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ABSTRACT

Entropy and State Visualization for Automation Design and Evaluation 

Prototyping Toolset

by 

Rohit Deshmukh

Automation Design and Evaluation Prototyping Toolset (ADEPT) is a plug-

in developed on the Eclipse Rich Client Platform(RCP). ADEPT can be used by 

domain expert designers to create and modify testable prototypes.  The aim of 

the project is to enhance ADEPT by adding dynamic visualizations to the ADEPT 

user interface. Three types of visualizations are implemented in this project. 

Table view is helpful to view the hierarchy and nesting of Logic Tables.  The State 

visualization displays all the states in a selected Logic Table. Entropy 

visualization is a subset of State visualization and displays limited number of 

states having lowest Entropy value. 
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 1. Introduction

 1.1.  Introduction 

                    The Human Systems Integration Division is addressing the issue 

that current automation design and modeling tools do not provide adequate 

support for the specification of automation decision logic and user interaction with 

automation decision logic. Automation Design and Evaluation Prototyping Toolset 

(ADEPT) has been developed to address this need. ADEPT is a plug-in 

developed at NASA Ames Research Center. ADEPT allows domain experts to 

design and to rapidly create and modify testable prototypes. Computational 

Human-Computer Interaction (HCI) analyses have been integrated with the 

ADEPT design framework to provide designers without HCI expertise, the ability 

to evaluate HCI aspects of prototype designs. ADEPT is being developed to help 

identify the Human-Automation Interaction (HAI) vulnerabilities. ADEPT allows to 

create an iterative specification of decision logic of the automation being 

designed. An accurate and complete specification for a design prototype can be 

built using ADEPT. “In addition to the focus on specifying decision logic, the tool 

is intended to provide a platform for integrating HAI testing and analysis” [1]. 

The proposed project is an effort to improve the ADEPT plug-in. As part of 

the initial project work, the areas for improvements in ADEPT were identified. 

Some projects built in ADEPT, such as the auto-pilot interface design prototype 

for an airplane, resulted in multiple Logic Tables which made the project too 

complicated, to understand the Logic Tables. Logic Tables also support the 
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nesting of tables which makes the Logic Tables more complex to understand. 

Moreover, if there are multiple collaborators using same ADEPT project, it is hard 

for all of them to follow the hierarchy of tables and logic specifications. Table 

View is a visualization that was created to eliminate this issue. Another important 

requirement for ADEPT is to have a state diagram that shows the possible states 

for each Logic Table. As the state diagram visualization is implemented it results 

in a large number of states being generated for any complex prototype design 

such as the auto-pilot design. This leads to a new visualization which displays 

only a few nodes of higher interest from each Logic Table. 

The report focuses on the implementation of visualization techniques for 

the ADEPT plug-in. All software and tools used for this project are discussed in 

the following section. In addition, a detailed introduction to the ADEPT user 

interface is given. Next, the report briefs on the preliminary work done and the 

initial improvements made to the ADEPT user interface. The rest of the paper 

discusses, in detail, the design and the uses of all the three visualization 

techniques: Table-view, State-view, and Entropy-view. In the final section the 

report discusses the dynamic integration of the visualizations with the ADEPT 

plug-in. Finally, the report ends with a conclusion and references.
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 2. Software Tools Used

 2.1.  Eclipse RCP
Eclipse is a special Integrated Development Environment 

(IDE) which can be used as a tool to create new applications using various high 

level programming languages such as Java, C++ and PHP [2]. Important aspect 

of the Eclipse IDE is that it can be extended by programmers, to create their own 

Rich Client Platform plug-ins specific to their project requirements, instead of 

reinventing the wheel [3]. Programmers can use the underlying Eclipse 

framework and build plugins which use the services provided by Eclipse and 

develop application specific interfaces that can be fully integrated with the 

Eclipse IDE. 

In this project Eclipse platform was used to build ADEPT plugin, which simplifies 

the task for domain experts to design and code the prototype without having 

them to write any high level language code. Figure1 above shows Eclipse 

framework outlined in dark blue color, contains all the core Eclipse tools provided 

11

Figure 1: ADEPT plug-in with Eclipse architecture and other software tools used



by Eclipse as part of the Eclipse SDK. The contribution made towards the 

development of this project is shown in the top row highlighted in light blue color. 

