
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2013

Entropy and State Visualization for Automation
Design and Evaluation Prototyping Toolset
Rohit Deshmukh
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Deshmukh, Rohit, "Entropy and State Visualization for Automation Design and Evaluation Prototyping Toolset" (2013). Master's
Projects. 295.
DOI: https://doi.org/10.31979/etd.aeg3-pz2h
https://scholarworks.sjsu.edu/etd_projects/295

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F295&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F295&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F295&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F295&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F295&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/295?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F295&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Entropy and State Visualization for Automation Design and
Evaluation Prototyping Toolset

A Project Report

Presented to

The Faculty of the Department of Computer Science

San Jose ́ State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Rohit Deshmukh

Spring 2013

1

© 2013

Rohit Deshmukh

ALL RIGHTS RESERVED

2

SAN JOSE STATE UNIVERSITY

The Undersigned Project Committee Approves the Project Titled

Entropy and State Visualization for Automation Design and Evaluation

Prototyping Toolset

by

Rohit Deshmukh

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

Spring 2013

--

Dr. Soon Tee Teoh, Department of Computer Science

Date

--

Dr. Michael Feary, NASA Ames Research Center

Date

--

Dr. Mark Stamp, Department of Computer Science

Date

APPROVED FOR THE UNIVERSITY

--

Associate Dean Office of Graduate Studies and Research

Date

3

ABSTRACT

Entropy and State Visualization for Automation Design and Evaluation

Prototyping Toolset

by

Rohit Deshmukh

Automation Design and Evaluation Prototyping Toolset (ADEPT) is a plug-

in developed on the Eclipse Rich Client Platform(RCP). ADEPT can be used by

domain expert designers to create and modify testable prototypes. The aim of

the project is to enhance ADEPT by adding dynamic visualizations to the ADEPT

user interface. Three types of visualizations are implemented in this project.

Table view is helpful to view the hierarchy and nesting of Logic Tables. The State

visualization displays all the states in a selected Logic Table. Entropy

visualization is a subset of State visualization and displays limited number of

states having lowest Entropy value.

4

ACKNOWLEDGEMENTS

I would like to say thank you to all the people who have helped me with my

project. Thank you very much Dr. Michael Feary for giving me an opportunity to

work on ADEPT and providing me with a prototype of an airplane built in ADEPT

for testing the visualizations. I would like to thank my advisor Dr. Soon Tee Teoh

for his guidance and his excellent insights throughout the duration of the project. I

would like to thank Dr. Mark Stamp for his time and for agreeing to be a member

of my project committee. I would like to thank my family and all of my friends for

their encouragement and support throughout the Master's program.

5

Table of Contents

 1. Introduction 9

 1.1. Introduction 9

 2. Software Tools Used 11

 2.1. Eclipse RCP 11

 2.2. ADEPT plug-in 12

 2.3. Nebula widgets toolkit 14

 2.4. Prefuse 15

 3. Preliminary work done to improve ADEPT plug-in 17

 4. Logic Tables View 21

 4.1. Need for Logic Tables View 21

 4.2. Design and Layout 22

 5. States Visualization 25

 5.1. Need for States Visualization 25

 5.2. Design and Layout 25

 5.3. Aggregates and Animation 27

 5.4. Implementation 28

 5.5. Uses for States Visualization 31

 6. Entropy 32

 6.1. Entropy 32

6

 6.2. Entropy Calculation Algorithm 33

 6.3. Entropy Calculation Algorithm Analysis 35

 6.4. Entropy Visualization 36

 6.5. Uses of Entropy Visualization 38

 7. Integrating with ADEPT plug-in 39

 8. Conclusion 40

 9. References 42

List of Tables
• Table 1: Execution time calculated for Entropy Calculation Algorithm 35

