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ABSTRACT

Metamorphic Code Generation from LLVM IR Bytecode

by Teja Tamboli

Metamorphic software changes its internal structure across generations with its

functionality remaining unchanged. Metamorphism has been employed by malware

writers as a means of evading signature detection and other advanced detection strate-

gies. However, code morphing also has potential security benefits, since it increases

the “genetic diversity” of software.

In this research, we have created a metamorphic code generator within the LLVM

compiler framework. LLVM is a three-phase compiler that supports multiple source

languages and target architectures. It uses a common intermediate representation

(IR) bytecode in its optimizer. Consequently, any supported high-level programming

language can be transformed to this IR bytecode as part of the LLVM compila-

tion process. Our metamorphic generator functions at the IR bytecode level, which

provides many advantages over previously developed metamorphic generators. The

morphing techniques that we employ include dead code insertion—where the dead

code is actually executed within the morphed code—and subroutine permutation.

We have tested the effectiveness of our code morphing using hidden Markov model

analysis.
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CHAPTER 1

Introduction

Software is said to be metamorphic if multiple copies of the same software are

structurally different, but functionally equivalent. Examples of such metamorphic

code generators can be found at [3, 22, 42].

To date, metamorphic code generation has primarily been used by malware writ-

ers, since well-designed metamorphic code can evade signature-based detection and

other more advanced detection strategies [22, 42, 53]. However, metamorphism also

has the potential to provide security benefits by increasing the “genetic diversity” of

software, thereby making several types of attacks more difficult [16, 45].

Well-designed metamorphic malware will evade signature-based detection. Ac-

cording to recent research [42, 53], techniques based on hidden Markov models

(HMMs) can be used to detect some types of metamorphic malwares.

Many metamorphic malware generators are readily available [51]. Some notable

examples include

• G2 (Second Generation virus generator) [52]

• MPCGEN (Mass Code Generator) [51]

• NGVCK (Next Generation Virus Creation Kit) [50]

• VCL32 (Virus Creation Lab for Win32) [5]

In addition, research morphing engines are presented in [22] and [42]. All of these

metamorphic generators work at the assembly language level. Note that code mor-
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phing of high-level source code is far simpler, but generally ineffective, since such

morphing does not provide sufficient control over the resulting executable file.

In this research, we have implemented a metamorphic code generator using

the LLVM compiler framework [2]. The LLVM compiler infrastructure provides for

compile-time, link-time, run-time, and idle-time optimization of programs written in

arbitrary programming languages. It is a three-phase compiler that supports multiple

source languages and multiple target architectures. In the optimization process, code

is converted to an intermediate representation (IR) bytecode. Our code morphing

tool functions at this IR bytecode level, which provides advantages that are some-

what analogous to morphing at the source-code level, but also provides the necessary

fine-grained control over the resulting executable.

Related research involving LLVM IR bytecode manipulation includes a malware

encryption technique implemented as optimizer passes [17]. In addition, in [35], a

“shadow attack” is developed using LLVM. This attack hides system call behavior

for the purpose of making behavior-based detection of malware more difficult.

We evaluate our morphing technique using the hidden Markov model (HMM)

analysis developed in [53] which has been further developed and analyzed in [42, 43].

This body of previous work provides a baseline for determining the effectiveness of

our approach.

This paper is organized as follows. In Chapter 2, we provide background infor-

mation on computer viruses and detection techniques. Chapter 3 describes generic

metamorphic techniques used by metamorphic code generators. Chapter 4 explains

the architecture of the LLVM compiler infrastructure and elaborates on IR byte code.

Chapter 5 details the design and implementation of the HMM detector used to evalu-

2



ate our results. Chapter 6 covers the design and implementation of our metamorphic

code generator. Experimental results are analyzed in Chapter 7. Chapter 8 contains

our conclusion and suggestions for future work.
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CHAPTER 2

Malware

Malware is a program developed for performing malicious activities on a com-

puter [36]. These malicious activities include crashing disks or operating system or

alter system’s data [35]. Writing malware is a challenging task [3] and could be a

source of revenue for malware writers. Anti-virus softwares can detect these mali-

cious activities and remove them from the computer. To date, most development

and research into metamorphic code has involved malware. Therefore, we present

background information on malware before turning our attention to the general case

of metamorphic code generation.

2.1 Malware Types

There are two most prominent types of malwares: Virus and Worm. They are

discussed in details in following subsections.

2.1.1 Virus

Virus-like programs first appeared on microcomputers in the 1980s [8]. Viruses

do not have reproductive ability but it can replicate itself. They need human interac-

tion to spread the infection from one computer to another. For example, they can get

downloaded from Internet or by exchanging infected USB drives or floppy disks. Virus

writers constantly develop new obfuscation technique to evade the signature based

detection. Most important methods to evade the detection are encryption, polymor-

phic and modern metamorphic techniques [21]. These techniques are explained in

following subsections.
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2.1.1.1 Encrypted Viruses

The simplest method to hide the virus body is to encrypt it with different en-

cryption keys. Most part of the virus executable is encrypted and a small decryption

module exists to decrypt the encrypted body. For example, XORing the key with the

virus body [6]. Since the virus is encrypted with different key per infected file, only

the decryption module remains constant across generations. There is no common sig-

nature in such type of viruses, but virus scanners can detect the decryption module.

As a result, the code which encrypts or decrypts, is the part of the signature in most

of such virus definitions [13].

2.1.1.2 Polymorphic Viruses

The problem of non-encrypted decryptor module used for detection is solved in

these types of viruses. Decryptor module is mutated in each generation. In addition,

polymorphic viruses can generate large number of unique decryptors by using different

encryption methods. Therefore, not two infections have the same signature [22, 42].

A code emulator is used to detect polymorphic viruses. The emulator emulates

decryption process and dynamically decrypts the encrypted virus body [13].

2.1.1.3 Metamorphic Viruses

To avoid detection by emulation, virus writers came up with an advanced tech-

nique to write malwares called metamorphism. Metamorphism changes the appear-

ance of the virus while keeping its functionality. Metamorphic viruses don’t need

encryption or decryption techniques. They produce new virus body on each infec-

tion [13].
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Metamorphic engine can be kept separate or it can be embedded in the virus.