We will briefly discuss each component in the following section.

 2.2.  ADEPT plug-in 

My project aims to improve the user interface and add visualization 

capabilities to the ADEPT plug-in. We need to have a brief introduction to ADEPT 

in order to understand the project. 

Figure 1 shows ADEPT integrated on top of the Eclipse Framework. The 

ADEPT plug-in contributes menus, views and its own editor to the Eclipse IDE. 

ADEPT uses many components of the underlying eclipse framework and adds its 

own functionality to form a fully integrated application for HAI testing and 

analysis. 

The main User Interface of ADEPT constitutes of the following 

components User Interface Editor, Logic Editor, System Browser and Property 

Editor.  
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Figure 2 displays the user interface for the ADEPT plug-in. The main 

center panel in Figure 2 represents the Logic Editor; the panel to the right of 

Logic Editor is the User Interface Editor. System Browser is on the top left and 

Property Editor is at the bottom left in Figure 2. ADEPT offers a graphical user 

interface design capability with an automation behavior specification capability. 

ADEPT also provides an automatic code generator to enable domain expert 

designers to create testable software prototypes. The User Interface Editor 

provides a blank canvas to the user. The user can add graphic objects and 

13
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controls to resemble the user interface of the prototype. Buttons, display labels 

and other widgets can be used as graphical objects. Graphical objects created in 

other applications can also be imported into ADEPT. The property browser 

facilitates to change the properties of the graphical objects. In addition the 

properties can be changed dynamically by dragging the objects into the Logic 

Editor, corresponding to the automation behavior. “The Logic Editor enables the 

designer to specify the decision logic and automation behavior of the device, the 

environment in which the device operates, as well as the behavior of the user 

interface objects on the user-interface, corresponding to reflect the current state 

of the device and environment” [1].  

 2.3.  Nebula widgets toolkit

Nebula is a toolkit which provides a set of Widgets with special 

features that are not available with the standard widgets provided by the Java 

SWT Widgets. 

Nebula is a collaborative effort of different Eclipse projects and individual 

programmers. The source code for the widgets is also available under the 

Eclipse Public License 1.0, this was the major factor in choosing Nebula widgets 

library for ADEPT. Moreover the Nebula widgets toolkit  is build using the SWT 

graphics so there were no compatibility issues with other views in ADEPT. The 

Grid widget was custom tailored to create the main component of user interface 

which is the Logic Editor Table [6].
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 2.4.Prefuse

Prefuse is a library that provides a framework for building rich 

graphical visualizations. Prefuse provides Java 2D graphics interface to create 

graphic objects, which can be easily integrated in to ADEPT project. Prefuse is 

an open sourced project and the source code is available under terms of BSD 

license. The availability of source code provides flexibility to extend the interfaces 

and develop custom graphical objects. Prefuse follows the information 

visualization reference model as shown in figure 3 below. 

This architecture simplifies the data visualization process into 

simple individual steps. Data is transformed into set of Data Tables. In the next 

step a visual abstraction is created depending on the kind of visual object we 

want to use to display the data. The visual abstraction will contain the definition 

for the properties such as shape, color and position of the graphical object. This 

visual abstraction is then transformed to create interactive views.  User has the 

15
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freedom to modify at any intermediate step of the data, data tables or the visual 

abstraction process. Prefuse library is extensively used in the development of the 

three visualizations in this project.
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 3. Preliminary work done to improve the ADEPT plug-in 

During the preliminary part of this project, necessary requirements 

to improve the user-interface for the ADEPT plug-in were identified. The Logic 

Table which is the main component of the IDE had issues with Drag and Drop 

functionality. The swing component used to design and build the Logic Editor 

Table, was not compatible with the new SWT framework that Eclipse uses 

extensively. The only way to rectify this issue was to replace the main component 

representing the Logic Table, with another widget that was compatible with rest of 

the Eclipse components and would support Drag and Drop functionality. We 

decided to use the Nebula project Grid widget which is a custom SWT widget. 

