
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2013

Cloud Storage Performance and Security Analysis
with Hadoop and GridFTP
Wei-Li Liu
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Liu, Wei-Li, "Cloud Storage Performance and Security Analysis with Hadoop and GridFTP" (2013). Master's Projects. 289.
DOI: https://doi.org/10.31979/etd.bgbg-755a
https://scholarworks.sjsu.edu/etd_projects/289

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70408382?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/289?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

i

Cloud Storage Performance and Security

Analysis with Hadoop and GridFTP

Wei-Li Liu

Abstract

Even though cloud server has been around for a few years, mostof the web hosts today have

not converted to cloud yet. If the purpose of the cloud serveris distributing and storing files on the

internet,FTP servers were much earlier than the cloud.FTP server is sufficient to distribute content on

the internet. Therefore, is it worth to shift from FTP serverto cloud server? The cloud storage provider

declares high durability and availability for their users,and the ability to scale up for more storage

space easily could save users tons of money. However, does itprovide higher performance and better

security features?

Hadoopis a very popular platform for cloud computing. It is free software under Apache License.

It is written in Java and supports large data processing in a distributed environment. Characteristics of

Hadoop include partitioning of data, computing across thousands of hosts, and executing application

computations in parallel. Hadoop Distributed File System allows rapid data transfer up to thousands of

terabytes, and is capable of operating even in the case of node failure. GridFTP supports high-speed

data transfer for wide-area networks. It is based on theFTP and features multiple data channels for

parallel transfers.

This report describes the technology behindHDFSand enhancement to the Hadoop security features

with Kerberos. Based on data transfer performance and security features ofHDFS andGridFTPserver,

we can decide if we should replaceGridFTPserver withHDFS.

According to our experiment result, we conclude that GridFTP server provides better throughput

than HDFS, and Kerberos has minimal impact to HDFS performance. We proposed a solution which

users authenticate with HDFS first, and get the file from HDFS server to the client using GridFTP.

ii

CONTENTS

Glossary iv

I Introduction 1

II Background 3

II-A Introduction of Hadoop . 3

II-B Hadoop Distributed File System (HDFS) Architecture. 3

II-B1 HDFS Design Features[2] 3

II-B2 NameNode. 4

II-B3 DataNodes. 5

II-B4 File Read and Write . 5

II-C MapReduce [2] . 6

II-C1 Overview . 6

II-C2 Inputs and Outputs . 6

II-D HDFS security. 7

II-D1 Overview . 7

II-D2 Kerberos . 8

II-E GridFTP . 9

II-E1 Overview . 9

II-E2 Two-channel Protocol . 10

II-E3 Third-party control of data transfer 10

II-E4 Grid Security Infrastructure 10

II-E5 Parallel data transfer . 11

II-E6 Partial file transfer . 11

II-E7 Automatic negotiation of TCP buffer/window sizes 11

III Related Studies 12

III-A Hadoop Distributed File System for the Grid [11]. 12

IV Implementation 14

IV-A GridFTP . 14

iii

IV-B Hadoop with Kerberos . 16

V Experiment 21

V-A Environment Setup . 21

V-B FTP v.s. GridFTP . 22

V-B1 Design . 22

V-B2 Analysis . 23

V-C HDFS Cluster v.s. GridFTP Server. 25

V-C1 Design . 25

V-C2 Analysis . 26

V-D GridFTP-over-HDFS . 27

V-D1 Design . 27

V-D2 Analysis . 27

V-E Secure HDFS v.s. HDFS. 28

V-E1 Design . 29

V-E2 Analysis . 29

VI GridFTP-Over-Secure HDFS System Design 32

VII Conclusion 36

References 37

iv

GLOSSARY

1-way ANOVA

one-way analysis of variance is a statistical method for comparing means of two or

more samples.

CA

it stands for certificate authority. CA issues digital certificates and checks the ownership

of a public key by the name subject of the certificates.

FTP

it stands for File Transfer Protocol. It is built on a TCP-based network for file transfer.

generation stamp

Hadoop file system primitive.

GNU

recursive acronym for “GNU’s Not Unix,” an operating systemcreated by Richard M.

Stallman in 1984 at MIT’s Artifical Intelligence Lab. This operating system is most

commonly used in combination with the Linux kernel, but alsoused with the Hurd and

BSD kernels; with Linux, Hurd, or BSD used as the kernel, the operating system can

be referred to as GNU/Linux, GNU/Hurd, or GNU/BSD, respectively.

grid computing

the federation of computing resources from multiple locations to reach a common goal.

GridFTP

extension of the standard File Transport Protocol (FTP) forgrid computing environment.

GSI

it stands for Grid Security infrastructure.

Hadoop

a free software framework which can be used for distributed applications.

HDFS

it stands for Hadoop Distributed File System. It is the storage system of Hadoop

applications.

KDC

Key Distribution Center is one of the agents in Kerberos authentication. It controls

access for the registered users in the realm.

v

Linux

a kernel which is popularly used with the GNU operating system.

