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ABSTRACT 

FLEXURAL COMPARISON OF THE ACI 318-08 AND AASHTO LRFD 
STRUCTURAL CONCRETE CODES 

by Nathan Jeffrey Dorsey 

There are two prevailing codes utilized during the design of structural concrete 

members in North America, ACI 318-08 and AASHTO LRFD. Each takes a unique 

approach to achieve the same result, a safe working design of a structural concrete 

section; however there are fundamental differences between the codes regarding the 

calculation of member properties. 

The purpose of this paper was to investigate these differences between codes 

encountered during the calculation of flexural strength or moment capacity of a section. 

This study focused on the code's influence during the classical approach to analysis of a 

shallow reinforced T-beam and the strut and tie model method as applied to a series of 

deep beams with openings. Parametric studies were conducted using software developed 

by the author specifically for this purpose. 

It was concluded that both codes provided similar and safe results regardless of 

the very different approaches to solution taken by each. 
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1.0 INTRODUCTION 

1.1 General 

The purpose of this thesis is to compare and contrast the ACI 318-08 and the 

AASHTO LRFD 3rd Ed. code provisions and design philosophies. 

1.2 Scope 

The crux of this thesis is the comparison of the two prevailing concrete design 

codes regarding the design and detailing of concrete beams in pure flexure with no other 

loading present. The discussion on shallow beams used a series of twelve flanged beams 

as its focus while the deep beam discussion focused on a series of five deep beams and 

the Strut-and-Tie Model (STM) method. To accomplish this a series of Excel 

spreadsheets were created to ensure the accuracy and consistency of all calculations 

performed; however as programming is not the point of this research several simplifying 

assumptions were made to reduce the time required to create, vet and utilize these tools. 

Both sections focus solely on analytical results; no laboratory experiments were 

carried out. Comparisons were based on but not limited to maximum predicted allowable 

load. 

1.3 Objective 

The objective of this thesis is to clarify the differences between the two prevailing 

concrete design codes, ACI 318-02 and AASHTO LRFD 3rd Ed. and categorize them as 
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major, minor, or insignificant. For simplicity when the AASHTO LRFD 3r Ed. is 

referenced, the 3rd Ed. shall be omitted. In cases where other editions are referenced, the 

edition under discussion shall be noted. An additional comparison will be made between 

the results produced by the two codes when using the method of STM and the actual 

experimental test loads used during experimental work carried out by Ha in 2002. A 

comprehensive literature review providing coverage of examples illustrating additional 

differences found between the ACI 318 and AASHTO LRFD codes beyond pure flexure 

and deep beams is included. 

1.4 Outline 

Chapter 2 contains a literature review of relevant academic and industry articles 

regarding a specific structural member type, a specific concrete design code or a 

comparative study of both codes. Chapter 3 provides a brief introduction and review of 

the design philosophy of both flexural analysis for shallow reinforced concrete beams and 

the STM method of design for reinforced concrete deep beams. Chapter 4 details the 

analytical procedure as described by each code and what methods were implemented by 

the software tools developed. Chapter 5 contains the results obtained from this study. 

Chapter 6 provides the concluding remarks on the findings of this study. 
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2.0 LITERATURE REVIEW 

2.1 Introduction 

The flexural resistance or moment capacity of a structural member is a 

fundamental part of the overall analysis required when designing or evaluating an 

assembly of structural concrete sections. This flexural resistance is only one of a myriad 

offerees that needs to be considered when designing or evaluating a structural member. 

Other forces due to direct loading or reactions such as axial, torsional and shear forces 

must not be overlooked. 

Of the many comparisons between the American Concrete Institute (ACI) 318 

Building Code Requirements for Structural Concrete and the American Association of 

State Highway Transport Officials Load and Resistance Factor Design (AASHTO LRJFD) 

Bridge Design Specifications for non-prestressed concrete members reviewed only one 

article directly addressed differences when analyzing or designing a structure with 

respect to the flexural resistance. However many of the conclusions presented by the 

reviewed articles followed the same general trend. 

Articles detailing differences in method and results when using the strut-and-tie 

model (STM) method were rather numerous and articles reviewed or discussed in this 

paper date back as far as 1996, older articles on these subjects were available but were 

not considered for review due to the significant revisions made to the codes since the 

time of publication. 
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2.2 Shallow Beams 

Gupta and Collins (537-47) performed a study that primarily focused on the 

question of the safety of using traditional shear design procedures based on the failure of 

the Sleipner offshore platform on 23 August, 1991. To aid in their determination of the 

safety of these traditional methods of analysis and design 24 reinforced concrete elements 

having concrete compressive strengths ranging from 4280 to 12,600 psi were loaded 

under a variety of shear and compressive axial load combinations. The results from these 

tests were used to evaluate the design provisions of the ACI 318-99 and AASHTO LRFD 

"Bridge Design Specifications and Commentary " 2" Ed. 

The ACI 318-99 code provisions made a general assumption that the shear stress 

of a member V„, could be defined as the sum of the shear load at which diagonal cracks 

form Vc, and the provided shear capacity of any stirrups present using the traditional 45 

degree truss equation, Vs. 

V„=K+VS (2-1) 

The traditional 45 degree truss equation is defined as 

VS=^IA (2-2) 
s 

The code also allowed for a simplified conservative calculation to be used for Vc 

although the detailed approach provided for more accurate and less conservative results. 

Both equations are shown below. The simplified and conservative approach is detailed in 
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Equation 2.3 while the detailed approach is shown in Equation 2.4. Both equations 

require the use of English units. 

V.'„ = 2 1 + -
N.. 

20004. rxd (2-3) 

1.9^77 + 2500^-^V* (2-4) 

Nu in Equation 2-3 represents the load due to axial compression and Mm in Equation 2-4 

represents the modified moment as defined by the relationship shown in Equation 2-5. 

'Ah-d^ 
Mm=Mu-Nu 8 

(2-5) 

Regardless of the method utilized for calculation of the shear load at which 

diagonal cracks form the ACI 318-99 code placed a restriction on the maximum value for 

Vc as defined by 

Vc<3.54JrXdfi + N„ 

5004. 
(2-6) 

These detailed equations for Vc were derived by ACI-ASCE Committee 326 in 

1962 and were based on the principal stress as found at the location of the diagonal 

tension cracking. 

The AASHTO LRFD shear design procedure did not use the general assumptions 

utilized by the ACI 318-99 provisions, rather it relied on the more involved modified 

compression field theory (MCFT) which in turn uses relationships between equilibrium, 
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compatibility and stress and strain to predict the shear capacity of cracked concrete 

section/elements. In addition to the obvious difference between the backgrounds of the 

two code provisions note that the AASHTO LRFD used SI units of MPa whereas the ACI 

318-99 provided solutions in English units of psi. 

Hence the AASHTO LRFD expression for shear resistance of a section, V„, was 

more involved and incorporated several different sub-equations. AASHTO LRFD 

defined shear resistance as 

Vn = 0.0830Jf\bvdv + - ^ d v cot0 (MPa) (2-7) 

s 

The variables were defined as: 

Av = cross sectional area of provided stirrup reinforcement within 

distance s 

bv = effective web width 

dv = effective shear depth, taken as 0.9d 

f'c = compressive strength of concrete 

fy = yield stress of steel reinforcement 

s = stirrup spacing 

Values for /?and 6 were derived from calculating the stresses transmitted across 

diagonal cracked concrete sections which contained no less than the minimum required 
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transverse reinforcement for crack control. This minimum amount of transverse 

reinforcement Av>mi„, was defined and calculated by AASHTO LRFD as 

<mi„ = 0.083V77^ (MPa) 
J y 

(2-8) 

The values for /? and 9 were dependant on the shear stress, v, and the longitudinal 

mid-depth strain of the section, sx. Figure 2-1 details the idealized section used by 

AASHTO LRFD in the calculation of sx for this procedure. 

A's 
A< \ Flanged Compression 

\ \ / Section 

» • %\ M 

-^ +0.57V -0.5F,cot^ 

d. N, 
V„ 

•-*_ 

/ f \ 
Ac A<i Flanged Compression 

Section Idealized 
Section 

^ 

Flanged Forces, dv 

Web Forces and 
Section Forces 

Vcoid 

0.5N+Q.5Vcoi6 

Longitudinal 
Strains 

Figure 2-1 AASHTO LRFD Procedure for calculation of ex 

Mathematically the longitudinal mid-depth strain of this section is defined by the 

relationship shown in Equation 2-9. 

£•„ = e,sc (2-9) 

Where the terms s, represented the longitudinal tensile strain in the flexural tension flange 

and ec represented the longitudinal compressive strain in the flexural compressive flange. 
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Mathematically st and sc were calculated as shown in Equations 2-10 and 2-11. 

^*—0.5N+0.5F cot<9 
7 U U 

£ i = _ l ( 2 . 1 0 ) 

^± + Q.5N -0.5V, cote 
7 U U 

£ = Ji ( 2 . i i ) 

EA + EA' 

The newly introduced variables were defined as: 

Ac' = area of concrete on flexural compression side of member 

Ec = elastic modulus of concrete 

Es - elastic modulus of steel 

And Kwas defined by the relationship shown in Equation 2-12. 

v = ^~ (2-12) 

The result of the relationships defined above was that for an increase in axial 

compression the variables Nu, sx and # decreased while /? would increase. This 

contributed to an increased shear capacity for any given section. 

In order to obtain empirical data to corroborate the analytical predictions from 

each code's procedure a series of 24 specimens were built and tested in the University of 

Toronto's shell element testing apparatus. Specimens were designed to represent the 
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sections of a structural wall that was simultaneously subjected to high axial compression 

and high out of plane shear loads. 

Specimen length L, overall section depth h, total percentage of longitudinal 

reinforcement px, and total percentage of transverse reinforcement across the specimen 

width py were not varied during the course of investigation. The parameters that were 

variable were the compression to shear ratio N/V, the concrete compressive strengthf'c, 

specimen width b and the shear reinforcement provided r:. 

Loads were induced by five series of six jacks that applied pressure onto steel 

transfer beams located on the top and bottom faces of the specimens. A compressive 

stress of up to 9400 psi was applied along with equal but opposite moments applied to 

each end of the specimen bending it in double curvature. In each test case the loads from 

axial, shear and moments were increased proportionally until the specimens reached 

failure. Tangential deformation was used as the means of quantifying the total 

deformation of each specimen. 

Strains from the flexural tension side of the member ext and the flexural 

compression side of the member sxc, were measured from locations directly adjacent to 

the steel end plates. Strain for the shear reinforcement was measured directly from the T-

headed bars used to provide shear reinforcement and reinforcement across the member 

width. 
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Failures were classified as shear S, or flexural F, based on the observed strains in 

the Ext and sxc directions at the ends of the specimen when compared to the magnitude of 

the applied moment at the specimen ends ME and the shear strains yx:. Of the 24 

specimens tested 18 were classified as failing in shear while the remaining 6 were 

classified as flexural failures. In the six flexural failures it was determined that the 

longitudinal reinforcement yielded and the applied moment ME, approximately equaled or 

exceeded the predicted moment at failure M0. 

This experiment demonstrated that when the ACI 318-99 conservative method for 

calculating Vc was utilized the shear strength and mode of failure for a reinforced 

specimen loaded under high axial compression can be consistently predicted; whereas 

when using the more detailed method of calculating Vc was used, the mode of failure can 

be brittle shear and occur at loads significantly less than those predicted, on average 68% 

less. It was demonstrated that it was possible to properly design a section using the 

detailed method described by this procedure and yet only provide a factor of safety as 

low as 1.10. 

The AASHTO LRFD procedure for calculating Vc provided far more accurate and 

consistent results for shear failure and the upper limit of shear capacity as induced by an 

increase in axial compression was correctly predicted. 
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Two major recommendations arose from these results: 

• The detailed expression for Vc be removed from the ACI 318 code 

• The term for axial compression NJAS in Equations 2-3 and 2-6 not be 

taken greater than 3000 psi 

Rahal and Collins (277-82) undertook research to provide an evaluation of the 

design provisions for combined shear and torsion load cases as described by both the ACI 

318-02 and the AASHTO LRFD Bridge Design Specifications, 2nd Edition. 

When Rahal and Collins' report was published the current version of each code 

contained torsional design provisions that were similar other than the method used to 

determine the angle 6. Rahal and Collins noted that the AASHTO LRFD provisions had 

been extensively checked for shear cases whereas the ACI 318-02 provisions had been 

extensively checked for pure torsion as well as combined torsion and bending. It was 

concluded that there was a lack of data available that directly correlated the torsional 

provisions of each code. Hence Rahal and Collins ran four large scale experiments to 

compare the results of the calculated torsion-shear interaction diagrams obtained from 

both the AASHTO LRFD and ACI 318-02 provisions. The beams tested were solid, 

rectangular sections 340mm wide and 640mm deep reinforced with non-prestressed 

longitudinal bars. 

The ACI 318-02 code described the basic truss equation relating the provided 

hoop reinforcement to torsional strength as follows: 
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T„ = 2A0 - ^ cot 9 (SI Units) (2-13) 

s 

Where A0 represented the area enclosed by the shear flow path and was permitted 

to be taken as 0.85*Aoh, and where A0h represented the area enclosed by the outermost 

transverse torsional reinforcement. fyv was the yield strength of the hoop reinforcement 
and At represented the cross sectional area of one leg of the transverse reinforcement. 0 

represented the angle of inclination of the compressive diagonals and was noted to have 

rather ambivalent instructions to its suggested versus its analyzed values. As described in 

ACI 318-02 §11.6.3.6 the angle 6shall not be less than 30 degrees but it is suggested that 

<9= 45 degrees for non-prestressed members and 6= 37.5 degrees for members that are 

prestressed. 

A similar truss equation, see Equation 2-14, related the torsional strength to the 

quantity of longitudinal reinforcement provided. 

A f 
T„=2A0 -!+*- tan 3 (SI Units) (2-14) 

Ph 

Rahal and Collins observed that when comparing equations 2-13 and 2-14 the 

equivalent torsional strengths could be obtained by using less hoop reinforcement but 

increasing the longitudinal reinforcement. 
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When these two equations were set equal to each other the required area of 

transverse reinforcement could be solved for as shown by Equation 2-15. 