The Grid widget is a spreadsheet/table component that offers features not 

currently found in the base SWT Table [5]. The Grid widget was customized to 

add a column select focus control. In the ADEPT plug-in the column represents a 

situation, while the row specifies the state. It is important for the designer to 

visualize if either a row or a column is selected; even the toolbar Menus are 

activated depending on whether user selects a row or a column. To improve the 

action feedback of row/column selection a focus column was added to the 

original widget. When a column is selected it has a focus unlike other widgets, 

where focus is used only to highlight a row selection. Another major change 

necessary was to replace the System Browser view which is basically a tree 

structure also supported by a swing tree widget. The swing widgets also caused 

flickering problems during resizing and moving. Hence it was necessary to 

replace both these swing components with suitable widgets. 
17
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Figure 4: Old ADEPT plug-in

Figure 5: New  ADEPT plug-in with Nebula Grid widget demonstrating focus column 
and System Browser  



The System Browser lists all the controls, Logic Tables, user objects and 

variables used in a project. In certain projects with many controls and variables it 

becomes hard to find a variable or an item under the System Browser. To search 

for a particular variable, the user had to visually scan and scroll the entire tree 

until the variable is found. A search feature within the System Browser was 

required to ease this task. In the new version of System Browser the search 

feature was implemented and the older swing widget was replaced by a JFace 

tree viewer. The two figures above Figure 4 demonstrates old ADEPT plug-in and 

Figure 5 displays the new ADEPT plug-in. System Browser is on the top left side 

in the plug-in. Figure 6 below highlights the search feature in action, for the 

System Browser. The search feature shows all the nodes from the tree that 

matches the string provided in the search box, while hiding all other nodes. The 

original tree is visible again by clearing off the search box.
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Figure 6: Search Feature for System Browser



 4. Logic Tables View

 4.1.Need for Logic Tables View

ADEPT is used to design prototypes for applications with varying 

complexity of design, smaller prototypes could be built using only one Logic 

Table, but for larger applications with more than 100 user objects and controls, it 

is easier to define logic for behavior specification using multiple Logic Tables. 

These Logic Tables are created using System Browser and can be organized 

using folders. Organizing the Logic Tables, controls and variables in folders do 

not necessarily display the way these tables are activated. The behavior 

specifications specify the logic for activation of these Logic Tables. The Logic 

Table Editor is used to set and view this information, however only one Logic 

Table can be viewed at a given instance, inside an editor. Hence for prototypes 

consisting of multiple Logic Tables nested in a hierarchy, there is a need for 

designers to be able to view the activation sequence or dependency of Logic 

Tables. Also from usability studies performed on ADEPT, the participants felt that 

some work was needed to make the prototypes they designed understandable to 

others in their design group [1].  Hence a visualization was necessary to get a 

better insight on the activation of these tables and the hierarchy followed while 

building a prototype design in ADEPT.
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 4.2.  Design and Implementation

The requirement for this visualization was to display all the Logic 

Tables in a hierarchy showing how each table is activated. I used a Node-Link 

Tree layout for this visualization. The visualization displays a rooted tree such 

that each depth level of a tree is on a shared line. The orientation of the tree is 

set from left to right. The challenging step was to parse the ADEPT project file 

and extract the table structure. 

 ADEPT uses logic tables to create the logic for a prototype using 0 

and 1 as logical operators, transforming this data into state diagram required a 

complex parser. Parser is an important part of the project, it helps in transforming 

tabular representation into graphical visualization. We implemented a parser 

which parses the ADEPT project file containing the logic. The parser for States 

View searches the ADEPT file for the TopLogicTable, which is a root by default 

for all prototypes build in ADEPT. Next the parser searches for the output Node 

and collects all logic nodes used recursively in a Logic Table, finally giving a tree 

structure. The following recursive algorithm shows the process of data collection 

for the Logic Tables view.

FindLogicNode(topLogicTable, root)

for each table search for the Output node

for each Output node search for Logic Table 

 if found add Logic Table as child to the root

                      call FindLogicNode(newLogicTable, newParentnode)

Eventually we modify the parser for collecting data for other visualizations 
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which is discussed in the later sections. The Figure 7 below shows the 

visualization. In this example we can easily notice that actionTable, systemTable 

and feedbackTable can be activated through the topLogicTable. When the user 

hovers over a node, the visualization displays important properties of the Logic 

Table such as default output-state for the table.

23

Figure 7: Logic Tables View



Figure 8 shows a fully expanded  Logic Tables View, A copy of an image 

file, of a fully expanded view is also saved in the project for reference.

