
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2013

Modular Approach to Big Data using Neural
Networks
Animesh Dutta
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Dutta, Animesh, "Modular Approach to Big Data using Neural Networks" (2013). Master's Projects. 315.
DOI: https://doi.org/10.31979/etd.7kd8-w4us
https://scholarworks.sjsu.edu/etd_projects/315

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F315&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F315&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F315&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F315&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/315?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F315&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

CS298 REPORT

Modular Approach to Big Data using Neural Networks

Advisor: Dr. Chris Tseng

Animesh Dutta

May 2013

 A Writing Project Presented to The Faculty of the Department of Computer Science, San Jose

State University. In Partial Fulfillment of the Requirements for the Degree: Master of Science

© 2013

Animesh Dutta

ALL RIGHTS RESERVED

The Designated Committee Approves the Project Titled

Modular Approach to Big Data Using Neural Networks

By

Animesh Dutta

Approved for the Department of Computer Science

San Jose State University

May 2013

Dr. Chris Tseng Department of Computer Science

Dr. Tsau Young Lin Department of Computer Science

Mr. Naresh Parmar Member of Technical Staff, PayPal

ABSTRACT

MODULAR APPROACH TO BIG DATA USING NEURAL

NETWORKS

Machine learning can be used to recognize patterns, classify data into classes and

make predictions. Neural Networks are one of the many machine learning tools

that are capable of performing these tasks. The greatest challenges that we face

while dealing with the IBM Watson dataset is the high amount of dimensionality,

both in terms of the number of features the data has, as well the number of rows of

data we are dealing with. The aim of the project is to identify a course of action

that can be chosen when dealing with similar problems. The project aims at setting

up and experimenting with different strategies of training neural networks in order

to reduce training time and increase prediction accuracy. The project will contrast

the advantages and disadvantages of using these modular approaches and provide a

completely open source implementation of the system.

ACKNOWLEDGEMENTS

I would like to thank Dr. Chris Tseng, my project advisor, for his continuous

support and expert guidance throughout the course of the project. I would like to

thank my committee members, Dr. T.Y. Lin and Mr. Naresh Parmar, for their

feedback and suggestions. At last, I would like thank my friends for their

encouraging support through the project.