A f 
Al=^-Ph^cot20 (SI Units) (2-15) 

s fyt 

The ACI 318-02 equation for a non-prestressed section that described the 

relationship between transverse reinforcement and shear strength is shown in Equation 2-

16. 

K = K + K= 0A66j]\bwd + - ^ d (MPa) (2-16) 

The variables were defined as: 

As = area of flexural reinforcement 

bw - web width 

d = distance from the extreme compressive fiber to the centroid of the flexural 

reinforcement 

f'c = compressive concrete strength 

fy = yield strength of reinforcing steel 

Vc - shear strength contribution from concrete 

Vs = shear strength contribution from reinforcing steel 

Additionally the ACI 318-02 code required that the nominal shear stress for solid 

sections be limited to avoid concrete crush prior to reinforcement yield. Equation 2-17 

describes this limitation. 
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v^2 f 

bJj 
- ^ r < 0.83SK (SI Units) (2-17) 

The AASHTO LRFD code used the same basic truss equation as the ACI 318-02, 

Equation 2-13, to relate the area of one leg of the transverse reinforcement^,, to the 

required torsional strength T„. However the AASHTO LRFD relationship between the 

minimum required shear strength V„ and the required area of transverse reinforcement Av 

was noticeably different from that shown for ACI 318-02 in Equation 2-18. 

V = Vc + Vs = 0.083£ Jf~cbvdv +—< cot 9 (SI Units) (2-18) 
s 

The variable bv represented the web width, however dv was defined as the 

effective shear depth which can be taken as 0.9*d. For sections containing stirrups the 

values for J3 and # depended on the nominal shear stress v, and the mid-depth 

longitudinal strain ex. 

Rahal and Collins noted that when /?was set equal to 2.22 the AASHTO LRFD 

value matched the ACI 318-02 value for Vc exactly. Also when examining non-

prestressed sections sx could be taken as 1.00x10" which provided a value of 36 degrees 

for 0, and when the AASHTO LRFD value for 6 equaled 36 degrees the results for Vs 

were 24% higher than those obtained from the ACI 318-02 procedure. 
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Equation 2-19 details the nominal shear stress v, for a solid section as calculated 

under the AASHTO LRFD provisions for a solid section under combined shear and 

torsion which was required to be no greater than 0.25/'c to avoid failures due to concrete 

crushing. 

PA j 

2 (T 

A 2 

\Aoh J 

<0.25/'c (MPa) (2-19) 

The longitudinal stress sx, at the mid-plane could be taken as l.OOxlO'3 or it could 

be calculated using the relationship shown in Equation 2-20. 

M. 2 !L + 0.5N„ + 0.5 cot 6JV„ + 0-Wu 

2(EsAs + EpAps) 

"0.7/aA 
£x = -1 ' v 2f° J (2-20) 

Variables in Equation 2-20 were defined as: 

As = area of non-prestressed longitudinal reinforcement placed on the flexural 

tension side of the section 

Aps - area of prestressed longitudinal reinforcement placed on the flexural tension 

side of the section 

dv= effective shear depth, can be taken as 0.9d 

Es = modulus of elasticity of non-prestressed reinforcement 

Ep = modulus of elasticity of prestressed reinforcement 

fpu = tensile strength of prestressing steel 

Mu = factored moment; taken as a positive quantity not less than Vudv 
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Nu = factored axial force; positive if tensile, negative if compressive 

Tu = factored torsion 

Vu = factored shear 

Rahal and Collins noted that for prestressed sections sx would often approach 

zero. In these cases the value of 6 would vary from 22 to 30 degrees depending on the 

level of shear stress present. 

The AASHTO LRFD provisions required that the tensile capacity of the 

longitudinal reinforcement on the flexural tension side of the section be no less than the 

force TE, to prevent premature failure of the longitudinal reinforcement. TE was 

calculated as shown in Equation 2-21. 

fir V / / W C T - V 

M . <i> \\<t> ) \ <t>1Ao j 

WJMM (2-21) 

The test variable in the series was the torsion to shear ratio which varied from 

zero to 1.216m. Specimen failures were attributed to excessive yielding of the closed 

stirrups as well as spalling and crushing of the concrete in the test region. 

Rahal and Collins determined that use of the ACI 318-02 provisions produced 

very conservative results when the maximum value of 45 degrees for the angle of the 

compression diagonals 6, was used. Conversely when the minimum value for #of 30 
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degrees was used the ACI 318-02 provisions demonstrated less consistent results and 

provided failure loads for high torsion-to-shear ratios much higher than those observed. 

Results obtained from use of the AASHTO LRFD provisions provided a 

consistent value of approximately 36 degrees for 6. Use of this value provided results of 

a consistent and reasonable nature that closely replicated the observed crack patterns. 

Naaman (209-18) investigated the differences between the ACI 318-02 and 

AASHTO LRFD codes regarding sections that were classified as being between tension 

controlled and compression controlled, i.e. in the transition zone. Naaman found and 

described several examples where the ACI 318-02 provisions regarding the limits of 

reinforcement for flexural members lead to unintended erroneous results that brought the 

validity of the provision into question. These flaws were not directly correlated to the 

corresponding AASHTO LRFD provisions but they did reflect similar results for other 

ACI provisions as described by several other publications where solutions appeared 

conservative but in reality did not provide adequate factors of safety. 

Naaman noted that the changes made from the ACI 318-99 to the ACI 318-02 

codes relocated the limits for tension and compression controlled sections and added the 

transition region between the two; the flaw lie in this definition for these regional 

boundaries. The various regions for reinforcement limits and the definitions and from 

different codes are shown in Figure 2-2. 
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The ACI 318-99 code used the ratio of c/ds where c represented the depth of the 

compression block and ds represented the depth from the extreme compressive fiber to 

the centroid of the tensile force in the non-prestressed reinforcing bars. 

In the 2002 edition of the ACI 318 code the ratio was changed to c/dt where dt 

was defined as the depth from the extreme compressive fiber to the centroid of the 

extreme layer of the non-prestressed reinforcement. This allowed for values of if) found 

using the ACI 318-02 to be different from those obtained using the AASHTO LRFD for 

identical sections because the definition of dt and its corresponding st was defined as the 

distance to the centroid of the extreme tensile reinforcement only. This did not take into 

account tensile resistance provided by a multi-layered arrangement and implied that a 

section which contained more than one layer of reinforcement or a section having any 

combination of plain reinforced, partially prestressed or fully prestressed steel would be 

controlled by the extreme layer of reinforcement exclusively. 

While the ACI 318-02 code offered this somewhat conflicting definition for the 

limits of reinforcement between editions the corresponding AASHTO LRFD provision 

detailed that for all cases the maximum reinforcement was bound by the relationship 

detailed in Equation 2-22. 

— < 0.42 (2-22) 
de 
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Where c again represented the depth of the compression block and de was calculated as 

the weighted sum assuming yield of the steel reinforcement provided. Reference 

Equation 2-23 

de =
 AJpAp + Afyds (2-23) 

Apsfps + Asfy 

The variables used were defined as: 

As = area of non-prestressed reinforcement 

Aps = area of prestressed reinforcement 

fps = stress in the prestressing steel at nominal bending resistance 

fy = yield strength of conventional reinforcing steel 

dp - depth from the extreme compressive fiber to the centroid of the tensile force 

in the prestressed reinforcement 

d„ = depth from the extreme compressive fiber to the centroid of the tensile force 

in the non-prestressed reinforcement, i.e. reinforcing bars 

Naaman noted that when the quantity de was used to calculate the limits of 

reinforcement for a section the results were guaranteed to be the same, independent of 

whether the section was plain reinforced, partially prestressed or fully prestressed. This 

consistency was attributed to the fact that the equation guaranteed simultaneous 

equilibrium of forces as well as strain compatibility in any case. It also made the type of 

reinforcement present irrelevant since the tensile force T must equal the compression 

force C for all cases. 
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More specifically Naaman described that because the assumed failure strain in the 

concrete ecu, was taken as a constant in equations 2-24 and 2-27 there was a direct 

relationship between c/de and the tensile strain in the concrete at the centroid of the 

tensile force ste that was unique. 

(2-24) 

de=dsfor Aps=0 

de=dpfor As=0 

d-c 

v A j 

(2-25) 

(2-26) 

(2-27) 

The use of de was proposed by Naaman to replace dt when determining the ratio 

c/dt to avoid erroneous reinforcement level classification of a section. It should be noted 

that the ACI 318-05 provisions did include some but not all of the recommendations 

proposed by Naaman. The relationship used to define the regions was changed to use the 

quantity de rather than the less accurate dt, and the upper limit of the transition region 

remained 0.60 consistent with Naaman's recommendation; however the lower limit of the 

transition region remained set at 0.375 rather than the 0.44 that Naaman had proposed. 

Reference Figure 2-3 to compare the new limits of the ACI 318-05 to those of the 

AASHTO LRFD. 



22 

0.005 0.002 

-i I 1 ' 4. 
~4 1 —J ' ^ Factor 

L f> for bending I _ _ • . ^ fo r c o m p r e s s i o n 

ACI 318-05 Minimum Trans.tion I 

1 1 1 ^ 

( Tension controlled i Transition • Compression controlled 
(under-reinforced) p • " f (over-reinforced) 

. . ~ „ — Minimum 0-42 
AASHTO l ,_J ^ L £ _ 

UWD , Under-reinforced . unaer-reinrorceq • • „ ^ f o r c o i n p r e s $ j o l ] ( n g t r a n s j t i o D ) 

I (j> for bending ' • 
J—*• Over-reinforced 

Figure 2-3 ACI318-05 and AASHTO LRFD limits of reinforcement 

Rahal and Al-Shaleh (872-78) conducted a study to examine the differing 

requirements for minimum transverse reinforcement as specified by the ACI 318-02 

Code, Canadian Standards Association (CSA) A23.3 and AASHTO LRFD Specifications 

2nd Ed. The observed cracking patterns, crack widths at the estimated service load and at 

the post-cracking reserve strength were used to evaluate the performance of each 

specimen. Their study focused on high-strength concrete (HSC) based on its increased 

use in construction. HSC sections require larger amounts of transverse reinforcement due 

to their behavior of cracking at much higher shear stresses than conventionally reinforced 

concrete sections. 
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The ACI 318-02 used detailed equations that accounted for the contribution from 

the concrete Vc, on the effect of the longitudinal steel as well as the stress resultants for 

bending moment and axial load. The AASHTO LRFD Specifications accounted for the 

influence of longitudinal reinforcement, flexural, torsional and axial loading in the 

calculation of the strain indicator sx, which has effects on both concrete and steel 

reinforcement contributions Vc and Vs respectively. 

The CSA A23.3, the ACI 318-02, and the AASHTO LRFD were not united in 

their approached to longitudinal reinforcement provisions and were noted to have 

differed significantly. Regardless of the difference in the approach to provided 

longitudinal reinforcement none of the aforementioned codes accounted for the influence 

of the longitudinal reinforcement; addressing this influence from longitudinal 

reinforcement was the objective of Rahal and Al-Shaleh's test program. 

Eleven four point load shear tests were performed on 65 MPa (9500 psi) beams 

that had minimal transverse reinforcement and two levels of longitudinal reinforcement. 

Beam dimensions for all specimens were 200 mm (7.87 in.) wide, 370 mm (14.57 in.) 

deep and 2750 mm (108 in.) long with a shear span of 900 mm. The average concrete 

cylinder strength^ was 75% of the concrete cube strength fcu and split tensile strength/^ 

was approximately 0.74 Jf~. 
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Their study produced the following conclusions: 

• Behavior of members containing large amounts of longitudinal steel was far 

superior when compared to members that contained very little or no 

longitudinal steel 

• The ACI 318-02 and CSA A23.3 provided adequate performance for members 

containing large amounts of longitudinal reinforcement 

• No evidence was found in performance between beams designed with the 

maximum stirrup spacing as defined by each code 

• Shear capacity equations in the ACI 318-02 and AASHTO LRFD 2nd Ed were 

conservative 

2.3 Deep Beams 

Brown, Sankovich, Bayrak and Jirsa (348-55) completed a study of the behavior 

and efficiency factors assigned to bottle shaped struts when used in calculations as 

described by the method of STM. Historically these efficiency factors were assigned 

based on good practice rather than actual results from experimentation. A fundamental 

difference found between the two provisions was in the calculation of the strength of a 

strut based on specified concrete strength as determined by a cylinder test/'c, and the 

strut efficiency factor fis. 

ACI 318-05 defined^,, as shown in Equation 2-28. 

fcu=0.S5/3J<c (2-28) 
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The strut efficiency factor J3S, is based on the type of strut under consideration and 

the amount of transverse reinforcement present. When ACI 318-05 is used in cases of a 

bottle shaped strut that was crossed by adequate transverse reinforcement as defined by 

ACI 318-05 Equation A-4 (Equation 2-29) the strut will control the strut-node interface 

in all cases other than CTT, i.e. an interface node having one strut and two ties. 

Y ^ s i n r , < 0.003 (2-29) 
bsi 

The AASHTO LRFD utilized the MCFT to define fcu and therefore the definition 

is much more involved than that described by the ACI 318-05 method. Equation 2-30 

repeats the AASHTO LRFD Equation 5.6.3.3.3-1 

/ = Ls. < 0.85/'c (2-30) 

" 0.8 + 170s, 

where 

el=e, + (e, + 0.002) cot2 as (2-31) 

as was defined as the smallest angle between the compressive struts and the 

adjoining tie. It was noted that many engineers have difficulty choosing an appropriate 

tensile concrete strain to be used during design and have therefore expressed reservations 

about using the MCFT based ASSHTO LRFD provisions. 
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To more directly measure the effect these two approaches had on modeling struts 

26 concrete panels measuring 36 x 36 x 6 in. (914 x 914 x 152 mm) were loaded using a 

12 x 6 x 2 in. (305 x 152 x 51 mm) steel bearing plate. One test used a different panel 

thickness and bearing plate to observe and examine the effect of specimen geometry on 

the efficiency factor. 

Each specimen had a unique amount and placement of reinforcing steel and in 

each isolated strut test the same mode of failure was observed. Failure was first indicated 

by a vertical crack which would form in the center of each panel. That crack then 

propagated from panel midheight to the loading points but would not intersect them, 

rather it would change direction. Failure was described as crushing and spalling of the 

concrete near but not adjacent to the loading plate. 