7

List of Figures

• Figure 1. ADEPT with Eclipse Architecture 11

• Figure 2. ADEPT plug-in the user interface 13

• Figure 3. Information visualization reference mode 15

• Figure 4. Old ADEPT plug-in 18

•
Figure 5. New ADEPT plug-in with Nebula Grid widget

demonstrating focus column and System Browser
18

• Figure 6. Search Feature for System Browse 20

• Figure 7. Logic Tables View 23

•
Figure 8. Logic Table View showing the entire tree structure of

Logic Tables in a larger prototype
24

• Figure 9. Initial design for States View 26

• Figure 10. Aggregate and decorator example 27

• Figure 11. Steps followed to create States View Visualization 29

• Figure 12. States Visualization example 30

• Figure 13. Creating Entropy Visualization tree 34

•
Figure 14.Entropy for Air speed target system table from an air

plane design prototype
36

•
Figure 15. Entropy Visualization example for a microwave

prototype design
37

8

 1. Introduction

 1.1. Introduction

 The Human Systems Integration Division is addressing the issue

that current automation design and modeling tools do not provide adequate

support for the specification of automation decision logic and user interaction with

automation decision logic. Automation Design and Evaluation Prototyping Toolset

(ADEPT) has been developed to address this need. ADEPT is a plug-in

developed at NASA Ames Research Center. ADEPT allows domain experts to

design and to rapidly create and modify testable prototypes. Computational

Human-Computer Interaction (HCI) analyses have been integrated with the

ADEPT design framework to provide designers without HCI expertise, the ability

to evaluate HCI aspects of prototype designs. ADEPT is being developed to help

identify the Human-Automation Interaction (HAI) vulnerabilities. ADEPT allows to

create an iterative specification of decision logic of the automation being

designed. An accurate and complete specification for a design prototype can be

built using ADEPT. “In addition to the focus on specifying decision logic, the tool

is intended to provide a platform for integrating HAI testing and analysis” [1].

The proposed project is an effort to improve the ADEPT plug-in. As part of

the initial project work, the areas for improvements in ADEPT were identified.

Some projects built in ADEPT, such as the auto-pilot interface design prototype

for an airplane, resulted in multiple Logic Tables which made the project too

complicated, to understand the Logic Tables. Logic Tables also support the

9

nesting of tables which makes the Logic Tables more complex to understand.

Moreover, if there are multiple collaborators using same ADEPT project, it is hard

for all of them to follow the hierarchy of tables and logic specifications. Table

View is a visualization that was created to eliminate this issue. Another important

requirement for ADEPT is to have a state diagram that shows the possible states

for each Logic Table. As the state diagram visualization is implemented it results

in a large number of states being generated for any complex prototype design

such as the auto-pilot design. This leads to a new visualization which displays

only a few nodes of higher interest from each Logic Table.

The report focuses on the implementation of visualization techniques for

the ADEPT plug-in. All software and tools used for this project are discussed in

the following section. In addition, a detailed introduction to the ADEPT user

interface is given. Next, the report briefs on the preliminary work done and the

initial improvements made to the ADEPT user interface. The rest of the paper

discusses, in detail, the design and the uses of all the three visualization

techniques: Table-view, State-view, and Entropy-view. In the final section the

report discusses the dynamic integration of the visualizations with the ADEPT

plug-in. Finally, the report ends with a conclusion and references.

10

 2. Software Tools Used

 2.1. Eclipse RCP
Eclipse is a special Integrated Development Environment

(IDE) which can be used as a tool to create new applications using various high

level programming languages such as Java, C++ and PHP [2]. Important aspect

of the Eclipse IDE is that it can be extended by programmers, to create their own

Rich Client Platform plug-ins specific to their project requirements, instead of

reinventing the wheel [3]. Programmers can use the underlying Eclipse

framework and build plugins which use the services provided by Eclipse and

develop application specific interfaces that can be fully integrated with the

Eclipse IDE.