MapReduce

a software framework for processing large data sets in the distributed computing envi-

ronment.

metadata

it is a form of data which provides detailed information about data.

p-value

it is the probability of getting the test value if the null is true.

POSIX

a name suggested by Richard M. Stallman in response to an IEEE request for a mem-

orable name for IEEE 1003, a family of standards specified by IEEE for maintaining

compatibility between operating systems.

SRM

it stands for Storage Resource Management. SRM involves optimizing the efficiency

and speed with which a storage area network utilizes available drive space.

X.509

it is a standard for a public key infrastructure.

1

I. I NTRODUCTION

Normally, we setup anFTP server when we need to transfer files between hosts. Today, cloud

server seems to be a better choice for file transfer, because it provides the same ability with a lot

more features. For example,Hadoopnot only contains its file system (HDFS), it also provide a

platform for people to developMapReduceprograms on top of it. Does FTP server no longer

have a place in file sharing? FTP server is easy to set-up usingfree software, and it allows remote

access to the entire hard-drive. Those are the features cloud servers do not have. However, does

it provide better performance comparing to cloud servers? Do cloud servers provide enough

security to the end users today?

Hadoop is a framework built to support large-scale data-intensive processing. It runs on com-

modity hardware and used by some of the world’s most prominent companies, including IBM,

HP, Apple, and Microsoft [1]. In addition to the high-tech companies, Hadoop is also being used

for science and academic research.

In sectionII , we describe the background behind of Hadoop, including HDFS and MapReduce.

Moreover, we will introduce Kerberos In sectionII-D, because we will integrate Kerberos with

HDFS to increase its security features. In sectionII-E, we describe GridFTP by specifying its

differences with FTP and some of the GridFTP’s features. In sectionIII , we look in details of a

research paper and apply some of our work based on their proposed solution design. In section

IV, we briefly state the key steps of implementing GridFTP and Kerberos on Hadoop. In section

V, we discuss our experiment setup and the performance results of comparing GridFTP with

FTP and HDFS.

Once we have all the data available, we come up with a more secured HDFS system with faster

file transfer protocol. Based on the current support features, the solution is detailed in section

VI . First, client needs to login to the server and calls a bash script. Then, HDFS authenticates

the user by matching the user with his password. If the password is correct, the requested file

will be copied out of HDFS to local disk and transferred from server to client with GridFTP.

After file transfer completes, the local copy is deleted. At the end, a secure file system and faster

file transfer can be achieved by the proposed solution.

2

Fig. 1. HDFS is a great object store solution for cloud system

3

II. BACKGROUND

A. Introduction of Hadoop

Hadoop is a distributed computing framework which can scaleup to thousands of computing

nodes and Petabytes of data. If Hadoop users need to scale computation capacity or storage

capacity, they just need to add commodity servers to the Hadoop cluster. The preferred operating

system isGNU/Linux, with some experimental support for Windows. The name of Hadoop comes

from a toy elephant which belongs to the child of the Hadoop’screator, Doug Cutting [1].

Hadoop is made up of two primary components, the Hadoop Distributed File System (HDFS)

and theMapReduceengine.HDFS follows master/slave architecture. A HDFS cluster usually

contains a single NameNode and a bunch Data Nodes. NameNode is responsible monitoring and

distributing data to DataNodes. DataNodes within the same cluster would communicate over the

network to balance data blocks, and ensure data is replicated throughout the cluster.

Hadoop’s MapReduce was originally based on Google’s MapReduce. This type of paradigm

processes application by breaking input into small parts, and these parts can be run on any node

in a cluster. TheMapReduceengine is made up of two main components, Job Tracker and Task

Tracker. Users submit jobs to a JobTracker which distributes the task to Task Trackers for data

processing.

HDFS has many features which fits data-intensive computing,such as high scalability, reliability

and throughput. As Hadoop is increasingly being used on the grid and cloud environment, more

companies will invest their research and development in Hadoop.

B. Hadoop Distributed File System (HDFS) Architecture

1) HDFS Design Features[2]:

a. Hardware failure

HDFS cluster consists of thousands of server machines, and each of them stores part of the

4

file system’s data. Hardware system failure is very common among HDFS clusters, so failure

detection and automatic recovery of nodes are important features of HDFS.

b. Streaming Data Access

HDFS emphasizes on high throughput of data access instead oflow latency. It is designed

for batch processing and requires streaming access to its data sets.

c. Large Data Sets

HDFS cluster provides high bandwidth and scalability. It normally runs applications with

terabytes file in size.

d. Simple Coherency Model

HDFS applications requires write-once-read-many access model (A file cannot be changed

once created and written by any particular user) to keep datacoherency and enable high data

throughput.

e. Computation nears Data

It is inefficient to move the data to where the application is running. When the dataset is huge,

computation is more efficient if it is processed near the data. It reduces network congestion

and increases the throughput.

2) NameNode: HDFS stores information about files and directories at NameNode , which

records attributes like permission, modification and access times. NameNode acts like central

coordinator which split file content into small data blocks,and placed them at different DataN-

odes.