Contents
1. Project Description .. 8

1.1 Introduction and Problem Statement ... 8

1.2 Project Goal ... 9

1.3 Neural Networks ... 9

2. Project Design ... 11

2.1 Design Overview ... 11

2.2 Basic Implementation using Matlab ... 12

Setting Up Matlab ... 12

Importing the Data .. 13

Importing Data from a text or CSV file .. 16

Starting the Neural Network Toolbox ... 17

Selecting the Data ... 20

Neural Network Architecture .. 22

Neural Network Training ... 23

Network Evaluation... 25

Saving Results.. 26

Generating Scripts ... 27

Saving the Results into Workspace ... 28

2.3 Performance Improvement Strategies ... 28

Bottle-Neck Neural Networks ... 29

Balanced Datasets ... 29

Batch Training ... 30

Online Training .. 30

Mini Batch Training ... 31

Online Training with Preliminary Batch Training .. 31

Mini- Batch Training with Re-Sampling ... 31

Multiple Experts Network ... 32

3. Project Implementation .. 32

3.1 Selecting an Open Source Neural Network Framework ... 32

3.2 Setting-Up Amazon EC2 .. 34

Increasing the size of the storage device. ... 42

3.3 Setting-Up Fast Artificial Neural Networks on Amazon EC2 ... 45

Pre-requisites: ... 45

Installation ... 45

3.4 Data Preparation ... 46

3.5 Training the Neural Network Using FANN .. 47

3.6 Training Experiments using FANN ... 49

4. Measuring Performance Using Time and Accuracy .. 53

4.1 Prediction Using FANN .. 53

4.2 Prediction and Performance Results... 54

Mini batch training on the entire data set. ... 54

Training on a balanced dataset ... 54

Training Using RMSProp ... 55

Training on Falsified Data.. 56

Varying the Number of Neurons for a Constant Dataset.. 57

Training Time for Networks with different Hidden Neurons .. 58

Comparing Prediction Time of Networks with Different Hidden Neurons ... 59

4.3 Conclusion ... 59

5.0 Future Work .. 59

6.0 References .. 60

7.0 Appendix ... 62

7.1 Script to Change Raw CSV Data to FANN Format ... 62

7.2 Script to Generate Unlabeled Data from CSV file ... 63

7.3 Script to Calculate Mean Squared Error ... 64

Table of Figures

Figure 1: Neural Network Training Phase ... 12

Figure 2: Predicting with a Neural Network ... 12

Figure 3: Matlab Start Screen ... 13

Figure 4: Setting the Current Folder ... 14

Figure 5: Selecting the Data .. 14

Figure 6: Import Data Wizard.. 15

Figure 7: Matlab workspace populated with variables ... 16

Figure 8: Data in a Matlab Worksheet .. 17

Figure 9: Neural Network Start Screen ... 18

Figure 10: Neural Network Pattern Recognition Tool... 19

Figure 11: Select Data for Training .. 20

Figure 12: Dividing data into validation and test data .. 21

Figure 13: Neural Network Architecture and Hidden Neurons Setting .. 22

Figure 14: Training the Neural Network ... 23

Figure 15: Neural network being trained .. 24

Figure 16: Network Evaluation ... 25

Figure 17: Neural Network Results ... 26

Figure 18: Neural Network Diagram ... 27

Figure 19: Script generated for the Neural Network .. 27

Figure 20: Results in the workspace ... 28

Figure 21: Simplest method to train a Neural Network.. 29

Figure 22: Bottleneck Neural Network ... 29

Figure 23: Creating Balanced Datasets ... 30

Figure 24: Mini Batch Training .. 31

Figure 25: Amazon Web Services Console .. 35

Figure 26: Amazon EC2 Dashboard ... 35

Figure 27: Elastic IP page .. 36

Figure 28: Selecting an Elastic IP for EC2 .. 37

Figure 29: Create New Instance .. 37

Figure 30: Choose an AMI ... 38

Figure 31: Instance Details .. 38

Figure 32: Advanced Instance Options ... 39

Figure 33: Storage Device Configuration .. 39

Figure 34: Naming the device ... 40

Figure 35: Creating a new Key Pair ... 40

Figure 36: Selecting Security Group .. 41

Figure 37: Instance Summary for Review ... 41

Figure 38: Associating Elastic IP to Instance ... 42

Figure 39: Creating a snapshot ... 43

Figure 40: Creating a Snapshot ... 44

Figure 41: Attach a Volume... 44

Figure 42: Batch Training .. 54

Figure 43: Training on Balanced Data Sets ... 55

Figure 44: Training Using RProp on MiniBatch: MSE vs Epochs ... 56

Figure 45: Training on Data with High Noise: MSE vs. Epochs.. 57

Figure 46: Varying Hidden Neurons: MSE vs. Epochs ... 58

Figure 47: Training Time ... 58

Figure 48: Prediction Time .. 59

file:///E:/CS298/WeeklyReport/dutta_animesh.docx%23_Toc357106322
file:///E:/CS298/WeeklyReport/dutta_animesh.docx%23_Toc357106323
file:///E:/CS298/WeeklyReport/dutta_animesh.docx%23_Toc357106324

1. Project Description

1.1 Introduction and Problem Statement

The project derives itself from the IBM Great Minds Challenge. The project involved using

machine learning algorithms to assign TRUE/FALSE labels to question/answer pairs that had

been broken down into feature vectors, or series of numbers that represent the data of the

question/answer pairs.

IBM Watson analyzes the feature vectors of a potential answer and assigns a TRUE if it believes

the answer is correct, and a FALSE if it believes the answer is incorrect. Similarly, the project

focused on the creation of a machine learning algorithm that can assign these TRUE/FALSE

labels to a series of question/answer feature vectors.

Out of the many machine learning tools, I chose to use neural networks. Neural networks are

used in machine learning for the prediction of data. In order to make predictions, neural networks

need to be trained and retrained in order to increase their prediction efficiency.

The data used to train neural networks is generally represented as feature vectors, the feature

vector comprises of features that are values representing a certain feature/property of the data.

These features cumulatively determine the final value for the data. The neural network is thus

trained using these feature vectors and fine-tuned so that neural network output matches the

correct result. When the neural network reaches a stage where its prediction rate is within a

certain desired error percentage that is reasonably low, then the neural network is said to have

been trained.

In case of big data, the dimension of data is a factor that limits the efficiency of neural networks.

The data can have a large number of features; for example IBM Watson data has 342 features.

These features can be visualized as columns when comparing with a row and column based data

format. Secondly, there might be a large volume of data, that is, a large number of rows of data.

In both these cases, proper training of neural networks becomes a challenging process. My

project aims at finding out and comparing different methods to train neural networks using big

data in order to make a successful prediction. The project will involve analyzing the data in order

to determine how it can be used to train the neural network for making successful predictions

using big data and over the cloud.

1.2 Project Goal

The primary goal of the project will be to increase prediction rates and secondly to speed up

processing/turnaround times. The process will involve chopping up data both based on rows and

columns, controlling the amount of data used for training, splitting feature vectors or using

feature vector reduction techniques, and then training the neural network and finally integrating

and validating the results achieved.

The project also aims at finding out an open source framework that can successfully be run on

the cloud in order to accommodate the large amount of data volume and processing required for

training neural networks.

1.3 Neural Networks

Artificial neural networks are modeled on neural networks present in the brain. Biological neural

networks are an interconnection of neurons. Similarly, artificial neural networks are an

interconnection of nodes or neurons.

A neural network consists of 3 main components, the input layer, the output layer and the hidden

layer. The hidden layer consists of nodes that are interconnected. The connections of these nodes

have weights assigned to them, which in turn determine the output. Different algorithms are used

to adjust these weights during the training process so that the desired output is achieved.

Figure: Neural Network Architecture

The data used to train neural networks is divided into the inputs and the target output.

• At the start the neural network is assigned random weights for its connections.

• The output achieved by using the given input is compared to the target output.

• The weights are adjusted to reduce the difference between the target and output to the

minimum.

Input Layer

Hidden Layer

Output Layer

• This process is repeated until a low enough difference is achieved.

• This is a stopping condition known as the desired error

• Another stopping condition is the maximum number of training epochs.