In this project Eclipse platform was used to build ADEPT plugin, which simplifies

the task for domain experts to design and code the prototype without having

them to write any high level language code. Figure1 above shows Eclipse

framework outlined in dark blue color, contains all the core Eclipse tools provided

11

Figure 1: ADEPT plug-in with Eclipse architecture and other software tools used

by Eclipse as part of the Eclipse SDK. The contribution made towards the

development of this project is shown in the top row highlighted in light blue color.

We will briefly discuss each component in the following section.

 2.2. ADEPT plug-in

My project aims to improve the user interface and add visualization

capabilities to the ADEPT plug-in. We need to have a brief introduction to ADEPT

in order to understand the project.

Figure 1 shows ADEPT integrated on top of the Eclipse Framework. The

ADEPT plug-in contributes menus, views and its own editor to the Eclipse IDE.

ADEPT uses many components of the underlying eclipse framework and adds its

own functionality to form a fully integrated application for HAI testing and

analysis.

The main User Interface of ADEPT constitutes of the following

components User Interface Editor, Logic Editor, System Browser and Property

Editor.

12

Figure 2 displays the user interface for the ADEPT plug-in. The main

center panel in Figure 2 represents the Logic Editor; the panel to the right of

Logic Editor is the User Interface Editor. System Browser is on the top left and

Property Editor is at the bottom left in Figure 2. ADEPT offers a graphical user

interface design capability with an automation behavior specification capability.

ADEPT also provides an automatic code generator to enable domain expert

designers to create testable software prototypes. The User Interface Editor

provides a blank canvas to the user. The user can add graphic objects and

13

Figure 2: ADEPT plug-in the user interface

controls to resemble the user interface of the prototype. Buttons, display labels

and other widgets can be used as graphical objects. Graphical objects created in

other applications can also be imported into ADEPT. The property browser

facilitates to change the properties of the graphical objects. In addition the

properties can be changed dynamically by dragging the objects into the Logic

Editor, corresponding to the automation behavior. “The Logic Editor enables the

designer to specify the decision logic and automation behavior of the device, the

environment in which the device operates, as well as the behavior of the user

interface objects on the user-interface, corresponding to reflect the current state

of the device and environment” [1].

 2.3. Nebula widgets toolkit

Nebula is a toolkit which provides a set of Widgets with special

features that are not available with the standard widgets provided by the Java

SWT Widgets.

Nebula is a collaborative effort of different Eclipse projects and individual

programmers. The source code for the widgets is also available under the

Eclipse Public License 1.0, this was the major factor in choosing Nebula widgets

library for ADEPT. Moreover the Nebula widgets toolkit is build using the SWT

graphics so there were no compatibility issues with other views in ADEPT. The

Grid widget was custom tailored to create the main component of user interface

which is the Logic Editor Table [6].

14

 2.4.Prefuse

Prefuse is a library that provides a framework for building rich

graphical visualizations. Prefuse provides Java 2D graphics interface to create

graphic objects, which can be easily integrated in to ADEPT project. Prefuse is

an open sourced project and the source code is available under terms of BSD

license. The availability of source code provides flexibility to extend the interfaces

and develop custom graphical objects. Prefuse follows the information

visualization reference model as shown in figure 3 below.

This architecture simplifies the data visualization process into

simple individual steps. Data is transformed into set of Data Tables. In the next

step a visual abstraction is created depending on the kind of visual object we

want to use to display the data. The visual abstraction will contain the definition

for the properties such as shape, color and position of the graphical object. This

visual abstraction is then transformed to create interactive views. User has the

15

Figure 3: Information visualization reference model [7]

freedom to modify at any intermediate step of the data, data tables or the visual

abstraction process. Prefuse library is extensively used in the development of the

three visualizations in this project.

16

 3. Preliminary work done to improve the ADEPT plug-in

During the preliminary part of this project, necessary requirements

to improve the user-interface for the ADEPT plug-in were identified. The Logic

Table which is the main component of the IDE had issues with Drag and Drop

functionality. The swing component used to design and build the Logic Editor

Table, was not compatible with the new SWT framework that Eclipse uses

extensively. The only way to rectify this issue was to replace the main component

representing the Logic Table, with another widget that was compatible with rest of

the Eclipse components and would support Drag and Drop functionality. We

decided to use the Nebula project Grid widget which is a custom SWT widget.

