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ABSTRACT 

Code generation is a vast topic and has been discussed and implemented for quite a while 

now. It has been also been a topic of debate as to what is an ideal code generator and how 

an ideal code generator can be created. The biggest challenge while creating a code 

generator is to maintain a balance between the amount of freedom given to the user and 

the restrictions imposed on the code generated. These two seemed to be very conflicting 

requirements while designing the Automated RTL Code Generator. If the code generator 

tries to be rigid and sticks to well-defined paths and restricted code, the flexibility 

provided to the also reduces. It is a very interesting task to strike the right amount of 

balance and generate code of high quality and well-defined standards. Verilog code is a 

type of RTL (Register Transfer Level) that itself has fewer constructs and variety as 

compared to pure software languages like Java, or Python so it makes sense to generate it 

automatically so that the hardware designers are relieved from the mundane tasks of 

writing repetitive verilog code modules. Also code generator provides a nice introduction 

to the much wider topic of compiler design. This project also tries to delve deeper into the 

latest IPXACT  XML standard IEEE 1865-2009 which is used for hardware description 

and will provide means of generating verilog code directly from it. 
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1. Introduction: 

Designing microprocessors involves circuits whose building blocks are registers and other data path 

components. It involves transferring data from registers through other data path components like adders 

and back to registers. Such design is thus called register transfer level design. Today most practice is at 

the Register Transfer Level. Improving tools continue to move design practice to higher levels. Higher 

levels deal with fewer and higher complexity building blocks, and thus can enable design of higher-

complexity circuits with less time and effort. The Automated RTL generator is one such tool that aims to 

move the RTL design practice to a higher level by generating RTL (Verilog) code directly from an 

IPXACT xml file. The tool would take as input an IPXACT xml file and generate Verilog code (RTL) 

from it.  This way it eliminates the need to manually write the code after analyzing at an IPXACT file.   

2. IP XACT : 

2.1 Introduction to IPXACT: 

IPXACT is a simple XML file that adheres to standards set by the SPIRIT consortium. It describes in an 

understandable way, hardware components and the hardware designs. IP- XACT was created by the 

SPIRIT Consortium as a standard to enable automated configuration and integration through tools. 

The goals of the standard are[1]: 

• to help different vendors to share description of their hardware components 

• to aid exchange of intricate and large design modules between electronic design automation 

(EDA) designer for System on Chip design environments, 

• to enable description of configurable modules using meta-data 

• to facilitate creation of EDA tools that are not specific to a vendor, but can still generate components 
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Approved as IEEE 1685-2009 on December 9, 2009 published on February 18, 2010. this will be the 

standard input for the RTL generator. 

2.2 IPXACT Background: 

The IPXACT Schema technical committee was formed by Accellera in July of 2010. The standard was 

first established in 2003 by the SPIRIT consortium. After the initial version various changes were made 

to the standard. Each incremental change was aimed to accommodate various features of intellectual 

property (IP), that would be captured by the standard and realized into designs. Various features that the 

standard tries to include are the description of bit-fields, registers, modules, input output wires etc. 

IPXACT was submitted to the IEEE-SA and received industry approval in June 2009. The approval was 

given by way of ballot. 

It became available in June 2010 as the IEEE 1685 IPXACT standard. IEEE 1685 was developed within 

the IEEE Standards Association Corporate Program in which each participating member entity (such as 

corporations or other institutions) has one vote.  

The IPXACT forms that are standardized include: components, systems, bus interfaces and connections, 

abstractions of those buses, and details of the components including address maps, register and field 

descriptions, and file set descriptions for use in automating design, verification, documentation, and use 

flows for electronic systems. The XML schema finalized for IEEE 1685-2009 conforms to the 

requirements described by the World Wide Consortium (W3C) and addition to them imposes its own 

semantic rules[1]. 
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2.3 Understanding IPXACT: 

IPXACT is a simple XML document that contains a description of  electronic components and their 

design. It contains like every other XML document, set of tags their attributes and information  contained 

within  those tags. These tags should represent correctly a component that is synthesizable, for example 

consider a register that has been described using the IPXACT format (Fig 1). 

 

 

 

The above diagram shows how one of the components of the IPXACT (xml) document represents a 

component of the hardware (in this case a simple register along with its bit-fields).   

 
 
 
 
 
 

Fig 1 
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2.4 Components of IPXACT  XML document: 

There are 7 top level components of an IPXACT XML document[2]. 