When HDFS client reads a file, it contacts with NameNode first toget the locations of data

blocks. Then it reads block content from the DataNode closest to the client. When HDSF client

writes data to HDFS DataNode, the client informs the NameNode to select DataNodes to store

block replicas, and it writes the data simultaneously. [3].

Besides Namenode, there is SecondaryNameNode for periodic checkpoints. The SecondaryNa-

menode periodically records current NameNode image, and joins them into a new image to

the NameNode. Therefore, if the NameNode fails, you can restart it on the same node without

shutting down the entire cluster.

5

3) DataNodes: Each block replica consists of two files at the host’s native file system. They

are the original data and the data block’smetadata. Metadata contains information about data

block’s checksums andgeneration stamp.

At startup of Hadoop cluster, each DataNode connects to the NameNode and performs a hand-

shake. Handshake checks the NameNode’s namespace ID and theHadoop version. The Hadoop

cluster will automatically shut down if either does not match, because nodes with a different

namespace ID shouldn’t join the cluster, and inconsistent version of Hadoop could cause data

loss.

DataNodes register with the NameNode with unique storage IDs after the handshake. The storage

ID is used to identify the DataNodes, and it remains the same after the registration. In addition,

a DataNode sends block report to the NameNode hourly. A blockreport consists of the block

id and thegeneration stamp. It is a way for DataNode to inform NameNode that block replicas

are in its possession.

Moreover, DataNodes send heartbeats to the NameNode every three seconds to confirm that

the DataNodes are operating. If the NameNode doesn’t receive heartbeats from a DataNode for

more than 10 minutes, the NameNode considers that the DataNode is down and creates new

data replicas on other DataNodes.

Heartbeats from a DataNode contain information such as storage capacity and the data transfer in

progress. NameNode controls load balancing and storage allocation for the DataNodes according

to the heartbeats’ information. The NameNode sends instructions to the DataNodes by replying

to the heartbeats rather than contacting DataNodes directly. Therefore, frequent heartbeats on

the HDFS cluster are important in terms of maintaining a well-functioned file system. [3].

4) File Read and Write: Once a new file is created at HDFS, the file written cannot be changed

after the file is closed. The client obtains a lease for the fileif the file is opened by the HDFS

client. Thus, no other clients can write to the file. The leaseis completely revoked when the file

is closed.

Failure of nodes is common in a cluster of thousands of nodes.HDFS generates checksums

for each data block, and it can be used to detect any file corruption. When HDFS client reads

6

Fig. 2. Read File Process of HDFS

a file, each block’s checksums is computed. If the checksum isincorrect, NameNode will get

notifications and select a different DataNode to retrieve data blocks [3].

C. MapReduce [2]

1) Overview: Google adopts MapReduce framework in 2004, and Hadoop is developed based

on Google’s MapReduce. MapReduce is a paradigm which splits the input data into small pieces

and processes by map tasks. Then, it sorts output of the maps and uses it as input to the reduce

tasks. Eventually, the master node collects the results of reduce tasks and combines them in a

standard form of output.

2) Inputs and Outputs: MapReduce computational applies data stored either in HDFS or Hbase.

The entire process can be summarized as follows:

7

Fig. 3. Logic of MapReduce

MapReduce Steps

1) Copy file into Master and each Worker Machine.

2) Master decides which Worker does Map, and which does Reduce.

3) Put blocks of data into Map computing machine.

4) Store the mapping result to local disk.

5) Read the Mapping result, and execute reduce.

6) Output the final computing result.

D. HDFS security

1) Overview: HDFS security was based on thePOSIX model of users and groups. Each HDFS

file and directory contains three different permissions: read, write and execute. Security permis-

sions can be changed by operations such as -chmod or-chown, which are similar to POSIX/Linux

commands, but not all of the POSIX commands are available on HDFS. [4]

8

It is easy to break file permission in HDFS and MapReduce jobs atearly Hadoop versions

(0.17-0.20). If Hadoop cluster runs behind a firewall, it maynot expose to the external attack ,

but it is still vulnerable to the internal security attack. [5]

To summarize, Hadoop security flaws include

• No authentication for users.

• No authenticate for services.

• No secure network transports.

It presents tons of security issues [6]

• Malicious users could submit jobs and execute the Task Tracker.

• Unknown users can communicate directly with a Datanode and read the block location

details.

• Unauthorized users can act as authorized users and access the cluster.

• Exposed to eavesdropping/sniffing on the network.

2) Kerberos: HDFS (post-1.0) improves on security by adding support of authentication protocol

(Kerberos). Kerberos was developed by Massachusetts Institute of Technology (MIT). Kerberos

uses central authentication server to control the access and service request of users. The user’s

password does not have to go through the network, so it avoidspossibility of password inter-

ception. [7]

Hadoop with Kerberos would authenticate users at master nodes (JobTracker and NameNode),

and users use their Kerberos key to communicate securely with the NameNode. After the initial

authentication, HDFS uses the delegation tokens to decrease the communication load on Kerberos

KDC (Key Distribution Center). [8]

The mechanism for authentication through Kerberos is shownin Figure 4. First, the client

authenticates himself to the Authentication Server (AS), which sends the username to a Key

Distribution Center (KDC). Then,KDC generates a Ticket Granting Ticket (TGT), which is

encrypted by a user’s password. If a user enters the correct password, TGT is decrypted and

9

Fig. 4. Kerberos Authentication Steps

user obtains access. A user can use this TGT to request services from Ticket Granting Service

(TGS). If TGT is valid, TGS issues the ticket and sessions keys, and the user acquires access

to the service. [9]

The following sums up security enhancement of Hadoop with Kerberos

• Hadoop user authentication is secured by Kerberos.