The Grid widget is a spreadsheet/table component that offers features not

currently found in the base SWT Table [5]. The Grid widget was customized to

add a column select focus control. In the ADEPT plug-in the column represents a

situation, while the row specifies the state. It is important for the designer to

visualize if either a row or a column is selected; even the toolbar Menus are

activated depending on whether user selects a row or a column. To improve the

action feedback of row/column selection a focus column was added to the

original widget. When a column is selected it has a focus unlike other widgets,

where focus is used only to highlight a row selection. Another major change

necessary was to replace the System Browser view which is basically a tree

structure also supported by a swing tree widget. The swing widgets also caused

flickering problems during resizing and moving. Hence it was necessary to

replace both these swing components with suitable widgets.
17

18

Figure 4: Old ADEPT plug-in

Figure 5: New ADEPT plug-in with Nebula Grid widget demonstrating focus column
and System Browser

The System Browser lists all the controls, Logic Tables, user objects and

variables used in a project. In certain projects with many controls and variables it

becomes hard to find a variable or an item under the System Browser. To search

for a particular variable, the user had to visually scan and scroll the entire tree

until the variable is found. A search feature within the System Browser was

required to ease this task. In the new version of System Browser the search

feature was implemented and the older swing widget was replaced by a JFace

tree viewer. The two figures above Figure 4 demonstrates old ADEPT plug-in and

Figure 5 displays the new ADEPT plug-in. System Browser is on the top left side

in the plug-in. Figure 6 below highlights the search feature in action, for the

System Browser. The search feature shows all the nodes from the tree that

matches the string provided in the search box, while hiding all other nodes. The

original tree is visible again by clearing off the search box.

19

20

Figure 6: Search Feature for System Browser

 4. Logic Tables View

 4.1.Need for Logic Tables View

ADEPT is used to design prototypes for applications with varying

complexity of design, smaller prototypes could be built using only one Logic

Table, but for larger applications with more than 100 user objects and controls, it

is easier to define logic for behavior specification using multiple Logic Tables.

These Logic Tables are created using System Browser and can be organized

using folders. Organizing the Logic Tables, controls and variables in folders do

not necessarily display the way these tables are activated. The behavior

specifications specify the logic for activation of these Logic Tables. The Logic

Table Editor is used to set and view this information, however only one Logic

Table can be viewed at a given instance, inside an editor. Hence for prototypes

consisting of multiple Logic Tables nested in a hierarchy, there is a need for

designers to be able to view the activation sequence or dependency of Logic

Tables. Also from usability studies performed on ADEPT, the participants felt that

some work was needed to make the prototypes they designed understandable to

others in their design group [1]. Hence a visualization was necessary to get a

better insight on the activation of these tables and the hierarchy followed while

building a prototype design in ADEPT.

21

 4.2. Design and Implementation

The requirement for this visualization was to display all the Logic

Tables in a hierarchy showing how each table is activated. I used a Node-Link

Tree layout for this visualization. The visualization displays a rooted tree such

that each depth level of a tree is on a shared line. The orientation of the tree is

set from left to right. The challenging step was to parse the ADEPT project file

and extract the table structure.

 ADEPT uses logic tables to create the logic for a prototype using 0

and 1 as logical operators, transforming this data into state diagram required a

complex parser. Parser is an important part of the project, it helps in transforming

tabular representation into graphical visualization. We implemented a parser

which parses the ADEPT project file containing the logic. The parser for States

View searches the ADEPT file for the TopLogicTable, which is a root by default

for all prototypes build in ADEPT. Next the parser searches for the output Node

and collects all logic nodes used recursively in a Logic Table, finally giving a tree

structure. The following recursive algorithm shows the process of data collection

for the Logic Tables view.