1. busDefinition 

2. abstractDefinition 

3. componentDescription 

4. designDescription 

5. abstractorDescription 

6. generatorchainDescription 

7. designConfiguration 

 

These will be the top level tags in any IPXACT XML document. Each of these components have sub-

components in the form of XML tags. These tags have further sub-components and so on. This leads 

to a complex hierarchy of XML tags in an IPXACT document. 
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3. XML parser creation: 

XML is gaining a lot of popularity among enterprises as it provides a standard for exchange of 

information among heterogeneous platforms. Any application using XML as a source of information 

(IPXACT in this case) requires XML parsing that provides an interface for the user to access its content 

(then generate RTL from the content in this case). There are two major challenges when designing an 

XML parser: 

− Code Size 

The code size should be constrained as there may be memory limitations 

− Run time adaptability 

Parsers should be adaptable as diverse applications may be dependent on the XML syntax set. 

  

Parsing can be done through two distinct approaches[5]: 

− Event based parser (Eg. SAX) 

− Object-based parser (Eg. DOM) 

 

The below section takes a closer look at both  the types of parsers. It also explains what approach was 

chosen for the automated RTL generator and the reasons for the same. 
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3.1 Event-based XML Parsers (SAX Parser): 

 

− They do not build internal trees to store parsed data[5]  

− At no point of time is the entire xml data stored in the memory at once 

− Implements event-handling handlers that deal with different events much like a graphical user 

interface (GUI events). 

− Provides a more finer access to the XML elements 

− Since does not store the entire XML data , parsing of very large documents is possible 

− The SAX parser is an example of an Event-based parser 

− Consider finding a single term in a large XML document. It would not be efficient to store the 

entire XML data in memory just to locate a single piece of information. 

− Such a task would be done more effectively using an event-based parser by locating the 

information using a single pass over small part of the data. 

 
XML 

Document 

 
Event-Based 

PARSER 

 
 
 
 

Content Handler 

startDocument 
 
startElement 
 
characters 
 
endElement 
 
endDocument 
 

Fig 2 
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3.2 Object-Based XML Parsers (DOM parser) 

 

 

− Models the XML document as a tree of various nodes 

− DOM parsers create a node object for each element of the XML, thus precisely models the 

structure and information of the XML document. 

− Provides random access to the XML document 

− Since it stores the entire document in memory its very inefficient for enterprise-wide 

applications[5] 

− The time required for parsing a large is long and the application has to wait until the entire 

document is processed. 

 

 

 

 
XML 

Document 

 
Object-Based 

PARSER 

Fig 3 
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3.3 Approach adopted for Parsing IPXACT: Object-Based XML Parsers (DOM 

parser) 

− Parsing an IPXACT file should yield all the information that is required to generate Verilog code 

that correctly describes the hardware specified in the XML. 

− The DOM parser stores the entire XML information in a single object. 

− This comes in very handy when generating the Verilog code because all the information that could 

possible used to generate the code is available at all times in the DOM object. 

− Object based parsing thus seems more suitable to build auxiliary data structures that can be used 

for complicated processing to produce RTL. 

− The python API used here is the python “minidom” API. 

− The “minidom” API is a minimalistic version of the more complicated DOM API. 

− It provides all the basic functionality that is required to parse an IPXACT document. 

− There are some limitations when using the minidom API: 

o It is memory and CPU intensive 

o The size of the document that can be parsed is restricted 

− Even then the flexibility provided by this object model is very convenient. Hence this approach 

has been choosing for the parsing part. 
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4. Traditional design process without RTL Generation without 

using IPXACT: 

Traditionally, in the SoC design process, different engineers working on a single chip would have to work 

on the specifications given to them and create design in their own format. For different modules the 

engineers would come up with their own RTL  for their own module. As the chips become complex there 

are two major concerns for facing the engineers: 

− Standardized way of generating design 

− Writing lengthy RTL 

 

 

 
 
 

Component Module 1 
Design description 
standard s1 

Component 2 
Design description 
standard s2 

Component n 
Design description 
standard  sn 

RTL for 
Component 1  

RTL for 
Component 2  

RTL for 
Component n 

Final RTL for  
Entire Chip  
 

Fig 4 
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4.1 IPXACT for intra-organization design sharing: 

 

 

 

− Designers working on different components with a company may use different standards for 

designing their component.  

− If there is a need to exchange component design description among designers working on different 

components in such a case, it becomes difficult as other designers might not be well versed with 

the design description standards of other teams. 

− IP XACT is a very good solution in such a case, as designers can just use IPXACT as their 

standard of design description. Since an XML file is easy to create, edit and visualize it is not a 

time or effort consuming task to create an IPXACT description of a component. 