Training and learning functions are algorithms that are used to automatically adjust the neural

network's weights and biases. The goal of the training function is to reduce the error to a

minimum, thus we want to find a minimum value of error. If we move in the direction of the

gradient we will find the local maxima. This is known as gradient ascent. Thus if we move in the

opposite direction we should be able to find the local minima. This technique is known as the

gradient descent. Certain neural network functions can be given a parameter that can decide the

rate at which the gradient descent is done. This parameter is known as the Learning Rate. In

algorithms that change the weights and biases of neurons iteratively, the learning rate decides the

step size that needs to be taken during descent. Thus having a very low learning rate we will

have better accuracy for the network, but we will take a lot of time to reach to the minima due to

the small step size. On the other hand, when the leaning rate is large, we might get close to the

minima very fast but may just oscillate around the minima and never reach it. Thus the choice is

a learning rate is an important parameter for neural network training.

2. Project Design

2.1 Design Overview

Neural networks are well equipped to handle classification and prediction problems. In our case,

the data has two classes, true and false. In order to be able to classify the data a neural network

needs to be trained to recognize the pattern and identify a class of data. After initial training, we

verify the neural networks classification by testing it on the data that it has been trained on

already, this is known as the testing phase or the validation phase. If the network does not meet

the required validation standards, then further training of the network is required. The accuracy

of the network is predicted by measuring the Mean Squared Error (MSE).

Figure 1: Neural Network Training Phase

Figure 2: Predicting with a Neural Network

Once the network has started making predictions below the desired error rate, the training is

stopped and the network is ready to make actual predictions on real data.

2.2 Basic Implementation using Matlab

Setting up Matlab

Matlab provides a useful interface for creating and training neural networks. We require both

Matlab and the neural network toolbox for the installation of Matlab.

Raw Data
Data

Preparation

Neural
Network
Training

Unclassified
Data

Trained
Neural

Network

Classified
Data

1. After the setup, start Matlab to obtain a blank workspace and Matlab console.

Figure 3: Matlab Start Screen

2. The console shows up with an EDU prompt for the student version.

Importing the Data
1. Set the current folder to the desired folder.

2. The contents of the current folder will be displayed in the current folder window.

Figure 4: Setting the Current Folder

3. On the menu, go to File -> Import Data

4. Browse for the data that you want to import into the Matlab workspace.

Figure 5: Selecting the Data

4. Use the Import wizard to select data and create variables in the workspace.

Figure 6: Import Data Wizard

5. Similarly, import all the required data into the Matlab workspace as variables.

6. The workspace should now be filled with the required variables that can be used within

Matlab.

Figure 7: Matlab workspace populated with variables

Importing Data from a text or CSV file

1. Select the desired CSV or text file using the File -> Import Data command.

2. This will open the CSV file as a worksheet within Matlab.

3. The worksheet can now be used to select the required data from the worksheet and then import

it into Matlab as a variable.

Figure 8: Data in a Matlab Worksheet

4. By default, the entire data is selected for import.

5. On clicking the import button will import the data specified in the range to get imported as a

variable into the Matlab workspace.

6. The range can be altered to select only specific data into the workspace.

7. The un-importable cells section can be used to specify rules on how to handle cells that are not

in the correct format and cannot be imported into Matlab.

Starting the Neural Network Toolbox

1. Use the command “nnstart” in order to start the neural network interface.

Figure 9: Neural Network Start Screen

2. This brings up the neural network start Interface.

3. At this stage we can chose between the different kinds of neural network tools available to us.

4. Choose the Patten recognition and classification tool.

Figure 10: Neural Network Pattern Recognition Tool

5. The Pattern Recognition screen provides an overview of the feed forward neural network that

will be used for pattern recognition. Click “next” on this screen.

6. The next screen involves selecting data for neural network training. Inputs and target data

needs to be selected.

7. This data can be selected from variables present in the Matlab workspace.

8. We must keep in mind that the number of samples of data must be the same for both the inputs

and targets.

Selecting the Data

Figure 11: Select Data for Training

9. Next we divide the data into Training, Validation and Testing data.

10. The interface lets us specify the percentage of data we wish to divide.

Figure 12: Dividing data into validation and test data

11. The next screen lets us specify the number of hidden neurons in the hidden layer. The default

number is 10.

12. This screen also displays the architecture of the neural network.

Neural Network Architecture

Figure 13: Neural Network Architecture and Hidden Neurons Setting

13. The next screen is where we start training the neural network.

14. This screen also shows the Mean Squared error and the Percentage error.

15. The network can be retrained until we get a desired and low value for both these parameters.

Neural Network Training

Figure 14: Training the Neural Network

16. The interface showing the neural network training appears when we click on the train button.

17. The interface provides the different algorithms that being used to train the neural network

and measure its performance.

Figure 15: Neural network being trained

18. The data division algorithm specifies how the data was divided into the training, validation

and testing sets. We use the default function that divides the samples randomly.

19. The training function specifies the function being used for training the neural network.

20. The performance is measured using the mean squared error, the lower the error, the better the

performance.

21. An epoch of training is defined as a single presentation of all input vectors to the network.

The network is then updated according to the results of all those presentations.

Network Evaluation

Figure 16: Network Evaluation

22. The next screen allows us to evaluate and retune the network if we are not satisfied with the

performance of the network.

23. At this stage we have the option to change the number of hidden neurons.

24. We can also perform additional tests on the trained neural network by providing additional

data for testing.

Saving Results

Figure 17: Neural Network Results

25. We can now save the results of the neural network training to our workspace as variables.

26. We can view the architecture of the neural network by clicking on the Neural Network

diagram button

Figure 18: Neural Network Diagram

Generating Scripts
 26. We can also generate a script that can be saved for later use.