FindLogicNode(topLogicTable, root)

for each table search for the Output node

for each Output node search for Logic Table

 if found add Logic Table as child to the root

 call FindLogicNode(newLogicTable, newParentnode)

Eventually we modify the parser for collecting data for other visualizations

22

which is discussed in the later sections. The Figure 7 below shows the

visualization. In this example we can easily notice that actionTable, systemTable

and feedbackTable can be activated through the topLogicTable. When the user

hovers over a node, the visualization displays important properties of the Logic

Table such as default output-state for the table.

23

Figure 7: Logic Tables View

Figure 8 shows a fully expanded Logic Tables View, A copy of an image

file, of a fully expanded view is also saved in the project for reference.

24

Figure 8: Logic Table View showing the entire tree structure of Logic Tables in a
larger prototype

 5. States Visualization

 5.1.Need for States Visualization

ADEPT uses a tabular representation of a finite state machine. “In

contrast to a typical state transition diagram, the representation used by ADEPT

focuses more on presenting information about the situation (input combination)

automation behavior (output combination), and less on presenting information

about state transition in a summarized form information. This focus allows a more

compact notation, which enables the designer to see more behaviors, making it

easier to make a complete specification” [1]. Although the tabular representation

is easier for the designers it might not be useful for other collaborators, from

different groups who wish to analyze state transitions and research other aspects

of the prototype being evaluated.

 5.2.Design and Layout

The Logic Editor in ADEPT displays information for

states and situations. The rows define state and the columns define a situation.

The initial design of the visualization was to display all the situations from a Logic

Table in a force directed layout. Since each situation consists of an input and an

output, the idea was simply to display all the situations. Figure 9 below shows the

initial implementation to view the situations. This design had following problems

• Repetition of nodes since we were using each situation to display a

transition, many inputs and outputs were common for different situations.

• There were no transitions from one situation to another.

25

• For larger projects the visualization generated large number of floating

nodes which was difficult to view.

• Overall the visualization generated large number of nodes with no feature

to group them together in a hierarchy.

The initial design was helpful and led towards a more hierarchical

approach and use of animation since the number of nodes increased drastically

for complex projects.

26

Figure 9: Initial design for States View

 5.3.Aggregates and Animation

Prefuse provides an interface to create graphical objects for

representing collections in visualizations. Aggregates are used to represent

visual items that belong to a particular group. In order to better visualize state

transitions, an aggregate is used to represent one situation. A situation in ADEPT

is represented by a column, therefore adding all items in a column from the Logic

Editor formed an aggregate.

Layout of the aggregate is created using a convex hull that

surrounds all the items in an aggregate. Figure 10 demonstrates an aggregate

that has 4 items. Decorators are used for each aggregate to display the situation

number. Animation was added so that we can show and hide an aggregation

27

Figure 10: Aggregate and decorator example

depending on the user interaction. Animation was primarily added because we do

not want to overwhelm the user by displaying all the states and situations at

once. Figure 10 above also shows two aggregates one which is in focus

displaying all the nodes within, and another one which shows only one node.

When the user clicks on the node with situation 1, aggregate for that node comes

into focus and animates showing all the nodes in that situation, while all other

aggregations which are out of focus collapse into a single node. This approach

allows the user to focus on one situation at a time.

 5.4. Implementation

The most important classes created to implement State View are

• AggregateLayout.java

This class is provided with the Prefuse toolkit. The class calculates

a convex hull to be displayed. Run() method in this class was

modified to customize the implementation for States visualization.

Changes to the Run() method include displaying all items in an

aggregate which is in focus and for other nodes, displaying only one

item inside the aggregate.

• AggregateDragControl.java

This class is an implementation of drag control for an aggregate.

The dragging of an aggregate is achieved by moving all the

elements inside an aggregate.

• StateToolTip.java

A tooltip class to display important properties related to the visual

28

items in the visualization.