The same failure mode was observed in every test regardless of the boundary 

conditions present. Of the 26 specimens tested the efficiency factors presented in ACI 

318-05 provided a safe estimate of the isolated strut capacity. Of these 25 specimens it 

was noted that the results were conservative but erratic when compared to the test data. 

When the average value for the experimental efficiency factor was divided by the 

predicted ACI 318-05 efficiency the result was 1.68. 

Of the 26 test specimens 20 of the AASHTO LRFD determined efficiency factors 

yielded results for the isolated struts that were less conservative but more consistent with 
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the test data. All of the AASHTO LRFD data was governed by the limitation placed on 

the maximum strut strength of 0.85/c as described by AASHTO LRFD Equation 

5.6.3.3.3-1 (Equation 2-30). 

Foster and Malik (569-77) reviewed a comprehensive set of test data on deep 

beams and corbels and compared them to the proposed efficiency factors. The STM 

model that was most extensively investigated was the plastic truss model where all truss 

members enter the nodal zones at 90°. The plastic truss model has two possible failure 

modes; concrete crush in the struts and yielding of the ties. A third failure mode was 

proposed by in 1998 by Foster where splitting or bursting of the strut should be 

considered. Due to the well known behavioral and material properties of reinforcing steel 

tension failures can be predicted with a high degree of confidence and therefore this 

mode is not discussed. 

To simplify their discussion regarding deep beams and corbels Foster and Malik 

standardized the nomenclature used in their study. They defined the clear span a, as the 

distance from the centers of the strut nodes and they also split up the in situ strength 

factor ks and the strut efficiency factor v; historically these two strength factors were 

combined into a single parameter. All relevant equations were then recalculated to 

incorporate this split between variables. 
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The fundamental plastic truss model equations that relate material properties, 

geometry and strength of a member in equilibrium are shown below. 

Material: 

T = Afs sJ sy 

C = f.cbdc 

fc=k,yf\ 

(2-32) 

(2-33) 

(2-34) 

Geometry: 

a = a + -w 

= d + 

m0 = 

Q 

2 

z 

a 

w 

m 
n = d-Jd2-2aw<2(D-d) (SI) 

d=- w 
sin^ 

Strength: 

V = min 
a 

(2-35) 

(2-36) 

(2-37) 

(2-38) 

(2-39) 

(2-40) 

The variables were defined as: 

a = shear span 

a' = distance from center of concentrated load to edge of support 



As = area of tensile reinforcement 

b = section width 

d = effective depth of main flexural reinforcement 

dc = strut width 

D = overall member depth 

f'c = compressive concrete strength 

fc — effective concrete strength 

fay = yield strength of main longitudinal reinforcing steel 

ks = ratio of the in situ strength to the cylinder strength 

V= shear force 

w = node width over which shear force is applied 

z = distance between node centers 

v= efficiency factor 

6 - angle of strut to longitudinal axis 

Q - equivalent strut width over which ties contribute 

Using these relationships Foster and Malik calculated the efficiency factor 

shown in Equation 2-41. 

V 
V~Kf'cbw 
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This efficiency factor was used to reduce predicted member capacity to 

compensate for the fact that concrete is not a perfectly plastic but rather a brittle material. 

In 1986 the MCFT was proposed to describe and define that concrete is not perfectly 

plastic and the corresponding loss of strut capacity due to transverse tension fields. 

Foster and Malik also investigated the controversy and debate surrounding the 

assignment and values used for efficiency factors in this same report. A 1986 study 

suggested v= 0.6, whereas another undertaken in 1997 suggested v= 0.85 and placed 

greater emphasis on the selection of an appropriate truss model. Models created in 1987, 

1990 and 1997 also used efficiency factors that were functions of strut or node location 

and the degree of disturbance these struts or nodes experienced. The greater this 

disturbance the lower the efficiency factor assigned. ASCE-ACI Committee 445 offered 

a comprehensive review of this work. 

In 1978 Nielsen introduced an efficiency factor to calibrate the concrete plasticity 

models they had developed for members in shear. In 1998 Chen revised these factors for 

deep beams and proposed the following relationship v. 

0.6(1 - 0.25Z))(100/? + 2)(2 - 0.4-) 
v = P = &- for 

a/D<0.25 

/?<0.02 

Z)<1.0 

(SI) (2-42) 
If. 

Where p was defined as the reinforcement ratio for main longitudinal steel 
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In 1986 Batchelor and Campbell proposed a reduction of the effective 

compressive strength based on their theory that the diagonal struts are in a state of biaxial 

tension which in turn reduced the strength of the web concrete. Based on their parametric 

study Bachelor and Campbell proposed the following equation be used to define the 

efficiency factor. 

In 
( d\ v— 
V b) 

= 3.342-0.1991 
^ 

d ) 
•7.471 (SI) (2-44) 

Warwick and Foster investigated the effects of concrete strength on the efficiency 

factor using a range of 20 to lOOMPa and proposed 

v = 1 .25—^-0 .72 [ - 1 + 0.18 

and 

500 (f) + °A{f) -Xf°ra/d-2 (SI) (2_45) 

v = 0.53-•£-*- for aA>2 (SI) 
500 /d 

(2-46) 

Equations 2-44 and 2-45 were developed in parametric studies using the concrete 

compressive strength f'c, and the quantities of horizontal and vertical reinforcement as the 

variable parameters and by comparing a series of experimental data with non-linear finite 

element analyses. From this Warwick and Foster concluded that concrete strength and 

the ratio of the shear span to member depth were the main contributors that affected the 

efficiency factor. 
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Based on panel testing performed by Vecchio and Collins (1986), Collins and 

Mitchell proposed Equation 2-47. 

Lv = (2-47) 
3 0.8 + 170*, 

where 

e-sx + tezZhl (2-48) 
1 tan2# 

Variables were defined as: 

£•/ = major principal strain, normal to strut 

£2 = minor principal strain, parallel to strut 

Sx = strain in the horizontal direction 

6 - angle of strut to horizontal 

Foster and Gilbert demonstrated in 1996 that the relationship defined by Collins 

and Mitchell could be modified as a function of/'c and the ratio a Yd. In doing so the 

strut angle was approximated as tan9~ d/a'; more precisely tan6~ z/a. This produced 

the result shown in Equation 2-49. 

k3v = l- (SI) (2-49) 

1.14+ 0.64+ J c " 
470 A z) 

Foster and Gilbert further simplified this equation, termed the modified Collins 

and Mitchell relationship, based on the insensitivity of vtof'c to produce Equation 2-50. 
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V = T-77 (SI) (2-50) 

1.14 + 0.75 (-u 

For special situations where a/z = 0, i.e. si = 0 the MCFT infers that v= 1 and 

thus the relationship is further modified to yield Equation 2-51. 

v = l- j- (2-51) 
(a\ 1. + 0.66 -

\z) 

It must be noted that when Equation 2-51 is used ks = 0.88. 

MacGregor proposed that the efficiency factor be defined by Equation 2-52 

k3v = vlv2 (2-52) 

where 

v2 = 0.55 + -HL (MPa) (2-53) 

The variable vi in Equation 2-52 was defined as a factor dependant on the potential of 

damage to the strut(s) under consideration. 

Vecchio and Collins later revised their efficiency factor based on newly available 

data of the time to produce Equation 2-54. 

1 
(2-54) 

1 + KcKf 

where 
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k = 0.35 
/- \0.80 

^--0.28 
V c2 J 

(2-55) 

and 

kf =0.1*25Jf'e >1.0 (M/ty (2-56) 

Using an assumed value for £2 of-0.0025 and the relationship shown in Equation 

2-57 

k-g2) 
£, =£X + - . 

1 tan2# 
(2-57) 

The following is obtained for kc 

( 
K = 0.35 0.52 + 1.8 a 

A 0.80 

(2-58) 

For cases where a/z = 0 the MCFT implied an efficiency factor value of v- 1 and 

kf= 1.0 and substituting Equation 2-58 into Equation 2-54 with these special case values 

produced Equation 2-59. 

1 
v = • 

0.83 + £c£7 
(2-59) 

Based on the development of a reinforced concrete cracked membrane model for 

plane stress elements the efficiency factor define by Equation 2-60 was adopted 

1 
v = 

(0.4 + 30* , ) / ' / 
(2-60) 

file:///0.80
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When the major principal strain si, is treated as a function of both sx and 

l/tan2 6 then Equation 2-60 takes the form of Equation 2-61. 

K = 1
 l- ,—jT-<1 (2-61) 
cl+c2(a/zY\f</i 

where Ci and C2 are empirically derived constants 

From their review of sixteen previous studies, 135 specimens that had been 

determined to have failed in compression were analyzed and efficiency factors assigned 

based on concrete strengthf'c, multi-parameter model predictions and MCFT. Equations 

2-51, 2-59 and 2-61 were compared against the experimental data and models proposed 

by the AS3600 model with cutoff and models proposed by Batchelor and Campbell, 

Chen, MacGregor and Warwick and Foster. 

Two parameters were used to define the efficiency factors,/'c and a/z and the 

following observations were made: 

• Poor correlation with high degrees of variability existed between experimental 

data and efficiency factor models based solely on concrete strengthf'c 

• Multi-parameter efficiency factor models also exhibited poor correlation with 

high degrees of variability between experimental data and predicted behavior 

• MCFT models provided coefficients of variation from 0.22-0.24 when 

compared to the experimental data 
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• Boundary conditions play are a significant factor in obtaining data that is 

reliable and has a low degree of scatter 

• Strut angle was the most significant factor and models based on the shear span 

to depth ratio a/z, provided the best predictions for efficiency factors 

Most of the reviewed articles addressed topics other than the same two specific 

areas of pure flexure and deep beams covered by this thesis; this was attributable to the 

paucity of relevant available literature. However their inclusion was justified by the wide 

array of examples contained within these articles. The examples illustrated that there has 

always been division between the codes on approach to analysis and design as well as the 

actual formulae to be utilized when designing or analyzing a reinforced concrete section, 

member or structure. 
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3.0 T H E O R Y O F FLEXURE 

3.1 Background 

In the classical approach to solving for the flexural strength of a section generally 

there are two assumptions required in order to provide a simplified method to the solution 

of the required calculations. These two assumptions form the backbone of the elastic 

case for flexural theory that states that normal stresses within a beam due to bending vary 

linearly with the distance from the neutral axis. 

The assumptions are: 

1) Plane sections remain plane. 

2) Hooke's Law can be applied to the individual fibers within the beam section. 

There are two components to the first assumption as discussed in §6.4 of 

Mechanics of Materials: The first component is based on rigorous mathematical 

solutions from the theory of elasticity that demonstrate some warpage does actually occur 

along plane sections and that this warpage is greatest when shear is applied along with a 

moment. However adjoining planes are also similarly warped and therefore the distance 

between any two points on adjoining sections for all practical purposes remains constant 

whether or not warpage is considered. Flexural theory is based upon the relative 

distances between sections and because it has been proven that warpage does not violate 
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this relationship between plane sections and the assumption that plane sections remain 

plane remains valid. 

The second part of this assumption is that when a beam is subjected to pure 

bending the positive strains on the outermost tensile surface are accompanied by negative 

transverse strains, this curvature is classified as anticlastic curvature. Likewise the 

negative strains along the outermost compressive surface are accompanied by positive 

transverse strains; this type of curvature is classified as anti-synclastic curvature. See 

Figure 3-1. The classical approach to solutions of reinforced concrete sections ignore this 

behavior. 

Remain Straight 

Figure 3-1 Beam in flexure with saddling effect 
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The second assumption, based on Hooke's law, Equation 3-1, states that 

individual fiber strains can be used to calculate individual fiber stresses and visa-versa. 

e = - (3-1) 
E 

Where the variables are defined as follows: 

s = strain 

E = modulus of elasticity of the material, commonly referred to as 

Young's Modulus 

a= stress 

3.2 Theory of Flexure in Shallow Reinforced Concrete Sections 

In the study of reinforced concrete additional assumptions are made in series with 

the first two presented; assumptions 4, 6 and 7 are generally attributed to Charles S. 

Whitney but they were obtained from "Design of Reinforced Concrete ACI 318-08 Code 

Edition" for this thesis. 

3) The strain in the reinforcing steel is the same as the surrounding concrete prior 

to cracking of the concrete or yielding of the steel - this is a continuation of 

the second assumption 

4) The tensile strength of concrete is negligible and assumed to be zero 

5) The stress-strain curve of the steel is elastically perfectly plastic 

6) The total force in the compression zone can be approximated by a uniform 

stress block with magnitude equivalent to 0.85/'c multiplied by a depth of a 

7) The maximum allowable strain of concrete is 0.003 
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The general arguments that form the basis of Hooke's Law remain as valid for 

reinforced concrete sections as they do for isotropic homogenous material sections when 

subjected to small strains. 

In general the tensile strength of concrete is around 10% of the compressive 

strength. When loaded the tension zone of a concrete section will begin to crack under 

very light loads destroying the continuity of the section and any tensile reinforcement 

will be forced to carry the tensile load in its entirety. 

The assumption that the stress-strain curve of steel is elastically perfectly plastic 

implies that the ultimate strength of steel is equivalent to its yield strength. In effect, this 

results in an underestimation of the overall ultimate strength of a given section due to the 

reinforcing steel but it produces a more predictable mode of member failure. 

The stress distribution in the compressive region does not maintain a linear 

relationship with respect to distance from the neutral axis due to the nature of the 

constituent materials used to manufacture concrete. Rather the stress distribution is in the 

form of a parabola as shown in Figure 3-2 c. 

Whitney developed an equivalent rectangular stress block that provides results of 

equal accuracy for the compressive strength of a concrete section that avoids the rigorous 

mathematical calculations required to compute the area of a parabola. This block has 
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depth, a, and an average compressive strength equivalent to 0.85/'c. The value of 0.85 

was derived from extensive laboratory testing of core test results of concrete in structures 

where the concrete was a minimum of 28 days old. 

To calculate the depth of the compression block the distance from the extreme 

compressive fiber c, is multiplied by a modification coefficient Pi yielding the result 

shown in Equation 3-2. 

a = pxc (3-2) 

The coefficient /?/ varies as summarized in Equation 3-3. 