In our implementation, we have kept code generator separate. Some metamorphic

techniques are explained in Chapter 3. Figure 1 shows generations of a metamorphic

virus whose shape changes but the functionality remains constant.

Figure 1: Multiple shapes of a metamorphic virus body [21].

2.1.2 Worms

Worms are self-replicating malwares. Unlike viruses, they do not need any human

intervention to spread. They are standalone [36, 46]. Similar techniques like meta-

morphism and polymorphism are used by worms to avoid detection. Worm could be a

macro residing in a word document or in a excel sheet which spreads itself across the

network. Worms spread from host to host across the network, unlike viruses which

only infects executables residing on the host [36, 42].

6



2.2 Detection Techniques

As a malware evolves, detection mechanisms also evolve. This section elaborates

on detection mechanisms employed by anti-virus software.

2.2.1 Signature Based Detection

Signature based detection is a simple and most commonly used technique in

anti-virus software. They are popular because of accurate detection, simplicity and

speed [44]. In this detection mechanism, scanner scans each executable and looks for

specific signatures. Signature consists of sequence of opcodes which uniquely identify

the virus. Anti-virus software has database of signatures for different viruses. By

comparing the signature, it detects the virus. This technique has to keep on updating

database with new malware signatures. Another downside of this type of detection is

it cannot detect new virus. Therefore, by using simple code obfuscation techniques,

malwares can easily evade the signature based detection [38].

2.2.2 Anomaly Based Detection

The problem of detecting new malwares in signature based detection can be

overcome using this type of detection mechanism. Heuristic methods are implemented

to detect anomalous behavior. Primarily there are two phases: training and detection.

In training, scanner learns normal and malicious behavior e.g. finding root password.

After training, it is used to detect malicious activities [44].

Using this technique newbie viruses can be detected but it has downside too [18].

Since its detection is based on how you train the system, it has more number of false

positives or false negatives.
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2.2.3 Hidden Markov Model Based Detection

Hidden Markov Model (HMM) based virus detection is a comparatively new

technique. HMMs are probabilistic models and are widely used in solving problems

on pattern recognition. They help in finding the probability of transition from one

state to another. HMM has two phases: training and detection. Once you train the

model, it can be used to detect benign and malware software [22, 42, 53].

8



CHAPTER 3

Metamorphic Techniques

The metamorphic code generator described in this paper makes use of morphing

techniques like dead code insertion and function permutation. A number of tech-

niques include simple technique as register swap to an advanced technique as formal

grammar. Some of these techniques are explained in detail in following subsections.

3.1 Register Swap

It is the most simplistic virus. In December 1998, W95/Regswap virus imple-

mented metamorphosis via register usage exchange. Register swap means changing

the register operands. For example, if instruction is PUSH ECX then it can be replaced

with PUSH EAX. In this technique, opcode sequence remains the same. Figure 2 shows

some sample code fragments selected from two different generations of W95/Regswap

that use different registers. A wildcard string can be used to detect such type of

viruses [10].

3.2 Subroutine Permutation

This technique changes the appearance of a virus by reordering the layout of the

virus subroutines. If virus has n subroutines, then there can be n! generations without

repetition. Some examples are BadBoy and W32/Ghost (discovered in May 2000).

BadBoy had 8 subroutines, so 8! = 40, 320 (n! = n ∗ (n − 1)!) generations and

W32/Ghost had 10 functions, so 10! = 3, 628, 800 combinations. However, both of

them can be detected with search strings as the content of each subroutine remains

same [10]. As with register swapping, subroutine permutation is a relatively weak

9



malware morphing strategy, particularly with respect to statistical based detection.

Figure 3 explains this technique.

Figure 2: Two different generations of RegSwap [10]

Figure 3: Subroutine permutation [10]
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3.3 Dead Code Insertion

Dead code can be inserted into an existing program. In its simplest form, dead

code is never executed. Alternatively, dead code can be executed, provided that it

has no effect on the overall program function. Although more difficult, this latter

approach is more effective, since the dead code is more difficult to detect.

Dead code can be very effective for evading malware detection, particularly with

respect to statistical-based techniques–the dead code can be used to mask the statis-

tical properties of the underlying code. By adding such code, a virus can generate

infinite number of unique copies. However, dead code insertion can be challenging

at the assembly code level, since care must be taken so that addresses remain valid.

Win95/Zperm virus appeared in June and September of 2000 incorporated this tech-

nique [10]. Figure 4 explains the code structure changes of Zperm-like viruses.

Figure 4: Zperm virus [10]

3.4 Instruction Substitution

In this technique, an instruction is substituted by another equivalent instruction

or group of instructions with the same functionality.

For example, MOV R1, R2 can be replaced by PUSH R1 and then POP R2. As an-

other trivial example XOR R1, R1 and SUB R1, R1 both zero the contents of register

11



R1. But opcode of these two instructions are now different. Instruction substitution

is a powerful technique for evading signature detection and altering code statistics.

However, instruction substitution is relatively difficult to implement at the assembly

code level. The W32/MetaPhor virus is one of the metamorphic virus generators that

incorporate the instruction substitution technique [10].

3.5 Transposition

Transposition is reordering the sequence of instructions without changing the

actual functionality. It means the sequence can be reordered only if two instructions

are independent of each other. For example, instructions:

1. OPCODE [R1] [R2]

2. OPCODE [R3] [R4]

These instructions can be swapped since both instructions are independent of each

other. Therefore, they can be reordered with the following sequence without changing

the resultant functionality.

1. OPCODE [R3], [R4]

2. OPCODE [R1], [R2]

Similar technique can be applied to group of instructions. As the order of execution

itself is different, it is used to evade the signature based detection.

3.6 Formal Grammar Mutation

Formal grammar mutation is a formalization of many existing morphing tech-

niques [7, 14, 54]. In general, traditional morphing engines are non-deterministic

12



automata (NDA), since transitions are possible from every symbol to every other

symbol [54]. The symbol set is the set of all possible instructions. It means, any

instruction can be followed by any other instruction. By formalizing mutation tech-

niques, one can create formal grammar rules and can apply these rules to create viral

copies with great variation. Figure 5 shows a simple polymorphic decryptor template

and two possible mutations of the decryptor code achieved using the formal gram-

mar. Figure 6 With this decryptor template and formal grammar combination, it is

possible to generate 960 different decryptors [54].