Figure 19: Script generated for the Neural Network

Saving the Results into Workspace

27. Saving the results saves the results in the workspace.

Figure 20: Results in the workspace

28. Net is the network structure of the trained neural network that can be used later.

29. Output is the output that has been predicted by the trained neural network for the given input

data.

2.3 Performance Improvement Strategies

The simplest way to train a neural network is to provide the complete data-set all together and

train the neural network with the different training algorithms available. This is the standard

training technique and is able to provide very accurate results for most cases. In the case of large

amounts of data, the time taken to train a network and reach sufficient error can be very high.

This is where we can optimize training in order to reduce the training time and try to retain the

accuracy of the neural network.

Figure 21: Simplest method to train a Neural Network

Bottle-Neck Neural Networks

A Neural network which has an extra hidden layer with a very small number or neurons as

compared to the input neurons is a bottleneck neural network. In [1] the author presents a

bottleneck network that has a bottleneck that is equal to the range of the output values. The bottle

neck network will thus have 2 hidden layers. The first hidden layer immediately present after the

input layer will be the bottleneck layer, followed by a second hidden layer that connects to the

output layer.

Balanced Datasets

Complete
Dataset

Neural
Network

Trained
Neural

Network

Input

Layer

Hidden Layer
Output

Layer

Figure 22: Bottleneck Neural Network

In case of our data, the data contains a large number of false data samples and a relatively low

number true data samples. Thus the network is hardly exposed to any true data samples during

the entire training process. In order to make the training more effective we can create a new

dataset that represents both the true and false cases equally. In general, [1] talks about creating a

new dataset that has equal representation of all the separate classes. This technique also reduces

the size of the dataset that is needed to train the neural network sufficiently.

Batch Training
In case of batch training the weights are updated after an entire pass of the training dataset. This

produces better adjustment for weights at each epoch but each epoch takes a much longer time as

the entire training data set needs to be read.

Online Training

Online training is a training technique that is suitable for large data-sets with a large number of

variables. The weights are updated immediately after each training record is read. This technique

Raw Dataset

False Dataset

True Dataset

Balanced

Dataset Data Balancer

Figure 23: Creating Balanced Datasets

can reach the desired error rate much faster than the Batch Training method. However, the

changes to the weights during the online training methods are small at each step.

Mini Batch Training

Mini Batch training is the same as batch training except that the data has now been divided into

small modules during the data preparation stage. Thus the system updates its weight much more

frequently, providing a middle path between the online training and Batch Training Methods.

Online Training with Preliminary Batch Training

An alternative is to train the neural network with a significant portion of the dataset using the

batch training technique. Then switch to adaptive training for the rest of the dataset. This method

also provides a combination of the advantages of both batch training and online training. The

batch training will allow the neural network to converge in the correct direction and then online

training can fine-tune quickly to the desired error rate.

Mini- Batch Training with Re-Sampling

Raw Dataset

Mini batch

Mini batch

Mini batch

Mini batch

Neural

Network

Figure 24: Mini Batch Training

Instead of training the entire dataset at once, mini batch training divides the data into smaller

subsets. Instead of creating mini-batches by simply chopping down the data into smaller

modules, we can decide on the module size and then populate that batch by randomly selecting

the records from the entire data-set. This method is able to create a smaller statistical

representation of the entire dataset and thus requires much less training time.

Multiple Experts Network

The multiple experts’ network is, as the name suggests, a network consisting of multiple trained

systems. The multiple experts’ network combines different networks trained via different

techniques to make predictions on a dataset. A gating network is used to combine the results

obtained from each of the expert networks into a final result for the prediction.

3. Project Implementation

3.1 Selecting an Open Source Neural Network Framework

During CS297 I used the Matlab neural network toolbox to implement a neural network and

predict the results for the output file. Matlab is commercial licensed software and the costs of

obtaining a license for running Matlab over a cloud are very high.

I explored the following options for neural network packages that were completely open source

and could be installed over the cloud without licensing issues.

1. GNU Octave Neural Network Package:

GNU Octave is an open source alternative to Matlab, its aim is to provide similar functionality to

that of Matlab but remain as an open source project. It has many well written packages that

replicate Matlab functionality. However, the neural network package for Octave is very basic

and only provides us with a single training function. The project is no longer actively supported

and has compatibility issues with new versions of Octave.

2. Encog

Encog is an open source neural network framework. It has extensive documentation and

examples available. It is primarily written in Java and maintained and developed by Heaton

Research. The functionality provided by this framework is extensive. However, it is tied to

commercial support and books as well. Thus, in order to get support for the project you need to

purchase books that have been written for the framework.

3. Neuroph Studio

Neuroph is a Java library for Neural Networks. Neural networks can be implemented using

simple Java programs. Neuroph seems more promising as it only requires basic Java knowledge

and with a basic understanding of neural networks, the code is self-explanatory. The framework

was primarily developed as a GUI for neural networks.

4. Fast Artificial Neural Network (FANN)

This is a neural network framework written in “C”. It provides all the necessary functionality

required for neural networks. It is mainly developed to run as a console application like a C

program. It is completely open source.

Both Neuroph and Fast Artificial Neural Network (FANN) were good candidates for my project.

I selected FANN since it is a C Framework and it promised faster runtime than Neuroph that is

written in Java.

Secondly, FANN libraries are simple C programs that can be modified as per my needs. This

ability to customize was a major deciding factor for my selection.