24

Figure 8: Logic Table View showing the entire tree structure of Logic Tables in a 
larger prototype



 5. States Visualization 

 5.1.Need for States Visualization

ADEPT uses a tabular representation of a finite state machine. “In 

contrast to a typical state transition diagram, the representation used by ADEPT 

focuses more on presenting information about the situation (input combination) 

automation behavior (output combination), and less on presenting information 

about state transition in a summarized form information. This focus allows a more 

compact notation, which enables the designer to see more behaviors, making it 

easier to make a complete specification” [1]. Although the tabular representation 

is easier for the designers it might not be useful for other collaborators, from 

different groups who wish to analyze state transitions and research other aspects 

of the prototype being evaluated.  

 5.2.Design and Layout

The Logic Editor in ADEPT displays information for 

states and situations. The rows define state and the columns define a situation. 

The initial design of the visualization was to display all the situations from a Logic 

Table in a force directed layout. Since each situation consists of an input and an 

output, the idea was simply to display all the situations. Figure 9 below shows the 

initial implementation to view the situations. This design had following problems

• Repetition of nodes since we were using each situation to display a 

transition, many inputs and outputs were common for different situations.

• There were no transitions from one situation to another.
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• For larger projects the visualization generated large number of floating 

nodes which was difficult to view.  

• Overall the visualization generated large number of nodes with no feature 

to group them together in a hierarchy.  

The initial design was helpful and led towards a more hierarchical 

approach and use of animation since the number of nodes increased drastically 

for complex projects.  

26

Figure 9: Initial design for States View



 5.3.Aggregates and Animation 

Prefuse provides an interface to create graphical objects for 

representing collections in visualizations. Aggregates are used to represent 

visual items that belong to a particular group. In order to better visualize state 

transitions, an aggregate is used to represent one situation. A situation in ADEPT 

is represented by a column, therefore adding all items in a column from the Logic 

Editor formed an aggregate. 

Layout of the aggregate is created using a convex hull that 

surrounds all the items in an aggregate. Figure 10 demonstrates an aggregate 

that has 4 items. Decorators are used for each aggregate to display the situation 

number. Animation was added so that we can show and hide an aggregation 

27

Figure 10: Aggregate and decorator example



depending on the user interaction. Animation was primarily added because we do 

not want to overwhelm the user by displaying all the states and situations at 

once. Figure 10 above also shows two aggregates one which is in focus 

displaying all the nodes within, and another one which shows only one node. 

When the user clicks on the node with situation 1, aggregate for that node comes 

into focus and animates showing all the nodes in that situation, while all other 

aggregations which are out of focus collapse into a single node. This approach 

allows the user to focus on one situation at a time.  

 5.4. Implementation

The most important classes created to implement State View are

• AggregateLayout.java

This class is provided with the Prefuse toolkit. The class calculates 

a convex hull to be displayed. Run() method in this class was 

modified to customize the implementation for States visualization. 

Changes to the Run() method include displaying all items in an 

aggregate which is in focus and for other nodes, displaying only one 

item inside the aggregate. 

• AggregateDragControl.java

This class is an implementation of drag control for an aggregate. 

The dragging of an aggregate is achieved by moving all the 

elements inside an aggregate.

• StateToolTip.java

A tooltip class to display important properties related to the visual 
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items in the visualization. 

• StatesView.java

The main class responsible to create the table and display a 

visualization in a view. The visualization uses a Force Directed 

Layout, that positions graph elements based on a physics 

simulation of interacting forces; by default, nodes repel each other, 

edges act as springs, and drag forces (similar to air resistance) are 

applied[10] . 

29

Figure 11: Steps followed to create States View 
Visualization



• StatesParser.java

The parser class to create tree-paths for the States visualization. 

The StatesParser creates an XML file for each Logic Table. The 

parser first identifies all the states from the Outputs section in the 

Logic Table. The Parser then creates transitions based on the 

specified Logic and actions from the Inputs section of the Logic 

Table.

30

Figure 12: States Visualization example



Figure 12 above shows an example of States visualization. The different shapes 

are used to differentiate between various elements from the Logic Tables Editor. 

Square shape is used to show a state defined in a logical table. We use shape of 

diamond for the “OR” and the “AND” conditions from the Logic Table. “OR” and 

“AND” conditions can be further distinguished using yellow color for the “OR” and 

green color for the “AND” condition. Different colors are used randomly for the 

aggregates representing one State. Actions are listed on the Edges. 