• StatesView.java

The main class responsible to create the table and display a

visualization in a view. The visualization uses a Force Directed

Layout, that positions graph elements based on a physics

simulation of interacting forces; by default, nodes repel each other,

edges act as springs, and drag forces (similar to air resistance) are

applied[10] .

29

Figure 11: Steps followed to create States View
Visualization

• StatesParser.java

The parser class to create tree-paths for the States visualization.

The StatesParser creates an XML file for each Logic Table. The

parser first identifies all the states from the Outputs section in the

Logic Table. The Parser then creates transitions based on the

specified Logic and actions from the Inputs section of the Logic

Table.

30

Figure 12: States Visualization example

Figure 12 above shows an example of States visualization. The different shapes

are used to differentiate between various elements from the Logic Tables Editor.

Square shape is used to show a state defined in a logical table. We use shape of

diamond for the “OR” and the “AND” conditions from the Logic Table. “OR” and

“AND” conditions can be further distinguished using yellow color for the “OR” and

green color for the “AND” condition. Different colors are used randomly for the

aggregates representing one State. Actions are listed on the Edges.

 5.5.Uses for States Visualization

 Currently, ADEPT uses tabular representation of the States and

Situations which is primarily used to specify behavioral specifications. The States

View visualization makes it easier to view the state diagram for a project. The

added functionality to pan and zoom helps the users to easily navigate through

all the states. The states view can be used in the Debug mode also, where it can

highlight the current state and the transition which can be very helpful for other

collaborators to understand the prototype under test.

31

 6. Entropy

 6.1.Entropy

Entropy is defined as a measure of uncertainty in the field of

information theory. We follow the approach of Shannon's definition of Entropy in

this Project. Shannon's entropy measures the possible value of information

available in a message. For example consider an example of coin toss. In case

of a fair coin the probability for heads or tails is same so the entropy is highest.

Since we cannot predict the outcome both sides have equal probability. Similarly,

In case of a fair die there are 6 equally possible outcomes. Such a die roll will

have 6 bit of entropy. If we replace a die with an unfair die having the letter 1 on

each of the 6 sides of the die, then the die roll has zero entropy, since we can

perfectly predict the outcome for each roll.

The main step for this visualization is to calculate entropy for each action

in the Logic Editor Table against all other states, to find nodes with highest

conditional probability. A graph is drawn for nodes with low entropy values to filter

states that are relatively more predictable to be executed in a prototype design.

Another easy example to summarize is a prototype of a tape recorder. The

entropy calculated for the on-off switch would be low since no other action can be

performed without switching it on, so the entropy for that transition would be

lowest in comparison to all other actions in the prototype design. Entropy has

important characteristics which further substantiate it as a reasonable measure of

choice or information [14]. Entropy is zero only if we are certain of the event's

32

outcome. The highest entropy is generated when the probabilities of all possible

outcomes are equal. The entropy increases with uncertainty logarithmically.

 6.2.Entropy Calculation

 We apply Shannon's Entropy calculation to the Situations and

States in ADEPT's Logic Editor. In the Logic Editor the state of a Situation is

either 1 or 0. We calculate the probabilities of all actions using the Logic Editor.

Suppose p1,p2,p3...,pn are all probabilities of occurrence for n possible

situations. Then entropy H is given by,

H = -∑ pi Log2 pi [14]

Entropy calculation to create the tree for visualization is explained in the block

diagram shown below in Figure 13. The tree structure created after adding all

these paths is saved in an XML file. The visualization class uses the XML file to

generate nodes and transitions for displaying the Entropy visualization.

33

34

Figure 13: Creating Entropy Visualization tree

 6.3.Entropy Calculation Algorithm Analysis

In order to calculate minimum Entropy Input node, we find the Input node

with least Entropy. This is calculated using State Entropy formula. The state

Entropy for an input is calculated by finding the number of active situations for

that state and Situation Entropy for given state. State entropy of an input is

calculated by,

State Entropy = (ActiveSituationcount
AllSiutationsCount

)∗(Situation Entropy)

To calculate Situation Entropy we use following formula,

 Situation Entropy = - ∑
Situation=0

n

(1
X i

) log2(
1
X i

)

where x is the Active Situation Count for a given Input state, which is extracted

from the Logic Editor. If we have N input states and M situations, we calculate the

State Entropy for all N input nodes given M situations. The time complexity is

given by O(n*m), since this is the largest term in the above Algorithm.