Figure 5: A simple polymorphic decryptor and two variants [54]
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Figure 6: Formal grammar for decrpyptor mutation [54]
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CHAPTER 4

LLVM

4.1 Introduction

Complexity of modern applications is increasing. They are growing in size, sup-

port dynamic upgrades, backups, recovery mechanisms. It is also common to write

components in multiple languages to gain efficiency. During the lifetime of the ap-

plication, certain components have small hot spots in terms of memory footprint or

CPU; other spread their execution time evenly throughout the application. It is im-

portant to do program analysis and transformation throughout the lifetime of the

application to understand the application behavior.

Lifelong code optimizations include inter-procedural optimizations performed at

link-time, machine-dependent optimization at install time, dynamic optimization at

run-time and profile-fuided optimization between runs [27, 32].

LLVM (Low Level Virtual Machine) is a compiler infrastructure which has several

novel features. It supports language independent instruction set. Each instruction is

a Static Single Assignment (SSA). It means each variable is assigned once and then

it cannot be reassigned [2, 32]. This is done by using numbers to represent variables.

LLVM is part of GCC. It supports static compilation and late compilation from the

Intermediate Representation (IR) code similar to Java’s just-in-time (JIT) compiler.

4.2 Architecture of LLVM

The origins of the LLVM infrastructure is in project called “The Lifelong Code

Optimization Project” (LCO-Project) which started at the department of computer
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science at the university of Illinois at Urbana-Champaign [37].

4.2.1 Traditional Three Phase Compiler Design

Most of the traditional static compilers (For example, GCC used for C/C++

programs) are three-phase compilers. Three main phases includes frontend, optimizer

and backend. Figure 7, shows the typical design of three phase compilers [27].

Figure 7: Three major components of a three-phase compiler

The key function of frontend component is to parse the source code, check for

any syntactical errors and then build a language specific Abstract Syntax Tree (AST).

Optimizers use this tree and transform it to a new representation by applying opti-

mization techniques. From AST, it rearranges instructions in order to optimize the

code. It removes duplicates, redundant computations. The backend is the machine

dependent representation of the code (assembly code). It maps the code to target

machine instruction set. Its main goal is to generate correct code that can take

advantage of underlying hardware. Common parts of a compiler backend include

instruction selection, register allocation, and instruction scheduling [27].

4.2.2 LLVM Design

The key feature of LLVM three-phase compiler design is, it supports multiple

frontends and multiple backends by using a common intermediate representation.

The frontend can be written in any language which essentially will be converted
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to an intermediate representation. This intermediate representation is machine and

language independent. A backend can be written for any target platform to compile

from this common representation [1, 27]. Figure 8 shows LLVM design.

Figure 8: LLVM design [27]

Using this design it is now easy to add new language by implementing new fron-

tend and reusing existing optimizers and backends. New platforms can be supported

by implementing new backends. If these components were not separated, then to

implement new language we have to start all over from the scratch. To support N

languages and M targets we would need NM different compilers [27].

Another potential advantage of LLVM design is as these components are sepa-

rated from each other, skills required to implement frontend are completely different

than skills required for implementing backend and optimizer [2, 32]. Frontend person

can only maintain or enhance their part of the compiler. This is not the technical

issue, but for open source project, it reduces the barrier to contributing as much as

possible.

Finally, LLVM design serves broader set of programmers compared to traditional

compilers supporting only one source language and target. Traditional open source

compilers (like GCC) are stable and efficient because they serve larger communities.
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This tends to generate better optimized machine code compared to narrower compilers

like Free PASCAL [27].

4.3 LLVM IR Bytecode

The most important aspect of LLVM’s design is to represent optimizer in com-

mon intermediate form (IR). This common form separates frontend and backend

components from each other. It supports lightweight runtime optimizations, cross-

function or inter-procedural optimizations, entire program analysis and aggressive

restructuring transformations.

Figure 9 shows the LLVM IR’s structure. It supports following sections [37]:

1. A module: The module is the container which has functions and global variables.

2. Functions: Functions are named, callable units of instructions.

3. Global variables: Global variables which can be accessed by any function.

Figure 10 shows sample C program and its corresponding IR representation.

In LLVM IR, logic is represented in the form of functions. Functions consist of

a list of basic blocks. Each basic block consists of a set of instructions. Instructions

in basic block are always executed sequentially.

As IR bytecode is the only interface to the optimizer, writing this bytecode

is a critical component. It should be easily generated by frontend and should be

sufficiently expressive to perform optimizations to convert into real target machine

code [27]. Frontend programmers should understand IR and its invariants. LLVM

IR has a textual form. Therefore, frontend programmers should output LLVM IR in
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Figure 9: LLVM bytecode file format [37]

Figure 10: Sample C code and its corresponding IR bytecode

text. Similarly, backend writers (code generators) should know how to convert it into

machine code.
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4.4 Tools in LLVM

To compile the program, run optimizations, generate the bytecode or machine

code there are various tools available in LLVM infrastructure. Some of these tools

are explained in following sections. Program’s life cycle from source program to

executable in LLVM compiler is explained in Figure 11.

Figure 11: Program’s life cycle in LLVM compiler

4.4.1 llvm-gcc (.c → .s)

This tool is used to generate the LLVM IR bytecode. It checks for syntacti-

cal errors and then produces IR bytecode of the source program. It uses .s or .ll

extension [28]. For example,

llvm-gcc -emit-llvm -S hellworld.c

This command generates helloworld.s file in the same directory.
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4.4.2 llvm-as (.s → .bc)

This tool is used to generate bitcode file (executable) from the IR bytecode. For

example,

llvm-as -f helloworld.s

It creates hellowrold.s.bc file which is target specific executable [29].

4.4.3 lli

To execute LLVM bitcode file, lli command is used [28]. For example,

lli helloworld.s.bc

This command executes helloworld program.

4.4.4 Opt

It is used to run different optimizers on IR bytecode. One can write his / her own

optimizer on top of inbuilt optimizers. In this project we have written an optimizer

pass to call dead code functions. Format of the command is:

opt 〈 optimizer name〉 〈 input bytecode or bitcode file 〉 〈 output bytecode or bitcode file 〉

For example,

opt -mem2reg 〈helloworld.s.bc〉 〈mhellow.bc〉

The file mhellow.bc is generated after running the optimizer pass mem2reg on hel-

loworld.s.bc. File mhellow.bc is the optimized executable of the program [28].

