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      ABSTRACT

       Big Data Analysis Using Amazon Web Services and Support Vector Machines

                           by Dhruv Jalota

 This writing project aims to apply the supervised machine learning technique known as 

Support Vector Machines to a large labeled data set, to attempt to classify an unlabeled data set 

using the result of training on the labeled data set, and hence perform an analysis of the various 

results obtained using different Amazon Elastic Cloud Compute instances, sizes of input data set, 

and different parameters or kernels of the SVM tool. The given data set is relatively large for 

SVM and the tool being used, known as libsvm, having approximately 1.3 million training 

examples and 341 attributes with binary classification labels i.e., true (+1) and false (-1). By 

using the open source tool and deploying it to the cloud, we make use of the computing power 

available, to get the best possible results for classification. We eventually give a detailed analysis 

of the performance of all the experiments conducted, and draw conclusions from these results.
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1. Problem Description

1.1 Description of Data Set

 The two data sets were provided to us by IBM as part of ‘The Great Minds Challenge’. 

The entire data set is basically a part of what is actually used by IBM’s Watson supercomputer, 

which was the same one which participated on the ‘Jeopardy!’ television show, for learning 

purposes. The first data set that we have, has 1,314,407 rows and 343 columns. These 1.3 million 

rows are known as feature vectors or training examples and the 343 columns are known as 

features or attributes. Of these 343 columns, the first column is a “question id” and the last 

column is a binary label i.e. a “true” or “false” classification.

 According to IBM’s description provided for this data set [1], “For each question that 

Watson answers many possible answers are generated using standard information retrieval 

techniques.  These "candidate answers" along with the corresponding question are fed to a series 

of "scorers" that evaluate the likelihood that the answer is a correct one. These "features" are 

then fed into a machine learning algorithm that learns how to appropriately weight these features. 

Each row in the file represents a possible answer to a question. The row contains the question 

identifier (i.e. the question that it was a candidate answer to), the feature scores and it also 

contains a label indicating whether it is the right answer.  The vast majority of rows in the file are 

for wrong answers with a smaller percentage being the correct answer. The file is in CSV format 

and is a comma delimited list of feature scores.  The two important "columns" in the file are the 

first column that contains a unique question id and the last column that contains the label.  

Candidate answers to the same question share a common question id.  The label is true for a right 

answer and false for an incorrect answer.  Note that some questions may not have a correct 

answer.”
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 This file of labeled data was provided to us in a plain text format of size 3.23 GB that 

contains the data in CSV format. 

1.2 Brief Introduction to Amazon Web Services

 What is Amazon Web Services or AWS as it is popularly known? Well, recently the terms 

“Cloud Computing” and “Big Data” have gained tremendous importance due to their 

significance to computing and analytical power growing exponentially as compared with the 

scenarios of the past where large scientific data crunching could be achieved only by the likes of 

super computers. In today’s world, powerful computing architecture can be rented out on a pay-

per-use basis from companies like Amazon (AWS is one of the many such services) for 

processing complex data of  high importance. This “cloud” as it is called, is where the computing 

is done, since the user never sees it himself, but only accesses it over the internet, and the data 

that is being run is “big” in the sense of either size or complexity and importance.

 The wide-spread use and adoption of these services has made it affordable to 

organizations and individuals that require it, and AWS is among the most popular of these 

services. AWS offers many products including computing, networking, content delivery, and 

storage etc. [2] We will be focussing on the computing service offered that is known as Elastic 

Cloud Compute or EC2.

 We have used EC2 instances to store and analyze our data for the classification purposes. 