3.2 Setting-Up Amazon EC2

The Amazon Cloud Compute, popularly known as EC2, is a remote machine that is easily

scalable and provides computational power that can be scaled as per the needs of the program.

Since we needed a large amount of main memory and computational power beyond the scope of

personal laptops or home desktops, I decided to use amazon’s ec2 for my computation. An EC2

instance is similar to a remote server that you can access remotely. Specifically for my

experiments I used a machine that had 15gigabytes of main memory and 8 processing cores.

The procedure to setup an Amazon EC2 instance is as follows:

1. Sign up for the Amazon web services account.

2. Once the account is setup, navigate to the Web Services Console.

Figure 25: Amazon Web Services Console

3. Select the EC2 option from the Dashboard. This will lead you to the EC2 dashboard.

Figure 26: Amazon EC2 Dashboard

4. From the menu on the left select Elastic IP’s under the Network and Security Tab. Elastic IP’s

can be associated with an account and then associated with the instance when the instance is

started. We need to associate an elastic IP as it takes some time to register the first time we set it

up with our account.

Figure 27: Elastic IP page

5. Click on the Allocate new Address button. It will prompt you for the type of Elastic IP (EIP)

that you wish to allocate. Select EC2 from the drop down provided.

Figure 28: Selecting an Elastic IP for EC2

6. Navigate back to the EC2 dashboard, and under the create instance header, select launch new

instance.

Figure 29: Create New Instance

7. Select the classic wizard from the given options.

Figure 30: Choose an AMI

8. We select the Ubuntu server 12.04 LTS as our AMI (Amazon Machine Image)

Figure 31: Instance Details

9. On this screen we change the Instance type to M1 Extra Large as this is the size of the instance

that we want to use.

Figure 32: Advanced Instance Options

10. We do not need to change any specific details on the instance and can continue through this

screen as well as the storage configuration screen that comes next.

Figure 33: Storage Device Configuration

Figure 34: Naming the device

11. We can give a name to the device here or add any other parameters that we may find useful.

Figure 35: Creating a new Key Pair

12. On the next screen we need to create a new key pair, or use an existing one if present. This

key will be used to access the Amazon EC2 instance and should be downloaded and stored in an

accessible place on your local computer. Also remember to set the permissions on this file to

400.

Figure 36: Selecting Security Group

13. Select the default security group; we will only need the port for SSH for connecting to the

EC2 instance.

Figure 37: Instance Summary for Review

14. On this screen we can review the instance details before we launch the instance.

15. Once the device is up and running, we can now associate the Elastic IP to this instance. The

Elastic IP can then be used to access this device from terminal.

16. Go to the Elastic IP dashboard. Select the Elastic IP you wish to associate with the instance,

select associate Address button at the top. The dashboard prompts for the Instance that you wish

to associate with this Elastic IP.

Figure 38: Associating Elastic IP to Instance

17. Elastic IP addresses are released each time the instance is stopped and need to be associated

with the instance when it starts.

Increasing the size of the storage device.
The default storage disk that is provided is an 8 GB device. To increase the storage capacity on

this device, we can create a new volume as follows. This is an optional procedure that we can

follow if we need more storage for our instance.

1. Select Volumes from the menu on the left under the header Elastic Block Storage.

Figure 39: Creating a snapshot

2. Select the default volume that is present and from the actions dropdown at the top, select

create snapshot. Give the snapshot a name and description when prompted.

3. Now create a new volume using the create volume button. When prompted, select standard in

the device type, input the size you need. The availability zone should be the same as the zone of

your instance. In the snapshot, select the snapshot that you just created. Go ahead and click

“create”.

Figure 40: Creating a Snapshot

4. Now we are ready to detach one volume and attach the new one to our instance. Make sure

that the instance is Stopped when we do this.

5. Select the old volume that we need to detach. From the actions drop down select detach

volume.

Figure 41: Attach a Volume

6. Now select the new volume that we just created. From the Actions dropdown, select Attach

Volume.

7. Select the Instance that we need to attach the new volume. Set the device to /dev/sda1 in order

to make this the boot device.

8. The new volume has now been attached to the device and the instance now has increased disk

space.

3.3 Setting-Up Fast Artificial Neural Networks on Amazon EC2

Pre-requisites:

1. Make sure that you have cmake installed:

2. Also install libgtk2.0-dev using the command

Installation

Copy the Fast Artificial Neural Networks Directory to your Amazon EC2 machine using secure

copy (SCP).

3. Using the terminal go to the top level of the FANN directory and run the following commands

4. cmake .

5. sudo make install

6. sudo ldconfig

7. To confirm successful installation navigate to the examples directory and execute the

following:

sudo apt-get install cmake

sudo apt-get install libgtk2.0-dev

make runtest

8. This should result in the running of some sample program that trains and predicts on some

sample data.

9. If you are able to see the results, then you have successfully configured FANN on your

machine.

3.4 Data Preparation

The given data was in the Comma Separated Value format. The FANN framework requires that

training data be in a specific format. For FANN training file, the first row of the file should

contain three columns, the number of training samples provided, number of input variables and

number of output variables. Starting from the second row, the row should contain the input

variables that are delimited by space, the output for these set of input values should be in

presented in the next row. Also, the framework only accepts numeric values, so the output values

of true and false need to be interpreted as zero’s and one’s.

