
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2013

User Profiling in GUI based Windows Systems for
Intrusion Detection
Arshi Agrawal
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Agrawal, Arshi, "User Profiling in GUI based Windows Systems for Intrusion Detection" (2013). Master's Projects. 303.
DOI: https://doi.org/10.31979/etd.7jsu-v3ms
https://scholarworks.sjsu.edu/etd_projects/303

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70408404?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F303&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F303&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F303&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F303&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F303&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/303?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F303&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

User Profiling in GUI based Windows Systems for Intrusion Detection

A Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Arshi Agrawal

May 2013

c© 2013

Arshi Agrawal

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

User Profiling in GUI based Windows Systems for Intrusion Detection

by

Arshi Agrawal

APPROVED FOR THE DEPARTMENTS OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

May 2013

Dr. Mark Stamp Department of Computer Science

Dr. Chris Pollett Department of Computer Science

Dr. Sami Khuri Department of Computer Science

ABSTRACT

User Profiling in GUI based Windows Systems for Intrusion Detection

by Arshi Agrawal

Intrusion detection is the process of identifying any unauthorized access to a sys-

tem. This process inspects user behavior to identify any possible attack or intrusion.

There exists two type of intrusion detection systems (IDSs): signature-based IDS and

anomaly-based IDS.

This project concentrates on anomaly-based intrusion detection technique. This

technique is based on the deviation of intruder’s actions from the authenticated user’s

actions. Much previous research has focused on the deviation of command line input

in UNIX systems. However, these techniques fail to detect attacks on modern GUI-

based systems, where typical user activities include mouse movements and keystrokes.

Our project aims to create a dataset suitable for testing intrusion detection strate-

gies on GUI-based operating systems. We have developed an event logging tool to

capture GUI-based user data on Windows systems. We have collected a large dataset

which we analyze using a intrusion detection strategy based on hidden Markov models

(HMM).

ACKNOWLEDGMENTS

I would like to thank Dr. Mark Stamp for his constant support, guidance and

encouragement provided throughout the project. His patience and thoughtfulness

was one of the biggest supporting factor for me in this project. I would also like

to express my sincere gratitude to my committee members Dr. Chris Pollett and

Dr. Sami Khuri for their valuable time and guidance.

I am grateful to my friends and family for helping me in collecting a large amount

of user data and spending their time and energy in making my project successful.

Finally, I would like to thank my husband Mr. Arun Agrawal for his encouragement

and unending patience throughout my Masters.

v

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

2 Background . 3

2.1 Introduction . 3

2.2 Intrusion Detection . 4

2.3 Hidden Markov Model . 7

2.3.1 Notation . 8

2.3.2 The Three Problems . 9

2.4 ROC Curves . 10

2.4.1 Possible Outcomes . 10

2.4.2 ROC Curve Analysis . 12

2.4.3 Area Under The Curve (AUC) 13

3 Event Logging for GUI-based Systems 14

3.1 Mouse Interaction . 15

3.2 Keyboard Interaction . 16

3.3 Active Applications . 18

3.4 The Event Logger Tool . 19

4 HMM-Based Intrusion Detector 21

4.1 Converting User Files To Dataset 21

4.2 Training HMM With Dataset . 22

4.3 Experimental Setup . 22

vi

vii

4.4 Training HMM With Mouse And Keyboard Data 23

5 Results . 24

5.1 HMM Training With Mouse Logs 24

5.2 HMM Training With Keyboard Logs 29

6 Conclusion and Future Work . 33

APPENDIX

Hooks . 38

A.1 Introduction . 38

A.2 Hook Procedures . 38

LIST OF TABLES

1 HMM Notations dataset . 8

2 Comparison of Command line dataset and GUI-based dataset 15

3 Sample dataset showing the Mouse Interaction 17

4 Sample dataset showing the Keyboard Interaction 18

5 Sample dataset showing the Active Applications 19

6 Combining mouse and keyboard scores, N = 3 32

viii

LIST OF FIGURES

1 Hidden Markov Model . 9

2 Possible outcomes . 11

3 Distribution of results with the possible predictions 12

4 TPR and FPR . 13

5 ROC curve . 13

6 Architecture of anomaly-based intrusion detection based on GUI inter-
actions . 16

7 Log likelihood per observation of user 1 Vs intruders using mouse data,
N = 2 . 25

8 Log likelihood per observation of user 1 Vs intruders using mouse data,
N = 3 . 25

9 ROC curve for user 1, Mouse data, N = 2 27

10 ROC curve for user 1, Mouse data, N = 3 27

11 Log likelihood per observation of user 18 Vs intruders using mouse
data, N = 2 . 28

12 Log likelihood per observation of user 18 Vs intruders using mouse
data, N = 3 . 28

13 ROC curve for user 18, Mouse data, N = 2 29

14 ROC curve for user 18, Mouse data, N = 3 29

15 Log likelihood per observation of user 1 Vs intruders using keyboard
data, N = 2 . 30

16 Log likelihood per observation of user 1 Vs intruders using keyboard
data, N = 3 . 31

17 ROC curve for user 1, Keyboard data, N = 2 31

ix

x

18 ROC curve for user 1, Keyboard data, N = 3 32

CHAPTER 1

Introduction

An intruder is an attacker who impersonates a legitimate user to perform some

illegitimate activity on the user’s computer system. In general, the intrusion detection

systems observes the ongoing activities on the system and compare it with the user’s

normal activities to identify malicious behavior or an intrusion [6].

This project considers intrusion detection techniques based on anomaly-based

intrusion detection [13]. In anomaly based detection systems, a model is generated

based on normal user behavior. This model is then compared with the user activities

during the detection phase, and any deviation is considered to be an anomoly or

a possible attack. In genereal, a threshold value is used to determine the extent

of deviation, based on which an anomaly is considered as a possible attack or an

intrusion.