This table [3] provides a comparison of the various EC2 options available. We will talk about 

these configurations in detail in a later section.
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Name Memory Compute Units Linux cost

Micro 0.60 GB 2 (only for short 
bursts)

$0.02 hourly

High-CPU Medium 1.70 GB 5 (2 cores x 2.5 units) $0.14 hourly

M1 Small 1.70 GB 1 (1 core x 1 unit) $0.06 hourly

M1 Medium 3.75 GB 2 (1 core x 2 units $0.12 hourly

High-CPU Extra 
Large

7.00 GB 20 (8 cores x 2.5 
units)

$0.58 hourly

M1 Large 7.50 GB 4 (2 cores x 2 units) $0.24 hourly

M1 Extra Large 15.00 GB 8 (4 cores x 2 units) $0.48 hourly

M3 Extra Large 15.00 GB 13 (4 cores x 3.25 
units)

$0.50 hourly

High-Memory Extra 
Large

17.10 GB 6.5 (2 cores x 3.25 
units)

$0.41 hourly

Cluster GPU 
Quadruple Extra 
Large

22.00 GB 33.5 (2 x Intel Xeon 
X5570)

$2.10 hourly

Cluster Compute 
Quadruple Extra 
Large

23.00 GB 33.5 (2 x Intel Xeon 
X5570)

$1.30 hourly

M3 Double Extra 
Large

30.00 GB 26 (8 cores x 3.25 
units)

$1.00 hourly

High-Memory 
Double Extra Large

34.20 GB 13 (4 cores x 3.25 
units)

$0.82 hourly

Cluster Compute 
Eight Extra Large

60.50 GB 88 (2 x Intel Xeon 
E5-2670)

$2.40 hourly

High I/O Quadruple 
Extra Large

60.50 GB 35 (8 cores + 8 
hyperthreads)

$3.10 hourly

High-Memory 
Quadruple Extra 
Large

68.40 GB 26 (8 cores x 3.25 
units)

$1.64 hourly
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Name Memory Compute Units Linux cost

High Storage Eight 
Extra Large

117.00 GB 35 (8 cores + 8 
hyperthreads)

$4.60 hourly

High Memory 
Cluster Eight Extra 
Large

244.00 GB 88 (2 x Intel Xeon 
E5-2670)

$3.50 hourly

Table 1. Comparison of EC2 instances [3]

In the table above, one EC2 compute unit is equivalent to a 1-1.2 GHz Intel 2007 Xeon or 

Opteron processor. [6] 

As we can see there are currently 18 different EC2 instance types available, but not all are 

affordable or suitable for this project. Initially, in an effort to keep costs low, I used the “M1 

Large” machine, since it’s RAM was almost double of that available on my laptop, but it was 

unable to process the large data sets in a relatively short amount of time .

From observation, I saw that the libsvm tool used up to 25% of RAM for each instance of it’s 

process, and 99% CPU. Using the highest level of EC2 machine types was not feasible due to the 

budget limitation of $100 by the Amazon educational grant funds per instance, and hence at rates 

of $4 per hour it could be used for only 25 hours. So I settled on the mid-tier machine “M3 

Double Extra Large” due to it’s higher RAM and an affordable hourly rate which allowed me to 

run it for 100 hours each. 
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1.3 Brief Introduction to Support Vector Machines

 Support Vector Machines, or SVM, is a supervised learning technique in machine 

learning that has gained popularity over the last 2 decades. It was originally invented by Vladmir 

N. Vapnik, and the now standard implementation was created by Vapnik and Corrina Cortes [4].

It has proven to be quite useful in classification tasks, particularly for the case of binary classes 

like ours, giving the best possible success rate [5]. 

 Essentially, SVM, which is also called a “large margin classifier”, establishes an optimal 

separating hyperplane to divide points in the feature space into one of two classes (Figure 1). 

This is typical for linearly separable data, and can be susceptible to the “outliers” case (Figure 2). 

To enhance this method for non-linearly separable data, SVMs use a technique known as the 

“kernel trick” which establishes the separating hyperplane for data in high-dimensional feature 

spaces.