 5.5.Uses for States Visualization

 Currently, ADEPT uses tabular representation of the States and 

Situations which is primarily used to specify behavioral specifications. The States 

View visualization makes it easier to view the state diagram for a project. The 

added functionality to pan and zoom helps the users to easily navigate through 

all the states. The states view can be used in the Debug mode also, where it can 

highlight the current state and the transition which can be very helpful for other 

collaborators to understand the prototype under test.
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 6. Entropy 

 6.1.Entropy

Entropy is defined as a measure of uncertainty in the field of 

information theory. We follow the approach of Shannon's definition of Entropy in 

this Project. Shannon's entropy measures the possible value of information 

available in a message. For example consider an example of coin toss. In case 

of a fair coin the probability for heads or tails is same so the entropy is highest. 

Since we cannot predict the outcome both sides have equal probability. Similarly, 

In case of a fair die there are 6 equally possible outcomes. Such a die roll will 

have 6 bit of entropy. If we replace a die with an unfair die having the letter 1 on 

each of the 6 sides of the die, then the die roll has zero entropy, since we can 

perfectly predict the outcome for each roll. 

The main step for this visualization is to calculate entropy for each action 

in the Logic Editor Table against all other states, to find nodes with highest 

conditional probability. A graph is drawn for nodes with low entropy values to filter 

states that are relatively more predictable to be executed in a prototype design. 

Another easy example to summarize is a prototype of a tape recorder. The 

entropy calculated for the on-off switch would be low since no other action can be 

performed without switching it on, so the entropy for that transition would be 

lowest in comparison to all other actions in the prototype design. Entropy has 

important characteristics which further substantiate it as a reasonable measure of 

choice or information [14]. Entropy is zero only if we are certain of the event's 
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outcome. The highest entropy is generated when the probabilities of all possible 

outcomes are equal. The entropy increases with uncertainty logarithmically. 

 6.2.Entropy Calculation

 We apply Shannon's Entropy calculation to the Situations and 

States in ADEPT's Logic Editor.  In the Logic Editor the state of a Situation is 

either 1 or 0. We calculate the probabilities of all actions using the Logic Editor.

Suppose p1,p2,p3...,pn are all probabilities of occurrence for n possible 

situations. Then entropy H is given by,

H = -∑ pi  Log2 pi                              [14]

Entropy calculation to create the tree for visualization is explained in the block 

diagram shown below in Figure 13. The tree structure created after adding all 

these paths is saved in an XML file. The visualization class uses the XML file to 

generate nodes and transitions for displaying the Entropy visualization.
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Figure 13: Creating Entropy Visualization tree



 6.3.Entropy Calculation Algorithm Analysis

In order to calculate minimum Entropy Input node, we find the Input node 

with least Entropy. This is calculated using State Entropy formula. The state 

Entropy for an input is calculated by finding the number of active situations for 

that state and Situation Entropy for given state. State entropy of an input is 

calculated by,

State Entropy = ( ActiveSituationcount
AllSiutationsCount

)∗(Situation Entropy)

To calculate Situation Entropy we use following formula,

  Situation Entropy = - ∑
Situation=0

n

( 1
X i

) log2(
1
X i

)

where x is the Active Situation Count for a given Input state, which is extracted 

from the Logic Editor. If we have N input states and M situations, we calculate the 

State Entropy for all N input nodes given M situations. The time complexity is 

given by O(n*m), since this is the largest term in the above Algorithm. 

Following table shows execution time captured in milliseconds for varying 

number of Input nodes and Situations.

Total Input 
Nodes

15 25 29 67 92 11

Situations 6 26 28 22 24 16

Time in 
Milliseconds

0 3 4 5 11 1

Table 2: Execution time calculated for Entropy Calculation Algorithm
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 6.4.Entropy Visualization

A Node link tree layout is used for the Entropy visualization. We use 

the Prefuse library to generate the visualization. We follow the same steps 

described in Figure 11. to render the visualization, except no animation is needed 

for Entropy visualization. Figure 14 below shows an Entropy visualization for 

airSpeedTargetSystemTable a Logic Table from an auto pilot prototype built in 

ADEPT.  