A 0.85-0.05 

0.85 far f'c<4000psi 

/ ' c - 4 0 0 0 j 4000 < / ' c < 8000 mz 
1000 J 

0.65 for fc> &000psi 

(3-3) 

The ACI has adopted a strain of 0.003 in the extreme compressive fiber as the 

assumed maximum allowable strain, or limit strain, for a concrete section. Compared 

with results determined from extensive empirical data this value represents the lower 

bound of the limit strain. 

Using these seven basic assumptions a series of equations can be derived that 

provide quantitative values for the equivalent, counteracting force required for a beam to 

remain in equilibrium while under the application of an external force. This can be 
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explained by visualizing the two forces as vectors, equal in magnitude and opposite in 

direction, acting at any two locations along the centerline of the cross section. Summing 

the forces in the axial direction T = C, i.e. the tensile forces provided by the 

reinforcement present in a section are opposite and equal to the sum of the compressive 

force provided by the concrete; reference Equations 3-4 through 3-8. 

T = A,fy (3-4) 

where 

C = 0.85/'c/?,c6 

a = (5xc 

:.c-al[5x 

T = C=zAtfy=0.Z5fcab 

(3-5) 

(3-6) 

(3-7) 

(3-8) 

o 

•C=0.85fcab a-PlC 

T=Afy 

(a) (b) (c) (d) 

Figure 3-2 Graphic representation of forces within a reinforced concrete section 
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Variables are defined as: 

a = effective depth of the compressive block 

As = area of non-prestressed steel 

fy = yield strength of non-prestressed steel 

f'c = compressive strength of the concrete 

b = the width of the section 

c = distance from extreme compressive fiber to neutral axis 

Using the relationships show in Equations 3-4 through 3-8 and solving for a 

yields the result shown in Equation 3-9. 

A f 
a = '-^— (3-9) 

0.85 fcb 

Solving for the internal resisting couple between the tensile and compressive 

forces yields the nominal strength or moment resistance of the section M„, shown in 

Equation 3-10. 

Mn -AJ^d-^j = 0.85/>Z>(V£) (3-10) 

3.3 Theory of Flexure in Deep Beams 

Deep beams are a common structural member for which an accurate solution 

cannot be reached using the aforementioned techniques. Deep beams are structural 

members defined by the relationship between beam width bw, beam depth h and clear 
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span /„. Per ACI 318-08 §10.7.1, deep beams are members loaded on one face and 

supported on the opposite face so that compression struts can develop between the loads 

and the supports and have either: 

a) clear spans /„, equal to or less than four time the overall member depth; or, 

b) regions with concentrated loads within twice the member depth from the face 

of the support 

Deep beams or deep beam regions begin to show crack propagation at loads in the 

range of xhPu to
 xliPu, where Pu represents the concentrated load, and plane sections are 

no longer assumed to remain plane. This invalidates the first and most fundamental 

assumption discussed in this paper for the solution of reinforced sections. Therefore 

other more advanced methods must be employed. One of these is the method of Strut-

and-Tie Model (STM) an inherently conservative method for solving the forces within 

these member's sections. The overarching motivation of STM is weighted toward 

conservatism in the solutions it provides and to transfer as much of the applied loading as 

possible into compression using the fewest number of members. 

The foundations of STM are attributed to the truss method work done by Ritter in 

1899 developed as a means to explain the dowel action of stirrup reinforcement. 

However it was not until the 1980s that the truss method transformed into STM and was 

used to find solutions for the discontinuous regions within deep beams. 



The method of strut and tie models is not exclusively limited to deep beams, it 

also has valid applications in corbels, dapped-end beams and the discontinuous regions, 

or D-regions, within shear spans. Mathematically a D-region is defined as a region 

located within a distance equal to the member depth h, from the beam/support interface 

or a region located a distance h from each side of a concentrated load; reference Figure 3-

3 for examples. 

•KH 4)1*, 
h, h. 

h h 

(HE 
Ay? 

\>>t 

'TO 
-4 ~A~ 

JJ 
ttmmtmt 

(a) Geometric discontinuities 

O 

(tf 

1)1' 

lt)l" 
2h 

fW Loading and geometric discontinuities 

Figure 3-3 ACI318-08 Fig. RA.1.1 (a and b) - D-regions and discontinuities 
(Reprinted with permission from the American Concrete Institute) 

A D-region within a beam is defined as an inter-beam span where traditional 

moment and shear strength theory no longer applies as based on the assumption that 

plane sections remain plane, and loads are not reacted by beam action but rather they are 

reacted primarily by arch action, as such these D-regions can be isolated and viewed as a 
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deep beam. In these regions the ratio of shear deformations to flexural deformations can 

no longer be considered negligible. 

At its core STM disregards kinematic restraints, only gives an estimation of 

member strength, and it conforms to the lower boundary of theory of plasticity, i.e. only 

equilibrium and yield conditions need be satisfied. The solutions for the capacity of 

members found using the application of this lower bound theory are estimates that will 

provide member capacities which will be less than or equal to the load required to fail the 

member; thus the inherently conservative nature of STM solutions. 

The two greatest similarities between the ACI 318-08 and AASHTO LRFD code 

provisions are the basic set up of the solution, and how the truss members are chosen. 

After the global forces have been determined for a particular member, a truss model is 

chosen to represent the flow of forces within that member. The goal for development of 

any truss model is to use the lowest number of members required to satisfy equilibrium 

and safely transmit the forces into the supports. After a truss model has been developed 

the forces within that truss are analyzed by using the method of joints, the method of 

sections, a combination of both or using a CAD program. 

Members in compression are designated struts and members in tension are 

designated ties. The intersection of any two or more members is designated a node, as 

shown in Figure 3-4. 
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T-c,r— 

(a) CCC Node (bJCCTNode 

Figure 3-4 ACI318-08 Fig. RA.1.5 (a and b) - Hydrostatic nodes 
(Reprinted with permission from the American Concrete Institute) 

There are few similarities that exist between the ACI 318-08 and AASHTO 

LRFD codes with respect to STM efficiency factors. The basic premise for the 

implementation of the method using either code is the same but the way that these forces 

are resolved within the individual strut and nodal members is the area of greatest 

divergence between the two codes. § 4.2 provides a comprehensive explanation of the 

differences in the STM between the ACI 318-08 and the AASHTO LRFD 2nd Ed. and § 

5.2 discusses the differences in the results obtained from each code. 
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4.0 ANALYTICAL PROCEDURE 

4.1 Shallow Beams 

In order to simplify the programming phase of the project, an analytical approach 

was used rather than a design approach. Doing so reduced the required number of IF 

logic statements, shortened the overall length of the EXCEL program, simplified the 

program used and focused the project on the analysis of results rather than programming. 

All spreadsheets used in the shallow beam analysis were vetted via direct comparison 

against example problems 7.4 and 7.5 from the Notes on ACI 318-08 Building code 

Requirements for Structural Concrete. Results from the spreadsheets matched those in 

the example problems exactly. 

Each series of analytical calculations were performed using sections having 

similar geometric and identical material properties. The yield strength of the reinforcing 

steely, was set at 60ksi and the crushing strength of the concrete f'C) was set at 4ksi. Ten 

different geometries were analyzed in a series of four different calculations with each 

calculation using three different values for the following variables; flange width b, web 

width bw, flange depth tf, and the depth of reinforcement d. Ten arbitrary sections with 

the following geometries, graphically described in Figure 4-1, were chosen for analysis. 
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tf 

ik 

-» b 

d 

1 
bw — * • 

-fig 
w 

• » • 

* 
i 

f 
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"! 

Figure 4-1 Section geometry 

The values used for each variable's analytical case are listed below in Table 4-1. 

Table 4-1 Values for variable and fixed geometry for each case 

VARIABLE VALUES 

b 

bw 

d 

tf 

36in. 
42in. 
54in. 
14in. 
18in. 
21 in. 
24in. 
30in. 
36in. 
2in. 
6in. 
10in. 

FIXED GEOMETRY 

tf 

bw 

d 
b 
tf 
d 
b 
bw 

tf 

b 
bw 

d 

4in. 
14in. 
24in. 
36in. 
4in. 
24in. 
36in. 
14in. 
4in. 
36in. 
14in. 
24in. 

For each case the assumed area of provided reinforcing steel was varied from zero 

to an arbitrary value of 20 square inches. This was accomplished in incremental steps of 

0.50 square inches. However only data within and inclusive of the boundaries 

determined by Asmi„ and Asmax would be considered for final analysis. 
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Because each code specifies a unique analytical procedure, the focal crux of this 

paper, separate programming approaches were required for both the ACI 318-08 and the 

AASHTO LRFD in order to reach solutions. Each procedure is described in detail in the 

following sections. 

4.1.1 Stress Block Depth Factor fit 

The sole quantity that was independent of the code provision used and could be 

calculated simultaneously was the stress block depth factor, /?/. Used in computation of 

the location of the neutral axis the method for computing the value of /?/, is identical for 

both ACI 318-08 and AASHTO LRFD codes and was computed using a simple nested IF 

statement as described in Figure 4-2 below. 

5 
fc < 4.0fc/ Yes Pl = 0.85 

No 

4.0 < f\ < 8Msi Yes A=0.85-(0.05*(/ 'c-4)) 

No 

f\ > 8.0*5/ > Y e s » px = 0.65 

Figure 4-2 IF logic statement for computation of stress block depth factor /?/ 
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4.1.2 ACI318-08 

4.1.2.1 Limits of Reinforcement 

As defined by ACI 318-08 the minimum area of reinforcement Asmin, is the 

maximum value of the following two equations; both of which are functions of section 

geometry, the yield strength of reinforcement and the crushing strength of concrete. 

A, . = Maximum] 
s mm 

3V/'C1000 

V ->y Aiooo 
Kd 

(( 200 
v/,1000 

hd 
j 

(4-2) 

ACI 318-08 defines the maximum area of reinforcement Asmax, as a fraction of the 

balanced area of steel for a section. 

A, =0.63375 A . . 
smax. sbal 

(4-3) 

Where the balanced area of reinforcement ASM, is computed as shown in Equation 4-4. 

Asbai is also a function of section geometry, yield strength of reinforcement fy, stress block 

depth factor ft, and the crushing strength of concrete f'c. 

4„=0.85 
i f , 
\ J y J 

( (6 -0 /+0 .375 A M ) (4-4) 
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4.1.2.2 Location of Neutral Axis c and Depth of Compressive Block a 

The ACI 318-08 utilizes a variable called the reinforcement index zu, based on the 

ratio of reinforcement and computed as shown in Equation 4-5. 

A f f 
m = - ^ = p^>- (4-5) 

bdfc
 Ffc 

crwas used to evaluate the preliminary value for the depth of the compressive section, 

denoted in this paper as a' for clarity, as shown in Equation 4-6. 

a'=1.18fflr/ (4-6) 

This preliminary value a' was used in the calculation of the preliminary depth of 

the neutral axis which has been denoted in this paper for clarity as c' shown in Equation 

4-7. 

a' 
c'=— (4-7) 

A 

Both of these preliminary values were used only for the evaluation of section 

behavior via comparison to the flange depth tf, i.e. the determination as to whether the 

section was in rectangular action or flanged action and therefore if the web carried any 

compressive load. 

These preliminary results for a' and c' determined the method used to calculate 

the working value for the depth of the compressive section a, and the working value for 
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the depth of the neutral axis c, by means of IF logic statements. The grayed out cells on 

the left hand side of the flow chart in Figure 4-6 offers a comprehensive view of this 

procedure. 

After a value for the depth of the compressive section a, had been obtained and 

the depth of the neutral axis c, had been established, an IF statement was used to 

determine whether the section behaved under T-section or rectangular action, i.e. if the 

depth of the compressive section was greater than or equal to the flange depth a < t/. This 

in turn provided the appropriate formula to solve for the factored moment capacity for the 

section. See Figure 4-6. 
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4.1.2.3 Strength Reduction Factor (j> 

The depth of the neutral axis was also used in the determination of the strength 

reduction factor <f> based on ACI 318-08 reproduced below in Figure 4-3. 

<p = 0.7 + (£, - 0.002) (2QQ 

0.90 

0.70 
0.65 Other 

Compression! 
controlled 

<p = 0.65 + (£,- 0.002) (22S) 

Transition Tension 
controlled 

e, = 0.002 

§ = 0.600 

€, = 0.005 

i = 0.375 

Figure 4-3 ACI 318-08 Fig. R9.3.2 - Strength reduction factor 
(Reprinted with permission from the American Concrete Institute) 

Another nested IF statement was used within the Excel program to determine this 

value as shown in Figure 4-4. 

The moment capacity could then be computed using the given values for A , 

section geometry, fy,fc, and the calculated values for c, /?/, and if required the web and 

flange moment capacities, Mnl and Mn2 respectively. A sample Excel worksheet is shown 

in Figure 4-5. 
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Figure 4-6 shows the preliminary calculations which were contained in hidden 

cells, these cells are represented by lightly shaded columns. This procedure is illustrated 

by the flowchart in Figure 4-7. 

Figure 4-4 ACI318-08 calculation of strength reduction factor ^ 
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^ îi 
•">

• 
^

F
 

|\
2 

W
$t

$ 
10

 fl
fif

 
'*'

"•
-

o 
©

 

-»
• 

S
 

"«
J 

0
» 

o 
e 

co
 *

£ 
o 

©
 

o 
©

 

C
O

 
en

 
o b 0

0 b o o *.
 

b —
i. 

4*
. 

C
O

 

b N
) 

N
3 

O
 

C
O

 
N

>
 

O
 b o o 

0
0 

C
O

 
-

J en
 

en
 

-
j en
 

o o 4*
. 

C
O

 
N

J en
 

C
O

 

b -v
i 

en
 

p 0
0 o o b o o 

0
0 

j>
. 

eo
 

en
 

-
j b o o -N
 

b eo
 

-
N

| 

eo
 

4*
. 

eo
 

-*
 

p O
) 

0
0 o b o o 

o V
 u 

-S
* 

0
0 w
 

O
l 

JO
 

o>
 

9*
 

<
0 w
 

o>
 

4*
. 

