA	 2ZQNA	 1LR5A	
1ZARA	 2NACA	 1VC4A	 1M6SA	 1IQ4A	 1O5UA	 1EYQA	 1UNNC	 2PEQA	
1K75A	 1VMEA	 1JIDA	 1F1MA	 1FPOA	 1TX2A	 2CXKA	 1REGX	 1G3KA	
1UUJA	 2AC0A	 2OOKA	 1V54A	 1IG0A	 3E5UA	 2PD1A	 1VQ3A	 2FA8A	
1NBCA	 1M3UA	 1IIBA	 1UXYA	 1FS1B	 1O69A	 1ZPDA	 1YARO	 1OTFA	
1GTFA	 1NARA	 1C3DA	 1V54C	 1G8EA	 2DYJA	 1JB7A	 1YARA	 1VBKA	
1NE7A	 1XFFA	 1SW5A	 1V54B	 1KU3A	 1JR2A	 1TZZA	 2I9AA	 1J9JA	
1YRBA	 2CX1A	 1NZYA	 1VCAA	 1FS1A	 1SS4A	 2FZPA	 1XEDA	 1AGQA	
1TVXA	 1LBUA	 1VYBA	 1V54D	 1NKPA	 1SGJA	 2A2MA	 1Q08A	 1BXYA	
2EX4A	 2RGQA	 2FURA	 1V54E	 2FMMA	 1VKHA	 2PQRA	 2FREA	 3CPTA	
2NPTA	 1TR0A	 2AG4A	 1V54F	 2ZD1B	 2OTMA	 2PQRC	 3ECFA	 3CPTB	
2FUEA	 1ZLQA	 1BDOA	 1V54G	 2NS9A	 1WVEA	 2IGTA	 2NR5A	 2NYCA	
1DQNA	 1LSTA	 1A3AA	 1V54H	 2CYYA	 2OU3A	 2GIAA	 1YT8A	 1U6ZA	
1VH4A	 2Q03A	 2I9XA	 1V54I	 2R7DA	 1B25A	 1V3EA	 1LUAA	 1F0XA	
1WWZA	 1FN9A	 1A9XA	 1V54J	 1RWZA	 2VZSA	 1M2TB	 1O91A	 1STMA	
1NRZA	 1YX1A	 1OWLA	 1V54K	 1WZ3A	 2CWYA	 1VKCA	 2DSYA	 1M0DA	
1GO3F	 1RQPA	 1A9XB	 1V54L	 2Z1CA	 2CHOA	 1JFRA	 2A6CA	 1CI4A	
1XE7A	 2H1TA	 1DUSA	 1V54M	 1WZ8A	 2CB5A	 1OAOC	 1U94A	 3BDUA	
1JLVA	 1MGTA	 1JH6A	 1WDYA	 1L8BA	 1K8WA	 1OJXA	 2FEFA	 1G291	