For creating balanced datasets we need to separate the true samples from the false samples and

then create a new mini batch dataset from samples from both the true dataset and the false

dataset. After the separation we can create the dataset we need for the experiments. We now

have the following datasets:

- IBM Training Data Set (approx. 900,000 rows)

o False Training Data

o True Training Data (approx. 4000 rows)

- IBM Prediction Data Set (approx.. 400,000 rows)

o False Prediction Data

o True Prediction Data (approx. 2000 rows)

3.5 Training the Neural Network Using FANN
The overall IBM Watson dataset is a 3 GB CSV (comma separated value) file. This file has been

separated into two parts for prediction and training purposes. This file has 1.3 million rows of

data.

The training part is approximately 2/3’s of the total file, which we refer to as the IBM Training

Data set and 1/3 of the file is used for prediction, which we refer to as the IBM Prediction data

set.

The simplest way of training a neural network is to simply supply the entire training data set at

once and let the network train on it until a desired error is reached. The number of hidden

neurons is kept constant for the experiment. There are 683 hidden neurons in the hidden layer,

that is (2n+1) neurons, where n is the number of features.

This method is the base case for my experiments. The entire IBM Training set is used to train

the network, and then the prediction is made on the entire Prediction dataset.

 The fast artificial neural network is a library written in C. Thus for training a neural network

using FANN can be done by writing a C program that uses the standard FANN functions. The

Steps involved for creating and training a neural network using FANN are as follows:

1. An empty neural network structure can be created using the following in-built FANN data

structure

struct fann *ann = fann_create_standard(num_layers, num_input, num_neurons_hidden,

num_output);

where:

fann_create_standard = function for creating a neural network.

ann = name of the network.

Num_layers = number of layer in the neural network, this includes the input layer, the hidden

layers, and the output layer.

Num_input = number of input variables, or neurons in the input layer.

Num_output = number of outputs, or neurons in the output layer.

2. Optionally, we can set the activation functions for the different layers by using the

“fann_set_activation_function_hidden” or “fann_set_activation_function_output” functions.

3. We can also set the training function at this stage.

4. We are now ready to train the neural network. We need to simply provide the file that contains

the training data. We use the function

fann_train_on_file(ann, filename, max_epochs, epochs_between_reports, desired_error);

fann_train_on _file : function used for training the network on training data from a file.

 Filename: the filename (string) that contains the training data.

Max_epochs: the maximum number of epochs we want the training to continue. This is a

stopping condition.

Epochs_between_reports: the program will report error after this interval.

Desired_error: this is the condition to successfully stop training.

5. Once the training is complete we can save the network using the function

Fann_save (neuralnet, filename)

3.6 Training Experiments using FANN

The following training experiments were performed on the dataset. The aim of the training

experiments was to reduce the training time and improve the accuracy of the final predictions

made.

1. Train on IBM true training Data with 228 hidden neurons in the hidden layer.

Max epochs 500000. Desired error: 0.0049999999.

Table 1: Batch training of true data

Epoch Error

1 0.312028

2 0

Time Taken 11.790000 seconds

2. Train on all False Training Data with 228 hidden neurons in the hidden layer.

Max epochs 500000. Desired error: 0.0049999999

Table 2: Batch Training of False Data

Epoch Error

1 0.328547

2 0

Time Taken 2519.089844 seconds

3. Training Batches of IBM True training data followed by the entire training dataset and then

the entire true training dataset again.

Max epochs 500000. Desired error: 0.0049999999.

Table 3: Batch training of true and false batches

1 0.995213

2 0.983665

3 0.136118

4 0.008193

5 0.619769

6 0.558391

7 0.004787

Time Taken 19636.681641 seconds

4. Training on Falsified data mixed with True data. When mixed in an equal percentage, the

network can never reach the desired error.

Table 4: Training on Falsified data

Epoch Error

1 0.282506

2 0.200073

3 0.200073

4 0.200073

5 0.200073

6 0.300657

7 0.173688

8 0.196442

9 0.199701

10 0.183086

11 0.361739

12 0.181087

13 0.187449

14 0.196585

15 0.183785

16 0.16917

17 0.196298

18 0.163221

19 0.160709

20 0.16001

21 0.176327

22 0.163362

23 0.159997

24 0.162346

25 0.159547

26 0.161851

27 0.160139

28 0.163535

29 0.160656

30 0.158725

31 0.158323

32 0.158957

33 0.160555

34 0.159454

35 0.159011

36 0.158669

37 0.159198

38 0.15932

39 0.158845

40 0.158657

41 0.158775

42 0.159072

43 0.160326

44 0.158104

45 0.158034

46 0.158093

47 0.161786

48 0.161577

49 0.156076

50 0.155677

5. Training on a balanced data set:

Only the first 50 epochs are presented.

Table 5: Training on the Balanced dataset

Epochs Error

1 0.330194

2 0.125

3 0.625

4 0.12317

5 0.625

6 0.624676

7 0.124891

8 0.125002

9 0.116761

10 0.624089

11 0.623223

12 0.598423

13 0.122669

14 0.120844

15 0.107279

16 0.613381

17 0.609236

18 0.463886

19 0.113532

20 0.111817

21 0.09927

22 0.553946

23 0.538812

24 0.27922

25 0.102347

26 0.116385

27 0.115937

28 0.098564

29 0.094998

30 0.093823

31 0.093888

32 0.097353

33 0.092338

34 0.085421

35 0.119162

36 0.1192

37 0.080527

38 0.081208

39 0.079357

40 0.073873

41 0.071581

42 0.069407

43 0.066854

44 0.066991

45 0.067838

46 0.064344

47 0.062108

48 0.06104

49 0.059682

50 0.058266

4. Measuring Performance Using Time and Accuracy

4.1 Prediction Using FANN
The FANN provides us with a function called “fann_run” that can predict results. Once we load

a saved neural network, we can then use this function to provide input values for the trained

neural network and provide us with an output. Once the output is stored into a file this file is then

this file is checked for accuracy by comparing it with a target file using a python script. The

following are the steps involved:

1. Load the trained neural network.

2. Provide input one row of inputs at a time

3. Save the output to a file, results.txt.

4. Provide the Target file and the results file to the python script mse.py

5. The script calculates the Mean Square Error and Percentage Error.

4.2 Prediction and Performance Results

Mini batch training on the entire data set.