©
 o o «
* *.
 

o o p o>
 

«
* 

©
 <o

 
o o 

-v
j 

0
0 

C
7>

 
4*

. 
bo

 

en
 

en
 

o o eo
 

^ 4*
. 

eo
 

eo
 

1*
. 

0
0 

O
) 

p en
 

C
D

 

o b o o 

-v
l 

N
) 

C
O

 
C

O
 

en
 

en
 

b o o eo
 

4*
. 

O
) 

o K
>

 

b 4*
. 

-*
 

p 4*
. 

-&
. 

O
 b o o 

en
 

-4
 

b p
i 

en
 

o o C
O

 

-4
 

N
3 

N
J b C
O

 
en

 

p eo
 

M
 o b o o 

en
 

—
i. 4*
. 

-*
 

en
 

b o o N
J b 0
0 

ji
. 

N
>

 

Ji
". en

 
-*

 

p N
>

 
O

 

O
 b o o 

en
 

en
 

en
 

b 4*
. 

en
 

o o ro
 

en
 

C
O

 
en

 

N
i 

Ko
 

o en
 

p o 0
0 o b o o 

4*
. 

C
O

 
--

j 

Ko
 

JV
 

b o o N
J 

C
O

 
o -v

l 

-
i

. 

b en
 

-*
 

o b C
O

 
en

 

o b o o 

4*
. 

eo
 

C
O

 

b eo
 

en
 

o o N
>

 

b —
X

 
0

0 _>
. 

^ __
i, en
 

o b 0
0 4*
. 

o b o o 

eo
 

-
N

| 

en
 

0
0 b eo

 
b o o _x

 
^v

l 

eo
 

o _»
. 

ji
. 

->
i 

-*
 

o b •v
i 

N
i 

o b o o 

to
 

—
X

 

en
 

-v
l 

b N
) 

en
 

o o _&
. 

Ji
. 

4*
. 

N
>

 

_
x k>
 

IO
 

en
 

o b en
 

o o b o o 

N
>

 
en

 
C

O
 

C
O

 
-

»
• 

N
3 b O
 

O
 k 

L
i. en

 
eo

 

o b 0
0 o o b 4*
. 

0
0 o b o o 

" 

J»
 

a- §s
r 

_
x 

^?
~*

» 

C
O

 
%

^
^ 

£p
 

K
J

>
»

. ; 
*~

 
-

jj
i 

; 
.-

: 
_»

. 
.'

a
*:

 

on
 ^

S
l 

eo
 S

^^
 

•
^

^
f 

o 
p 

0
3 

0
>

 

en
 

-*
 

en
 

w
 

—
 

K
i'

 
t 

o
^ 

k
j 

j®
fe

 
eo

 i
H

H
 

0
1 

^
^ 

sr
>l

 
O

 
|f

ti
 

o 
^

§
* 

eo
 

^̂
@

 
^^

P 
f^

'* 
* 

°fe
s 

b 
^f

t 
^^

 p
^^

 
o 

^̂
p 

^
.

o 

_
A

 

w
 

0
0 

N
3 

C
O

 

_!
. 

b o o o en
 

-v
| 

-
j o 4>
. 

C
O

 
o o b N

) 
4^

 

o b o o 

644.7 o en
 

o o o Ko
 

0
0 

0
0 o Ko

 
4̂

. 
en

 

o b —
X

 

N
J 

O
 b o o 

0.0 o b o o o b o o o b o o o b o o o b o o 

5 

^ 
° 

5*
 

3 3 

>
 

(/)
 

o S
) £>_

 
a «
- Bendi 3 E

Q
 

>
 o •"

•"
 

C
O

 

0
0 1 o en

 

as
 



lO
 

o 1 
0

0
 

co 
^ o

 <
 

o (S
 

3 

(M
 

C
 

S
 c 

S
 

<
 

o o o o o o o d o o o d o •<
* 

CM
 

0
0
 

in
 

to
 

o oo 
d 0

0
 

~̂
 t 

h
-

0
0
 

O
) 

•
^ 

a> 
0

0
 

C
M

 

d C
O

 
•sr 
C

M
 

d o>
 

o o d o •
* 

C
M

 
0

0
 

lO
 

C
O

 

,-0
0
 

t^
 

C
M

 
•

^
" 

C
O

 

r--0
0
 

O
) 

•*-' 

0
0
 

f
-

in
 

d C
M

 

o>
 

d N
-—̂

 
o d o •sl-
C

M
 

0
0
 

in
 

C
O

 

1^. 
t—

 
C

M
 

0
0
 

C
O

 
in

 1 

N
-

0
0
 

o>
 

•ST
 m

*> 
fw

b °^ 

^S—
 

jS
jg oo 

^
M

^ 
0

0
 

lis 
H

J
|C

O
 

*S
s|i; C

M
 

sill ^ 
p

g
^ 

'-'i-i^ 

$
©

&
 

O
 

•
T

»
 

^
* 

4m
 c4 

-'JflK
s C

O
 

^U
&

j' 
L

O
 

55*° 
t*J^ oo 
|jg

p cd 
;ijgO

^" 
^

 
:j3BB^^ 0

5
 

3f
T 

- ' r~̂ 
rljlh

t h
~

 
"«

8
g

C
0
 

W
O

>
 

W
;-"* 

' 'JE? 

M
 

r*-
i
n

 
T

—
 

V
" 

O
O

 
0

0
 

d i
n

 
0

0
 

o d o T
 

C
M

 
C

O
 

in
 

co 

C
O

 
C

O
 

C
M

 
•

"
" 

C
M

 

N
-

0
0
 

C
O

 
•s

f 

C
O

 
•

<
*

• 

•
^ 

T~
 

C
O

 
C

M
 

C
M

 

C
O

 
M

" 
O

 

d o
 

•sr 
C

M
 

oo 
lO

 
C

O
 

0
0
 

0
0
 

C
O

 
0

0
 

^1" 
0

0
 

1 

r*~
 

0
0
 

C
O

 
•

^ 

m
 

C
O

 
N

; 
T

_ 

w
 

r-C
M

 
in

 
o d o •

* 

C
M

 
0

0
 

m
 

C
O

 

m
 

T
™

 

C
O

 
N

-
h

-
<
M

 

h
-

0
0
 

O
) 

•*
•' 

W
 

C
M

 
O

 
C

M
 

T
-

C
M

 
1

^ 

,_ 
C

O
 

o d o *
• 

C
M

 
0

0
 

lO
 

C
D

 

O
O

 
C

M
 

T
f 

co 
o CM i 

h
-

0
0
 

o>
 

•tf 

•* 
C

O
 

CM" 

1^-

co 
°> O

) 
C

D
 

O
 

d o •
*

• 

C
M

 
0

0
 

in
 

C
O

 

C
O

 
f>

 
C

M
 

C
O

 
C

O
 

1 

r̂
 

0
0
 

G
) 

•<
r 

C
O

 

o C
O

 
CM* 

C
O

 

^ C
M

 

C
M

 

0
0
 

f^
. 

O
 

d o •
"

* 

C
M

 

oo 
to

 
C

O
 

o>
 

ID
 

0
0
 

to
 

C
D

 
t 

N
-

0
0
 

o>
 

•
* 

C
M

 

o>
 

O
O

 
C

M
 

0
0
 

L
O

 

C
M

 

h
-

0
0
 

o d o •<
r 

C
M

 
C

O
 

m
 

co 

C
M

 
C

M
 

C
O

 
T

~
* 

P
--

oo 
o>

 
•*r ,_ 

0
0
 

T
—

 

co" 

s t--

C
M

 

in
 

o>
 

o d o •s
f 

C
M

 
0

0
 

m
 

C
O

 

89Z69 N
-

C
O

 
o>

 
•Si" 

T
—

 

N
-

M
" 

C
O

 

O
 

in
 

o>
 

C
M

 

•s
r 

o
 

T
—

 

d o •<a-
C

M
 

0
0
 

in
 

C
O

 

a> 
t*-

ai 
C

O
 

C
O

 

N
-

0
0
 

a
t 

•<
r 

o <o 
h

-

co" 

C
O

 

o>
 

C
O

 

C
O

 
T

—
 

T
—

 

d o •̂
r 

CM
" 

oo 
m

 
co 

•
*

• 

in
 

•
^

; 

C
O

 

o CM
 

N
-

0
0
 

C
O

 

<*" 

C
M

 
«

"
• 

o * <? 
T

" 

s ^
-

o o *
t 

c<i 
C

O
 

to
 

to
 

T
-

o» 
C

O
 

o to
 

C
M

 

Is
. 

O
O

 
C

O
 

"* 

•s
-

It 
A

 

u 

C
O

 

"* 
o •

*
' 

C
M

 

C
O

 

C
M

 
C

M
 

T
—

 

d o T
 

CM" 
oo 
i
n

 
C

O
 

m
 

o>
 

^ o>
 

C
O

 
C

M
 

N
-

0
0
 

O
) 

•
*

" 

O
O

 

o
 

C
O

 

"*' 

oo 
0

0
 

C
O

 

C
O

 

o C
O

 
T

—
 

d o •
* 

C
M

 
0

0
 

m
 

C
O

 

o>
 

o>
 

T
—

 

•S
t 

C
O

 
C

O
 

1^. 

oo 
o>

 
•̂

r 

N
. 

C
M

 
C

O
 

•^
: 

C
O

 
C

O
 

C
O

 

C
O

 

C
O

 
C

O
 

T
-

d o •<
* 

C
M

 

oo 
in

 
C

O
 

o>
 

C
O

 
•̂

f 
C

O
 

O
) 

C
O

 

h
-

0
0
 

o>
 

-*' #
•

-
.tvo

>
 

,*f-̂
 

•"* 
f

' 

•"«
S

B
"O

>
 

E
?

.l^ 

3"̂
 

>
 .: 

*
f 

0
0
 

'*
^

r 
•T

W
 

t
-

•<
S

*-0 

O
' 

O
 

ftt 
C

M
 

m
- oo 

*» ">
 

«e>. co 

O
. 

C
O

 
C

O
 

"
^

 
0

O
 

C
M

 
m

 o
» 

v 
m

 
<

* 
-51-

l*- 
r^

. 
to 

oo
 

A
- 

O
 

•
* 

-̂
r 

*s-
R

 
A

 

to
 

o 
<
M

 
in

" 

m
 

C
M

 

C
O

 
in

 
x
—

 
O

 

o •
^

• 

c\i 
0

0
 

in
 

C
O

 

C
M

 
T

—
 

d r-T
~

 

m
 

i^
-

0
0
 

a> 
•<

t m
 

C
O

 
•

* 

in
* 

T
—

 

t
^

 
C

O
 

•
*

" 

m
 

C
O

 
T

-

o
 

o
 

•sr 
C

M
 

oo 
in

 
C

O
 

o O
) 

oo" 
C

M
 

r--m
 

h
-

0
0
 

C
O

 
•sT

 

•
f 

oo 
t^

-

iri 

r̂
 

T
™

 

C
O

 

M
1 

•^J" 
N

-
T

~
 

o o •
"

*
• 

C
M

 
0

0
 

in
 

C
O

 

r̂
 

r̂-ca 
co 
C

M
 

<6 

N
-

co 
o>

 
^' 

•sf 
N

-
O

 
C

D
 

C
O

 
C

D
 

to" 

C
M

 
0

0
 

T
—

 

o o ,^-
C

M
 

oo 
m

 
C

D
 

-
f 

N
-

C
O

 
oo 
r«-
co 

r-0
0
 

o>
 

•
^ 

C
O

 
C

O
 

C
O

 
to

 

0
0
 

o in" 

T
—

 

C
O

 
T

—
 

o o •<
t 

C
M

 
0

0
 

in
 

to
 

o oo 
,_' 
a> 
C

M
 

i-^
 

N
-

0
0
 

O
) 

•
* 

IO
 

o>
 

C
O

 
to

 

im
 

s
iM

H
 

m
 

H
i 

C
M

 

o>
 

T
-

O
 

IM
 

9 9 ^n 
ii^

jM
S

 

iifeif 

C
M

 
lf>

 
to

 

^
, 

C
O

 
IX

. 

W
 

||S
n

 

iS
 

'M
 X
 

(0 
E

 

z 

a 

0
0
 

o
 

0
0
 

ro
 

u c 

r V
 

V
 

J
3
 

t» 
•O

 
OS 

I. 
a. 
13 
w

 
V

 

J* 
"a. 
S

 

3
 

&
0
 



58 

Given b,bw,d,tf,f'c,fyand As 

' * ^ - • * * • 

fcftSI 

&:* 

•W».',ttfoji'iAKJ 

1 
Is ^ < a' .Yes. 

,No 

o = -
(4/,) 

<0.S5feb) 

c = -
a 

Is a>t Yes 

0«pdi«« 

^*Mmm 
i-iSA-'^Jj^A^ffl 

^^^MS'i 
•i.%Mtaa.inittri 

Is ^ < c' Yes tf = 
((4-A/)/,) 
(0.85/ 'e6J 

No 

/ M„=^(M„1+M„2) 

•No 

M . = ^ / , | r f - -a 

Figure 4-7 ACI318-08 excel program logic flowchart 
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4.1.3 AASHTO LRFD 

4.1.3.1 Limits of Reinforcement 

The procedure for determining Asmin as specified by AASHTO LRFD Equation 

5.7.3.3.2-1 did not require the use of any IF logic statements and was determined as 

shown in Equation 4-8. 

A, . = 0.7bd 
s mm w f , 

(4-8) 

However, determination of the AASHTO LRFD value for Asmax did require an IF 

statement that was dependent on the value calculated for the maximum depth of neutral 

axis c. AASHTO LRFD § 5.7.3.3.1 defines the limitation for maximum reinforcement as 

follows: 

5.7.3.3.1 Maximum Reinforcement 
The maximum amount of prestressed and nonprestressed reinforcement 
shall be such that: 

c 

in which: 

<0.42 (5.7.3.3.1-1) 
d„ 

A fd +A f d 
d^=_sJ_y^ PsJps P (5.7.3.3.1-2) 

Afy + dps fpi sJ y psJ ps 

where: 
c = the distance from the extreme compressive fiber to the neutral 
axis (in.) 

de = the corresponding effective depth from the extreme 
compressive fiber to the centroid of the tensile force in the tensile 
reinforcement (in.) 