2

θTx(i) ! 0 whenever y(i) = 0, since this would reflect a very confident (and
correct) set of classifications for all the training examples. This seems to be
a nice goal to aim for, and we’ll soon formalize this idea using the notion of
functional margins.

For a different type of intuition, consider the following figure, in which x’s
represent positive training examples, o’s denote negative training examples,
a decision boundary (this is the line given by the equation θTx = 0, and
is also called the separating hyperplane) is also shown, and three points
have also been labeled A, B and C.

B

A

C

Notice that the point A is very far from the decision boundary. If we are
asked to make a prediction for the value of y at A, it seems we should be
quite confident that y = 1 there. Conversely, the point C is very close to
the decision boundary, and while it’s on the side of the decision boundary
on which we would predict y = 1, it seems likely that just a small change to
the decision boundary could easily have caused our prediction to be y = 0.
Hence, we’re much more confident about our prediction at A than at C. The
point B lies in-between these two cases, and more broadly, we see that if
a point is far from the separating hyperplane, then we may be significantly
more confident in our predictions. Again, informally we think it’d be nice if,
given a training set, we manage to find a decision boundary that allows us
to make all correct and confident (meaning far from the decision boundary)
predictions on the training examples. We’ll formalize this later using the
notion of geometric margins.

Figure 1.  Linear Separating Hyperplane [5]
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In the figure above, we see the separating hyperplane which has divided the points in either of 

the two classes (crosses and circles), and hence established positive or negative classifications 

respectively. In this case, when new points “A”, “B” and “C” are introduced to the system, it is 

relatively more confident about the classification for A than it is for B, and C has the least 

confidence. But this can be sensitive to the outliers case, as seen below. 

Figure 2. The “outlier” case. [7]

Here, though the data has been linearly separated by the hyperplane, there is one point which 

falls in the wrong category, and this is an outlier. Such a point would cause drastic changes to the  

hyperplane, and would not be as optimally spaced in terms of margins as before (Figure 3).
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Figure 3. Outlier causes hyperplane to shift drastically. [7]

There is a link between SVMs and Perceptrons, due to the linear classifier concept. [4]

2. Amazon Web Services (AWS)

2.1 Advantages of AWS

 Why are we using the AWS services here, especially since it can be expensive for high-

power machines? When the project began, I experimented on my own laptop, which is a 

MacBook Pro with a 2GHz Intel Core i7 processor and 4GB of memory. After researching the 

several tools available to apply SVM and trying out a few, MATLAB prove to be the most robust 

for our purposes. This was mainly due to the size of the data. As we shall see later, this was one 

of the major challenges in this project, and crossing this hurdle in phase 1 was achieved by using 

MATLAB.

14



 Other than MATLAB, the rest of the tools out there are mostly open-source, and they 

have their own requirements for the format of the data to be input. MATLAB was the only one 

which could read the CSV file directly (the format in which we received the data) and produce a 

matrix in it’s workspace for our manipulation. So once the entire data set (3.2GB  raw size) was 

loaded into memory, performing the required matrix manipulations and using the SVM toolbox 

with it, would drastically reduce the performance of the machine, and dealing with machine 

crashes and hangups was the major frustration.

 This is where AWS came to the rescue, since it gave us a relatively higher powered 

machine (we went with the mid-tier machines, ranging in cost from $0.40 to $1.00 per hour), it 

was able to deal with the large data set with ease and we could better conduct our SVM analysis 

of the data.

2.2 Configuration of Amazon Elastic Cloud Compute (EC2)

 For my project, after trying out several of the cheaper machines available, I settled on the 

“M3 Double Extra Large” machines since it was not too expensive, and gave me enough 

memory to be able to run a lot of training and classification experiments simultaneously, which 

as we shall see later was very time consuming.

 I will now walk through the process of setting up a machine in the cloud, or launching an 

instance as it is known.

 First, you need an Amazon AWS account to be able to use their services. You can sign up 

for this by going to the web site http://aws.amazon.com and clicking on the “Sign Up” button.