• Hadoop servers can trust the user’s identity

E. GridFTP

1) Overview: GridFTP could perform data transfer between incompatible storage and access

systems, because it is an extension ofFTP standard.GridFTP provides the following features

for secure and fast transfer:

• High performance data transfer by parallel streams

• secure data transfer (GSI) on grid computingapplications

The following sections look at the details and features of GridFTP implementations.

10

2) Two-channel Protocol: Similar to FTP,GridFTPutilizes two separate channels for commu-

nication (a control channel and data channel) (see Fig.5). The control channel is encrypted and

low bandwidth TCP communication. The data channel is high bandwidth communication links

of actual data.

Fig. 5. Two-ChannelGridFTPCommunication and Third-party Control of Data Transfer

3) Third-party control of data transfer: GridFTP provides third-party data transfers between

servers. It lets user or client to initiate and control of data transfer between two hosts. Fig.5

shows that the client establishes the control channel with two servers, and the data channel is

set up between the servers for actual data transfer. Client isnotified when the transfer is done.

4) Grid Security Infrastructure: GSI uses public key cryptography as the basis for its authen-

tication. The key concept ofGSI is the certificate, which is encoded in the X.509 certificate

format. CA’s main responsibility is to verify the identity ofthe subject on the certificate, so we

must trust the CA. A GSI certificate includes information:

11

• The person or subject which certificate represents.

• The subject’s public key

• The identity of a Certificate Authority (CA).

• The digital signature of the CA

5) Parallel data transfer: Multiple TCP streams in parallel is so much faster than a single TCP

stream. It is main the reason why GridFTP is faster than FTP

6) Partial file transfer: GridFTP supports commands to transfer arbitrary subsets offile rather

than complete file. This feature allows failed large file transfers to transfer the remaining portions

of the file instead of starting from beginning.

7) Automatic negotiation of TCP buffer/window sizes: Optimize TCP window sizes improves

data transfer performance.GridFTPsupports both manual configurations and automatic negoti-

ation of TCP buffer sizes for file transfer [10].

12

III. R ELATED STUDIES

A. Hadoop Distributed File System for the Grid [11]

The ability to automatically replicate data on a grid is important for computing sites like those at

the Large Hadron Collider (LHC) because the large volumes of high-energy physics experimental

data must be shared with collaborators around the globe. TheHadoop Distributed File System

(HDFS) provides a reliable method of file replication and distribution that is flexible in terms

of architecture of choice at different sites, and has a low cost of deployment and maintenance.

Integrating HDFS seamlessly with the grid requires three components:

• FUSE module for the Linux kernel

FUSE provides a POSIX-like interface to HDFS, which mounts the whole file system

”locally” so that user applications can access data as if it were local storage.

• GridFTP server

GridFTP provides WAN transfer. There is a problem posed by the fact that HDFS supports

only synchronous write, so a special GridFTP plugin is required to allow it to assemble

asynchronously transferred packets to be sequentially written to HDFS.

• BeStMan server

BeStMan provides an SRMv2 interface to HDFS. SRMv2 is an interface specification for

grid-aware Storage Resource Managers (SRMs).

Using the FUSE module solves the issue of direct data access for applications that require a

POSIX-compliant file system. Data access via a FUSE mount between two storage elements is

facilitated by SRM and GridFTP. The export of HDFS to a machineis subject to considerations

of security for the site. Direct access to data is also possible through the Hadoop client. However,

it can only be used for file transfer.

Those components are extremely helpful on conducting our experiment. We will be using

GridFTP server to transfer data directly from the server to client instead of operating it through

SRM, because our experiment only covers nodes in a local area network. Moreover, direct

13

access to the HDFS data through Hadoop client is needed in ourexperiment. It gives us clean

performance results of HDFS server, so we can compare it withGridFTP server.

In the Large Hardon Collider project, security issues are addressed based onX.509 authenti-

cation and authorization. It doesn’t solve the underlying security issues ofHDFS. The Hadoop

framework performed insufficient authentication and authorization of both users and services.

Based on the security approach published in 2010 Black Hat Conference, We would use the

Simple Authentication and Security Layer with Kerberos to authenticate Hadoop users [12].