The intrusion detection technique used in this paper is also based on the deviation

of intruder’s actions from the authentic user’s actions. In order to trace this deviation,

we built user profiles by collecting and processing data from user sessions. This

data was used to train user behavior model, to recognize the deviations from the

normal behavior. The resulting model is then used to detect any malicious activity

or intrusion. The detection mechanism becomes more difficult when the intruder is

able to mimic the legitimate user’s behavior to a large extent. In this paper, we

consider a intrusion detection technique based on hidden Markov models (HMM).

There has been much research in the field of anomaly-based intrusion detection.

Much of the previous research focused on Unix-like systems and relied on command

1

line activities for intrusion detection [6, 13]. However, these techniques are not directly

applicable to modern GUI-based systems, where typical user activities include mouse

movements and keystrokes. Thus, command line data alone cannot efficiently detect

intrusion attacks on such systems [4].

In this paper, we discuss an event logging tool that we developed. This tool

has been used to capture a significant amount of GUI-based user data for Windows

systems. We then analyze the effectiveness of an HMM-based intrusion detection

technique on our collected data.

This paper is organized as follows. Chapter 2 discusses previous research done

on intrusion detection and relevant background information for our research. Chap-

ter 3 considers data capture in a GUI environment and provides details on the data

capturing tool that we have developed. Chapter 4 discusses our HMM-based detec-

tor. In Chapter 5 we give results for the HMM-based detector when applied to data

collected from a GUI environment. Finally, in Chapter 6 we provide our conclusions

and discuss possible directions for future work.

2

CHAPTER 2

Background

The anomaly-based intrusion detection problem has been an area of research in

the field of security for a very long time now. Therefore, it is important to get an

overview of the previous research done in this area.

2.1 Introduction

Consumers and businesses spend billions of dollar every year for implementing

various computer security measures. More and more start-ups, and other companies

are trying to propose new approaches to computer security [21]. Even after the

presence of many advanced security measures, username and password are still the

most common authentication measures used by modern computer systems. These

systems that use such trivial authentication measures are more prone to intrusions,

as such credentials can be easily compromised to an insider. When an insider uses

the compromised but legitimate credentials to gain access to the computer system

of a user, the detection of the attack becomes extremely difficult. Anomaly-based

intrusion attacks are considered to be difficult to detect as unlike signature-based

detection techniques, here there are no known pattern (signature) of the attacks. The

attackers use technically legal and legitimate means to get access to the system [9, 27].

The information used to detect intrusion attacks is contained in the actions of

the intruder. This set of actions, considered as behavior profile of users forms the

basis of intrusion detection system (IDS). IDSs monitor the activities occuring on the

computer system and look for the malicious or unusual activities [5]. Signature-based

detection and anomaly-based detection are the two approaches used by intrusion

3

detection systems.

Signature-based detection systems are useful in identifying known attacks where

the IDS looks for a predetermined pattern that represents an attack. If the system

finds a match in the pattern, it identifies the attack and raises the alarm. However,

this type of detection technique is not useful in detecting unknown attacks. Anomaly-

based detection systems compare the ongoing user activities to the user’s normal

behavior model. Any deviation from the behavior model is considered a possible

attack [13]. To make the distinction between the normal user behavior and the

intruder’s behavior, the detection system collects user data to build user profiles.

This data is then trained for the detection system to understand what is normal and

to identify the malicious behavior.

2.2 Intrusion Detection

Schonlau dataset is considered to be the first important accomplishment on the

problem of intrusion detection. In his paper, Schonlau collected a dataset based

on Unix command line data of 50 users for testing and comparing various intrusion

detection methods [23]. However, as this dataset was based solely on command line

data, it was not useful to represent users working on graphical user interface (GUI)

based operating systems such as Microsoft Windows and Linux. This is due to the

reason that command line data does not capture user’s actions such as mouse or

keyboard activities, which would determine user’s behavior on these systems more

accurately.

Some researchers used Schonlau dataset to detect intrusion attacks using various

techniques [5]. There also exists a lot of research work in the area of masquerade

detection, which is a specific case of anomaly-based intrusion detection [3, 4, 9, 17].

4

Research has been carried to compare the techniques used for intrusion detection [13].

According to the existing research, there are seven general approaches to anomaly-

based intrusion detection (precisely, masquerade detection). These are summarized

as follows [3, 13]:

• Information-theoretic - This approach is based on the theory that commands

issued by the legitimate user will compress more than those issued by the in-

truder. However, this theory failed to give any promising results.

• Text mining - This is a data mining approach where repetitive command se-

quences are extracted from the training data and are used for scoring.

• Hidden Markov model (HMM) - This is the technique used in our paper and is

discussed in detail in the following subsection.

• Naive Bayes - This technique is based on the frequency of commands, and does

not take any sequence in consideration.

• Sequence and bioinformatics - This approach relies completely on extracting

sequence related information.

• Support vector machines (SVM) - This is a machine learning algorithm used

to separate data points by mapping the points in the original space to a high

dimensional space. This mapping to a high dimensional space makes the sepa-

ration easier, and is useful for classification and regression analysis.

• Other approaches - This category comprises of the approaches that do not

fit into any of the above categories. These approaches were used by different

researchers at different intervals of time. For instance, a hybrid Bayes one step

5

Markov approach and a hybrid multi step Markov approach [23]. Also, some

researchers tried to improve the above techniques by combining them [2].

With the advent of GUI-based operating systems, researchers started to argue

about the importance of similar dataset as Schonlau’s dataset, but based on user

actions in GUI-based environment. Different researchers used different approaches to

the common problem of intrusion detection.

There exists research that models user behavior based on mouse movements [11,

12, 22]. Here the authors used the data collection technique in a controlled environ-

ment where users were asked to view same web pages by using Internet Explorer.

However, this approach resulted in a large false positive and negative rates. Simi-

larly, there were algorithms proposed for anomaly-based intrusion detection, based on

the user’s typing patterns [19, 25]. Authors considered characteristics such as typing

speed, accuracy and inter-character delays for proposing this type of algorithm [15].