15
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After signing up with an email address and credit card, Amazon conducts and automated identity 

verification by calling your phone number, and giving you a unique PIN which you use to get 

access to your account on first time use only. Once these initial steps are complete, you are 

greeted by your AWS dashboard (or console) as seen below.

Figure 4. AWS console.

We can see here on the console screen, the various services offered by AWS. We are interested in 

the EC2 service, as seen on the left side of the screen. To launch an instance, we click on the EC2 

link. By default, AWS picks the “U.S. East” zone for where the servers are hosted, as seen by the 

“N. Virginia” text in the top right corner. You can choose any zone you prefer, but the cost of 

instances in this zone are generally cheaper. The various zones available are as shown below.

16



Figure 5. AWS zones.

Now, here is how we “Launch an instance”.

Figure 6. Launch an instance.

17



We select “Classic Wizard” and click on “Continue” (Figure 6). On the next screen we select the 

first option, with 64-bit, and then press “Select” (Figure 7).  Next, we select the “m3.2xlarge” 

option from the drop-down list, and click on “Continue (Figure 8). Next, click on 

“Continue” (Figure 9). 

Figure 7.  Launch an instance step 2.
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Figure 8. Launch an instance step 3.

Figure 9. Launch an instance step 4.
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Figure 10. Launch an instance step 5.

Figure 11. Launch an instance step 6.
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Figure 12. Launch an instance step 7.

Figure 13. Launch an instance step 8.
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Figure 14. Launch an instance step 9.

Figure 15. Launch an instance step 10.
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We obtain the IP address of this instance from the EC2 dashboard, 

ec2-50-19-28-27.compute1.amazonaws.com, we are now going to use this to access the instance.

On my Mac, I use the ‘Terminal’ program, and enter the following command to access my 

instance,

> ssh -i bigdatasvm.pem ec2-user@ec2-50-19-28-27.compute1.amazonaws.com

But, before this instance can be successfully accessed, the file permissions on the key-pair need 

to be changed. We do this by using the command,

> chmod 400 bigdatasvm.pem

Now we can access the instance by using the ssh command as shown earlier. 

To ensure our instance uses the entire 100GB from it’s EBS (Elastic Block Storage) volume that 

was set up we use this command,

> sudo resize2fs /dev/xvda1

23
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3. Support Vector Machines (SVM)

3.1 Description of How SVM works

 As discussed in the earlier section on SVM, I had mentioned that SVM establishes the 

optimal margin hyperplane for the data, this is illustrated in the figure below.

 As we can see, the black separating hyperplane has maximum margin from the closest 

points to it, these are known as the support vectors.

Figure 16. Optimal margin classifier is the black separating hyperplane. [7]
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I will now illustrate mathematically how SVM performs the optimization to arrive on the 

hyperplane which classifies the data.

This is the SVM cost function (for the linear case), [7]

where,

‘C’ is the cost parameter, 

θ is the weight parameter, 

‘m’ is the number of training examples, 

y(i) is the classification label for the ith example, 

x(i) is the ith attribute, 

‘n’ is the number of attributes,

cost1(θT x) is (-log hθ(x(i))) and

cost0(θT x) is (-log (1- hθ(x(i)))

A prediction of ‘1’ or ‘0’ is made by the hypothesis,

hθ(x) = 0 , if  θT x < 0 and
hθ(x) = 1, if if  θT x >= 0

25



For the non-linear case, the optimization objective is as follows, [7]

where,

‘f(i)’ is the i’th feature, where features are the high order polynomials from the attributes based 

on the kernel function used. The rest of the variables are the same as before. This leads to a 

hyperplane as shown below,

Figure 17. Non-linear separating hyperplane [7]
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The various kernel options available in the ‘libsvm’ tool (described later) are as follows,

Linear Kernel [8],  

Polynomial Kernel[8],  

Radial Basis Function Kernel[8], 

Sigmoid Kernel[8],  

These kernel functions are basically similarity functions for the features which are mapped from 

the attributes.