14

IV. I MPLEMENTATION

A. GridFTP

We use Globus-5.0.5 toolkit to install GridFTP in our experiment. GridFTP uses the SSL protocol

along with X.509 credentials. We need to configureGSI correctly and buildCA. The key steps

to setup GSI are summarized as following

(1) Setup GLOBUSLOCATION path and execute the shell script

export GLOBUS_LOCATION=/sandbox/globus/globus-5.0.5

source $GLOBUS_LOCATION/etc/globus-user-env.sh

(2) Execute perl script to buildCA

perl gt-server-ca.pl -y

Provide CA key(a password at least 4 characters) in the file(gt-server-ca.pl) and CA will

generate certificate(hostcert.pem) and associated key(hostkey.pem). Make a /etc/grid-security

folder and move the certificate and key to the folder.

(3) The myproxy-server.config file sets the policy for the myproxy-server, specifying what

credentials may be stored in the server’s repository, who isauthorized to retrieve credentials,

and other configurable server behaviors.

The following policy enables all credential repository features

acceptedcredentials ”*”

authorizedretrievers ”*”

default retrievers ”*”

authorizedrenewers ”*”

default renewers ”none”

authorizedkey retrievers ”*”

default key retrievers ”none”

trusted retrievers ”*”

default trusted retrievers ”none”

cert dir /etc/grid-security/certificates

15

(4) Edit /etc/xinetd.d/myproxy by setting correct GLOBUSLOCATION path. It is the path

where GridFTP is installed.

service myproxy-server

{

socket type = stream

protocol = tcp

wait = no

user = root

server = /sandbox/globus/globus-5.0.5/sbin/myproxy-server

env = GLOBUS LOCATION=/sandbox/globus/globus-5.0.5

LD LIBRARY PATH=/sandbox/globus/globus-5.0.5/lib

disable = no

}

(5) Add admin username (yang) to the certificate

myproxy-admin-adduser -c "yang" -l yang

It requres user to enter password for the certificate (at least 6 characters). To sign the

certificate, you need to enter the password of the CA key (the one you set at step 2). If the

password is correct, the credential will be stored.

(6) Edit /etc/xinetd.d/gridftp by setting correct GLOBUSLOCATION path

service gsiftp

{

...

env += GLOBUSLOCATION=/sandbox/globus/globus-5.0.5

env += LD LIBRARY PATH=/sandbox/globus/globus-5.0.5/lib

server = /sandbox/globus/globus-5.0.5/sbin/globus-gridftp-server

...

}

16

(7) Edit /etc/services. Adding ”gsiftp 2811/tcp” under Local services. GridFTP server uses port

2811 for tcp connection.

Local services

myproxy-server 7512/tcp # Myproxy server

gsiftp 2811/tcp

(8) Reload the service and start gsiftp

/etc/init.d/xinetd reload

$ export GLOBUS_LOCATION=/sandbox/globus/globus-5.0.5

$ source $GLOBUS_LOCATION/etc/globus-user-env.sh

(9) Login gridftp server by entering the certificate’s password. If should return ”a credential has

been received”

$ myproxy-logon -s globusserver

(10) Transfer file to local disk using globus-url-copy command line tool

$ globus-url-copy gsiftp://globusserver/home/yang/testinput

file:///tmp/testinput

B. Hadoop with Kerberos

Two steps to build secure HDFS: buildKDC and configure Hadoop with Kerberos authentication.

We use Kerberos V5 1.8.3 package for implementation.

(1) Create Kerberos database. Here we name our realm ”HADOOP.LOCALDOMAIN”

/usr/local/sbin/kdb5_util create -r HADOOP.LOCALDOMAIN -s

(2) Generate HDFS keytab as authentication password. Here we generate ”yang.keytab” and

assign ”yang/admin” as the user of this keytab

$ sudo kadmin.local

17

kadmin.local: ktadd -k /usr/local/var/yang.keytab yang/admin

(3) For all the nodes of Hadoop cluster, create file krb5.confunder /etc directory.

[libdefaults]

default realm = HADOOP.LOCALDOMAIN

...

...

dns lookup kdc = true

dns lookup realm = true

[realms]

HADOOP.LOCALDOMAIN =

{

kdc = kdc

admin server = kdc

default domain = localdomain

}

[domain realm]

.localdomain = HADOOP.LOCALDOMAIN

localdomain = HADOOP.LOCALDOMAIN

(4) Edit core-site.xml to enable Kerberos authentication

18

〈configuration〉

...

...

〈property〉

〈name〉hadoop.security.authorization〈/name〉

〈value〉true〈/value〉

〈/property〉

〈property〉

〈name〉hadoop.security.authentication〈/name〉

〈value〉kerberos〈/value〉

〈/property〉

〈/configuration〉

(5) Edit hdfs-site.xml. Configure delegation tokens, provide the name of Kerberos principal and

the path of keytab to both namenode and datanode

19

〈configuration〉

...

...

〈property〉

〈namedfs.block.access.token.enable〈/name〉

〈value〉 true〈/value〉

〈/property〉

...