Following table shows execution time captured in milliseconds for varying

number of Input nodes and Situations.

Total Input
Nodes

15 25 29 67 92 11

Situations 6 26 28 22 24 16

Time in
Milliseconds

0 3 4 5 11 1

Table 2: Execution time calculated for Entropy Calculation Algorithm

35

 6.4.Entropy Visualization

A Node link tree layout is used for the Entropy visualization. We use

the Prefuse library to generate the visualization. We follow the same steps

described in Figure 11. to render the visualization, except no animation is needed

for Entropy visualization. Figure 14 below shows an Entropy visualization for

airSpeedTargetSystemTable a Logic Table from an auto pilot prototype built in

ADEPT.

Example 1

The Logic Table has total of 25 states and 7 situations. The number of

nodes and transitions appearing depends on the prototype design or the logic

editor. The higher the uncertainty, higher is the entropy value for that state. We

are interested only with the states having low entropy value, hence leading us to

states having higher conditional chance of occurrence. We display only those

states and transitions with minimum entropy.

36

Figure 14: Entropy for Air speed target system table from an airplane design prototype

Example 2

Figure 15 above shows another example of Entropy visualization. The

above prototype is for an interface of a microwave. This visualization shows very

few nodes compared to the number of situations it has in the prototype design

which is 26. Most of the situations were added to enter the numeric entry for

time. We observe that the Entropy calculation eliminates all the situations

representing time entry for each numerical key except for zero key and display all

other situations and actions.

37

Figure 15: Entropy Visualization example for a microwave prototype design

 6.5.Uses of Entropy Visualization

 Entropy visualization helps in eliminating all the possible transitions

from the States View and shows only the states with higher importance. The

Entropy visualization calculates Entropy values and helps the user on focusing

on the important actions and transitions in the Logic Table. Thus reducing

number of nodes and transitions to be displayed. This approach might be useful

for users who are trying to understand or modify the prototype design created by

someone else in ADEPT. Since they do not have to analyze each and every state

or transition. The visualization helps by giving a quick overview of possible

actions that can lead to a particular important situation which has a higher

probability of execution. The Entropy visualization also supports zoom-in, zoom-

out and zoom to fit actions.

38

 7. Integration with ADEPT plug-in

The visualization is integrated with the ADEPT plug-in using the

underlying Eclipse framework. A separate visualization view is created in the

ADEPT plug-in, to display the visualizations. The view can be arranged next to

the Logic Editor Table. A Listener Interface in ADEPT is used by the visualization

and the XML writer class to be notified for file change events. Each time there is

a change in a file the listener notifies the XML writer object as well as the

visualization object. The XML writer then parses the ADEPT project file, and

stores the parsed data for the visualizations in individual XML files for each

visualization. In the next step the visualization class reads the data from the XML

files, to create layouts and rendering for the visualizations. The View shows

visualization for the current table selected in the Logic Editor Table. The states

visualization can also be used with ADEPT in TEST mode. In ADEPT the user

can evaluate and test a prototype design using the TEST mode. States view is

integrated with ADEPT such that it can dynamically receive node change events.

States view shows dynamic transitions by highlighting the nodes, when the

prototype is in the TEST mode.