3.2 Using MATLAB SVM Toolbox

 In phase 1 of the project, I was using the student version of MATLAB 2012a on my 

MacBook Pro, with the “Bioinformatics” toolbox which includes the svm functions that we need 

to use.

 To get the data into the workspace, we use the “Import Data” tool from the File menu, 

and select our CSV file with the labeled data set. We select the options to format the data viz. the 

column separator is set to “Comma” and then the data is imported. This creates a matrix, which 

is used for svm operations. 
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This is the MATLAB code I wrote to generate my svm training model,

> data = labeledmatrix(1:end, 2:342);

> group = labeledmatrix(1:end,343:343);

> svmstruct = svmtrain(data,group);

To classify data using the generated ‘svmstruct’ model, I wrote this code,

> class = svmclassify(svmstruct,unlabeledmatrix);

This gives us a ‘class’ variable which contains the required predictions of classification of the 

unlabeled data.

As I mentioned earlier, this was a very slow process due to the limitations of my laptop. On my 

machine, I was never able to successfully train on the entire data set. The memory restrictions, 

and lessons learned from this phase were used to be applied in the phase 2 of the project, when 

using AWS.
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3.3 Tutorial on LIBSVM

 The open source tool that I used for my svm training and classification is called libsvm. 

Available from here, http://www.csie.ntu.edu.tw/~cjlin/libsvm/ it is one of the more popular open 

source tools available for using svm. The current version is 3.17, which is the one that I used.

 My AWS instance was a linux based one, and these are the steps I used to install and use 

the libsvm tool on that system.

First, we transfer the libsvm files over to the instance using this command (after downloading to 

your local system),

> scp -i bigdatasvm.pem libsvm-3.17.zip ec2-

user@ec2-50-19-28-27.compute1.amazonaws.com:/home/ec2-user/

Then we unzip the files on the instance using,

> unzip libsvm-3.17.zip

Then we need to build the libsvm files,

> cd libsvm-3.17

> make

This gives us the required executables, svm-train and svm-predict.

Reading the README file within this folder gives a good description of how to use the 

software. The key part is the data format, which we will come to next.
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3.4 Converting the Data to Libsvm Format

 The data set given to us by IBM was in the format as described earlier, where the first 

column was a “question id”, the next 342 columns were features (real numbers), and the final 

column was a label (“true” or “false”). And there were approximately 1.3 million rows of data.

 The libsvm tool requires the data to be in a format as such [9], 

<label> <index1>:<value1> <index2>:<value2> ...

where, “Each line contains an instance and is ended by a '\n' character.  For

classification, <label> is an integer indicating the class label. The pair <index>:<value> gives a 

feature (attribute) value: <index> is an integer starting from 1 and <value> is a real number.”

To achieve this conversion I wrote a Perl script, the code for which is below. 

#! /usr/bin/perl

use warnings;

$my_dir = "/Users/Dhruv/Documents/MATLAB/data/labelled_2000_lines/";

opendir MYDIR, $my_dir;

readdir MYDIR;

readdir MYDIR;

readdir MYDIR;

while ( $filename = readdir MYDIR ) {

 open SVMFILE, "<", "$my_dir$filename" or die "$!";

 open OUTFILE, ">>", "out" or die "$!";

 while (<SVMFILE>) {

  chomp($line = $_);

  @splitline = split(',',$line);

  $qid = shift(@splitline);
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  $label = pop(@splitline);

  if ($label eq "false") {

   $newlabel = '-1';

  } elsif ($label eq "true") {

   $newlabel = '+1';

  } else {

   $newlabel = '0';

  }

  $i = 1;

  foreach $value (@splitline) {

   push(@newline,"$i:$value ");

   $i += 1;

  }

  unshift(@newline,"$newlabel ");

  print OUTFILE @newline,"\n";

  undef @splitline;

  undef @newline;

 }

 close(SVMFILE);

 close(OUTFILE);

}

closedir MYDIR;

exit;

This code basically, opens the labeled data set file, reads it line-by-line, checks what the label 

assigned is, converts it to +1 for true, -1 for false and 0 otherwise, and then rearranges the data 

with the required feature index values, and then writes it out to a new file, again line-by-line.