〈property〉

〈name〉dfs.namenode.keytab.file〈/name〉

〈value〉/home/yang/Desktop/hadoop-1.0.2/conf/yang.keytab〈/value〉

〈/property〉

〈property〉

〈name〉dfs.namenode.kerberos.principal〈/name〉

〈value〉yang/ HOST@HADOOP.LOCALDOMAIN〈/value〉

〈/property〉

〈property〉

〈name〉dfs.namenode.kerberos.https.principal〈/name〉

〈value〉yang/ HOST@HADOOP.LOCALDOMAIN〈/value〉

〈/property〉

〈/configuration〉

(6) Start HDFS. Secure Hadoop requires root account to startdatanode.

bin/hadoop-daemon.sh start datanode

(7) ContactKDC and enter the password correctly to get the key. Only registered user of KDC

could enter HDFS.

kinit

20

(8) Here is Java code snippet for accessing HDFS from client

public void readFile(String file) throws IOException

{

Configuration conf = new Configuration();

conf.addResource(new Path("/home/yang/Desktop/core-site.xml"));

conf.addResource(new Path("/home/yang/Desktop/hdfs-site.xml"));

UserGroupInformation.

loginUserFromKeytab("yang/globusclient@HADOOP.LOCALDOMAIN",

"/home/yang/Desktop/yang.keytab");

//Assume Kerberos is enabled, we login using

dfs.namenode.keytab.file

//yang/globusclient@HADOOP.LOCALDOMAIN has the access right to the

HDFS

UserGroupInformation.setConfiguration(conf);

String uri = "hdfs://test:9000/"; //HDFS URL

FileSystem fileSystem = FileSystem.get(URI.create(uri),conf);

Path path = new Path(file);

FSDataInputStream in = fileSystem.open(path);

...

...

}

21

V. EXPERIMENT

A. Environment Setup

The goal of the experiment is comparing the performance of GridFTP server with the cloud-

based HDFS server. We use Oracle Virtualbox to get our nodes and cluster setup. Every node

in the cluster uses the same specs (memory, OS, etc.) except HDFS slaves and KDC. Slaves of

the HDFS cluster are only responsible for storing data, and handles request from master, so the

512 MB of memory should be sufficient. KDC is the Key Distribution Center. The primary duty

is authenticating HDFS users and services. It doesn’t require high loads of computation either.

The following are the specs of the host platform and the guestplatform.

Host Machine

• Model: ThinkPad T420s

• Processor: Intel Corei5-2540M, CPU@2.6GHz

• RAM: 8.00GB

• System type: 64bit OS

• Operating System: Windows 7

Virtual Machine

(a) GridFTP Server, GridFTP Client, HDFS cluster (Master), HDFS Client, Secure HDFS,

Single-node HDFS

• Software: Oracle Virtualbox 4.1.18 VMs

• Base memory: 2048MB

• System type: 64bit OS

• Operating System: Linux Ubuntu 10.04

• Network Adapter: Intel PRO/1000 MT Desktop

(b) HDFS cluster (Slaves), KDC

• Software: Oracle Virtualbox 4.1.18 VMs

22

• Base memory: 512MB

• System type: 64bit OS

• Operating System: Linux Ubuntu 10.04

• Network Adapter: Intel PRO/1000 MT Desktop

We set up a separate and clean virtual network to connect all the VMs together. There are total

3 different comparisons we will be testing in our experiments. First of all, we want to prove if

GridFTP is indeed faster than FTP. Then, we will use GridFTP server to be our choice of FTP

server, and HDFS server as the cloud storage to compare the performance of these two. Based

on the results, we will combine these two to get the best of each. Finally, after the integration

of Kerberos with Hadoop, we would like to check if the security enabled HDFS suffers in

performance. We will run the experiment with 3 different sizes of file (1GB, 3GB, and 5GB)

with null character.

B. FTP v.s. GridFTP

FTP GridFTP

Security Inherently insecure. Rely on SSH

and SSL for security

Provides authentication and en-

cryption to file transfer

Performance File transfer using single TCP

stream

Multiple simultaneous TCP stream

from the source to make better use

of bandwidth

Third party transfer Allows remote transfer between

servers to be initiated by local

client

Adds security and authentication

for the local initiator

Partial file transfer It doesn’t support the transmission

of a certain portion of a file

Allows a subset of a file to be sent

1) Design: We set up the FTP server and GridFTP server on one VM, and FTP client and

GridFTP client on another VM. We use Globus toolkit for installing GridFTP server, and vs-

ftpd(very secure FTP Daemon) package for FTP server. The Globus project is actively developing

23

tools for applications in a grid environment, and vsftpd is aGPL license FTP server for Unix

system. We transfer the same size of the file 5 times and compute the average time for each size.

Fig. 6. GridFTP Experiment Diagram

File Size 1GB 3GB 5GB

1 18.59 48.97 97.01

2 19.34 51.34 94.23

3 17.53 47.68 93.88

4 17.44 46.52 95.45

5 18.11 47.36 95.21

Avg. 18.22 48.07 95.16

TABLE I

FTP PERFORMANCE(IN SECONDS)

File Size 1GB 3GB 5GB

1 8.71 27.58 53.19

2 8.70 25.27 51.78

3 9.1 24.87 50.31

4 8.35 25.19 54.81

5 8.49 26.87 53.32

Avg. 8.67 25.96 52.68

TABLE II

GRIDFTP PERFORMANCE(IN SECONDS)

2) Analysis: The results give us strong evidence that GridFTP is faster than FTP. The average

speed for 1G, 3G, 5G are significant faster for GridFTP. It hasto do with parallel TCP streams

and automatic TCP optimization as we stated earlier. GridFTPenhances its security feature with

GSI, but the performance doesn’t suffer.