However, the algorithm required a two-way communication between server and client,

for the validation of the login. This algorithm used a parameter termed criterion fac-

tor and reduced the false positive to a large extent. But the use of another parameter

was not very clear from the paper.

There have also been several efforts of user behavior profiling methods by moni-

toring system calls, analyzing audit logs and program execution traces. These meth-

ods used call stack information for anomaly detection [8].

Although modeling of user behavior based on above criterias was able to detect

intrusion attacks on GUI-based systems to a certain extent, the user profile created

did not completely take all user actions into account. As a next step in this research

area, a framework was proposed for collecting user behavior based on mouse activity,

6

typing speed as well as background processes [9]. The authors used binary classifica-

tion problem for user identification and intrusion detection, and used support vector

machine for learning and classifying user profile parameter sets. The technique was

claimed to have a high detection rate with few false positives. However, the dataset

was not made available to public due to copyright issues.

On the similar research line, researchers extended the work by using other de-

tection techniques in combination with the use of GUI manipulations for the iden-

tification. Researchers used Artificial Neural Networks (ANNs) as a basis for iden-

tification [14], Another framework called USim was also proposed, which generates

user behavior data based on parameters like user intentions, user skill level, set of

applications installed on a machine, mouse movement and keyboard activity [10].

All these research work contributed in providing useful frameworks and tech-

niques for anomaly-based intrusion detection in GUI-based operating systems, and

provided us with their useful research knowledge and findings. However, still the

pace of research work in this area of intrusion detection is seriously hampered due to

the lack of a publicly available dataset that can be trained to find efficient detection

techniques. We aim to solve this problem by providing with such dataset. Also, we

will use Hidden Markov model for identification and intrusion detection.

2.3 Hidden Markov Model

Hidden markov model (HMM) is a machine learning technique that is based on

markov chains. In a machine learning technique, an algorithm is trained with samples

of previous data and this trained data is used to get some feedback for unknown

cases [18]. The data used for training purposes need to be sufficient to get a proper

feedback for different cases.

7

Table 1: HMM Notations dataset

Symbol Description
T length of the observation sequence
N number of states in the model
M number of observation symbols
Q distinct states of the Markov process
V set of possible observations 0, 1,, M-1
X hidden state sequence (X0, X1,, XT−1)
A state transition probability matrix
B observation probability matrix
π initial state distribution
O observation sequence (O0, O1,, OT−1)
λ Hidden markov model, where λ = (A,B,π)

In markov chains the states are visible to the observer, while in hidden markov

model the states are hidden from the observer. HMM is a finite state model, which

has state transition probabilities as well as probability distribution over all possible

output symbols in each state [20]. Each hidden state in HMM has two probabilities

associated to them, the transition probability to another state as well as probability

of being in the same state [7].

HMM is trained using a sequence of observations that is termed as training

data. The chosen sequence of states by the model maximizes the probability of the

observation sequences. After the construction of the model, the unknown or test data

is tested to find the similarity between the test data and training data.

2.3.1 Notation

The HMM model can be understood using the notations shown in Table 1 [26].

In general, a hidden markov model can be represented as in Figure 1. The dashed

8

line in the figure represents the hidden states of markov process, which are known by

the current state and the matrix A. The observation sequence Oi is the only known

sequence to the observer, which is related to the hidden states and the matrix B.

Figure 1: Hidden Markov Model

2.3.2 The Three Problems

HMM can be used to solve three types of problems [26].

Problem 1. Given the model λ = (A,B,π) and obesrvation sequence O, find

P(O—λ). We need to score the observed sequence to see how well it fits into the

model λ.

Problem 2. Given the model λ = (A,B,π) and obesrvation sequence O, find the

optimal hidden state sequence. We need to find the hidden states of the given model.

Problem 3. Given an observation sequence O and number of states in model λ

(N) and number of observable symbols (M), find the model λ= (A,Bπ) that maximizes

the probability of O. We need to train a model for the observed data.

The GUI-based data we collected for this project from a large number of users

is divided into training data and testing data. We choose the data from any one user

(considered as good user) and divide it in two sets. One set of data is used as training

data to train HMM (Problem 3). The second set of good user’s data combined with

9

the data from other users (considered as intrusionrs) is used as the testing data. The

HMM is then used to score testing data (Problem 1). A higher score indicates similar

characteristics between training data and testing data, and a lower score indicates

distnction between the two types of data. Thus, we can seperate the intrusionr’s data

from the good user’s data.

2.4 ROC Curves

Receiver operating characteristic (ROC) curve is a graphical plot that represents

the trade off between true positive rate and false positive rate for every possible

cut off. ROC curves ares used to show the performance of a binary classification

problem where there are two types of outcomes, namely positive and negative [18].

To understand the concept of ROC curve better, let us first understand the possible

outcomes of the binary classification problem.

2.4.1 Possible Outcomes

As discussed above, there are two possible outcomes of a binary classification

problem, either positive (p) or negative (n). Based on these outputs and their pre-

dictions, there can be four combination of the outcomes of the problem, as described

in Figure 2 [28].

1. True positive (TP) - In case of both the prediction as well as the actual outcome

being positive, the outcome is called true positive.

2. False positive (FP) - When the predicted outcome is positive and the actual

outcome is negative, then it is said to be false positive.

3. True negative (TN) - When both the predicted and actual outcome is negative,

10

then it is a true negative outcome.

4. False negative (FN) - When the prediction outcome is negative, while the actual

value is positive, then the outcome is false negative.

Figure 2: Possible outcomes

This concept when applied to our project problem, we get two possible outcomes

in the form of user file belonging to either good user or intruder. When a good user

is correctly predicted as good user, then we get a true positive outcome. Similarly,

with intruder correctly predicted as intruder, we get true negative. False positives

and false negatives occur when any of the good user or intruder is misclassified as the

other. These values are, however highly dependent on the threshold value we choose

to distinguish between good user and intruder. Figure 3 shows how the results of the

problem is distributed in typical cases. Here the x axis represents the threshold value,

which is the deciding factor for the amount of overlap between different outcomes.