4.4.5 llvm-dis

This tool is used to disassemble the LLVM bitcode file to IR bytecode file.

llvm-dis -f mhellow.bc -o opthelloworld.s
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Using this command we can check how code was optimized in mem2reg pass [29].

4.4.6 llc

This tool is used to generate native assembly-code from bitcode file. For example,

llc -f opthelloworld.bc

A file containing the native assembly code opthelloworld.s is created [28]. Throughout

the project we used following command to disassemble the binary.

llc -o file.asm -asm-verbose=0 -march=x86 -x86-asm-syntax=intel -regalloc=default file.bc

Here, file.bc is the input binary file and file.asm is the output file containing assembly

code

4.4.7 llvm-link

This tool takes several LLVM bitcode files and links them together and generates

a single LLVM bitcode file [33]. For example,

llvm-link -o finalopt.bc addCode.s.bc basic.s.bc

This command generates one finalopt.bc bitcode file after linking addCode.s.bc and

basic.s.bc bitcode files.
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CHAPTER 5

Hidden Markov Models and Virus Detection

Metamorphism is the best way to evade detection. Recent research proves

that Hidden Markov Models (HMMs) are very effective in detecting metamorphic

viruses [5, 11, 22, 39, 48, 49, 53]. Hidden Markov models can be viewed as a ma-

chine learning technique. In the past, a method is described to train the HMM with

sequences of opcodes from viruses which belong to same family [53]. This trained

HMM is then used to score binaries, to determine if the given binary belongs to a

virus or benign file. Log Likelihood Per Opcode (LLPO) score is calculated and based

on this score, threshold is obtained for viruses and benign executables. This thresh-

old value categorizes executables between viruses or benign executables based on its

LLPO score. The detailed working of HMM and its virus detection mechanism are

explained in following sections.

5.1 HMM

The Hidden Markov Model (HMM) is a statistical pattern analysis tool. The

notations used in HMM are shown in Table 1 [43]:

As the name suggests, a hidden Markov model includes a “hidden” Markov

chain. Although this Markov chain is not directly observable, it is probabilistically

related to sequence of observed symbols. A generic Hidden Markov Model is explained

in Figure 12. Its state and observation at time t are represented by Xt and Ot

respectively. The initial state X0 and A matrix together determine the hidden Markov

process. This Markov process is illustrated in Figure 12. Oi is related to the states

of Markov process by the matrices A and B.
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Table 1: HMM Notations [43]

Symbol Description
T Length of the observed sequence
N Number of states in the model
M Number of distinct observation symbols
O Observation sequence (O0,O1, . . . ,OT−1)
A State transition probability matrix
B Observation probability distribution matrix
π Initial state distribution matrix

Figure 12: Generic Hidden Markov Model [43]

Research in [12] indicates HMMs are used in protein modeling and speech recog-

nition systems. HMMs can also be used to detect certain types of software piracy [20].

In general, HMM needs to be trained with the input data. It creates training models

based on this training data. Each individual element in the training data is mapped

to an observation symbol. All unique observation symbols are then extracted and

are represented in the training model. This trained model is then used to determine

whether the new sequence of observations is similar to one represented in the training

model. HMM collects training data from all known viruses and builds training models

one for each family of virus. A new file is tested against these models. If a new file

matches with the model, then it can be identified as a virus from that family [43, 53].
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5.1.1 Example

Papers [22, 43, 53] explain inner working of HMM with this simple example:

Suppose one has to find out the average annual temperature for any given year by

observing the tree sizes (S-small, M -medium and L-large). To keep it simple, assume

the annual temperature is either hot (H) or cold (C). In addition to this, the prob-

ability of annual temperature trend is known. Probability of a hot year followed by

another hot year (HH) is 0.7, a hot year followed by a cold year (HC) is 0.3, a cold

year followed by a hot year is 0.4 and a cold year followed by another cold year (CC)

is 0.6 [43]. The matrix representation of these probabilities is:

The correlation between tree sizes and temperature is also known. In a hot year,

the probability of tree size being small is 0.1, being medium is 0.4 and being large

is 0.5. In a cold year, the probability of tree size being small is 0.7, being medium

is 0.2 and being large is 0.1 [43]. The matrix representation of this information is as

follows:

This known information can be mapped to HMM notations. States are repre-

sented by annual temperatures, tree sizes are observable symbols. States H and C

are hidden, as we cannot see the temperature in the past. We have access to see the

observation symbols (S, M and L). With this known information, we can build the

HMM model described in Figure 13.

25



Figure 13: HMM Model [43]

Consider we have information of tree size sequence for four consecutive years and

it is (S,M, S, L) and by using this information we want to find the annual temper-

ature sequences. To solve this problem using HMM, its parameters are explained as

follows [43]:

1. State transition probability matrix

A =

[
0.7 0.3
0.4 0.6

]
2. The observation probability distribution matrix

B =

[
0.1 0.4 0.5
0.7 0.2 0.1

]
3. Number of states (H and C) in the model N = 2.

4. Number of distinct observation symbols (S, M and L) M = 3.

5. Given initial state distribution matrix :

π =
[
0.6 0.4

]
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HMM steps to determine transitions of length T = 4 with given observations

(S,M, S, L) are as follows [43]:

1. Determine all state transitions which is nothing but NT .

2. Calculate the probability for each state transition (Table 2) with the given

observation sequence. For example, the probability of sequence HHCC can be

calculated by using following formula:

P (HHCC) = πHbH(S)aH,HbH(M)aH,CbC(S)aC,CbC(L)

= (0.6)(0.1)(0.7)(0.4)(0.3)(0.7)(0.6)(0.1)

= 0.000212

3. We know that annual temperature sequence will be the one with the highest

probability. In Table 2 [43], CCCH has the highest probability so answer is

CCCH sequence.

The brute force method applied here requires exponential amount of work which

is infeasible. HMM includes following algorithms to solve three problems.