Figure 42: Batch Training

Time Taken Mean Squared error

8.37 hours 0.258

Training on a balanced dataset
The balanced dataset was 1% the size of the entire dataset with a mix of 50% true and false data.

0

0.1

0.2

0.3

0.4

0.5

0.6

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

1
2

1

1
2

6

1
3

1

1
3

6

1
4

1

1
4

6

1
5

1

Error

Error

Epochs

Figure 43: Training on Balanced Data Sets

Time taken Mean Square Error

11.07 hrs. 99.6126

The balanced dataset when exactly balanced performed as if it had only seen true data and

classified everything as true. This is a case of failure.

Training Using RMSProp

The RMS prop algorithm is an algorithm that does not use the learning rate parameter directly.

The learning rate at each neuron is calculated by dividing the learning rate by an average of the

previous weights that this particular neuron has had.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

Error

Error

Epochs

Figure 44: Training Using RProp on MiniBatch: MSE vs Epochs

Time Taken Mean Squared Error

1.86 Hours 0.00397

Training on Falsified Data

In this case, the data was inserted with true values that had been changed to false.

In this kind of situation, the network was never able to converge towards the desired error rate.

This is due to that fact that the training data consisted of a large percentage of noisy data and the

system was unable to recognize a correct classification pattern.

0

0.05

0.1

0.15

0.2

0.25

0.3
1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

Error

Error

Epochs

Figure 45: Training on Data with High Noise: MSE vs. Epochs

Varying the Number of Neurons for a Constant Dataset

This graph provides a comparison of training times of neural networks with different number of

hidden neurons. The training data size is 10,000 rows, which is 1% of the entire training dataset.

As we can see, when the hidden neurons are less than half the size of the input layer, the error

bounces between a large range and eventually reaches the desired error. In the case of the hidden

layer being around 2/3 the size of the input layer, the error smoothly tapers off towards the

desired error.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Error

Error

Epochs

Figure 46: Varying Hidden Neurons: MSE vs. Epochs

Training Time for Networks with different Hidden Neurons

Figure 47: Training Time

0

0.05

0.1

0.15

0.2

0.25

0.3

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

 341 Neurons

238 Neurons

204 neurons

170 neurons

136 neurons

102 neurons

Epochs

0

2000

4000

6000

8000

10000

12000

14000

16000

68 102 136 170 204 238 341

time

time

neurons

The training time increases considerably as the number of neurons in the hidden layer

approaches the number of neurons in the input layer.

Comparing Prediction Time of Networks with Different Hidden Neurons

Figure 48: Prediction Time

4.3 Conclusion

While the standard training techniques took around a 100 epochs to converge towards the desired

error, training using mini batches generally took under 50 epochs to make this convergence.

Most notable was the Mini-batch Training using RMS propagation algorithm that took nearly 35

epochs to converge. This also had considerable effect on the training time, and the training was

able to finish in less than 2 hours. The prediction rates for this kind of training were also very

high. The percentage error was 0.39 percent.

5.0 Future Work

0

50

100

150

200

250

300

350

400

1 2 3 4 5

Neurons

Prediction Time(sec)

We have explored ideas where we are splitting and resampling the data based on rows. An

important work will be to divide the data based on columns or features. One particular interesting

approach would be to train multiple networks on different features and combine their outputs

using the Multiple Experts Network. For example, there can be 3 networks training on

approximately 120 features each. These outputs can then be used to predict, the output of these 3

networks can then be combined in different ways. It can either be used to train another neural

network, or use a function to combine the 3 outputs into single output.

6.0 References

[1] Empirical Modeling of Very Large Data Sets Using Neural Networks, Aaron J. Owens,

DuPont Central Research and Development.

[2] Modular neural networks with applications to pattern profiling problems, H. Chris Tseng,

Bassam Almogahed. San Jose State University.

http://www.sciencedirect.com/science/article/pii/S0925231208005444

[3] Gating Improves Neural Network Performance, Min Su, Mitra Basu, City University of New

York.

[4]Feature Preparation in text categorization, Ciya Liao, Shamim Alpha, Paul Dixon Oracle

Corporation

http://www.oracle.com/technetwork/database/enterprise-edition/feature-preparation-130942.pdf

[5]Feature selection for pattern classification problems, Li Zhang, Gang Sun, Jun Guo School of

Information Engineering, Beijing University of Posts and Telecommunications

http://ieeexplore.ieee.org/ielx5/9381/29791/01357202.pdf?tp=&arnumber=1357202&isnumber=

29791

[6] Unsupervised Feature Selection: A Neuro-Fuzzy Approach. Sankar K. Pal, Rajat K. De,

Jayanta Basak, IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 2,

MARCH 2000

http://www.isical.ac.in/~rajat/publications/journal/00839007.pdf

[7] A neural Fuzzy System with Fuzzy Supervised learning

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=537316&tag=1

[8] Efficient Approximation with Neural Networks: A comparison of Gate functions, Bhaskar

Dasgupta, Georg Schnitger, Department of Computer Science, The Pennsylvania State

University.