Example 1

The Logic Table has total of 25 states and 7 situations. The number of 

nodes and transitions appearing depends on the prototype design or the logic 

editor. The higher the uncertainty, higher is the entropy value for that state. We 

are interested only with the states having low entropy value, hence leading us to 

states having higher conditional chance of occurrence. We display only those 

states and transitions with minimum entropy.
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Figure 14: Entropy for Air speed target system table from an airplane design prototype



Example 2

Figure 15 above shows another example of Entropy visualization. The 

above prototype is for an interface of a microwave. This visualization shows very 

few nodes compared to the number of situations it has in the prototype design 

which is 26. Most of the situations were added to enter the numeric entry for 

time. We observe that the Entropy calculation eliminates all the situations 

representing time entry for each numerical key except for zero key and display all 

other situations and actions. 
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Figure 15: Entropy Visualization example for a microwave prototype design



 6.5.Uses of Entropy Visualization

 Entropy visualization helps in eliminating all the possible transitions 

from the States View and shows only the states with higher importance. The 

Entropy visualization calculates Entropy values and helps the user on focusing 

on the important actions and transitions in the Logic Table.  Thus reducing 

number of nodes and transitions to be displayed. This approach might be useful 

for users who are trying to understand or modify the prototype design created by 

someone else in ADEPT. Since they do not have to analyze each and every state 

or transition. The visualization helps by giving a quick overview of possible 

actions that can lead to a particular important situation which has a higher 

probability of execution.  The Entropy visualization also supports zoom-in, zoom-

out and zoom to fit actions.
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 7. Integration with ADEPT plug-in 

The visualization is integrated with the ADEPT plug-in using the 

underlying Eclipse framework. A separate visualization view is created in the 

ADEPT plug-in, to display the visualizations. The view can be arranged next to 

the Logic Editor Table. A Listener Interface in ADEPT is used by the visualization 

and the XML writer class to be notified for file change events. Each time there is 

a change in a file the listener notifies the XML writer object as well as the 

visualization object. The XML writer then parses the ADEPT project file, and 

stores the parsed data for the visualizations in individual XML files for each 

visualization. In the next step the visualization class reads the data from the XML 

files, to create layouts and rendering for the visualizations. The View shows 

visualization for the current table selected in the Logic Editor Table. The states 

visualization can also be used with ADEPT in TEST mode. In ADEPT the user 

can evaluate and test a prototype design using the TEST mode. States view is 

integrated with ADEPT such that it can dynamically receive node change events. 

States view shows dynamic transitions by highlighting the nodes, when the 

prototype is in the TEST mode. 
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 8. Conclusion

The project's main goal was to improve the user interface of 

ADEPT. We improved the adept user interface by adding new components to the 

ADEPT UI and the visualizations helped collaborators gain more insight of the 

prototypes being developed on ADEPT. The initial implementation of nebula grid 

widget for Logic Editor Table was successful and very critical for the project. The 

grid now supports drag and drop functionality for all user controls. The column 

focus control used for column selection helps users easily distinguish the column 

selection operation from a row selection operation. The System Browser was 

implemented again using newer widgets thus eliminating issues with drag and 

drop compatibility with the earlier swing version. The search feature improves the 

usability of System Browser by giving quick list of variable, logic table or user 

controls being searched. Finally, we have implemented and integrated the three 

visualizations into ADEPT plug-in. These visualizations help collaborators and 

domain experts to quickly understand logic programmed for the prototype being 

designed. Some complex prototypes built in ADEPT have multiple logic tables, 

Logic Table View is very helpful to view the activation hierarchy for such complex 

prototypes. The activation hierarchy is a key factor to understand a multiple logic 

table prototype, as it shows how the specified logic is executed for individual 

logic tables. States visualization displays all the states and transitions for 

selected table in the Logic Editor. The main feature for States visualization view 
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is use of aggregates and animation. Aggregates helps users to focus on a 

selected group of interested situations or states.  Animation helps by hiding or 

showing only few nodes of interest. States visualization is also helpful for 

debugging a project. The state and transition is highlighted to indicate a transition 

in state. Finally, we use Entropy visualization to display situations and actions 

with higher importance. Entropy visualization is a subset of States visualization 

and shows only the nodes with higher importance. We calculate Entropy values 

for all nodes using their conditional probabilities. Entropy visualization helps the 

user to identify and focus on nodes which are relatively important in a prototype.
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