5.2 The Three Problems

Following three problems can be efficiently solved using HMMs [22, 42, 43]:

Problem 1. The model λ = (A,B, π) and an observation sequence O is known,

find P(O |λ).

Problem 2. The model λ = (A,B, π) is known, find an optimal state sequence for

the Markov process.
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Table 2: Probabilities of observing (S,M, S, L) for all possible state sequences

state sequence probability
HHHH .000412
HHHC .000035
HHCH .000706
HHCC .000212
HCHH .000050
HCHC .000004
HCCH .000302
HCCC .000091
CHHH .001098
CHHC .000094
CHCH .001882
CHCC .000564
CCHH .000470
CCHC .000040
CCCH .002822
CCCC .000847

Problem 3. An observation sequence O, the number of unique symbols M and the

number of states N are known, find the model λ = (A,B, π) that maximizes the

probability of O.

First problem concentrates on determining the likelihood of an observation se-

quence using the model λ. Second problem concentrates on exposing the hidden part

of the HMM. The third problem concentrates on training the HMM with input obser-

vation sequence O and the parameters M and N . In this paper, we first train a model

(Problem 3) on opcode sequences derived from a base piece of software. Then use the

trained model to score (Problem 1) morphed versions of this base software. Previous

research has shown that HMMs are effective at detecting metamorphic malware, and

that HMMs can also be used to detect certain types of software piracy [20]. That is,

HMMs have proven useful at detecting morphed or disguised versions of code. Conse-
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quently, HMM analysis provides a challenging test for any code morphing technique.

5.2.1 Forward Algorithm

This algorithm or α pass determines P(O |λ) [42, 43].

For t = 0, 1, . . . , T − 1 and i = 0, 1, . . . N − 1, define

αt(i) = P (O0,O1, . . . ,Ot, xt = qi|λ)

The probability of the partial observation sequence up to time t is αt(i). Using

the forward algorithm, P(O |λ) can be computed as shown below:

1. Let α0(i) = πibi(O0), fori = 0, 1, . . . , N − 1

2. For t = 1, 2, . . . , T − 1 and i = 0, 1, . . . N − 1, compute [43]

αt(i) =

(
N−1∑
j=0

αt−1(j)aij

)
bi(Ot)

3. P(O |λ) =
N−1∑
i=0

αT−1(i)

5.2.2 Backward Algorithm

This algorithm helps to find a most likely optimal state sequence

For t = 0, 1, . . . , T − 1 and i = 0, 1, . . . , N − 1, define [22, 42, 43]

βt(i) = P (Ot+1,Ot+2, . . . ,OT−1|xt = qi, λ)

Efficiently βt(i) can be calculated in following steps:

1. Let βT−1(i) = 1, for i = 0, 1, . . . , N − 1
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2. For t = T − 2, T − 3, . . . , 0 and i = 0, 1, . . . , N − 1, compute [43]

βt(i) =
N−1∑
j=0

aijbj(Ot+1)βt+1(j)

For t = 0, 1, . . . , T − 2 and i = 0, 1, . . . , N − 1, define

γt(i) = P (xt = qi|O, λ)

Relevant probability up to time t is measured by αt(i), and after t is measured

by βt(i) [43],

γt(i) =
αt(i)βt(i)

P (O|λ)

The most likely state at any time t is the state for which γt(i) is maximum.

5.2.3 Baum-Welch Algorithm

By adjusting the model parameters, this algorithm provides efficient way to best

fit the observations. In this algorithm, number of states N and number of unique

observation symbols M are constant. However, other parameters like A, B and π are

changeable with row stochastic condition. The process of re-estimating the model is

explained below [42, 43]:

1. Initialize λ = (A,B, π) with an approximate guess or random values. For

example π = 1/N , Aij = 1/N , Bij = 1/M .

2. Compute αt(i), βt(i), γt(i) and γt(i, j) where γt(i, j) is di-gamma. This Di-

gammas can be defined as [42]:

γt(i) =
αt(i)aijbj(Ot+1)βt+1(j)

P (O|λ)

γt(i) and γt(i, j) are related by:

γt(i) =
N−1∑
j=0

γt(i, j)
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3. Re-estimate model parameters as : For i = 0, 1, . . . , N − 1 let

πi = γ0(i)

For i = 0, 1, . . . , N − 1 and j = 0, 1, . . . , N − 1, compute [42]

aij =
T−2∑
t=0

γt(i, j)

/
T−2∑
t=0

γt(i)

For j = 0, 1, . . . , N − 1 and k = 0, 1, . . . ,M − 1, compute [42]

bj(k) =
∑

t∈{0,1,...,T−2},Ot=k

γt(j)

/
T−2∑
t=0

γt(j)

4. If P (O|λ) increases go to step 3

5.3 HMM and Virus Detection

Effectiveness of HMM for metamorphic virus detection is explained in detail

in [12, 23]. HMM as a virus detection tool needs to train with the input data to

generate training model. Trained HMM, represents the statistical properties of the

virus family. These trained models are then used to determine the score of a new

binary file. This score indicates how “close” a new binary file is to the virus family

that the model represents. Based on threshold values, we can then categorize files.

To train the HMM, first set of virus files belonging to the same family are disas-

sembled. From each disassembled file, unique assembly opcodes are extracted. These

opcodes constitute the HMM symbols. Example of extracted opcodes is shown in Fig-

ure 14. A long observation sequence is generated by concatenating opcode sequences

from all virus files within the same family. This concatenated sequence then is used

to train an HMM. The set of unique opcodes from this long sequence serve as the set

of distinct observation symbols. The example of HMM model is shown in Figure 15.
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Figure 14: Extracted opcode sequence

5.3.1 Log Likelihood Per Opcode

In scoring observation sequences to train HMM, product of probabilities needs

to be computed. As T increases, product tends to 0 exponentially. To avoid this

problem, forward and backward algorithms are used to normalize the result. This

process is explained in [43].

log[P (O|λ)] = −
T−1∑
j=0

log cj

Above equation represents log likelihood. It is sum of log transition probabilities,

so log likelihood is length dependent. Longer the sequence, higher will be the log

observation probability. The sequence in test set can differ in length comparing to

32



Figure 15: HMM Model

sequences used to train the HMM. To obtain the LLPO, divide the log likelihood by

the number of opcodes in the sequence [53].