If Equation 1 is not satisfied the section shall be considered to be 
overreinforced. 
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The final statement leads to the conclusion that is summed up mathematically in 

Equation 4-9, also reference Figure 4-9. 

c 
— > 0.42 -> Overreinforced (4-9) 
d 

Setting AASHTO LRFD Equation 5.7.3.3.1-1 equivalent to Equation 4-9 and 

using the known depth for the centroid of reinforcement the maximum value for the depth 

of the neutral axis for a section while remaining underreinforced can be found simply, as 

shown in Equation 4-10. For clarity within this paper this preliminary value for c will be 

denoted maxc. 

maxc = 0.42(i (4-10) 

Using one of the two approaches described in detail in §4.1.3.2 and solving for c 

one can readily determine the limiting area of reinforcement allowed. 

4.1.3.2 Location of Neutral Axis c, and Depth of Compressive Block a 

The AASHTO LRFD code provides two methods of determining the depth of the 

neutral axis; the conservative approach and the refined approach. 
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When using the refined approach the method used to determine the depth of the 

neutral axis is based on the action experienced by the section, i.e. whether or not the 

beam is under rectangular action or T-section action. 

If the beam is under T-section action then c is computed as shown in Equation 4-

11. 

AJy-As\fy\-0.S5f'cft(b-bw)hf 

c = l-n (4-11) 
0.85 /cM, 

Otherwise c is computed by the method described as the conservative approach 

which is identical to the method used by ACI 318-08, reference Equation 4-12. The gray 

box in Figure 4-11 highlights this process within the overall AASHTO LRFD analytical 

procedure. 

c=Afy-A\fy\ 

All AASHTO LRFD analysis performed and discussed in this paper utilized the 

refined approach during the calculation of the depth of the neutral axis and an EXCEL IF 

statement was programmed using the value for maxc from Equation 4-10 as shown in 

Figure 4-8. 
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Yes 
Is maxc>tf } p. 4max=maxc0.85/'c/?,£>„ + 

0.85fcj3l(b-bjtf 

fy 

Figure 4-8 Determination of AASHTO LRFD.4, 

4.1.3.3 Strength Reduction Factor ^ 

The strength reduction factor </), as defined by AASHTO LRFD also uses the limit 

of Asmax to determine its value. If the area of reinforcement is less than Asmax then ^ = 0.9, 

otherwise ^ = 0.7. See Figure 4-9. 
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0.005 0.002 
1 1 ste 

1 1 # Factor 
< ^ for bending I J » <* for compression 

ACI318-05 Minimum Transition I 
(c/djmi„ 0.375 0.60 1 - ' — J *r. i Tension controlled t Transition • Compression controlled ue 

\ (under-reinforced) | f " *f (over-reinforced) 

A . „ ,„ Minimum 0.42 
AASHTO I I ^i£_ 

L R F D i-- Under-reinforced j ^ , - „nmMmaBiMS /„„ tm,BuinT,\ 
* -̂ * j — * • f for compression (no transition) 

(f> for bending I i 
j—+• Over-reinforced 

Figure 4-9 AASHTO LRFD and ACI 318-08 limits of reinforcement 

The AASHTO LRFD moment capacity was computed using the identical values forAs, 

section geometry, reinforcement yield strength^, and concrete crushing strength/ 'c , as 

for the ACI 318-08 test cases along with the AASHTO LRFD specific calculated values 

for depth of neutral axis c, and strength reduction factor 0. A sample EXCEL worksheet 

is shown in Figure 4-10 and Figure 4-11 illustrates this procedure by means of a 

flowchart. 
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* &*«m ! 

c>=t, 

fc a > a t f • 

Moment 
k*in. 

0.0 
644.7 

^hflSBiSc.'; 
1282.8 
1914.2 
2539.1 
3157.3 
3768.9 
4373.9 
4972.2 
5564.0 
6149.1 
6727.6 
7299.5 
7864.8 
8283.7 
8354.7 

- ^ w l f l 
8900.2 
9428.7 
9940.2 
10434.7 
10912.1 
11372.5 
11816.0 
12242.4 

Mi 

As 
0.000 
0.500 

:14M: i 
1.000 
1.500 
2.000 
2.500 
3.000 
3.500 
4.000 
4.500 
5.000 
5.500 
6.000 
6.500 
6.936 
7.000 

* JMPMr'-i 
7.500 
8.000 
8.500 
9.000 
9.500 
10.000 
10.500 
11.000 
11.036 

AASHTO - LRFD 
C 

kip 
0.0 

30.0 

60.0 
90.0 
120.0 
150.0 
180.0 
210.0 
240.0 
270.0 
300.0 
330.0 
360.0 
390.0 
416.2 
420.0 

*• ••MMSht'-
450.0 
480.0 
510.0 
540.0 
570.0 
600.0 
630.0 
660.0 

c 
0.000 
0.288 

a 
0.000 
0.245 

c/de 

0.000 
0.012 

4>, Bending 
0.9 
0.9 

{. filly l JflHB̂ b̂ jHH^S^H^i 
0.577 
0.865 
1.153 
1.442 
1.730 
2.018 
2.307 
2.595 
2.884 
3.172 
3.460 
3.749 
4.000 
4.095 

""i'^roWksa 
4.836 
5.578 
6.319 
7.061 
7.802 
8.544 
9.285 
10.027 
10.080 

0.490 
0.735 
0.980 
1.225 
1.471 
1.716 
1.961 
2.206 
2.451 
2.696 
2.941 
3.186 
3.400 
3.481 

• 'lfflWHIrvi 
4.111 
4.741 
5.371 
6.002 
6.632 
7.262 
7.892 
8.523 
a.568 

0.024 
0.036 
0.048 
0.060 
0.072 
0.084 
0.096 
0.108 
0.120 
0.132 
0.144 
0.156 
0.167 
0.171 

•««3^Wtes 
0.202 
0.232 
0.263 
0.294 
0.325 
0.356 
0.387 
0.418 
0.420 

0.9 
0.9 
0.9 
0.9 
0.9 
0.9 
0.9 
0.9 
0.9 
0.9 
0.9 
0.9 

0.9 
0.9 

£;4feUws 
0.9 
0.9 
0.9 
0.9 
0.9 
0.9 
0.9 
0.9 
0.0 

Figure 4-10 Sample excel spreadsheet for AASHTO LRFD analysis 



65 

Given b,bw,d,tf,fc,fvm& As 

Is tf> 
AA sJ y 

0.85/'cfl&J 
(0.S5 feftbw) 

No 

c = -
(4/,-0.85/'cfl(ft-ft i r)f /) 

(0.85/VA^) 

a = /^c 

J 

Is c<^ 
Yes 

/ Mu=tAsffy\d--} 
a 

No 

Mu =Msffy(d~yO.S5PJ'c(b-bw)tJ 
v a- — 

Figure 4-11 AASHTO LRFD flowchart 
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4.2 STM 

4.2.1 Introduction 

Each series of deep beams was analyzed using the STM method as described by 

both the ACI 318-08 and AASHTO LRFD 2nd Ed. code provisions. Results were then 

compared to the work performed by Ha on identical sections and compared as a 

percentage of the maximum allowable load to the test load. 

The solutions for this series of beams were worked in three phases; first a 

graphical STM solution was solved to determine the maximum allowable strut and tie 

member sizes, then the truss geometries from the first step were solved for using a unit 

load and classical hand calculations; finally an EXCEL spreadsheet created specifically 

to solve for the STM model element capacities (struts and ties) based on the previously 

defined geometry from step 1 was utilized. This spreadsheet then converted the unit load 

into an equivalently proportioned maximum allowable service load which led to the final 

solution to the problem. 

Concrete strength was assumed to be 7ksi, the lowest value used by Ha, and 

reinforcing steel strength was assumed to be 60ksi. Geometric section properties were 

matched to those used by Ha with identical beam sections measuring 44in. x 36in. x 4in. 

The location of the openings was specific to each series and constituted the only variable 
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within this problem the locations of which matched those used by Ha. Reference Figure 

4-12 and Table 4-2. 

36in. 

12in. 

i 

TJ 
4in. 

OPEN 

-12in- 7\ 
40in. 

44in. 

4in. 

Figure 4-12 Generic beam with and without opening 

Table 4.2.1-1 lists the values used for the x and y coordinates of the lower left 

corner of the 12in. x 12in. cutout. 

Table 4-2 Cutout locations from lower left corner in inches 

Opening Location 
" " • „ ^ _ 

SERIES 1 
SERIES 2 
SERIES 3 
SERIES 4 
SERIES 5 

X 

N/A 
16 
16 
16 
20 

y 
N/A 
12 
8 
16 
12 
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The method of STM analysis as employed for purposes of this thesis were for all 

intents and purposes identical. 

Use was made of Naaman's proposal regarding the compressive strength of 

concrete that "...the value oifcu recommended by ACI in Equation (15.7) and Table 15.1 

is appropriate enough, given the uncertainty on the evaluation of the state of strain in the 

struts." 

For completeness Equation 15.7 from the Naaman text reads: 

fa, = smaller of 0.85/yc or 0.85/?/'c (4-13) 

This upper limit of the effective strength as defined by the AAHTO LRFD of 

0.85/yc was used for all AASHTO LRFD based STM calculations performed in this 

paper. 

This assumptions greatly reduced the complexity of many of the iterative steps 

required during the analytical process; when these assumptions were used the method of 

STM as described by both ACI 318-08 and AASHTO LRFD 2nd Ed. outside of the values 

for strength reduction factors was identical; the strength reduction factors remained 

unique to each code. 
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4.2.1.1 Graphical Solution 

Pro/E 3-D design software was utilized to provide true scale models and drawings 

of each deep beam section to ensure that the largest possible strut and tie members had 

been placed in the section. Geometric model constraints were used to ensure that no strut 

possessed cross sectional area greater than that of any adjacent node and that all STM 

members remained prismatic. See Appendix A - Deep Beam STM Models, Figures A-l 

through A-5. 

It should be noted that Figures A-2 through A-5 are unstable trusses; that is they 

do not satisfy all of the necessary requirements for a stable and determinate structure. 

The convention for calculating the determinacy and stability of a structure is shown 

below. 

r + b = 2n Stable and Determinate (4-14) 

r + b > 2n Stable and Indeterminate (4-15) 

D -r + b -2n Degree of Indeterminacy (4-16) 

r + b<2n Unstable (4-17) 

With variables defined as: 

r = number of reactions 

b = number of beams/truss members 

n = number of nodes 
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Using Figure A-2 as an example one can see that the number of members is 9, the 

number of reactions is 3 and the number of nodes is 7. Therefore r + b = 3 + 9< 2*7 

demonstrating that the structure is unstable. Due to the symmetry of the truss models 

unique solutions for each member were possible. A thorough examination of "Examples 

for the Design of Structural Concrete with Strut and Tie Models" reveals that many 

effective STM models are not considered stable truss structures when evaluated using 

Equation 4-17; but they are symmetric trusses and provide satisfactory support because 

the members are confined by the surrounding concrete. However, for the asymmetric 

truss model shown in Figure B-6 this is not the case and unique solutions for each 

member were not found. 

4.2.1.2 Hand Calculations 

After the truss geometry had been determined as shown in Appendix B - Deep 

Beam STM Truss Models Figures B-l through B-5, the individual truss member forces 

were solved for using a unit load, basic equations of equilibrium and the method of joints. 

Results from these calculations were used as the input into the EXCEL Spreadsheets. 

See Appendix C - STM Truss Free Body Diagrams & Solutions Series 1 through Series 

5. 

4.2.1.3 Excel Spreadsheets 

A series of Excel spreadsheets was developed that used concrete strength/'c, 

strength reduction factor(s) ^, reinforcement yield strength^, and beam member 
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geometry as inputs to calculate the maximum concentrated load that could be applied. 

An iterative process that determined STM applicability was used, i.e. after all maximum 

equivalent forces had been determined and converted into a single point load placed at 

the midsection of the beam the validity of Vu < </>V„ was checked. If the criteria of Vu < 

<f>Vn was met then the magnitude of the maximum point load was considered acceptable. 

Spreadsheet logic flow followed the procedure shown in Figure 4-12 and 

verification of the strut capacity at midlength and nodal interface was computed using the 

code specific relationship details described in Table 4-3. 

For all cases documented for this thesis all struts were treated as bottle shaped 

with the cross sectional area at strut midlength assumed to be greater than the maximum 

area available at the strut-node interface. 

Unit load values found during the hand analysis portion were input into the 

spreadsheet and the minimum required member width was determined using Pr = 0Pn and 

Pn = fcuAcs, where Pr is the calculated force within the strut member, Acs represents the 

cross sectional area of the strut and/CM = 0.&5f'cmin(fln,/3s). Since member depth was 

held constant at 4.0 inches to remain consistent with Ha's experimental beams the 

specific version of the equation used was, 

w . = £ (4-18) 
4.0/«.0.85/'cmin(/fr,/fo) 
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The minimum required "unit width" calculated from Equation 4-18 was then 

divided into the maximum attainable widths as determined using Pro/E to obtain the 

percentage increase available. The limiting case was selected and used to calculate the 

individual member forces. This value was then used with the previously worked hand 

solutions and converted into the maximum applied concentrated load, to be compared 

against the test loads used by Ha in his work. These comparisons formed the basis of this 

portion of this thesis. 

4.2.2 ACI318-08 vs. AASHTO LRFD 

As shown in Table 4-3 the effective concrete compressive strength^, is 

calculated the same regardless of which code is used; however the member effectiveness 

factors and strength reduction factors used by the two codes were very different. 

4.2.3 Strength Reduction Factor ^ 

ACI 318-08 provision used 0.75 for all STM cases whereas the AASHTO LRFD 

provided two distinct strength reduction factors based on the member type; <f> = 0.7 for 

struts and <j> = 0.9 for ties. Reference Table 4-3 for application. 
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4.2.4 Strut Effectiveness Factors fis 

ACI 318-08 contained five distinct strut effectiveness factors J3S, based on strut 

geometry, provided strut reinforcement and weight of concrete used. In cases where the 

provided strut reinforcement does not meet the requirements of ACI 318-08 section A.3.3 

the weight of concrete is used to determine the strut effectiveness factor via the 

modification factor X which was related to the unit weight of concrete; X = 1.0 for 

normal-weight concrete, X = 0.85 for sand-lightweight concrete and X = 0.75 for all-

lightweight concrete. However for purposes of simplicity the requirements of ACI 318-

08 A.3.3 were always assumed satisfied and therefore fis = 0.75. The AASHTO LRFD 

2n Ed. code only provided two strut effectiveness factors based solely on strut geometry, 

i.e. if they were prismatic or bottle shaped struts. 