This successfully converts the IBM supplied data to the required format of libsvm.
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4. Execution and Analysis

4.1 Training and Classification of Various Data Sets

 For running my training and classification of data, I used 6 subsets of the entire data set 

and the entire data set as a whole, making seven data sets in total. For this, I divided the original 

data set into subsets of size 2,000 rows, 10,000 rows, 50,000 rows, 100,000 rows, 200,000 rows, 

500,000 rows and then the entire data set of almost 1.3 million rows. I used the linux ‘split’ 

utility to obtain these subsets. This was executed as such,

> split -l <number_of_rows> <labeled_data>

As per the documentation of libsvm [9], training is achieved by using the ‘svm-train’ command 

as such,

Usage: svm-train [options] training_set_file [model_file]

options:

-s svm_type : set type of SVM (default 0)

-t kernel_type : set type of kernel function (default 2)

 0 -- linear: u'*v

 1 -- polynomial: (gamma*u'*v + coef0)^degree

 2 -- radial basis function: exp(-gamma*|u-v|^2)

 3 -- sigmoid: tanh(gamma*u'*v + coef0)

 4 -- precomputed kernel (kernel values in training_set_file)

-d degree : set degree in kernel function (default 3)

-g gamma : set gamma in kernel function (default 1/num_features)

-r coef0 : set coef0 in kernel function (default 0)

-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)

-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)

-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)
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-m cachesize : set cache memory size in MB (default 100)

-e epsilon : set tolerance of termination criterion (default 0.001)

-h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1)

-b probability_estimates : whether to train a SVC or SVR model for probability estimates, 0 or 1 

(default 0)

-wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1)

-v n: n-fold cross validation mode

-q : quiet mode (no outputs)

and, classification with the ‘svm-predict’ function as such [9],

Usage: svm-predict [options] test_file model_file output_file 

4.2 Analysis of Outputs

 I ran training runs with the 4 different kernel options available, and each had different 

training time, classification time, and accuracy rate for the various data set sizes.

 For the six subsets, I trained and classified on the same size data set, but the trained data 

set was seen and the classified one was an unseen one by the system. For training of the entire 

data set, I run classification on a sub set of 500,000 rows of data.

 I present here a table comparing my various outputs from the training and classification 

experiments.
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Kernel Type Data Set Size 
(rows)

Training Time
(hh:mm:ss)

Classification 
Time

(hh:mm:ss)

Classification 
Accuracy

(%)