 
 

DESIGNER - A 

Component Module A 
Design description in 
IPXACT 

 
 

DESIGNER - B 

Component Module B 
Design description in 
IPXACT 

Share entire design with other 
designers in IPXACT 

Fig 5 
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4.2 IPXACT for inter-organization design sharing: 

 

 

− Different vendors can use IPXACT to exchange design descriptions using the IPXACT standard 

− Currently each vendor uses their own design description standard which makes it difficult to share 

designs with their clients or other vendors. 

− This requires use to special applications that can understand design description coming in from 

other vendors 

− IPXACT can be used in the same way as it can be used within an organization, but in case of 

sharing it with other vendors only those components which are NOT confidential can be easily 

using IPXACT. 

− Since XML is a very easy format, non-confidential components can be easily identified and only 

those can be shared with external entities. 

Non-confidential 
components 
only 

 
 
ORGANIZATION - A 

Component Module A 
Design description in 
IPXACT 

 
 
ORGANIZATION - B 

Component Module B 
Design description in 
IPXACT 

Share only selected designs with other 
designers in IPXACT 

Fig 6 
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5. Automatic Code Generation Process: 

5.1 Automatic code generation: 

Automated code generation simply refers to “writing code that writes code”. The input for an automatic 

code generator can be any high level model or design that is easy enough to create. The input model just 

needs capture the requirements of the output that the user intends to generate. The basic purpose of any 

automatic code generator is to make the software development faster and more accurate.  

5.2 Similarity to Language Compilers: 

Compilers take computer programs as inputs and generate code that can be executed by the hardware. It 

provides the users with the luxury of writing of computer programs in high-level languages that are more 

suited to a human computer programmer. Automated code generators work on the same principle but at a 

higher level of abstraction. Like compilers they interpret a document or a piece of code written in a user-

friendly way and output computer programs that are accurate, well-formed and would have otherwise 

taken a longer time if written manually. The different phases of a compiler are the Lexical Analysis, 

Syntax Analysis, Semantic Analysis, Intermediate Analysis, Machine Code Generation and Assembly 

and Linking. Any automatic code generator will have to go through similar steps though not necessarily 

all of the above[4]. 

5.3 Automatic code generation from XML: 

XML documents can be ideal inputs for automatic code generators such as the RTL generator. The 

reasons for that are as follows: 

− XML structure is simple and easy to understand. 

− Every tag has an associated meaning  

− Parsing an XML is relatively fast 
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− The structure of XML facilitates creation of Syntax Trees 

5.4 Phases of Automatic code generation: 

The figure below (Fig 7) represents the general architecture of any automated code generator. 

 

 

 

 
INPUT 
FILE 

 
PARSER 

 
ABSTRACT 

SYNTAX TREE 
INPUT 

 
TRANSFORM  
SELECTION 

 
ABSTRACT 

SYNTAX TREE  
OUTPUT 

 
WRITER 

 
OUTPUT 

FILE 

Fig 7 
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The phases of an automated code generator are[3]: 

− Parsing 

o The input file is parsed by the parser token by token. 

o It creates an input syntax tree using the tokens 

o It checks whether the input file is syntactically correct 

o Parsing can be either tree-based or event-based. 

o Tree based parsing constructs the entire tree for the parsed document which is then used 

for further processing. 

o Event-driven parsers process any recognizable construct as soon as it is encountered. 

o The parse-tree is an in-memory entity that holds the information of the input file in a data-

structure. 

o The parse-tree is absolutely vital as it is the data-structure on which all the further 

processing takes place. 

− Transformation and Selection 

o This phase converts the input parse tree into some other form for instance optimization. 

o Selection is browsing the parse tree and actually generating the code based on the 

information from the tree. 

− Writer 

o The writer interprets the output syntax-tree to produce the final code. 

o The writer is the reverse of the parser in the sense that it generates code from the tree. 
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7. Automatic RTL Generator: 

 
 

 

 

 

 

 

7.1 Need for automated RTL Generation: 

Most of the processors designed today are complicated and involve huge intricate logic design.  

Designers would therefore, like to focus in the logic than worry about writing the code to implement the 

design. IPXACT is a recognized standard (IEEE  1685-2009) which basically is an XML-schema for 

documenting the Intellectual Property (IP).  Designers can document their design in IPXACT format, 

without worrying about writing the code and implementation details. 

The RTL generator will parse this IPXACT document and generate Verilog code after interpreting the 

document. This would save the designers a lot of time and effort involved in writing the Verilog code. 

It would also ensure that the code generated is error-free and follows certain set of standards. The need 

for an automated RTL generator from IPXACT thus arises from the requirement that the designer be 

focused only on the design (XML). 