4.2.5 Node Effectiveness Factors /& 

The number of node effectiveness factors /%, defined by each code was equal at 

three; however the two values provided by the AASHTO LRFD 2nd Ed. for C-C-C and C-

C-T nodes were conservative when compared against their counterparts in the ACI 318-

08. See Table 4-3 for exact values. 
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Table 4-3 ACI 318-08/AASHTO LRFD effective strength coefficients 

Strength Reduction Factor (p 

Strength of Struts 

Uniform Cross Section ps 

w/Reinforcement Satisfying A.3.3 ps (ACI 318-08 Only) 

w/o Reinforcement Satisfying A.3.3 ps (ACI 318-08 Only) 

Struts in Tension ps (ACI 318-08 Only) 

All other Cases ps (ACI 318-08 only) 

Strength of Nodes 

C-C-C Nodes pn 

C-C-T Nodes pn 

C-T-T, T-T-T Nodes Pn 

Strength of Ties 

ACI 318-08 

0.75 

f =f A 

fcu=0.85psf'c 

1.0 

0,75 
0 60' 
0.40 

0.60 

' n—' cu"n 

fcu=0.85psfc 

1.0 

0.8 

0.6 
fT=fyAS 

AASHTO - LRFD 
0.7 Compression 

0.9 Tension 
f =f A 
' s ' cu"s 

fcu=0.85psf'c 

1.0 

' ! • ,-.., : - r . ' ' i 

' n= 'cu"n 

for0.85p.fc 

0.85 

0.75 

0.65 
/ :

T=fA 

http://for0.85p.fc
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bVuz<pV„=t(ioJfcbM 

Yes 

No 

Select Strut & Tie Truss Model to 
Carry Loads/Reactions 

Model Truss Member Dimensions 
Using Maximum Available Area 

Solve Truss Model 
Using Unit Load 

Determine Equivalent 
Maximum Member Forces 

Verify Capacity of Struts at 
Midlength and Nodal 

Interface 

Detail D-Region Verifying Minimum 
Reinforcement Requirements have been Met 

Figure 4-13 Strut and tie modeling procedure 
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5.0 RESULTS and DISCUSSION 

5.1 Flexure 

Twelve beam sections were analyzed using both the ACI 318-08 and AASHTO 

LRFD code provisions. The reinforcement provided was varied over the range and 

inclusive of the limits Asmi„ to Asmax; reinforcement limits were held respective to the 

provisions of each code. 

The section geometry and variables used were: 

'W 

Figure 5-1 Graphic representation of section geometry 

Where the fixed values used for these dimensions were as follows: 

Flange width b = 36in. 

Flange depth tf = 4in. 

Web depth bw= 14in. 

Depth to centroid of reinforcement d = 24in. 
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5.1.1 Asmin and Asmax, ACI318-08 versus ASHTO LRFD 

There were no cases where the ACI 318-08 calculated value forAsmax would allow 

the ratio of y, to be greater than 0.375. 

The difference between results for Asmin and Asmax as calculated using the ACI 

318-08 and AASHTO LRFD varied greatly depending on the variable in question. Table 

5-1 highlights these differences via comparison of the slope of the lines generated when 

the limits Asmin and Asmax were calculated using different section variables. 

Table 5-1 Rates of change for ACI 318-08 and AASHTO LRFD Asmin and A. 

Variable 
b 
bw 

d 
tf 

Slope ACI-381-05 
A 

0.000 
0.076 
0.044 
0.000 

"smax 

0.227 
0.207 
0.253 
0.880 

Slope AASHTO LRFD 
A 

0.000 
0.048 
0.028 
0.000 

A 
"smax 
0.193 
0.293 
0.283 
1.060 

% ACI-AASHTO 
"smin 

0.00 
63.25 
63.25 
0.00 

"smax 

117.65 
70.63 
89.29 
83.09 

From Table 5-1 several things become obvious: section flange depth, b and //-have 

no impact on the minimum amount of reinforcement allowed; regardless of the code used, 

a change in web width will have the greatest impact upon the difference between the 

slope of the lines generated when determining the minimum allowable area of 

reinforcement between the ACI 318-08 and the AASHTO LRFD; whereas flange depth 

will have the greatest impact upon the difference between the slope of the lines generated 

when determining the maximum allowable area of reinforcement as provided by the ACI 

318-08 and the AASHTO LRFD. The percentage difference between these results is 
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tabulated in the far right columns of Table 5-1. These percentages were calculated by 

dividing the values for the slopes of the results found using the ACI 318-08 by the slopes 

of the results found using the AASHTO LRFD. 

It is of interest to note that the difference between the codes for minimum 

reinforcement when based on section flange width and section flange depth, b and tf 

respectively, was consistent between the codes while the difference between the codes for 

maximum reinforcement was always less when using the ACI 318-08 than the AASHTO 

LRFD except when comparing results found using the flange width b as the variable. In 

this case the slope of the results found using ACI 318-08 increased by a rate of 17.65% 

faster than for those produced when using the AASHTO LRFD provisions. 

The slopes of the results found using ACI 318-08 for all other variables were an 

average 81% less than the corresponding values calculated using the AASHTO LRFD. 

Reference Figures 5-2 through 5-5. 
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5.1.2 As versus Mu 

During the determination of the flexural strength of a section based on the area of 

reinforcing steel by either ACI 318-08 or AASHTO LRFD code, the difference in 

corresponding moment capacity was never greater than 1.4%; the average difference was 

0.93%. It was observed that sections analyzed using AASHTO LRFD code consistently 

required a larger area of steel to support the same moment than that required for an 

otherwise equivalent ACI 318-08 section. All results presented in this section in the form 

of tables or percentages represent a ratio between the results found for the ACI 318-08 

and AASHTO LRFD code requirements for determining flexural capacity, reference 

Equations 5-1 through 5-3. 

For all cases analyzed, certain geometric dimensions were found to have greater 

influence than others on the amount of reinforcement required to resist a given moment; 

results are summarized in Table 5-2 and Figures 5-6 through 5-9. 

Table 5-2 Ratio of AASHTO LRFD to ACI 318-08 for M„ per unit ,4, 

VARIABLE 

b 

bw 

d 

tf 

VALUE 
36 
42 
54 
14 
18 
21 
24 
30 
36 
2 
6 
10 

ACI 318-05 
1189.10 
1196.27 
1201.20 
1189.11 
1185.04 
1176.01 
1189.11 
1495.58 
1798.78 
1197.49 
1167.61 
1152.80 

AASHTO LRFD 
1178.79 
1186.56 
1193.30 
1178.79 
1171.39 
1163.34 
1178.79 
1481.67 
1782.43 
1186.04 
1164.05 
1133.17 

% 
99.13 
99.19 
99.34 
99.13 
98.85 
98.92 
99.13 
99.07 
99.09 
99.04 
99.69 
98.30 

AAVG 

9.31 

12.22 

13.53 

11.54 

%AVG 

99.22 

98.97 

99.10 

99.01 

A MAX 

10.31 

13.66 

16.35 

19.63 

% MAX 

99.34 

99.13 

99.13 

99.69 
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The percentage difference ratio as shown in Table 5-2 is the sum of the applied 

factored moments divided by the sum of the areas of reinforcement required for a section 

analyzed using the AAASHTO LRFD to carry that moment over the entire viable range 

of reinforcement, divided by the area of reinforcement required for the ACI section, i.e. 

the range Asmin to Asmax as defined by each code. Equations 5-1 through 5-3 describe the 

formulae used in the calculation of this percentage more concisely. This was considered 

a convenient method of quantifying the difference in results produced by each code for 

the area of reinforcement required to resist an applied moment on a per unit basis, i.e. 

applied moment per unit area of reinforcement. The applied moment is a representation 

of the applied loads only however it is used in the determination of required 

reinforcement during design or analysis of a section via the calculated resistive moment 

of the section, M„ = 0MU. Therefore in essence this percentage represents a comparison 

between the ACI 318-08 and the AASHTO LRFD of the allowable applied load as 

defined by each code for based on each cross section's geometry. 

A% = 
(AASHTO)Mu:As 

(ACI)MU:A 
100 (5-1) 

•* J 

where 

Asmax 

AASHTO- MU:AS=^^- (5-2) 

Asmin 

and 
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As max 

« s As max 

IK 
•smin 

is max 

1 - 4 , 

v4C/- M • yl = ^sas— (5-3) 

/f^min 

Examination of the data in Table 1 highlights two consistent traits between the 

codes: a) a section designed using the AASHTO LRFD code will always require a larger 

area of reinforcing steel than an equivalent section designed using the ACI 318-08 code, 

i.e. the AASHTO LRFD will provide a more conservative solution for the resistive 

moment per unit of reinforcing steel; b) web width bw, has the greatest effect on the ratio 

of steel to flexural strength for any arbitrary T or L flanged section, although this amount 

averaged only 1.40% for the section geometries studied. 
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5.1.3 Location of Neutral Axis c, and Depth of Compressive Block a 

The depth of the neutral axis has been conventionally defined as described by 

Equation 5-4 which is used by both the ACI 318-08 and AASHTO LRFD. This equation 

applies regardless of section geometry, that is rectangular or flanged, or whether the 

section is in rectangular or T-section behavior when using ACI or AASHTO LRFD 

Simplified Conservative Approach. 

4Jy-A'sfy 

0 . 8 5 / ^ 6 
(5-4) 

The AASHTO LRFD refined approach, which was the method used for all 

AASHTO LRFD based calculations in this paper, differs when sections exhibit flanged 

behavior as described earlier in §4.1.3.2. The formulae are repeated below for 

convenience. 

c=A,fy-A,fy 

0.85/'cfl6 

c AJy-A\fy-^5fcP,{b-bJhf 

0.85/'e/?A, 

The results for the depth of the neutral axis using Equation 5-6 were computed for 

every 0.250 square inches increase in the area of reinforcement provided; this range was 

inclusive of the lower limit of Asmin and the upper limit of Asmax as found by the ACI 318-

08. Because the value for Asmax that was produced by the ACI 318-08 was always less 
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than that found by using the AASHTO LRFD it was used as the limiting value for this 

comparison. From these values the arithmetic mean was calculated. The results are 

listed in Table 5-3. 

This option to choose the level of fidelity in the calculation of the depth of the 

neutral axis was a significant difference between the two codes; both in the approach 

used in and the results obtained. The AASHTO LRFD provided the option to neglect any 

additional compressive strength contributions that the flanged area, minus the web width, 

would provide. When the option to use the AASHTO LRFD refined approach was not 

taken both codes would produce identical values for the depth of the neutral axis. 

Table 5-3 Results for location of neutral axis 

Depth of Neutral Axis ACI vs. AASHTO 

VARIABLE 

b 

bw 

d 

tf 

VALUE 
36 
42 
54 
14 
18 
21 
24 
30 
36 
2 
6 
10 

AVE 

ACI 

2.540 
2.224 
2.181 
2.539 
2.681 
2.827 
2.539 
2.695 
3.234 
2.130 
2.874 
3.745 

[RAGEc 

AASHTO 

2.409 
2.102 
2.014 
2.409 
2.580 
2.839 
2.409 
2.750 
3.141 
2.158 
2.732 
3.602 

A 
AVG 

0.140 

0.073 

0.056 

0.086 

A %AVG 

93.95 

97.27 

98.02 

97.06 

Amax 

0.167 

0.130 

0.130 

0.143 

A %max 

94.83 

100.43 

102.04 

101.31 
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As shown in Table 5-3 the results using the refined approach of Equations 5-5 and 

5-6 produced a greater depth for the location of the neutral axis; this provided a larger 

compressive area and hence required a larger area of tensile reinforcement to obtain force 

equilibrium, i.e. a balanced section, T = C . Web width bw, had the greatest impact on the 

difference between results obtained from ACI 318-08 and AASHTO LRFD codes. This 

effect was maximized when bw was equal to one-half the value of flange width b, or 18 

inches for the sections analyzed. Reference Figures 5-10 through 5-13. Notice should be 

made of the abrupt change in slope that is attributable to the effect of provided 

reinforcement in the calculation of the location of the neutral axis. This abrupt change in 

slope is due to the direct proportionality of the tensile force Tto the compressive force C, 

i.e. T = C, and the role the location of the neutral axis has in the calculation of the 

compressive force as shown in Equation 3-5, C = 0.85 f'c f5xcb . The point at which the 

slope change occurs is when the depth of the neutral axis exceeds the flange depth tf, of 

the section; that is when the section is no longer in rectangular action and the refined 

approach described by Equation 5-6 was utilized. 

5.1.4 Strength Reduction Factor <f> 

Due to limits placed on the sections analyzed in this paper on the allowable 

amount of reinforcement, artificial or otherwise, the strength reduction factor </>, was 

equal to 0.9 for every test point. Indirectly this states that the ratio y, was always less 

than or equal to 0.375 for all ACI 318-08 analyses and y, was always less than or equal 
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to 0.42 for all AASHTO LRFD analyses. Because the value of <f> never differed between 

the ACI 318-08 and the AASHTO LRFD for the shallow beam flexural analyses 

performed in this paper no additional comparisons on this particular code provision were 

made. 
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5.2 STM 

Five deep beams previously tested by Ha were reevaluated using the Strut and Tie 

Method (STM) as described by both the ACI 318-08 and AASHTO LRFD code 

provisions. 

Section geometry and variables are shown in Figure 5-14 and Table 5.4. 

12in. 

36in. 

OPEN 

4in. l-^— 

-12ia-

40in. 

A 
44in. 

4in. 