11

Figure 3: Distribution of results with the possible predictions

2.4.2 ROC Curve Analysis

The ROC curve is widely used for diagonostic test ealuation. It is plotted for

true positive rate (TPR) also known as Sensitivity and false positive rate (FPR) also

known as Specificity, for different cut-off points based on threshold values. Each

point on the ROC curve corresponds to a particular decision threshold. Thus it gives

a complete sensitivity/specificity report for a given problem [1, 28].

TPR represents the number of correct positive results among all positive out-

comes available for the given problem. This represents the cases when a intruder is

correctly identified as the intruder. Whereas FPR defines the number of incorrect

positive outcomes among all negative outcomes available for the problem. FPR rep-

resent the cases when a good user is identified as a intruder. TPR and FPR are

calculated as follows:

The ROC curve is plotted with FPR on x-axis and TPR or y-axis. A test with

best prediction gives no false positives and no false negatives i.e. 100% sensitivity

and 100% specificity. This type of test results in a ROC curve that passes through

12

Figure 4: TPR and FPR

the upper left corner (0,1) that represents a higher overall accuracy. On the other

hand, a random guess results in a diagonal line (0.5,0.5) with 50% sensitivity and 50%

specificity. All the tests that gives ROC curve above the diagonal line are considered

to have good results and others point to poor results.

Figure 5: ROC curve

2.4.3 Area Under The Curve (AUC)

AUC is a measure of how well a parameter can distinguish between the two

possible outcomes of the binary classification problem [1]. A perfect prediction of the

results of the given problem gives us an AUC of 1.0.

13

CHAPTER 3

Event Logging for GUI-based Systems

Anomaly-based intrusion detection is generally based on the user interaction with

the system. This interaction can be recorded in the form of list of commands issued

by the system on terminal, or the skill level of the user or merely on his/her way of

using a particular aspect of the system (for instance, how to use certain keystroke

combinations or how to use mouse to open certain applications).

Intrusion detection based on command line data will generally involve typing

certain commands with or without specific parameters for a certain purpose. However,

intrusion detection for GUI-based systems for the same purpose may involve a series of

different types of actions by different users. For instance, Table 2 gives a comparison

of command line dataset and GUI-based dataset for two different users trying to find

the contents of a directory in Windows system [9].

Thus, trying to detect intrusions based on user behavior on GUI-based systems

can be more complex as compared from the command line based dataset. This is

due to the fact that command line data gives us the information of what command

is executed, whereas GUI-based behavior data gives us the information of how the

command is executed. Similar to the architecture of anomaly-based intrusion de-

tection based on command line data [13], Figure 6 depicts the basic architecture of

anomaly-based intrusion detection based on GUI interactions of users.

The GUI features taken into account for collecting data in this paper includes

the following higher level interaction of user with the system:

• Mouse interaction

14

Table 2: Comparison of Command line dataset and GUI-based dataset

User Command line
dataset

GUI-based dataset

1 dir or ls
[with or without
parameters]

1. Mouse Coordinates (movement)

2. Left Click (on Start menu)

3. Left Click (on Computer folder)

4. Click to open the folder

2 dir or ls
[with or without
parameters]

1. Press Windows key from keyboard

2. Press arrow keys to reach computer folder

3. Press Enter

4. Press arrow keys to reach the desired folder

5. Press Enter

• Keyboard interaction

• Active applications

3.1 Mouse Interaction

The real user data based on mouse interaction of user with the system consists

of various types of lower level interaction. We log this interaction by observing mouse

clicks (left and right) along with the time of event, mouse coordinates and the ap-

plication on which event occurs. Table 3 shows a sample of mouse log file generated

by the event logger. As we can see that double clicks are not listed as a seperate

15

Figure 6: Architecture of anomaly-based intrusion detection based on GUI interac-
tions

category in the table. However, we can observe double left click in the last two en-

tries of the table which have same coordinates and same time stamps for the given

application. This type of detailed data will allow us to extract useful information

about user behavior in relation to mouse and system interaction.

3.2 Keyboard Interaction

Keyboard interaction in GUI-based sytems can give us a variety of behavioral

information. We can not only extract information like typing speed by observing

keyboard interaction, but can also get information about typing pattern of the user,

the use of shortcut keys as a substitute for mouse and other information depending on

the type of application in use and the skill level of the user. Table 4 shows a sample

16

Table 3: Sample dataset showing the Mouse Interaction

Mouse
Click

Coordinates
(X,Y)

Time of
event

Application

Left 590,349 May 29
10:14:19
2012

file:///C:/Users/Documents/Visual Stu-
dio 2010/Projects/bin/Debug/LogAc-
tivePrograms.EXE

Right 1268,8 May 29
10:14:24
2012

LogActivePrograms (Running) - Mi-
crosoft Visual C# 2010 Express

Left 1026,87 May 29
10:14:56
2012

mouseLogs.txt - Notepad

Left 1026,87 May 29
10:14:56
2012

mouseLogs.txt - Notepad

dataset collected by the event logger. Like the dataset for mouse interaction, this

dataset also contains information about the time of event and the current application

in use. However, we collecting this dataset for every five seconds, assuming the current

application remains same for those five seconds. The reason for adopting this method

for data collection was to avoid logging keyboard activity for every event. We used a

buffered string which stored the keys pressed for five seconds, and empty the buffer in

log file at the end of the five seconds. This allowed an efficient use of resources by the

logger tool. Moreover, we can also observe from the table that some keys are logged

by the special character * instead of giving information about actual keys pressed.

This allows the user to maintain his/her privacy. The special character represents

alphabetical, numerical characters and space.