Figure above represents a high-level view of what the RTL generator is all about. 

 
IP XACT (.xml) 

 
Automated RTL 

Generator 
(Python) 

 
Verilog file (.v)   

Fig 8 
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7.2 Phases of Automatic code generation as they apply to the RTL 

Generator: 

The Automated RTL generator is similar to the one discussed in the previous section in its architecture 

and does through similar phases (Fig 9). 

 

 
IPXACT 

FILE 

 
ipx_parser.py 

 
PARSED XML TREE 

 
IPXact_Class.py 

Python Classes 

 
rtl_writer.py 

 
Verilog file 

Fig 9 
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7.3 RTL Generator Modules: 

The RTL generator is the main python module that will create the verilog file.  The RTL generator will 

parse the IP XACT xml file and consolidates all the information from it. Depending upon the information 

in the IP XACT description file, corresponding details are extracted and stored in the IPXact Class.The 

RTL generator will follow a model view controller (MVC) model to separate the functionalities. 

Model – Will be the storage for the RTL Module. 

View – Will be the verilog code that will be generated. 

Controller – Will be the parser that controls how the IP XACT is parsed 

The model and view do not interact directly with each other. They can interact with each other only  

through the controller. This ensures that any changes to the view do not affect the model and vice-versa. 

 

 

          

 

 

VIEW 
 

rtl_generate.py 

MODEL 
 

IPXact_Class.py 

CONTROLLER 
 

ipx_mod.py 

Fig 10 
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The above figure represents the model view architecture of the RTL generator.  

The RTL generator will comprise of the following 3 python modules: 

− ipx_mod.py 

− IPXact_Class.py  

− rtl_generate.py 

 
 

7.3.1 ipx_mod.py : 

This is the module that would parse the IPXACT file and interpret the design specified in the file. It will 

then create an instance of the 'IPXact' class and instantiate it with information extracted from the 

IPXACT file. It also instantiates the RTLWriter class which is responsible for writing the code. It will 

also perform housekeeping activities that will generate details that will be used in the final verilog code.  

It is the link connecting the ‘View’ and the ‘Model’ and acts as the ‘Controller’ in the overall architecture 

of the system. 

 
IPXactMod = getIpxactData(sys.argv[1]) 
Writer = RTLWriter(IPXactMod) 
Writer.writeVerilog() 
Writer.genVerilog() 
 
 
The above snippet shows how the ipx_mod.py program instantiates the IPXact Class and then passes it to 

an instance fo the RTLWriter class. It takes care of the fact that there is no direct interaction between the 

writer and the model. 
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7.3.2 IPXact_Class.py: 

This module contains a class that stores the module description. This class will act like the repository of 

the information parsed from the  IPXACT file. As mentioned above it will be instantiated in 

rtl_generate.py. 

All the information from the IPXACT file is stored in the IPXact class. There are 7 main classes 

representing the 7 top-level components in the IPXACT file. The information from each of these 

components in stored in their respective classes. The structure of the class looks as below: 

 

class IPXact: 
           def __init__(self): 
                     self.bd = busDefinition() 
                     self.adn = abstractDefinition() 
                     self.cd = componentDescription() 
                     self.dd = designDescription() 
                     self.adr = abstractorDescriptor() 
                     self.gc = generatorChainDescription() 
                     self.dc = designConfigurationDescription() 
 

7.3.3 rtl_writer.py 

This is the module that performs formatting and writing of the verilog code. This instantiates a class of 

type 'RTLWriter' that takes as input an object of type ‘IPXact’ that has already been instantiated by 

rtl_parse. This class has the intelligence to browse through the ‘IPXact’ class and identify what code 

needs to be generated. Despite its intelligence, it is entirely dependent on the ‘IPXact’ class, if this class is 

not generated correctly the Verilog code generated will not be accurate. 
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7.4 RTL Generator Architecture (detailed): 

7.4.1 Parsing – Creation of State Trees: 

As mentioned earlier the parser is a a tree-based parser. The parsing tree is built in the form of a python 

class – IPXact_Class. Every sub-tree is a sub-class of the IPXact_Class. The seven top-level components 

will be direct subclasses of the IPXact_Class. 

This high-level syntax tree can be represented as follows: 

 

Each sub-tree in the above diagram has its own syntax sub-tree. 