[9] Feature Selection Using Principal Feature Analysis, Ira Cohen Qi Tian Xiang Sean Zhou

Thomas S. Huang, Beckman Institute for Advanced Science and Technology, University of

Illinois at Urbana-Champaign.

[10] Overview of Amazon Web Services,

http://media.amazonwebservices.com/AWS_Overview.pdf

[11] Fast Artificial Neural Networks

http://leenissen.dk/rl/Steffen_Nissen_Thesis2007_Hyper.pdf

7.0 Appendix

7.1 Script to Change Raw CSV Data to FANN Format

#this script changes the ibm format to the required FANN format

1st line has totalrows inputs outpts, this appears at the top once

1st set of input

Target output

and so on, the entire file is space delimited

from xml.dom.minidom import parse, parseString

def processData(ipdoc,opdoc):

 print "Parsing started"

 print ipdoc

 ip = open(ipdoc,"r")

 op = open(opdoc,"w")

 csvdata= ip.readlines()

 for count,line in enumerate(csvdata):

 print ""

 op.write("%d 341 1\n" % (int(count)+1))

 op.close()

 op = open(opdoc,"a")

 for num,line in enumerate(csvdata):

 #print "Line number %d" %num

 data = []

 data = line.split(",")

 pre = []

 post = []

 for idx,item in enumerate(data):

 if (idx < 342) and (idx > 0):

 pre.append(item)

 pre.append(" ")

 else :

 if (idx == 342):

 item = item.rstrip()

 if (item == "true"):

 #print "true"

 post.append("1 \n")

 else:

 #print "false"

 post.append("0 \n")

 printList(pre,op)

 op.write("\n")

 printList(post,op)

 #print "NUM %d" %num

 ip.close()

 op.close()

def printList(lst,opfile):

 for item in lst:

 opfile.write(item)

if __name__ == "__main__":

 ipdoc = "ibm2gb"

 opdoc = "ibm2gb.train"

 processData(ipdoc,opdoc)

7.2 Script to Generate Unlabeled Data from CSV file

#Takes as input the ibm csv file

#separates the results into a separate file

gives us an unlabelled csv file

from xml.dom.minidom import parse, parseString

def processData(ipdoc,opdoc,opdoc2):

 print "Parsing started"

 print ipdoc

 ip = open(ipdoc,"r")

 op = open(opdoc,"w")

 op2 = open(opdoc2,"w")

 csvdata= ip.readlines()

 for num,line in enumerate(csvdata):

 #print "Line number %d" %num

 data = []

 data = line.split(",")

 pre = []

 post = []

 for idx,item in enumerate(data):

 if (idx < 342) and (idx >= 0):

 pre.append(item)

 pre.append(",")

 else :

 if (idx == 342):

 item = item.rstrip()

 if (item == "true"):

 #print "true"

 post.append("1 \n")

 else:

 #print "false"

 post.append("0 \n")

 printList(pre,op)

 op.write("\n")

 printList(post,op2)

 ip.close()

 op.close()

 op2.close()

def printList(lst,opfile):

 for item in lst:

 opfile.write(item)

if __name__ == "__main__":

 ipdoc = "ibm1gb"

 opdoc = "out1Test.data"

 opdoc2 = "out1Target.data"

 processData(ipdoc,opdoc,opdoc2)

7.3 Script to Calculate Mean Squared Error

this file will calculate the mean squared error and percent error

given the results and the targets

file also changes float results to binary from float if flag is set to 1

if not then results remain in float

from xml.dom.minidom import parse, parseString

def processData(ipdoc,ipdoc2,flag):

 #print "Parsing started"

 #print ipdoc

 test = open(ipdoc,"r")

 target = open(ipdoc2,"r")

 testdata= test.readlines()

 targdata= target.readlines()

 testList =[]

 targList = []

 for num,line in enumerate(testdata):

 #print "Line number %d" %num

 data = line.rstrip()

 temp = float(data)

 if (flag == 1):

 if (temp > 0.65):

 temp = 1

 else:

 temp = 0

 testList.append(temp)

 for num,line in enumerate(targdata):

 #print "Line number %d" %num

 data = line.rstrip()

 targList.append(float(data))

 test.close()

 target.close()

 calc_mse(testList,targList)

def calc_mse(testList, targList):

 sum = 0

 tot = 0

 for tar, res in zip(targList, testList):

 diff = tar - res

 sqr = diff * diff

 sum += sqr

 tot = tot+1

 mse = sum/tot

 percError = mse * 100

 #print (sum)

 #print (tot)

 print ("mean Squared error: %f" %mse)

 print ("Percent error: %f" %percError)

def printList(lst):

 for item in lst:

 print (item)

if __name__ == "__main__":

 ipdoc = "test.txt"

 ipdoc2 = "target.txt"

 processData(ipdoc,ipdoc2,1)

s

	San Jose State University
	SJSU ScholarWorks
	Spring 2013

	Modular Approach to Big Data using Neural Networks
	Animesh Dutta
	Recommended Citation

	Modular Approach to Big Data using Neural Networks