139

1XKRA	 1YTLA	 1YKSA	 1LM5A	 1CS6A	 1TUHA	 1YQ2A	 1QMYA	 2GAUA	
1L1LA	 1VLAA	 1H4RA	 1UDZA	 1Y9IA	 2IEAA	 1IOWA	 1U7PA	 1Y7PA	
2P3PA	 1GUQA	 1WLGA	 1LB6A	 1V2ZA	 1EX2A	 2MNRA	 1TZYC	 1AMUA	
3BWUF	 1ATZA	 1RWIA	 2SPCA	 1RKXA	 2H7XA	 1J0HA	 1TZYA	 1B63A	
3BWUD	 2O9AA	 1WOQA	 1NU4A	 1SQDA	 1LWDA	 1ZQ9A	 1TZYB	 1XIWA	
2GMQA	 2HQYA	 1UJ2A	 1W2FA	 1LUZA	 2OD6A	 1SZOA	 1TZYD	 1F00I	
1YNBA	 1MR7A	 1XTTA	 1K0IA	 1H8UA	 1V82A	 2CWQA	 2ODFA	 1IWMA	
1U9KA	 2I02A	 1QNAA	 1N97A	 1X8DA	 1SSQA	 2CH5A	 1S4KA	 2FF4A	
1R7AA	 3BB9A	 1FXLA	 2H26A	 1VQQA	 2AUWA	 1V0EA	 1ZPVA	 2ZGYA	
3BSWA	 1C3CA	 1MPGA	 3PROA	 1VHSA	 1EXTA	 1ON3A	 1A8LA	 1NNWA	
1U55A	 1RYIA	 1W96A	 3PROC	 2GAXA	 2Z3QA	 1PL3A	 2NZWA	 1JYSA	
1X7VA	 1VKNA	 1TENA	 2G5FA	 2GU2A	 2Z3QB	 2OKUA	 1CEOA	 1DZFA	
1Z6OA	 1TXOA	 1W85I	 1HRUA	 1WIWA	 1VCHA	 2BPTA	 1DEKA	 1MZGA	
1Z6OM	 1KHYA	 1PPRM	 1I36A	 1ROWA	 2OGQA	 2SQCA	 1N2ZA	 1U5UA	
2GF6A	 1JGTA	 1SACA	 1UANA	 1TYZA	 1XHNA	 2IHTA	 1WDJA	 1EL6A	
2RDEA	 1YNHA	 1Z2WA	 1W07A	 1Q2YA	 2BO4A	 2NUJA	 1KXGA	 1SD4A	
1ZELA	 1T6SA	 1RFXA	 3C10A	 1UC8A	 1I7QA	 2EBNA	 1ITUA	 1KNQA	
1WC1A	 2APOB	 2SCPA	 2IB0A	 2CU6A	 2F2HA	 1YRRA	 1XV2A	 1H2VC	
1EKJA	 1M1HA	 1SR4A	 2PULA	 2ES9A	 1PN2A	 2PV7A	 1AOCA	 1D2OA	
1KWAA	 2I5NM	 2FNOA	 1VC1A	 1TE5A	 1G5HA	 2FEAA	 1S1QA	 1OEYJ	
1DAAA	 1M5WA	 2PIAA	 1TKIA	 1K32A	 1PUCA	 3CNVA	 1RLJA	 1OEYA	
1JZTA	 2D7VA	 1NBAA	 1CSNA	 1SGMA	 2P5MA	 3CW9A	 1OFDA	 1G3QA	
1T6NA	 1JBSA	 3DCXA	 1MBMA	 1L2WA	 2AEEA	 1DQAA	 1SZWA	 1EKEA	
1SVMA	 1VQZA	 1EX0A	 1XIZA	 1L2WI	 1ITWA	 2OAFA	 1OTKA	 2HKUA	
2PSPA	 2HLJA	 1V6ZA	 1Q4GA	 1S12A	 1JRLA	 1FP3A	 2OWPA	 1XVHA	
1Q7FA	 1VLFM	 2D0OA	 1GL4A	 1RIFA	 1J5WA	 1SR9A	 1COZA	 1D3BB	
1GVNA	 1VLFN	 1DP4A	 1B9HA	 1R7LA	 1OGDA	 2HKJA	 1D3YA	 2FKZA	
2O34A	 2IFXA	 1HBKA	 1YVIA	 2FNAA	 1OR7C	 1FC3A	 1E8CA	 1U5KA	
1SA3A	 1F61A	 1P42A	 1HE1A	 1R0VA	 1W94A	 2LIGA	 2BM5A	 1OR7A	
2FIUA	 2HEKA	 2CZVA	 1U9LA	 2I7NA	 1I0RA 1J3WA 3E9VA	 	 	
2ARCA 1NN5A 2CZVC	 1D2TA	 1RYP2	 1D7PM 2OFYA	 1GTTA	 1F5NA	

2CYJA 2HQSA 1S14A	 1F0KA	 1RYP1	 1PX5A	 1ZPSA	 1VP6A	 1F3UB	

1V5IB 2HQSC 2I9FA	 1E3OC	 1RYPL	 1Z4RA	 1MVEA	 1R1TA	 1F3UA	

1BTEA 1PVMA 1G7SA	 2FBLA	 1RYPJ	 1NQUA	 1OA8A	 2HAZA	 1VR9A	

1GUTA 2O6PA 1UQTA	 1I7NA	 1RYPK	 3BLZA	 2AEUA	 1V71A	 1SG6A	

1M6KA 2PA7A 1ZC3B	 1OISA	 1Q2HA	 1T0TV	 2B5GA	 1MK4A	 2BBKH	

2ZDPA 1V5VA 1O75A	 1SEIA	 2BF5A	 3B5EA	 1JX4A	 1UPTB	 2BBKL	

1FJ2A 1SH8A 1UW4B	 1ETXA	 1GUDA	 1JYOA	 1EZ3A	 2DSTA	 1ELKA
2O1QA 1EJ0A 1TU1A	 1J5PA	 1GXYA	 1JYOE	 3CX5I	 2GA1A	 1V6SA

140

1MLAA 1F46A 1UW4A	 1R0DA	 1D0QA	 1YG6A	 3CX5C	 3CX5B	 1G2QA
2BAYA 1A4IA 1RQJA	 1K3SA	 1JMKC	 1C8UA	 1R5LA 3CX5D	 1PUFB	

2BMWA 1INLA 1VI6A	 2V94A	 2PBKA	 2GSVA	 2ZGWA 3CX5F	 1N2AA	

2I53A 1H32A 1RKTA	 1SQWA	 1ZRUA	 1C7NA	 2H6FB 3CX5G	 1EERB	

1L7AA 1CS1A 2NZCA	 1Y60A	 2F1NA	 1Q8RA	 2H6FA 3CX5H	 3CX5A	

2ASBA 1DQZA 2QWXA 1DFMA 	 	 	 	 	 	 	 	 	 	

	San Jose State University
	SJSU ScholarWorks
	Spring 2013

	Application of Query-Based Qualitative Descriptors in Conjunction with Protein Sequence Homology for Prediction of Residue Solvent Accessibility
	Reecha Nepal
	Recommended Citation

	thesis draft 65