 For instance consider the  syntax-tree for busDefinition (Fig 12): 

 

 

 
IPXact 

abstractionDefinition 

componentDescription 

 
busDefinition designConfiguration 

generatorChainDescription 

abstractorDescription 
 

designDescription 

Fig 11 
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o Each sub-component is a syntax-tree in itself 

o These syntax- trees could be single-nodes (leaf nodes) or they could be complex trees with sub-

syntax-trees 

o The leaf nodes carry information from the IPXact document 

o This information is what gets finally transferred to the verilog code 

 

 
 
 
 

 
busDefinition 

directConnection 

isAddressable 

 
versionIdentifier 

vendorExtensions 

groupNames 

maxSlaves 
 

maxMasters 

Fig 12 
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7.4.3 Overview of syntax-trees generated for IPXACT documents: 

Consider an IPXact XML document with all of its elements. The state tree created by such a document is 

so huge that it cannot be drawn diagrammatically. Below are some interesting statistics about the 

abstract-syntax trees for the top-level IPXACT components: 

 

Top Level Component Total 
Nodes Max Depth 

Bus Definition 11 2 

Abstraction Definition 112 7 

Component Description 235 9 

Design Description 36 3 

Abstractor Description 36 3 

Generator Chain 
Description 22 3 

Design Configuration 
Description 24 3 
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7.4.4 Comparison of syntax-trees generated for IPXACT documents: 

 
 

• X-axis represents various top-level components as the following tuple - (Max Node, Max Depth) 

• Y-axis represents the values for the tuples on the X-axis: 

 Blue = Max Nodes 

 Orange = Max depth 

• As can be observed from the graph, most of the information is stored in the syntax trees for the 

Abstraction and Component definition components 

• Component Description contains the maximum information and hence is way above all other top-

level components in terms of the depth of the syntax-tree and the total number of nodes in the tree. 

 

Fig 13 
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7.4.5 Parsing the state trees using Finite State Machines (FSM): 

To generate code based on the syntax trees generated, finite state machines (FSMs) are used.  In this case 

the functional view of Finite State Machines is being considered. Each state of the machine is identified 

with a function. Consider the finite state machine of the highest level state-tree (Fig 14) for the seven top-

level components. 

 

 

 

 

− The red nodes represent states of the FSM in which the presence of the top level component is 

checked.  

− The black nodes represent the processing of the corresponding top level component. 

− The blue nodes H and I represent the start and end states respectively. 

Fig 14 
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− From the start state the machine transitions to each of the red state to check the presence of that 

component if its present (represented by 1) it transitions to the state corresponding to the state in 

which processing of the component is done.  

− If the component is not present the machine transitions to the next red node that is state to check 

the presence of the next top-level component. 

− From the black node the machine always transitions to the next red node to check if that 

component is present, except in the last case  

 

The FSM explained above is one of the numerous FSMs that are used to generated the verilog code 

from the state trees that are generated after the parsing phase. The collated output of all the FSM’s is 

the final verilog code. 
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7.4.6 Writing the verilog file based on the FSM outputs: 

The writer makes use of the FSM to generate the verilog code. Each state that the FSM transitions to has 

the task of generating its piece of code that goes into the final verilog file. 

 

For example, if the finite state machine transitions to the port generating state, the writer will generate the 

verilog code for various inputs and outputs for that port. 

 

 
 
 
When all the FSM reach their final state after going through various cycles, the final verilog file is 

generated. Any FSM when implemented in code and in its simplest form will be a set of “if …else” 

statements. Consider the figure above, the port generation state is a FSM in itself, it works as follows: 

 

• Is the port wire or transactional port? 

o If “wire”, process wire port 

o If “transactional” process transactional port 

Random 
Previous 
State X 

Port 
generation 

State 

……… 
………. 
………. 
input rd_cs ; 
input rd_en ; 
input [DATA_WIDTH-1:0] 
data_in ; 
output full ; 
output [DATA_WIDTH-1:0] 
data_out ; 
…………… 

Fig 15 
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• If “processing wire port” 

o Loop through all ports 

 If “input” port , write “input” to file along with port details 

 If “output” port , write “output” to file along with port details 

 

• If “processing transactional port” 

o Loop through all ports 

 If “input” port , write “input” to file along with port details 

 If “output” port , write “output” to file along with port details 

 

• Check “End of portlist” 

o If “End of portlist” 

 Move to processing of next component in the AST 

o If “Not end of portlist” 

 Go Back to processing port state 

 

The finite state machine explained above would output all the ports that have been collected from the 

IPXact then stored in the state trees. The source of all data for the FSMs are the state trees and state trees 

only. 
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8. Test Plan and Results: 

The RTL generator was tested by running it with a number of IPXACT files and creating Verilog files. 

The generated Verilog files were simulated and ran using test benches. The goal was to ensure that the 

code generated was synthesizable and accurate. 