39

 8. Conclusion

The project's main goal was to improve the user interface of

ADEPT. We improved the adept user interface by adding new components to the

ADEPT UI and the visualizations helped collaborators gain more insight of the

prototypes being developed on ADEPT. The initial implementation of nebula grid

widget for Logic Editor Table was successful and very critical for the project. The

grid now supports drag and drop functionality for all user controls. The column

focus control used for column selection helps users easily distinguish the column

selection operation from a row selection operation. The System Browser was

implemented again using newer widgets thus eliminating issues with drag and

drop compatibility with the earlier swing version. The search feature improves the

usability of System Browser by giving quick list of variable, logic table or user

controls being searched. Finally, we have implemented and integrated the three

visualizations into ADEPT plug-in. These visualizations help collaborators and

domain experts to quickly understand logic programmed for the prototype being

designed. Some complex prototypes built in ADEPT have multiple logic tables,

Logic Table View is very helpful to view the activation hierarchy for such complex

prototypes. The activation hierarchy is a key factor to understand a multiple logic

table prototype, as it shows how the specified logic is executed for individual

logic tables. States visualization displays all the states and transitions for

selected table in the Logic Editor. The main feature for States visualization view

40

is use of aggregates and animation. Aggregates helps users to focus on a

selected group of interested situations or states. Animation helps by hiding or

showing only few nodes of interest. States visualization is also helpful for

debugging a project. The state and transition is highlighted to indicate a transition

in state. Finally, we use Entropy visualization to display situations and actions

with higher importance. Entropy visualization is a subset of States visualization

and shows only the nodes with higher importance. We calculate Entropy values

for all nodes using their conditional probabilities. Entropy visualization helps the

user to identify and focus on nodes which are relatively important in a prototype.

41

 9. References

[1] Michael Feary.(2010), ‘A toolset for supporting iterative human automation
interaction in design’, NASA Ames Research Center, Tech. Rep.
20100012861.

[2] Jeff McAffer and Jean-Michel Lemieux.(Oct 2005). Eclipse Rich Client
Platform: Designing, Coding, and Packaging Java Applications. Addison-
Wesley Professional.

[3] Eclipse RCP Tutorial
http://www.vogella.com/articles/EclipseRCP/article.html

[4] Heer, J., S.K. Card, J.A. Landay. prefuse: A Toolkit for Interactive
Information Visualization. CHI 2005, Portland, OR, 421-430.

[5] Nebula project

http://www.eclipse.org/nebula/

[6] Nebula project wiki

http://wiki.eclipse.org/Nebula/restructure#Nebula_Project_Restructuring_P
roposal

[7] Prefuse

http://www.prefuse.org/

[8] Chi, E. H. (2000). A taxonomy of visualization techniques using the
data state reference model. In Information Visualization, 2000.
InfoVis 2000. IEEE Symposium on (pp. 69-75). IEEE.

[9] Heer, J. ; Card, S. K. DOITrees revisited: scalable, space-constrained
visualization of hierarchical data. Proceedings of the Working Conference
on Advanced Visual Interfaces 2004; 2004 May 25-28; Gallipoli; Italy. NY:
ACM Press; 2004; 421-424.

42

http://www.prefuse.org/
http://wiki.eclipse.org/Nebula/restructure#Nebula_Project_Restructuring_Proposal
http://wiki.eclipse.org/Nebula/restructure#Nebula_Project_Restructuring_Proposal

[10] Prefuse API Documentation

http://prefuse.org/doc/api/

[11] Ihara, Shunsuke (1993). Information theory for continuous systems.
World Scientific. p. 2. ISBN 978-981-02-0985-8.

[12] http://en.wikipedia.org/wiki/Entropy_(information_theory)

[13] Robert M. Gray(July 2009) , Entropy and Information Theory.
Springer-Verlag

[14] Shannon, C. E. (2001). A mathematical theory of communication.
ACM SIGMOBILE Mobile Computing and Communications Review,
5(1), 3-55.

43

http://en.wikipedia.org/wiki/Entropy_(information_theory
http://prefuse.org/doc/api/

	San Jose State University
	SJSU ScholarWorks
	Spring 2013

	Entropy and State Visualization for Automation Design and Evaluation Prototyping Toolset
	Rohit Deshmukh
	Recommended Citation

	tmp.1369155091.pdf.E5o9z