17

Table 4: Sample dataset showing the Keyboard Interaction

Time of event Keys pressed Application
May 29 10:09:29 2012 *****[SHIFT][TAB]*** Logs.txt - Notepad
May 29 10:09:34 2012 *[CTRL]********** Google - Google Chrome
May 29 10:09:39 2012 [SHIFT]*****[ENTER][ENTER] Google Maps - Google

Chrome
May 29 10:09:44 2012 *****[SHIFT][SHIFT]*** TextPad -

C:/Users/Documents/
report/ chap3.tex

May 29 10:09:49 2012 ***[CAPSLOCK]***[F5]*** LogActivePrograms (Run-
ning) - Microsoft Visual C#
2010 Express

3.3 Active Applications

Getting information about only mouse and keyboard interaction in GUI-based

systems will be incomplete, if we do not take into account the application the user may

be interacting with while using mouse or keyboard. The dataset will be incomplete if

we do not get information about the application on which the user might have clicked

or for which the user may be using the keyboard for. The event logger tool not only

logs the current application that the user is interacting with, but also logs all the

applications that are active during the user session. This information is logged for

every twenty seconds, so that it allows us to know the start and end duration of the

applications. Table 5 shows a sample dataset collected by the event logger for logging

the active applications.

Thus with the help of event logger tool we get the lower level information about

user’s interaction with the system. However, this information cannot be directly used

for creating the dataset that will be trained for the intrusion detection techniques.

This large amount of information need to be filtered to extract useful parameters of

18

Table 5: Sample dataset showing the Active Applications

Time of
event

Current Application Active Applications

May 29
10:09:29
2012

TextPad -
C:/Users/Documents/
report/ chap.tex

Logs.txt - Notepad
LogActivePrograms (Running) - Mi-
crosoft Visual C# 2010 Express
LogActivePrograms.EXE
TextPad - C:/Users/Documents/ re-
port/chap.tex
mouseLogger - Visual C++ 2008 Ex-
press Edition

May 29
10:09:49
2012

Google - Google Chrome Google - Google Chrome
LogActivePrograms (Running) - Mi-
crosoft Visual C# 2010 Express
LogActivePrograms.EXE
TextPad - C:/Users/Documents/ re-
port/chap.tex
intrusion detection using GUI behav-
ior.pdf - Adobe Reader

May 29
10:10:09
2012

Google Maps - Google
Chrome

LogActivePrograms (Running) - Mi-
crosoft Visual C# 2010 Express
LogActivePrograms.EXE
Google Maps - Google Chrome

the user behavior that will provide us with unique feature set for training and testing

various detection techniques.

3.4 The Event Logger Tool

We have implemented an event logger tool for capturing user behavior actions

based on mouse activity, keyboard activity and active applications that run on the

system for each user session. The reason for selecting these behavioral actions is

to create unique user profile based on the user’s interaction with the GUI-based

environment.

19

In order to capture different behavioral interactions, via mouse and keyboard

interactions our tool needs to create certain lower level system hooks. Hooks are used

to extend the functionality of applications by intercepting function calls, events or

messages passed between software components. We created two system hooks for this

tool, a mouse hook and a keyboard hook. These hooks allowed us to intercept mouse

and keyboard event messages before they reach an application. More about the hooks

can be found in the Appendix A of the report.

This tool makes use of multithreaded programming to call the dll files using sep-

arate threads. This allows our logger to log various activities simultaneously. These

dll files contain the lower level hooks for the system. The logged events are observed

along with their start and end time to allow us to get maximum data possible.

Apart from capturing various user behavior actions, it is also important for us to

find a way of sending the large amount of captured user information from the user’s

machine to a server. Thus in order to facilitate this functionality, we implemented

the method to compress the collected data in a zip format and send the compressed

files to a common mail server at regular intervals.

This event logger is developed in C# language using Microsoft .Net framework on

Windows operating system. Through the C# program we call dll files written in C++.

These dll files contain keyboard and mouse hooks that are useful in logging keyboard

and mouse activities. We chose to use .Net framework as our project was focussed on

Windows operating system and .Net framework is easy to use with various Windows

components. Moreover, the ability to call lower level dll files from .Net framework is

very easy.

20

CHAPTER 4

HMM-Based Intrusion Detector

The dataset created from the collected GUI-based user interaction from various

users is used for training HMM. However, in order to make the dataset from the

collected data files, the data needs to be first cleaned to remove the garbage data and

convert it in a format compatible with the HMM program.

4.1 Converting User Files To Dataset

For our project, we collect the user interactions with their systems in three dif-

ferent files based on the type of interaction. These files collect the information about

user interactions until the user restarts the system or until the system reconnects to

internet. Thus for each user session our mail server receives three separate files com-

pressed in a single file. Chapter 3 shows the type of information that is included in

each file. In addition to this information, the data files also contains a lot of garbage

in the form of characters, missing attributes or encrypted data. Therefore, in order

to use the data for training HMM we need to first clean the data. The steps involved

for cleaning the data are:

• The files are read line-by-line to search for the occurrence of useful user infor-

mation in each line.

• Extra characters, spaces and blank lines are ignored.

• Lines containing missing user information like timestamp or screen coordinates

in case of mouse clicks or type of key pressed in case of keyboard interaction

are ignored.

21

4.2 Training HMM With Dataset

Once we have the dataset ready for HMM training, we divide it into two sets:

training set and testing set. For better results, it is always beneficial to have more

training data as compared to the testing data [18]. The training data comprises of

the data from good user and is used to generate models by HMM training. Multiple

models are generated using different data files for scoring test files. The testing data

comprises of the data from the good user that has not been used for training and

data from other users, which are considered as intruders here. The testing data from

the good user is used for the validation, to determine how good our model performs.

Ideally, if we score the testing data then we expect to get high score for the data from

the good user, and lower score for the data from the intruders.