8.1 Generation of Verilog code for a FIFO Module: 

Using an IPXact version of a basic First In First Out (FIFO) module. The Verilog code for the FIFO 

module was generated using the Automated RTL Generator (ARG). 

 

The FIFO module can be described using the below diagram (Fig 16): 

 

 

 

 

 
 
 
 
 
FIFO BLOCK 

Clock 

Reset 

Data In Data Out 

Full 

Empty 

Fig 16 
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The FIFO Block in the diagram has 3 input signals: 

− Clock – The FIFO block will function based on this clock signal 

− Reset – Used to reset the FIFO 

− Data In – Input data to the FIFO queue,8 bits [7:0] 

 

The FIFO block has 3 output signals: 

− Full – Signals if the FIFO is full 

− Empty – Signals if the FIFO is empty 

− Data Out – Output data from the FIFO queue, 8 bits [7:0] 

 

All the above information is represented in an IPXact (IEEE 1685-2009) standard XML file. The name of 

the input file used is “fifo.xml”. For a complete description of the file. Please refer the appendix. 

 

The verilog file generated after execution of the ARG program is “fifo.v”. Refer the appendix for the 

complete verilog file. Once the verilog file is generated it is tested using a test bench written for the file. 

The various test conditions that the test-bench verifies are as follows: 

− Adding data to the FIFO  

− Popping data from the FIFO 

− Check for FIFO being full 

− Check for FIFO being almost full 

− Check for FIFO being empty 

 

All the above conditions were tested with positive results. 
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The details of the test process are as follows: 

 

The ARG is run as follows: 

$python ipx_mod <IPXact xml file name>  

 

Example:  

$python ipx_mod fifo.xml 

This creates the verilog file fifo.v. This file was run using the test bench file fifo_tb.v .  The open source 

“icarus” tool was used for the same. Refer appendix for the complete test bench 

 

$iverilog fifo_tb.v fifo.v 

The above command generates the ‘a.out’ file. This file is the executable file which when executed 

generates the results. 

 

It is executed as follows: 

$./a.out 

The execution of the command also leads to creation of the  
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Below is a screen shot (Fig 17) of the execution of test bench for the generated verilog. It also shows that 

a waveform file “fifo_waveform.vcd” is generated.  

 

 

 

 

The open-source tool “gtk” was used to view the waveforms. The gtk tool is used as, 

$gtk fifo_waveform.vcd 

 

The above command when executed opens the gtk GUI, which shows the waveforms generated as a 

result of the tests conducted by the test bench. The GUI graphically demonstrates the different results that 

the verilog file fifo.v would produce from the inputs received from the test bench file fifo_tb.v 

 

 

 

 

Fig 17 
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The waveform for the FIFO was as shown below (Fig 18): 

 

 

 

 

Observations in the waveforms: 

− The first signal is the clock signal. Everything happens on the negative edge of the closk. 

− The second waveform which is the reset signal, when high, causes the push signal to go low. It 

means the FIFO is reset and no data is pushed into the queue. 

− The third waveform is the push signal, when it is high data gets pushed into the FIFO queue. This 

can be seen in the fourth waveform which is the data_in signal 

− The fifth signal is the full signal, it goes high when the queue reaches its maximum size. 

Fig 18 
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− The sixth waveform is the data_out signal it is high for 10 cycles and goes low when the queue is 

empty. It is at this time that the empty signal which is the seventh waveform, goes high. 

− The seven waveforms are thus in accordance with the all the test cases that the test bench intended 

to test. 

− This verifies the fifo code generated and also the test bench written for the same. 
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9. Existing tools for RTL generation from IPXACT  

IPXACT is a new standard and  is not yet a house-hold name in the world of hardware design. There are 

not many tools available for IPXACT pre and post-processing. Based on the research below are a few 

IPXACT processing tools.  Two notable software tools are the  

o Agnisys : IDesignSpec[6] 

o Magillem Register View[7] 

 

Their features , including strengths and weaknesses are also mentioned below. 

 

9.1 Agnisys: IDesignSpecTM[7] 

 

 

 

 

− Allows an IP, chip or system designer to create the register map specification once and 

Fig 19 
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automatically generate all possible views from it. 

− Various outputs are possible such as UVM, OVM, RALF, SystemRDL, IPXACT etc. User 

defined outputs can be created using Tcl or XSLT scripts. 

− It is available as a plug-in for popular editors (MS-WORD, MS- EXCEL, Open Office etc) 

− Works on a register level. 

 

Advantages over this product: 

− Since this only works for registers our tool can be used on a other levels like a chip or a module. 