5.3.2 Effectiveness of HMM Detection

The effectiveness of HMM in detecting metamorphic virus is proven [53]. Virus

files generated by metamorphic code generator NGVCK generate significantly differ-

ent files, also got detected by HMM in [53]. The detection rate of HMM is almost
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90% [12].

5.4 Evading HMM Detection

Researchers have tried to write the metamorphic engine to evade HMM detec-

tion [22]. The dead code is inserted into the virus files based on dynamic scoring

algorithm. The block of dead code is inserted into the virus file only if doing so

increases the likelihood of virus file score getting closer to the score of benign files.

Results in [23] indicate inserting long sequence of opcodes, like subroutines are

more effective in avoiding HMM detection than randomly inserting blocks of dead

code. The HMM detector failed when 35% of dead blocks and 30% subroutines were

inserted from benign files to virus file. The metamorphic code generator presented in

this paper makes use of these results while inserting dead code.
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CHAPTER 6

Design and Implementation

6.1 Introduction

Some of the metamorphic techniques explained in Chapter 3 are implemented

at IR bytecode level instead of at assembly code. It has been seen in the past that

conditional code obfuscation techniques are implemented at IR bytecode level by

writing LLVM optimizer passes [17]. Malware writers have also tried to implement

“shadow attack” in [35].

The aim of the project is to produce multiple base software copies that are hard to

detect and significantly different from each other. When a program is compiled with

this optimizer, it generates significantly different morphed copy of the base software.

Even after implementing all metamorphic techniques, HMM detector developed in [53]

is able to classify virus files and benign files correctly. An unsuccessful attempt was

made [11] to escape from HMM-based detector. This proves HMM is very effective

in detection. Therefore, our aim is to write metamorphic code generator that evades

HMM based virus detector.

6.2 Challenge and Innovation

Morphing code at IR level offers following advantages [2]. These advantages

include

• LLVM was originally implemented for C and C++, but its language-agnostic

design has spawned a wide variety of front ends which include Objective-C,

FORTRAN, Ada, Haskell, Java bytecode, Python, Ruby, Action Script, GLSL,
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D, and Rust. Code written in any of the above language can use our code

generator to produce metamorphic copies.

• The intermediate form is platform independent.

• At IR level, virtual addresses are not assigned. Addresses get assigned at bitcode

level. So, by morphing at IR level, we avoid difficulties associated with morphing

at the assembly level.

6.3 Goals

Morphed copies of code should have same functionality as base file. In addition,

the higher the percentage of inserted or modified code, the more the morphed files

should differ (on average) from the base file. A morphed base file will look like a

morphing file, if its opcode counts and opcode sequences are more like morphing files

than base file. As previously mentioned, HMMs have a proven record of being able

to effective “see through” metamorphic cide. Consequently, if we can morph code

sufficiently to confuse HMM-based analysis this will provide a strong indication of

the success of our morphing strategy.

6.4 Metamorphic Techniques Used

As we are morphing at IR bytecode level, it is difficult to adopt some of the

techniques described in Chapter 3. For example, register swapping and equivalent in-

struction substitution are relatively difficult to implement at the IR level. Therefore,

to provide a proof of concept, we have restricted our code morphing to a combination

of dead code insertion and subroutine permutation. We accomplish both of these

morphing strategies by inserting randomy selected complete subroutines of dead code

from other program files. In addition, the order of these dead subroutines is ran-
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domized. In this way, we create a singnificant amount of transposition and dead

variation between different morphed copies. In addition, we insert call statements

to all dead code subroutines so that they are not trivially identifiable as dead code.

These techniques are discussed in following sections:

6.4.1 Dead Code Insertion

Dead code insertion involves inserting instructions whose result is never used in

any other computation. The main goal of adding this code is to increase the diversity

of opcodes. Since, we are implementing it at IR bytecode level which has RISC

like instruction set; it is difficult to add dead instructions. However, functions can

be easily inserted by using linker tool llvm-link. To insert dead code we need IR

bytecode of morphing files.

We have used core-util Linux command files [24] and files from httpd web

browser [4] to insert the dead code. These files include system level code to do

operations that we would expect to be somewhat similar to our selected base code.

A detailed algorithm is explained in Section $6.5.1.

LLVM provides options to optimize and remove dead code. Anti-virus softwares

are also smart enough to identify code snippets which are not actually getting ex-

ecuted. They can track to execution sequence and detect the virus. To make the

metamorphic code generator smarter, we “call” the inserted dead code. A detailed

algorithm is explained in Section $6.5.2.

6.4.2 Function Permutation

As explained in Chapter 3, function permutation is reordering the layout of

function definitions. Since IR bytecode is in the textual form, function permutations
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can be implemented easily by changing the sequence of the functions. This helps

to evade any pattern matching detector. We have written Python script to operate

on IR bytecode and produce another text file which has same functions but with a

different layout. A detailed algorithm is explained in Section $6.5.3

6.5 Implementation

In this project we have developed three passes. These passes and their algorithms

are explained in following subsections. The high level architecture of our morphing

engine appears in Figure 16.

Figure 16: Metamorphic code generator architecture diagram

6.5.1 Dead Code Insertion

First pass operates on inserting the dead code. A base file, a morphing file

(i.e., our source of dead code), and a dead code percentage are specified. Based on

the percentage of dead code, we determine total number of lines we want to insert
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into the base file. We then select complete functions from the morphing file so that

the total size approximates the number of lines we want to insert into the base file.

These subroutines are integrated into the base file at the linking stage. In the output

it provides function names it has inserted. It also distinguishes the output dead

function names which can be called in pass 2. The details of this first pass of our

code morping techniques are given below.

1. Compile selected morphing file using llvm-gcc command and generate its IR

bytecode.

2. From this IR bytecode, determine the function dependencies.

3. For each function, calculate its number of lines.

4. Based on total number of dead code lines, use a greedy strategy to determine a

subset of functions which best approximates the number of lines to be inserted.

5. Copy selected functions to a temporary IR bytecode file.

6. Create bitcode files for the base code and temporary IR bytecode using llvm-as.

7. Merge these two files (using llvm-link).

8. If there are any subrouttine naming conflicts, replace each offending name in

the temporary IR bytecode file with a random string. Goto 7.