4.3 Experimental Setup

For our experiment purpose, we have written the code for data cleaning and

training HMM in Java. We collected data from around 150 users, and have received

more than 50 files from each user. For training HMM, we download 50 files for the

randomly chosen good user and give the raw user files to our code as input. 20 files

of the chosen user is added to the training set and 30 files of the chosen user is added

to the testing set. Random files of the remaining users are also added to the testing

set.

For each file in the training set, a model file is generated in the model folder.

Therefore, we get 20 model files for the chosen user. First line of each model file gives

the details of the total number of observations (T), number of hidden states (N) and

number of unique observations (M) for that file. Remaining part of the file gives the

details of π matrix, A matrix and B matrix of the HMM.

22

Once the training phase completes, the testing files are scored and classified as

good user file or bad user file. The scores are computed using the model files and

are written in the result folder. We consider only those observations of the testing

file that fall under the same time limit of the good user file. Each result file contains

scores for all the files in the testing set. So we get 20 result files, one from each of the

model file.

4.4 Training HMM With Mouse And Keyboard Data

The data files of users is first cleaned to filter the useful information. In case of

mouse data information like types of mouse clicks (left or right) and x-y coordinates is

filtered, whereas in case of keyboard data information about keys pressed is retrieved

from the data files. For the mouse data, the screen is divided into 16 grids of size

16*16. The type of mouse click and the number of clicks in different grids is used as

observation matrix while training the HMM, whereas, in case of keyboard data the

set of keys pressed is used as observation matrix. The model files are then generated

for different number of hidden states. This completes the training phase of HMM.

For the testing phase, the model files are used for scoring the testing data.

23

CHAPTER 5

Results

While training Hidden Markov Models, we have considered different number of

hidden states. Based on the scores of different users in the testing phase, we plotted

graphs for all the users. Our methodology and dataset was sufficient to effectively

separate the good users from the intruders with the help of the mouse logs. The

log likelihood per obeservation for good users and intruders were separated to a

significant extent for mouse data. However, the methodology was not that effective

with keyboard data as we will see in the following sections. The expected result from

HMM is to have lower scores for the good users and higher scores for bad users (i.e.,

intruders).

5.1 HMM Training With Mouse Logs

Let’s see the results of training HMM with our mouse data for a good user.

Figure 7 shows the results for a user with number of hidden states as 2. Whereas

Figure 8 shows results with number of hidden states as 3. The x-axis on the graphs

represent the user file number, whereas, the y-axis represent the log likelyhood score

of the user file. The graphs shows the separation of good users and intruders to a

significant extent, as the good users represented by blue dots are having lower scores

as compared to intruders.

However, there is still misclassification of some intruders as good users and vice

versa. When a intruder is misclassified as good user a false negative occurs, whereas

when a good user is misclassified as a intruder a false positive occurs. Thus, from

Figure 7 we can observe one false negatives and two false positive, if we take 200

24

as the threshold score; whereas, Figure 8 shows two false negatives and one false

positive, if we take 150 as the threshold score.

Figure 7: Log likelihood per observation of user 1 Vs intruders using mouse data, N
= 2

Figure 8: Log likelihood per observation of user 1 Vs intruders using mouse data, N
= 3

We observe that by considering different threshold values, we can have different

number of false positives and false negatives. Hidden Markov Model utilizes this

25

concept and classifies the user as good user and bad user (intruder) by using different

threshold values to compare the scores. Lower threshold values can result in more

number of false positives, whereas higher threshold values will reduce the number of

false positives but increase the number of false negatives.

Keeping in mind the importance of threshold value, we plotted the ROC curve

by considering each good/bad user’s scores as threshold value. Using each score as

threshold value allows us to cover all the possible scenarios of getting false positives

or false negatives.

Figure 9 depicts the ROC curve obtained for User 1’s results with number of

hidden states as 2, that was shown above in Figure 7. Area under the curve (AUC)

for this ROC is 0.93, that represents 93% accuracy of the method used here to dif-

ferentiate between good users and bad users. Whereas AUC for the ROC curve for

the same user with number of hidden states as 3 comes out as 0.9567. This curve is

shown in Figure 10.

On observing the results of HMM with different results, we find that the results

vary for each user. Figure 11 and Figure 12 shows the scatter plots of the scores of

user 18’s files and intruder files with hidden states as 2 and 3 respectively. On plotting

the ROC curves for these results (Figure 13 and Figure 14), we find that AUC for

the scores with hidden state as 2 is 0.9, while for hidden state as 3, the AUC is 0.94.

This variation in the results may be diagnosed as a result of the type of mouse usage

by different users. Some users are reluctant in using mouse for every purpose such as

copying and pasting images or text, they may be more accustomed to use keyboard

shortcut keys for such purposes. While there may be some users who are frequent

mouse users. Thus depending on various user behavioral parameters, the results of

HMM may vary.

26

Figure 9: ROC curve for user 1, Mouse data, N = 2

Figure 10: ROC curve for user 1, Mouse data, N = 3

By looking at the area under the ROC curve for various users with different

number of hidden states, we can conclude that the HMM results are good for the

mouse logs. We find that all the ROC curves fall in the upper half of the graph which

27

Figure 11: Log likelihood per observation of user 18 Vs intruders using mouse data,
N = 2

Figure 12: Log likelihood per observation of user 18 Vs intruders using mouse data,
N = 3

shows higher accuracy rate of the methodology in separating the good users and bad

users.

28

Figure 13: ROC curve for user 18, Mouse data, N = 2

Figure 14: ROC curve for user 18, Mouse data, N = 3

5.2 HMM Training With Keyboard Logs

Similar methodology as with mouse logs, when applied to the keyboard logs

proved to be inefficient in separating the good users and bad users. Figure 15 and

29

Figure 16 shows the scatterplot of the log likelihood per observation of good user vs

intruders with hidden states 2 and 3 respectively. The graphs indicates that the good

user and intruder’s scores are mingled up to a great extent. Looking at the graphs it

is difficult to identify the good user’s files and intruder’s files, as there is a significant

amount of overlap here.