− Also we could just generate RTL directly from IPXACT 

− This is a link of the demo: 

− http://www.youtube.com/watch?feature=player_embedded&v=3AJlNgnC1Aw 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://www.youtube.com/watch?feature=player_embedded&v=3AJlNgnC1Aw
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9.2 MRV: Magillem Register View[8] 

 

 

 

 

 

 

 

 

− This also works on a register level:  

− Integration of configurable IP register descriptions (containing thousands of registers), delivered 

by multiple different vendors, in a hierarchical system 

− Import and capture register descriptions defined in different formats (CSV, 

− Excel, XML…) into a single database Reduce errors and misalignments using synchronized 

database and comprehensive consistency checks. 

−  Tight link with HW interface definitions and platform connectivity, to generate correct and 

aligned system map definitions for SW development 

− Supports IEEE-1685. 

 
 
 
 

Fig 20 
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10. Conclusions: 

Code generators are really useful when designed correctly. The best use of code generators can be made 

if they are created with certain principles in mind. Below is the list if these principles accompanied by 

how the automated RTL generator tries to incorporate them in its design: 

• Regularity[6] – All rules for generating code must be laid down beforehand and must be followed 

rigorously. The user of the code generator must be assured that if something is done in a way once, 

it will always be done in the same way always. Such consistency ensures the tool is easier to use 

and the learning curve consequently becomes less steeper. 

With respect to the automatic code generator this principle has been incorporated by strictly 

adhering to the IEEE 1685-2009 standard.  

 

• Orthogonality[6] – Othogonality refers to division of responsibilities in the code generator. It 

should be possible to separate different concerns in the code generator. For instance a change in 

the parsing process should not affect the transformation, selection and writing process and vice 

versa. 

The automatic code generator uses the MVC mode described in section 7.3 to separate 

responsibilities. For instance, any modification to the IPXact class does not affect the writer 

 

• Composability[6] – It refers to the ability to perform the same function on different types of 

modules. For example, the function that displays the list of ports should be able to display a list of 

wire ports and also transactional ports. If the above two principles are taken care of, its easier to 

implement the composability principle. 
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11. Future Work: 

11.1 A Faster way to perform the code generation process: 

− IPXact document contains a lot of optional elements and attributes. 

−  These optional elements and attributes do not contribute to the final code, even if they do they are 

mostly cosmetic contributions in the form of comments and additional information. 

− If these elements are not added to the state trees, the size of the state trees is greatly reduced and  

they are created faster. 

− This effect is cascaded into the parsing and writing stages too. 

− Smaller state-trees mean faster parsing and, hence, faster code generation. 

 

  Tree with optional elements                          Tree without optional elements 

 
− The above figure shows two trees the left one is including optional attributes, while the right one 

is without. 

− The right tree is obviously faster to create and then parse. 

− This type of tree clipping is optional and is incorporated by providing an option to the user to clip 

the trees. 

Fig 21 
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11.2 Regression testing using various IPXACT files: 

− The project thus aims to substantially the reduce the work for designers and also improve the 

accuracy of design and lessen design errors. 

− There haven’t been particular efforts directed towards the efficiency of the process yet. 

− Regression testing with different sizes of IPXACT XML files can indicate the performance of the 

application. 

 

11.3 Optimization of Verilog Code: 

− The Verilog generated is not guaranteed to be optimized. 

− Further research needs to be done on ways to generate the most optimized code from the 

application itself. 
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Appendix: 

A.1  Version Control: 

The version control for the code was done using Git. The remote Git folder was then synced with the 
cloud on Dropbox. 

A.2. fifo.v: 

   //FIFO Verilog 
 
  module fifo 
  ( 
 clk, 
 reset, 
 push, 
 pop, 
 data_in, 
 data_out, 
 full, 
 empty 
   ); 
 parameter PTR   = 4; 
 parameter SIZE  = 1 << PTR; 
 parameter WIDTH = 8; 
  
 input    clk; 
 input    reset; 
 input   push; 
 input   pop; 
 input  [(WIDTH-1):0]  data_in; 
 output [(WIDTH-1):0]  data_out; 
 output   full; 
 output   empty; 
 
 reg [(WIDTH-1):0] memory [0:(SIZE-1)]; // Memory of FIFO 
 //reg [7:0] memory [0:15]; // Memory of FIFO 
 reg [(WIDTH-1):0]  data_out;  // Data Output 
 reg [(PTR-1):0] rd_ptr;   // Read Pointer 
 reg [(PTR-1):0] wt_ptr;   // Write Pointer 
 wire   read;   // Flag for valid read 
 wire   write;   // Flag for valid write 
 