Figure 5-14 Generic beam with and without opening 

Table 5-4 Cutout locations from lower left corner in inches 

12in. x 12in. Cutout Location 
^ - ^ ^ 

SERIES 1 
SERIES 2 
SERIES 3 
SERIES 4 
SERIES 5 

X 
N/A 
16 
16 
16 
20 

y 
N/A 
12 
8 
16 
12 
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5.2.1 Maximum Allowable Concentrated Load - STM versus FEA 

In the work performed by Ha the maximum test loads applied to the sections 

varied from 70kips to 175kip depending on the beam geometry. All design loads and 

their corresponding ACI 318-08 and AASHTO LRFD counterparts are summarized in 

Table 5-5 and are shown graphically in Figure 5-15. The gray columns in Table 5-5 

represent the STM method predicted loads as a percentage of Ha's test loads. 

Table 5-5 Predicted load versus maximum test load comparisons 

SERIES 
1 
2 
3 
4 
5 

Ha 
175.00 
125.00 
150.00 
70.00 
100.00 

ACI 318-08 
127.96 
85.68 
106.35 
73.53 
86.67 

% 
73.12 
68.54 
70.90 

105.04 
86.67 

AASHTO - LRFD 
119.43 
79.97 
99.26 
68.63 
80.89 

% 
68.25 
63.98 
66.17 
98.04 
80.89 

A% 
4.87 
4.57 
4.73 
7.00 
5.78 

Of the five comparisons made only series 4 produced predicted load values that 

exceeded the test load used by Ha; this was only true when the ACI 318-08 code 

provisions were utilized and this exceedance was 5.04%. The magnitude of the predicted 

loads calculated using the AASHTO LRFD in series 4 were 98.04% of the actual test 

load value used by Ha of 70 ksi. The predicted values for all other cases analyzed were 

well below the experimental test loads used by Ha; this was consistent with expectations 

given the conservative nature of the STM model process. 

In the instance of series 4 several factors can explain the fact that the predicted 

safe design load inclusive of safety factors was greater than the load actually reached 
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during Ha's laboratory testing. Analytical and predictive calculations make several 

assumptions any of which can be the source of this discrepancy: 

• compressive strength of concrete is consistent throughout the section 

• placement of the concrete is without voids or inconsistencies 

• area and depth of reinforcement are exact 

• cross section geometry and member length are exact 

In every series the maximum load the beam was predicted to be capable of 

carrying was greater when the ACI 318-08 code was used. The load predicted as 

analyzed using AASHTO LRFD was always 93.3% of that analyzed using ACI 318-08. 

When a comparison was made between the area of reinforcing steel required by each 

code the AAHSTO-LRFD code requirement was 77.8% of that of the ACI 318-08 

sections. Reference Equations 5-7 and 5-8. These percentages were directly attributable 

to the different values specified for the strength reduction factors by each code. 

%Load Mcnn-m 
</>AASHTO-LRFD 

0 / . J ^ C / 3 1 8 - 0 8 _ „ , , - , 0.75 ___ 
%Loaa— =>93.3 = 77.8 (5-8) 

0AASHTO-LRFD 0.9 

5.2.2 Maximum Allowable Concentrated Load without </> - STM versus FEA 

A second comparison was made between the experimental design loads used by 

Ha and the analytical results derived in this paper without application of the strength 

reduction factor ^. All design loads and their corresponding ACI 318-08 and AASHTO 
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LRFD counterparts without the application of </> are summarized in Table 5-6 and are 

shown graphically in Figure 5-16. Again the gray columns in Table 5-5 represent the 

STM method predicted loads as a percentage of Ha's test loads. 

Table 5-6 Predicted load without # versus maximum test load comparisons 

SERIES 

1 
2 
3 
4 
5 

T.H. 

175.00 
125.00 
150.00 
70.00 
100.00 

ACI 318-08 

170.62 
114.24 
141.79 
98.04 
115.56 

% 

97.50 
91.39 
S4<53 

140.06 
118.56 

AASHTO -
LRFD 

170.62 
114.24 
141.79 
98.04 
115.56 

,l 

m 
' mmi 

A% 

0.00 
0.00 
0.00 
0.00 
0.00 

In the cases of both series 4 and 5 it can be observed that the predicted strengths 

have exceeded the actual test loads as determined by Ha. This finding clearly 

demonstrates the importance of using the strength reduction factor to account for any 

imperfections during the mixing and placement of concrete as well as the location of 

reinforcing steel. 

The removal of the strength reduction factors also illustrated the significance of 

largest difference between the ACI 318-08 and AASHTO LRFD when using the method 

of strut and tie models as shown in Table 5-6. The strength reduction factors assigned by 

the ACI 318-08 and AASHTO LRFD codes are very different from each other and 

therefore would never produce identical results for the same section same regardless of 

truss or member geometry; only by ignoring the contribution of the strength reduction 

factors altogether could identical results be achieved for each code. 



Load Comparison 

140.00 

120.00 

Load Values 

80.00 

0.00 

IT. Ha's Loads 
IACI 318-08 Loads 
IAASHTO-LRFD Loads 

Figure 5-15 Predicted load vs. maximum test load comparisons 

Load Comparison Without 4 

T. Ha's Loads 
ACI 318-08 Loads 
AASHTO - LRFO Loads 

Figure 5-16 Predicted load without i vs. maximum test load comparisons 
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6.0 SUMMARY and CONCLUSIONS 

6.1 Summary 

Twelve different flanged shallow beam sections were designed and analyzed for 

flexural resistance by applying both the ACI 318-08 and the AASHTO LRFD code 

provisions using hand calculations and analytical software developed by the author. An 

additional five rectangular deep beam sections were analyzed using the method of strut 

and tie models by applying both the ACI 318-08 and AASHTO LRFD code guidelines, 

utilizing Pro/E CAD software, hand calculations and analytical software developed by the 

author. Flexural shallow beam sections were divided into four categories; each category 

represented a geometric feature to be varied; flange width b, flange depth t/, web width 

bw, and the depth of the centroid of reinforcement dt. Factored moment capacity M,„ for 

each section was calculated for reinforcing steel amounts that were increased by 

increments of 0.50 square inches. The deep beam sections investigated were identical, 

apart from the inclusion and location of a 12in. x 12in. opening. Maximum load capacity 

was predicted for a concentrated load located at the center on the top face of the beam. 

Differences found between the code provisions included but were not limited to 

the method prescribed for finding the allowable limits of reinforcement or the method 

used for determining the location of the neutral axis. Many other differences existed but 

would only be noticed if prestressed reinforcement was incorporated into the design; this 

fell beyond the scope of this study. The methods employed to reach solutions for both 
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sets of problems could vary greatly between the two codes however there were no 

significant differences in the end results derived from using either set of provisions. 

6.2 Conclusion 

6.2.1 Asmin and Asmax for Flexure 

Web width bw, had the greatest impact upon the minimum allowable 

reinforcement for a given section; whereas the minimum allowable reinforcement Asmin, 

and the flange depth t/, had the greatest influence upon the maximum allowable 

reinforcement Asmax for a section. 

6.2.2 As versus Mu for Flexure 

Web width bw, had the greatest effect on a given section's moment capacity 

regardless of what code was utilized. Significant differences were encountered between 

the ACI 318-08 and AASHTO LRFD provisions when analyzing or designing sections 

for moment capacity in regards to the method prescribed for finding the allowable limits 

of reinforcement. In spite of these differences the results obtained from both codes for all 

cases analyzed within this paper were always within 1.4% of each other. 

6.2.3 Depth of Neutral Axis c for Flexure 

The method for calculating the depth of the neutral axis c, was the most 

noticeable difference between the ACI 318-08 and AASHTO LRFD code provisions. 

However the results calculated for sections from either code discussed in this paper were 
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never more than 9% apart. This was attributed to the fact that only non-prestressed, plain 

reinforced sections were analyzed. Results using non-reinforced sections were never 

considered for this thesis. 

6.2.4 Strength Reduction Factor $ for Flexure 

Due to the limits of reinforcement placed each section by both codes, the strength 

reduction factor, <f>, was always equal to 0.9 and therefore <j) did not have a differing affect 

on the results obtained from either code. 

6.2.5 Maximum Load Capacityfor STM 

Maximum predicted load capacity for any of the beam series studied was always 

greater when analyzed using the ACI 318-08 Appendix A STM method provisions than 

when using the AASHTO LRFD provisions. These differences in maximum predicted 

load capacity ranged from 4.57% to 7.00%. Inherent differences in member effectiveness 

factors and the strength reduction factors were the source of this variance. 
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Appendix C - STM Truss Free Body Diagrams & Solutions 

Deep beam series 1 free body diagram and solution 

34.0 

Truss Element 
1 
2 
3 

Element Force 
0.566 C 
0.464 T 
0.566 C 

^ + IMA =0=>RB* 36m.-1 = 0 
RR= 0.500 

t +IFr = 0 => RA + 0.500 - 1 = 0 

RA =0.500 

9a 

a JL 

0.500 

F2 

34 
0= tan"1 — =>0 =62.10° 

18 
t +2Fr = 0 => 0.500 - Fx sin 62.10° = 0 

Fl = 0.566 
-> +SFX = 0 => F2 -0.566 cos 62.10° = 0 

F2 = 0.468 

From symmetry Ft = F3.". F3 = 0.566 



Deep beam series 2 free body diagram and solution 

24.0 

33.14 

0.0 10.0 18.0 26.0 36.0 

£+2MA = 0 => RB*36in.-l = 0 

RB= 0.500 

t+LF r = 0 => ̂  +0.500-1 = 0 
RA = 0.500 

Truss Element 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Element Force 
0.800 C 
0.625 T 
0.800 C 
0.500 C 
0.664 C 
0.664 C 
0.500 C 
0.625 C 
0.437 T 



6 = tan"1 — z*9 =38.66° 
10 

t+SF r = 0=> 0.500-F, sin 38.66° = 0 
Fx = 0.800 

-> +EFX = 0 => F2 -0.800cos38.66° = 0 
F2 = 0.625 

t +SF7 = 0 => 0.800sin38.66°- F7 = 0 

F1 = 0.500 

-> +1LFX = 0 => 0.800 cos 38.66° - F8 = 0 

FQ = 0.625 

0, = tan-1 — =>0f =48.81° 7 8.0 f 

t +2Fr = 0=> 0.500 -F6 sin 48.81° = 0 

F6 = 0.664 

-> +HFX = 0 => F9 -0.664 cos 48.81° = 0 

F9 = 0.437 

From symmetry F, = F3, F4 = F1 & F5 = F6 



Deep beam series 3 free body diagram and solution 

32.86 

Truss 
Element 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Element 
Force 

0.627 C 
0.378 T 
0.627 C 
0.500 C 
0.710 C 
0.710 C 
0.500 C 
0.378 C 
0.504 T 

RA 

•0.0 

RB 

0.0 3.02 18.0 32.98 36.0 

^ + TMA = 0 => RB * 36m. - 1 * 18w. = 0 

RB = 0.500 

t +ZFY = 0 => RA + 0.500 -1 = 0 
^ = 0 . 5 0 0 



F8 

6n = tan-1 — =>0a- 52.95° 
3.02 

t +ZFr = 0 => 0.500 - F sin 52.95° = 0 Y 

Fx = 0.627 

-» +SFX = 0 =̂> F2 - 0.627cos52.95° = 0 

F2 = 0.378 

t +EFr = 0 => 0.627 sin 52.95° - Fn = 0 

F7 - 0.500 

->+EFx = 0^0.627 cos 52.95° - F 8 = 0 

Fa = 0.378 

ef = tan-1 ^ ^ =* 0, = 44.77° f 14.98 r 

t +Siv = 0 => 0.500 - F6 sin 44.77° = 0 

F6= 0.710 

-» +EFX = 0 => F9 -0.710cos44.77° = 0 

Fg = 0.504 

From symmetry Fl = F3, F4 = F1 & F5 = F6 



Deep beam series 4 free body diagram and solution 

124 

32.77 

27.85 

12.0 

Truss 
Element 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Element 
Force 

0.651 C 
0.417 T 
0.651 C 
0.500 C 
0.954 C 
0.954 C 
0.500 C 
0.417 C 
0.813 T 

26.0 36.0 

^ + T,MA =0=>RB* 36m.-1 = 0 

RB = 0.500 

t +ZFr = 0 => ̂  + 0.500-1 = 0 
RA = 0.500 



0= tan-1 — =$0= 50.19° 
10 

t +EF r=0=> 0.500- F, sin 50.19° = 0 

F, =0.651 
->+LFy = 0 ^ F 2 - 0 . 6 5 lcos50.19° = 0 

F2= 0.417 

t+SF r =0^0.651s in50.19°-F 7 =0 

F7 = 0.500 

->+EFA.=0=>0.651cos50.19°-Fg=0 

F, =0.417 

, 4 92 
0t= tan-1 - ^ = > 0 , =31.59° 7 8.0 7 

t +SFK = 0 z=> 0.500 - F6 sin 31.59° = 0 

F6 = 0.954 

-> +SFX = 0 => F9 - 0.954 cos 31.59° = 0 

F9 = 0.813 

From symmetry Ft = F3, F4 = F7 & F5 = F6 



Deep beam series 5 free body diagram and solution 

Truss 
Element 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Element 
Force 

0.640 C 
0.399 T 
0.640 C 
0.500 C 
0.831 C 
0.831 C 
0.500 C 
0.399 C 
0.664 T 

18.0 29.81 36.0 

^ + ZMA = 0=>RB* 36/n.-1 = 0 

RB = 0.500 

t + S F r =0=>RA +0.500-1 = 0 
R, = 0.500 



e = tan"1 — ^0= 51.42° 
6.19 

t+SF r =0=>.500-F,sin51.42° = 0 
F, = 0.640 

-> +EFy = 0 => F2 - 0.640 cos 51.42° = 0 
F2 = 0.399 

f +SFr = 0 => 0.640 sin 51.42° - F7 = 0 

F7 = 0.500 

-> +IF , = 0 => 0.640 cos 51.42° - Fg = 0 

Fa = 0.399 

o on 
0, = tan"1 - ^ - => 0, = 36.97° f 11.81 y 

t +ZFr = 0 => 0.500 - F6 sin 36.97° = 0 

F6 =0.831 

-> +1FX = 0 => F9 - 0.831 cos 36.97° = 0 

F9 = 0.664 

From symmetry F, = F3,F4 = F7 & F5 = F6 
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