9. Delete the temporary IR bytecode file.

6.5.2 Call Dead Functions

In this pass, we use the LLVM optimizer to insert a “call” instruction for each

dead code subroutine. As mentioned in Section $6.5.1, pass 1 identifies dead functions
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which can be called using this pass. The optimizer takes function name as input. It

then finds the main function definition in the IR bytecode and inserts a “call” type of

instruction after every “load” type of instruction. This optimizer operates on Module

class. The current implementation does not support structure type of parameters

and pointers except single pointers. For each dead code subroutine, we perform the

following steps.

1. Find the “function” object of the main function.

2. Iterate over instructions in the function object. If an instruction is of type

“load”, then insert the “call” instruction.

3. To insert the “call” instruction, iterate over its function parameters. For each

parameter, allocate memory and initialize with a random value.

4. Finally, insert a “call” instruction.

6.5.3 Function Permutation

Third pass performs function permutations by simply reordering functions in the

IR bytecode file. This pass is written in python script. Its algorithm is explained in

following steps.

1. Read IR bytecode file.

2. Write all global variables in temporary file.

3. By using random class generator, generate random number between 1 to total

number of functions.

4. If function is not already added, then write this function definition in temporary

IR bytecode file.
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5. Repeat steps from 3 until all functions are written to temporary bytecode file.

6.6 Software Used

LLVM 3.1 version source code [34] is used. LLVM commands from this version

are used to link and compile the code. LLVM-GCC version 4.2 which comes with

MAC operating system is used to create IR bytecode files of the source program.
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CHAPTER 7

Experiments

In this section, we use the HMM technique developed in [53] to test the effective-

ness of our LLVM-based metamorphic code generator. We add increasing percentages

of dead code to find the threshold at which HMM detector starts to fail. We show that

after adding about 20% (or more) dead code, our metamorphic code generator started

to escape HMM-based detection. These results indicate that our LLVM-based morph-

ing strategy is more effective than any of the hacker-produced metamorphic malware

generators considered in previous research [53], and is at least as effective as an ex-

perimental metamorphic malware generator that was designed specifically to evade

HMM-based detection [42].

7.1 Base File

For the experiments given here, we use spike fuzzer [41] as our base software.

Fuzzing is a process of sending malformed data to an application to generate failures

or errors in the application [19]. Fuzzing finds bugs which can then be used by

attackers to run their own code. Fuzzing is one of the best ways in which exploitable

software bugs are discovered [15, 19, 40].

As this metamorphic code generator is written within the LLVM compiler, it has

different executable format. To disassemble the binary, we cannot use standard tools

like IDA-PRO. The base software and morphing files should be disassembled by using

the same disassembler.

For each experiment, we generate 50 morphed copies by inserting dead code from
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different morphing files. The morphing files were randomly selected from coreutil

Linux command files [10].

Once the morphed files are generated, we use an HMM scoring technique similar

to that in [53]. Previous research [22, 42, 53], has consistently shown that the number

of hidden states in the HMM does not impact the quality of the file classification.

Consequently, we only consider HMMs with N = 2 hidden states. Additional results

with N = 3 are presented in Appendix.

First, we train an HMM to model the base file. To obtain sufficient observations

for training, we generated 50 copies of the base file, each having a 5% rate of morphing.

We used random 50 files as morphing files to create set of files. We then trained an

HMM on these 50 morphed files. We refer to this model as the “base HMM”. As

discussed in [53], the purpose of the morphing at this stage is simply to prevent the

base HMM from overfitting the available data in the base file. Consequently, we use

a minimal amount of morphing at this step.

Once base files, morphing files and model are ready, next we use the base HMM

model to score 50 morphing fies. Specifically, we score the coreutil Linux commands

files which will be used as morphing files in experiments.

If the score of the morphing file is not higher than the base file, then HMM

detects it as family of base file. There is a threshold value which determines if the

given file is a base (score greater than the threshold) or morphing file (score lower

than the threshold). If score of the morphing file is greater than the score of some of

base files, then HMM does not have a good threshold which can be used to determine

the new file. Thus, some base files can escape the HMM based detection.

Figure 17 shows the result of 50 base files against 50 morphing files. Score of all
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morphing files is lower than base files. Thus, the base files generated using our code

generator with maximum of 5% are detectable by HMM detector.

Figure 17: HMM results for base virus and benign files

7.2 HMM

We then conducted experiments where we morph the base file at each of the

following rates: 10%, 20%, 30%, and finally, 50%. In each case, we generated 50

morphed versions of the base file, with each file morphed at the given rate. These

morphed copies were then scored using the base HMM and these scores were compared

to the scores obtained for the morphing files. Note that all scores are normalized to

a per opcode basis so that file size does not affect the results. By calculating scores

at various percentages, we found at which percentage base files start escaping from

HMM detection.

Number of lines added as dead code are calculated based on the percentage of

44



lines in IR bytecode of base file.

First graph in Figure 18 shows scores after inserting 10% of dead code. Second

graph in Figure 18 shows the result after inserting 20% of dead code.

Figure 18: HMM results with 10% and 20% dead code insertion

After inserting 10% of dead code (left figure) scores of the base morphed files

improved a little but still most of the files have scores similar to base files. After

inserting 20% (right figure), scores are better but still some files have scores similar

to base files.

First graph in Figure 19 shows the result after inserting 30% of dead code. Second

graph in Figure 19 shows the results of scores after inserting 50% of dead code.

Results of the scores are significantly improved after inserting 30% and 50% of

dead code. For 50% almost all base morphed files have scores almost same as that

of morphing files. Increase in percentage of dead code causes improvements in LLPO

scores.
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Figure 19: HMM results with 30% and 50% dead code insertion

From these results, we see that after inserting 20% dead code, the scores are

starting to merge, which indicates that the morphed base files are difficult for the

HMM to distinguish from the morphing files. This is precisely the effect that we hope

to achieve through code morphing.

Graph in Figure 20, gives overall picture of various percentage of dead code

insertions.

Results of Figure 20 are summarized in the ROC curves in Figure 21. These

ROC curves plot the false positive rate versus the true positive rate as the threshold

is varied throughout the score range [9].