 assign full = ((wt_ptr + 1'b1) == rd_ptr); 
 assign empty = (wt_ptr == rd_ptr); 
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 assign read = !empty & pop; 
 assign write = !full & push; 
 
 always @ (posedge clk or posedge reset) 
  if (reset == 1'b1) 
   rd_ptr <= {(PTR){1'b0}}; //concatenation operator 
  else 
   rd_ptr <= (read == 1'b1) ? rd_ptr + 1'b1 : rd_ptr; 
 
 always @ (posedge clk or posedge reset) 
  if (reset == 1'b1) 
   wt_ptr <= {(PTR){1'b0}}; 
  else 
   wt_ptr <= (write == 1'b1) ? wt_ptr + 1'b1 : wt_ptr; 
 
 always @ (posedge clk or posedge reset) 
  if (reset == 1'b1) 
   data_out <= {WIDTH{1'b0}}; 
  else 
   data_out <= (read == 1'b1) ? memory[rd_ptr] : data_out; 
 
 always @ (posedge clk or posedge reset) 
  memory[wt_ptr] <= data_in; 
 
    endmodule 

A.3. fifo_tb.v: 

     // FIFO Testbench 
 
    `timescale 1ns/10ps 
 
     module fifo_tb (); 
 
 parameter PTR   = 4;  // Size of the read and write pointers 
 parameter SIZE  = 1 << PTR; // Depth of the FIFO. 2^(pointer_size) 
 parameter WIDTH = 8;  // Width of the data 
 
 reg    clk;  // Clock signal. 100MHz 
 reg    reset;  // Reset signal. Resets the pointer value to 0 
 reg   push;  // Write enable signal 
 reg   pop;  // Read enable signal 
 reg  [(WIDTH-1):0]  data_in; // Input data 
 wire [(WIDTH-1):0]  data_out; // Output data 
 wire   full;  // Flag to indicate FIFO Full 
 wire   empty;  // Flag to indicate FIFO Empty 
 
 integer   i; 
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 fifo fifo 
 ( 
  .clk  (clk), 
  .reset  (reset), 
  .push  (push), 
  .pop  (pop), 
  .data_in (data_in),  
  .data_out (data_out), 
  .full  (full), 
  .empty  (empty) 
 ); 
  
 // Block to generate Waveform file 
 initial 
 begin 
  $dumpfile("fifo_waveform.vcd"); // System function to create a waveform file (.vcd) 
  $dumpvars(0,fifo_tb);  // Name of the module that is to be plotted on the waveform 
 end 
 
 // Block to create a 100MHz clock 
 initial 
 begin 
  clk = 1'b0;   // Initialize the clock value to 0 
  forever #5 clk = ~clk;  // Keep switching the clock after every 5ns 
 end 
 
 // Actual Test Cases 
 initial 
 begin 
  // Initialize all the signals 
  reset = 1'b0; 
  push = 1'b0; 
  pop = 1'b0; 
  data_in = 0; 
 
  // Apply reset pulse 
  #8  reset = 1; 
  #24 reset = 0; 
 
  // Test to check the FIFO full signal 
  i = 15; 
  repeat (SIZE) 
  begin 
   @ (negedge clk); 
   push = 1'b1; 
   data_in  = i; 
   i = i - 1; 
    end 
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  push = 1'b0; 
  @ (posedge clk) #1; 
  if (full !== 1'b1) 
  begin 
   $display ("FIFO expected to be Full"); 
   $display ("********** ERROR **********"); 
  end 
  else if (full === 1'b1) 
  begin 
   $display ("FIFO FUll when expected"); 
   $display ("FIFO Full test PASSED"); 
  end 
 
  #102 
  
  // Test to check the FIFO Empty signal 
  i = 15; 
  repeat (SIZE) 
  begin 
   @ (negedge clk); 
   pop = 1'b1; 
   @ (posedge clk); 
   #1 
   if (data_out !== i) 
   begin 
    $display ("FIFO Data incorrect"); 
    $display ("********** ERROR **********"); 
   end 
   else if (data_out === i) 
   begin 
    $display ("FIFO Data correct"); 
    $display ("FIFO Memory test PASSED"); 
   end 
   i = i - 1; 
    end 
  pop = 1'b0; 
  @ (posedge clk) #1; 
  if (empty !== 1'b1) 
  begin 
   $display ("FIFO expected to be Empty"); 
   $display ("********** ERROR **********"); 
  end 
  else if (full === 1'b1) 
  begin 
   $display ("FIFO Empty when expected"); 
   $display ("FIFO Empty test PASSED"); 
  end 
 
  #100 $finish; 
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  $display ("Testbench Passed"); 
    end 
 
       endmodule 
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