Figure 15: Log likelihood per observation of user 1 Vs intruders using keyboard data,
N = 2

When ROC curves are plotted for these results, we get Figure 17 and Figure 18

for different hidden states. As can be guessed by looking at the curves, the AUC for

these ROC curves is calculated as 0.5975 and 0.555 respectively. As this AUC value

is very close to the random guess accuracy value (0.5), we can classify these results

as poor results.

However, when we combine the results of mouse logs and keyboard logs by dif-

ferent factors, we found that the combined score with 80% contribution of mouse logs

and 20% contribution of keyboard logs give us optimum results. Table 6 shows the

results of combining mouse scores and keyboard scores (with hidden state as 3) by

30

Figure 16: Log likelihood per observation of user 1 Vs intruders using keyboard data,
N = 3

Figure 17: ROC curve for user 1, Keyboard data, N = 2

factors ranging from 0.0 to 1.0, with a difference of 0.1. The combinational formula

applied here is as follows:

Combined score = (a*Mouse score) + (b*Keyboard score)

31

Figure 18: ROC curve for user 1, Keyboard data, N = 3

Table 6: Combining mouse and keyboard scores, N = 3

Mouse multiplier (a) Keyboard multiplier (b) Combined score
1.0 0.0 0.9385
0.9 0.1 0.9487
0.8 0.2 0.9538
0.7 0.3 0.9487
0.6 0.4 0.9487
0.5 0.5 0.9436
0.4 0.6 0.9410
0.3 0.7 0.9410
0.2 0.8 0.9410
0.1 0.9 0.9410
0.0 1.0 0.7487

32

CHAPTER 6

Conclusion and Future Work

Intrusion detection on GUI-based operating systems is a research area which is

getting increasingly popular now with the introduction of more advanced GUI-based

features in the new operating systems. Along with high popularity, this research topic

is also an area which lacks a common platform for the researchers. After Schonalau

dataset became publicly available, all the research done on intrusion detection based

on Unix commands, had a common platform to showcase the effectiveness of their

methodologies used in the research. However, this is not same with intrusion detection

based on GUI commands. Our project was another step in bringing the research done

in this area to another level.

In our project, we came up with an event logging tool to capture the GUI-based

user data for Windows system. This user data was based on the mouse commands and

keyboard commands issued by the users in a user session. This tool was distributed

among various user groups of different demographics as well as residing in different

geographical areas around the globe. We trained the user data collected with the

machine learning technique, Hidden Markov Model (HMM). We trained both mouse

data as well as keyboard data with this methodology and found that the mouse data

was far more effective in intrusion detection, as compared to the keyboard data.

While results based on mouse data were good in separating good users from the

bad users and have an average accuracy rate of 91%, the keyboard data gave us results

equivalent to the random guess with an average of 53%. The reason behind this can

be several. This can be due to the variation in the keyboard types used by the users

33

or the due to the presence of similar frequent keys pressed by the users.

We also analyzed our experimental results with different number of hidden states

in HMM and didn’t notice any significant change in the results. The accuracy level

of the experiments ran with different number of hidden states was found to be very

close. With mouse logs the accuracy level increased slightly with higher number of

hidden states, but the difference was no very significant.

Due to the time constraints and resource constraints, our project was mostly

concentrated on the mouse commands and keyboard commands issued by the users.

However, there are many other GUI features that can be taken in account for a better

intrusion detection. Based on the fact that we managed to get good results with the

limited data that we analysed, there can be much better results if future research

capture other GUI features as well for modeling user behavior.

Our event logging tool also captured the application names that were used by the

users during the user session. However, due to time constraints we could not study

the effect of mouse/keyboard commands in conjunction with the applications in use.

Future research work can definitely study the effect of application in use on the GUI

commands issued by the user, and analyze the results.

As there are many more devices available that have GUI-based operating systems

installed on them, for instance mobile phones, tablets, etc. This research can be

extended to these devices. Moreover, intrusion detection is also an important area

of research for banking and finance sector. Therefore, intrusion detection on fly can

also help customers using online banking and payment modes to feel more secure.

34

LIST OF REFERENCES

[1] Ataman, K., and Zhang, Y. (2006); Learning to rank by maximizing AUC with
linear programming; International Joint Conference on Neural Networks; 123–
129

[2] Beauquier, J., and Hu, Y.J. (2007); Intrusion detection based on distance combi-
nation; World Academy of Science, Engineering and Technology 2007; 31, 172–
180

[3] Bertacchini, M. and Fierens, P.L.(2007); Preliminary results on masquerader de-
tection using compression based similarity metrics; Electronic Journal of SADIO
2007; 7(1)

[4] Bhukya, W.S., Kommuru, S.K., and Negi, A. (2007); Masquerade detection
based upon GUI user profiling in linux systems; Advances In Computer Science,
ASIAN 2007

[5] Claar, C.L., Couraud, J., Erbacher, R.F. and Prakash, S.; Intrusion detection:
Detecting masquerade attacks using UNIX command lines; Utah State University

[6] Erbracher, R.F., Prakash, S., Claar, C.L. and Couraud, J.; Intrusion detection:
Detecting masquerade attacks using UNIX command lines; usu.edu

[7] Devarakonda, N.R., Pamidi, S. and Kumari, V.V. (2011); ABIDS system using
hidden markov model; Information and Communication Technologies (WICT);
11(14), 319–324

[8] Feng, H., Kolesnikov, O., Fogla, P., Lee, W., and W. Gong (2003); Anomaly de-
tection using call stack information; Proceedings of IEEE Symposium on Security
and Privacy (Oakland, California)

[9] Garg, A., Rahalkar, R., Upadhyaya, S., and Kwiat, K. (2006); Profiling users in
GUI based systems for masquerade detection; Information Assurance Workshop