24

The network traffic captured from ”WireShark” could explainwhy GridFTP is faster than FTP.

GridFTP uses 2 TCP streams. For the first stream, GridFTP server uses a port 2811 for control

channel. It will connect with a GridFTP client with a dynamicport number. The second stream is

the data channel. Both GridFTP server and GridFTP client usesa dynamic port for data transfer.

GridFTP balances the traffic load by using different port number for control and data channel.

As a result, it achieves better transfer speed. On the other hand, FTP server and FTP client use

a single port to handle both control and data channel (port 20for FTP server and a dynamic

port for FTP client), so it is not as fast as GridFTP.

Fig. 7. GridFTP WireShark Captured Result Shows that Not Every Data Packet Requires an ACK from Client

In addition to parallel streams, we also notice that for eachack packet from the GridFTP client,

GridFTP server can send multiple data packets. In contrast,FTP client has to send ack for every

data packet. Less number of packets also contributes to muchbetter performance of GridFTP.

The advertised window of GridFTP doesn’t seem to have much effect on performance. Although

the client declares window size as large as 50000 bytes to server, server can only transfer 1448

bytes of data due to the Ethernet default packet size limit (1500 bytes).

Traditional FTP server is easy and cheap to setup, and it provides a convenient method for

data transfer. However, if the goal is to have faster and reliable transfer, GridFTP should be

25

the choice. With that conclusion, we move on to our major research topic, comparing GridFTP

server with HDFS server.

C. HDFS Cluster v.s. GridFTP Server

HDFS Cluster GridFTP Server

Security No Authentication on services and

users. No encryption on data trans-

port

Provides authentication and en-

cryption to file transfer

Performance Increases throughput by utilizing

computing power from multiple

nodes

Multiple simultaneous TCP stream

from the source to make better use

of bandwidth

Data Access Users can only access data from

HDFS

Users can access the entire disk

Fault Tolerant Data block is replicated 3 times for

fault tolerance

Transfer can be automatically

restarted if a server problem

occurs

Cost Cheap to set up as multiple nodes

can be built on a single host

Hardware cost could be significant

for a large scale experiment

Other Features Capable of more operations such as

running MapReduce programs

Simple data storage system for grid

computing

1) Design: We use Apache Hadoop 1.0.2 to setup our HDFS Cluster. The cluster contains

3 nodes in total, one act as master and the other two are slaves. The master node will be

the NameNode as well as the DataNode in the experiment. Both slaves would serve solely as

DataNodes for storing data blocks. Based on this design, we have 3 replicas for every data block.

On the client side, a small Java HDFS client program with Eclipse Hadoop plugin is written for

interacting with HDFS. As soon as everything is ready, the client could initiate file transfer with

HDFS through JAVA RPC (Remote Procedural Call). The architecture of the HDFS cluster is

demonstrated in Fig.8. Time of transfer is based on execution time of the HDFS client program.

26

Fig. 8. Hadoop Cluster Experiment Diagram

File Size 1GB 3GB 5GB

1 33.47 100.12 169.29

2 30.98 96.59 167.32

3 33.34 101.05 166.90

4 29.41 102.11 169.23

5 33.61 101.82 165.59

Avg. 32.14 100.34 167.67

TABLE III

HDFS CLUSTER PERFORMANCE(IN SECONDS)

File Size 1GB 3GB 5GB

1 8.71 27.58 53.19

2 8.70 25.27 51.78

3 9.1 24.87 50.31

4 8.35 25.19 54.81

5 8.49 26.87 53.32

Avg. 8.67 25.96 52.68

TABLE IV

GRIDFTP PERFORMANCE(IN SECONDS)

2) Analysis: Based on the stats of the experiment, HDFS doesn’t perform as well as GridFTP

even though HDFS forms a cluster. Regardless the file size, GridFTP is around 70% faster than

HDFS. Hadoop is installed on top of the server’s file system. In order to access HDFS, a client

needs to go through the server’s hard disk first, and then get the file from HDFS. This extra

hop could be the reason why it takes longer to read the file. On the other hand, GridFTP client

merely reads the file from hard disk. The overhead is too big for a HDFS client to access HDFS

by Java RPC. It leads us to believe that the HDFS access layer is the bottleneck for fast data

transfer of Hadoop-based cloud storage.

27

D. GridFTP-over-HDFS

Fig. 9. GridFTP-over-HDFS ArchitectureDiagram

1) Design: Now we know that GridFTP outperforms HDFS, but HDFS has so many other

features we would like to have as our storage system. For example, fault tolerance, integration

with MapReduce paradigm, and process large datasets are veryimportant when we have petabytes

of file. Those are the functions we cannot get from GridFTP server. Is there a way to combine

these two? FUSE (Filesystem in Userspace) would be the medium to make it possible.