The area under the ROC curve (AUC) is equal to the probability that a classiffier

ranks a randomly chosen positive instance higher than a randomly chosen negative

one [9]. The AUC values for the ROC curves in Figure 21 are given in the Table 3.

Note that an AUC of 1.0 indicates ideal separation (i.e., no false positives or false
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Figure 20: HMM results with rate of dead code insertion

negatives), while an AUC of 0.5 indicates that the classiffier yields results that are

no better than flipping a coin. After inserting 20% dead code, our HMM classiffier

does poorly, and at higher morphing rates, the rate of classification failure increases

dramatically. Again, these results show that our code morphing technique is highly

effective, at least with respect to this HMM classifier.

Table 3: ROC AUC statistics for rate of dead code insertion

Dead code insertion rate in % AUC
10 1.000
20 0.87080
30 0.77240
50 0.59240

47



Figure 21: ROC curves for rate of dead code insertion

7.3 Detection

There are number of dead code removal optimizers already developed in LLVM.

We then conducted experiments to check an effect of these optimizers on our meta-

morphic code generator. We conducted two experiments. In the first experiment we

used compile-time optimizer options in the order explained in Table 4 to remvoe dead

code. All these optimizers perform single pass over the function to remove instructions

which are dead [26].
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Table 4: LLVM optimizer passes used to remove dead code

LLVM optimizer options Description
O3 Optimization level 3

adce Aggressive Dead Code Elimination
die Dead Instruction Elimination
dce Dead Code Elimination
dse Dead Store Elimination

strip-dead-prototypes Strip Unused Function Prototypes
globaldce Dead Global Elimination
globalopt Global Variable Optimizer

tailcallelim Tail Call Elimination
std-compile-opts Include the standard compile time optimizations

After executing these optimizers on base morphed files with 50% of dead code

insertion, we found that they have removed some amount of dead code from base

morphed files. But, while optimizing they have used different instructions and so the

opcodes. From the Figure 22 we can see that, score of some files is actually improved

after using these optimizers.

In the second experiment, we used std-link-opts LLVM link-time optimizer

(LTO) to remove dead code. This optimzer as explained in [31] works in multiple

phases and very effectively optimizes the code. After executing this optimizer, we

found that it has removed all dead code we have inserted and it has also optimized

the original base file. Current implementation is not using result of dead functions

in the rest of the calculation, therefore it figures out dead functions in its multiple

passes and optimizes the code. From the Figure 23 we can see that all 50 files have

same HMM score after using this optimizer pass.

After using link-time optimizer our metamorphic code generator becomes inef-

fective. All morphed files fall back to the original base file.
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Figure 22: HMM scores after using optimizers

Figure 23: HMM scores after using link-time optimizer
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CHAPTER 8

Conclusion

In this paper, we presented and analyzed a novel code morphing technique based

on LLVM IR bytecode. Our approach makes a strong code morphing engine available

as a compile-time option, and requires no special effort on the part of the software

developer. As far as we are aware, this is the first general purpose code morphing

tool of its kind.

Our metamorphic generator uses dead code insertion and function permutation.

The dead code is in the form of functions copied from other programs, and these dead

functions are called within the program unlike in [23, 42], which makes their detection

and removal more challenging. We tested the effectiveness of our code morphing using

an HMM technique that has proven successful in metamorphic malware detection and

certain cases of software piracy. We showed that our morphing is highly effective, in

the sense that the HMM cannot effectively distinguish our morphed code from other

code, even at relatively low morphing rates.

Results from the experiments show that with the increase in rate of dead code

insertion, base files starts looking more like morphing files. The Log Likelihood score

per opcode of base files and that of morphing files started looking similar to each

other.

The HMM detector’s performance is acceptable with 20% of dead code insertion.

After inserting, more than 20% of dead code, HMM started misclassifying files, as

indicated in ROC curve Figure 21.

From the experiments, this tool is still effective after using compile-time opti-
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mizers to remove dead code from base morphed files. However, after using link-time

optimzer it becomes ineffective. All morphed files fall back to the original base file.

There are many possible improvements to the metamorphic generator presented

here. The dead code insertion could be improved by making it not depend on complete

subroutines it should be possible to do such insertion at the level of basic blocks. Other

powerful morphing techniques, such as instruction substitution, could be included. It

would also be interesting to employ formal grammar mutation as a framework for

implementing the morphing. Additional user control of morphing (via compile-time

flags) would be valuable. Finally, improvements in the LLVM infrastructure would

serve to make our code morphing techniques more robust. For example, in our current

implementation, tools available within the LLVM framework could be used to analyze

the morphed bitcode. However, if the bitcode is converted to, say, a Windows PE

file, then the tools within LLVM will not be available for such analysis.

Current implementation becomes ineffective after using LLVM link-time opti-

mizer as shown in Figure 23. The future work can be done to handle this situation.

LLVM compiler infrastructure can also be used to write complex malwares [17,

35]. More research needs to be done in this area.

LLVM compiler architecture is also useful in detection of viruses. Multiple opti-

mizers already exist to remove dead code at IR byte code level [25]. Similar optimizers

can be written to remove other obfuscation techniques.

We used HMM based detector to evaluate the effectiveness. It is seen that it was

not able to detect all virus files generated by our code generator. Further research

needs to be done to enhance HMM detector. One possible way is to remove dead

code first from virus files before computing HMM score.
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APPENDIX

Additional HMM results

• HMM parameters: N = 3

• Graph base files and morphing files: Figure A.1

Figure A.1: HMM results for base and morphing files

• Graph of dead code insertion = 10%: Figure A.2.a

• Graph of dead code insertion = 20%: Figure A.2.b

• Graph of dead code insertion = 30%: Figure A.3.a

• Graph of dead code insertion = 50%: Figure A.3.b

• Graph of overall picture with different rate of dead code insertions: Figure A.4
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Figure A.2: HMM results with 10% and 20% dead code insertion

• AUC values for inserting various percentages of dead codes are shown in the

Table A.1.

Figure A.3: HMM results with 30% and 50% of dead code insertion
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Figure A.4: HMM results with rate of dead code inserion

Table A.1: ROC AUC statistics for rate of dead code insertion

Dead code insertion rate in % AUC
10 0.99960
20 0.93320
30 0.78320
50 0.64680
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