RBF 2,000 00:00:01.49 00:00:01.33 99.55

RBF 10,000 00:01:04.36 00:00:33.87 99.67

RBF 50,000 00:37:24.09 00:13:35.24 99.66

RBF 100,000 02:10:58 00:36:36.72 99.626

RBF 200,000 06:20:34 01:59:12 99.353

RBF 500,000 57:13:19 18:20:01 99.5746

RBF 1,314,407 100:00:00+ - -

Linear 2,000 00:00:01.47 00:00:00.14 98.85

Linear 10,000 00:01:06.52 00:00:00.99 97.35

Linear 50,000 00:02:55.598 00:00:11.002 98.534

Linear 100,000 00:16:31.525 00:00:35.764 96.467

Linear 200,000 01:29:05.974 00:02:05.891 97.651

Linear 500,000 19:09:17 00:32:19.72 99.9898

Linear 1,314,407 91:50:21 00:48:34.30 98.7198

Sigmoid 2,000 00:00:00.18 00:00:00.12 99.55

Sigmoid 10,000 00:00:01.58 00:00:00.94 99.53

Sigmoid 50,000 00:00:21.767 00:00:13.682 99.412

Sigmoid 100,000 00:01:16.990 00:00:45.777 99.322

Sigmoid 200,000 00:07:07.475 00:02:51.696 98.92

Sigmoid 500,000 03:14:45.664 00:29:15.549 99.1438

Sigmoid 1,314,407 28:52:27 01:08:02 99.0208

Polynomial 2,000 00:00:00.95 00:00:00.14 98.85

Polynomial 10,000 00:00:25.01 00:00:01.31 42.99
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Kernel Type Data Set Size 
(rows)

Training Time
(hh:mm:ss)

Classification 
Time

(hh:mm:ss)

Classification 
Accuracy

(%)

Polynomial 50,000 00:03:01.552 00:00:11.21 33.356

Polynomial 100,000 00:14:28.676 00:00:36.698 10.389

Polynomial 200,000 03:28:27.041 00:02:08.221 98.776

Polynomial 500,000 14:46:31 00:19:48.68 21.4872

Polynomial 1,314,407 19:55:52 01:14:58 43.1378

Table 2. Comparison of Training and Classification outputs from libsvm.

* RBF: Radial Basis Function

Note:

1) The classification accuracy is calculated by the libsvm tool, and forms part of the output.

2) The time taken to train and classify was found by using the linux ‘time’ command when 

executing the train and classify commands, this is the real elapsed time which is the output of 

‘time’ command. 

3) The kernels are varied by using the kernel option in libsvm as described in the ‘svm-train’ 

usage earlier.

4) RBF training takes more than 100 hours, which is the maximum credit I can use for a single 

AWS instance, and hence we leave this part as unresolved.

I now present the graphical analysis for these outputs here.
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Figure 18. Graph of Training Examples vs Training Time for Various Kernels

As we can see above RBF Kernel took the most time to train (even though it has only 6 data 

points) since the kernel function it uses is an exponential one, and the curve increases 

exponentially.
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Figure 19. Graph of Training Examples vs Classification Time for Various Kernels

As we can see here again classification time for RBF kernel is most and increases exponentially 

again.

For the two graphs below, we can see that RBF kernel gives best accuracy of classifications and 

polynomial is most erratic. Also, fluctuations in linear kernel output says that data is not linearly 

separable.
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Figure 20. Graph of Training Examples vs Accuracy Rates for Various Kernels

Figure 21. Graph of Training Examples vs Accuracy Rates for Various Kernels
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Kernel Type Training Cost 
(approx.)

Classification Cost 
(approx.)

Total Cost

RBF $172 $25 $197

Linear $118 $8 $126

Sigmoid $38 $8 $46

Polynomial $43 $8 $51

Table 3. Cost spent on AWS hours for all experiments of various kernels

As can be seen from the above table RBF cost the most in terms of dollars spent on AWS, 

whereas Sigmoid and Polynomial were the least. We see the graph of comparisons below.
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Figure 22. Comparison of AWS costs spent on experiments for kernels

5. Conclusion

 As has been seen from this project, the major challenge in such a task was dealing with 

the large data set size. Once the hurdle of machine power was crossed using AWS, data 

preparation was crucial for the tool being used. The libsvm tool, and the SVM technique in 

general, has proven to be quite effective for this task of classification. Using it’s powerful 

method of kernels, it can deal with complicated data that cannot be linearly separated. Though 

these are computationally expensive for large data sets, AWS offers an affordable solution to the 

average user.

RBF Linear Sigmoid Polynomial

0

50

100

150

200

Training Classification Total

40



RBF kernel prove to be most expensive in cost and took most time to train and classify but gave 

best classification results. Whereas Sigmoid kernel prove to be most cost-effective by giving 

consistent results and not taking long to train or classify and being cheap in AWS costs.
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