[10] Garg, A., Vidyaraman, S., Upadhyaya, S., Kwiat, K. (2006); USim: a user behav-
ior simulation framework for training and testing IDSes in GUI based systems;
Simulation Symposium, 2006. 39th Annual;, 8, 2–6

[11] Goecks, J., and Shavlik, J. (1999); Automatically labeling web pages based on
normal user actions; IJCAI Workshop on Machine Learning for Information Fil-
tering

35

[12] Hashia, S., Pollett, C., and Stamp, M. (2004); On using
mouse movements as a biometric; San Jose State University;
http://www.cs.sjsu.edu/faculty/pollett/masters/

Semesters/Spring04/Shivani/shivanipaper.pdf

[13] Huang, L., and Stamp, M. (2011); Masquerade detection using profile hidden
markov models; Computers and Security; 30(8), 732–747

[14] Imsand, E.S., Garrett, D., and Hamilton, J.A. (2009); User identification us-
ing GUI manipulation patterns and artificial neural networks; Computational
Intelligence in Cyber Security, 2009

[15] Peacock, A., Ke, X., and Wilkerson, M. (2004); Typing patterns: A key to user
identification; IEEE Security & Privacy

[16] Kazi, S., and Stamp, M. (to appear); Hidden Markov Models for Software Piracy
Detection; Information Security Journal: A Global Perspective

[17] Kothari, A. (2012); Defeating Masquerade Detection; Master’s projects; 239;
http://scholarworks.sjsu.edu/etd_projects/239

[18] Mahajan, A. (2012); Masquerade detection based on UNIX commands; Master’s
projects; 273; http://scholarworks.sjsu.edu/etd_projects/273

[19] Monrose, F., and Rubin, A. (1997); Authentication via keystroke dynamics;
ACM Conference on Computer and Communications Security; 48–56

[20] Mungale, M. (2011); Robust watermarking using hidden markov models; Mas-
ter’s projects; 179; http://scholarworks.sjsu.edu/etd_projects/179

[21] Perlroth, N. (2012); Article on outmaneuvered at their own
game, antivirus makers struggle to adapt; New York times;
http://www.nytimes.com/2013/01/01/technology/

antivirus-makers-work-on-software-to-catch-malware-more-

effectively.html?ref=technology&_r=1&

[22] Pusara, M., and Brodley, C.E. (2004); User re-authentication via mouse move-
ments; http://www.csis.pace.edu/~ctappert/it691-11fall/

projects/mouse-pusara.pdf

[23] Schonlau, M. (1998); Masquerading user data;
http://www.shonlau.net/intrusion.html

[24] Schonlau, M., DuMouchel, W., Ju, W.H., and Karr, A.F., Theus, M., and Vardi,
Y. (2001); Computer intrusion: detecting masquerades; Statistical Science; 15(1)

36

[25] Shavlik, J., Shavlik, M., and Fahland, M. (2001); Evaluating software sensors
for actively profiling Windows 2000 computer users; Fourth International Sym-
posium on Recent Advances in Intrusion Detection

[26] Stamp, M. (February 2012); A Revealing Introduction to Hidden Markov Models;
Department of Computer Science, San Jose State University, San Jose, CA;
http://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf

[27] Upadhyaya, S., and Kwait, K.A. (2006); A comprehensive reasoning framework
for information survivability (User intent encapsulation and reasoning about in-
trusion; implementation and performance); State University of NY at Buffalo

[28] Heagerty, P.J., abd Zheng, Y. (2005); Survival model predictive accuracy and
ROC curves; Biometrics; 61, 92–105

[29] Windows dev center MSDN library; Hooks — overview and using hooks,
http://msdn.microsoft.com/en-us/library/windows/

desktop/ms632589(v=vs.85).aspx

[30] Wong, W. (2006); Analysis and detection of metamorphic computer viruses;
Master’s projects; 153; http://scholarworks.sjsu.edu/etd_projects/153

37

APPENDIX

Hooks

A.1 Introduction

Hooks are the points in the system message-handling mechanism where applica-

tions intercepts the function calls, events or message traffic by installing some sub-

routine to monitor these messages and process them before they reach their target

software components. This hooking mechanism can be used to alter, augment or sim-

ply monitor the behavior of operating system, applications or software components.

These hools can be inserted at runtime provided the operating system grants the

process pemission to do so. Operating systems like Windows and Linux allow certain

hooks to process or modify system events. For instance, our tool uses keyboard and

mouse hooks available for Windows operating system. Similarly, Linux also provide

hooks to process network events within its kernel through NetFilter.

Although hooks are helpful in debugging and extending functionality. These have

their own downfalls as well. Due to the increase in processing time for each message,

hooks tend to slow down the system. Moreover, hooks are also used by malicious

code where certain outputs of the API calls are faked with the help of hooks.

A.2 Hook Procedures

Hook Procedures are the functions that intercept a particular type of event.

These are installed by calling SetWindowsHookEx function, which specifies the

type of hook, whether the procedure should be associated with all threads in the

same desktop as the calling thread or with a particular thread, and a pointer to the

procedure entry point. We used WH MOUSE LL and WH KEYBOARD LL

38

hooks to install hook procedures that monitors low-level mouse and keyboard input

events respectively.

Once the hooks are installed and the event that is monitored occurs, the hook

procedure writes the information about the event to the client area of the application’s

main window. For instance, after installing the low level mouse hook, every time a new

mouse input event occurs the system calls LowLevelMouseProc callback function.

The type of mouse message, via left button click or mouse movement or right button

click, is identified by the parameter WPARAM of the callback function.

After processing the messages, it is important to release the hook procedure by

calling UnhookWindowsHookEx function. This allows the system’s processing

time to decrease and manages the resources efficiently.

39

	San Jose State University
	SJSU ScholarWorks
	Spring 2013

	User Profiling in GUI based Windows Systems for Intrusion Detection
	Arshi Agrawal
	Recommended Citation

	tmp.1369320071.pdf.dCDAM