HDFS cannot be directly mounted by the operating system. FUSE provides a POSIX-like

interface to HDFS, which mounts the whole file system ”locally” so that user applications can

access data as if it were local storage. It gave us the option to transfer files from HDFS using

either FTP, GridFTP or other transferring methods instead of limiting to HDFS Java client. In

other words, FUSE is the gateway between GridFTP client and HDFS.

2) Analysis: GridFTP-over-HDFS produces better results than HDFS client, but it is not as fast

as using only GridFTP. We know that FUSE is the gateway to HDFS, so it creates overhead

to read and write the file. However, the speed of GridFTP neutralizes FUSE overhead. This

compromised solution will provide us a relative fast transfer rate, and in the meantime keeps

all of the great features of HDFS. Moreover, X.509 authentication will be mandatory if we use

GridFTP. It also solves the security weakness on HDFS. Thus,this has been a prevalent approach

28

Fig. 10. GridFTP-over-HDFS Experiment Diagram

File Size 1GB 3GB 5GB

1 15.91 53.05 99.13

2 14.98 46.36 99.78

3 15.15 46.41 98.25

4 14.53 46.98 97.12

5 15.26 46.85 100.52

Avg. 15.17 47.93 98.96

TABLE V

GRIDFTP-OVER-HDFS PERFORMANCE(IN SECONDS)

for grid applications such as the Large Hadron Collider research project.

E. Secure HDFS v.s. HDFS

Secure HDFS HDFS

Security Authenticate HDFS services and

users by adding Kerberos

No Authentication on services and

users

29

1) Design: GridFTP-over-HDFS doesn’t authenticate HDFS. What if HDFS client is the only

file transfer option? The current proposed solution would beadding Kerberos. It authenticates

both HDFS service and client. However, we are still suspect communication time with KDC and

delegation token would not have any impact on its performance. Therefore, we build another

HDFS with a single node to compare the performance with secure HDFS.

Fig. 11. Secure Hadoop Experiment Diagram

Fig. 12. 1-way ANOVA Table of HDFS and HDFS Secure with significance level of 0.01 (1GB)

2) Analysis: Based on the experiment result, HDFS with Kerberos does not have a huge impact

on the performance. Although the time of transfer for SecureHDFS is slightly slower than

regular HDFS, the result is very close regardless the file size. We run1-way ANOVA (Analysis

30

of Variance) test to check if there are scientific differences between them. We use significance

level = 0.01 to compare these two, and ANOVA table in Figure12 shows that F critical stats is

larger than F stats for 1GB file. In addition,p-value0.046 is bigger than the significance level

0.01. Statistical results leads us to retain null hypothesis. Therefore, performance differences

between HDFS with and without security are statistically insignificant.

HDFS client connects with KDC initially to request Secure HDFS service. The connection

between KDC and HDFS client can be seen by using ”tcpdump”. HDFS client basically asks

for the service key of HDFS, and KDC issues it after KDC approves HDFS client’s identity.

The experiment result shows that the authentication process of HDFS doesn’t slow down the file

transfer process. When we run ANOVA test with larger file size (3GB and 5GB), the performance

differences due to security become even less significant. Due to longer transfer time of larger

file size, connection with KDC has less effect on the performance. We conclude that KDC is

not the bottleneck of HDFS, and Kerberos has very little effects on file transfer of HDFS.

File Size 1GB 3GB 5GB

1 64.31 203.97 319.12

2 66.42 203.77 302.23

3 64.34 206.54 329.05

4 64.98 201.89 331.06

5 65.85 203.11 335.03

Avg. 65.18 204.46 323.30

TABLE VI

HDFS SINGLE-NODE PERFORMANCE(IN SECONDS)

File Size 1GB 3GB 5GB

1 66.24 210.52 319.64

2 68.74 203.29 315.59

3 66.6 208.4 347.53

4 66.6 210.16 320.38

5 65.6 206.35 329.75

Avg. 66.76 207.75 326.58

TABLE VII

SECUREHDFS PERFORMANCE(IN SECONDS)

In summary, we vary the size and conduct the experiment of different transferring protocol, but

file size doesn’t appear to have huge impact on the performance results. We compare in total 6

different methods, and the trend is similar across the board. GridFTP is consistently the fastest

transferring protocol, which is followed by either FTP or GridFTP-over-HDFS. The HDFS cluster

is faster than single-node HDFS, and adding Kerberos to HDFScauses relatively small impact in

terms of its performance. Based on the experiment, we proposea system ”GridFTP-Over-Secure

HDFS” for secure and fast file transfer.

31

Fig. 13. 5GB Data transfer comparison graph (in seconds)

32

VI. GRIDFTP-OVER-SECUREHDFS SYSTEM DESIGN

According to the previous experiment results, we demonstrated two points

• GridFTP provides the best performance result

• Kerberos enhances HDFS security without much impact on the performance

In section V-D, we demonstrate GridFTP-Over-HDFS, and it shows decent throughput. Now

we know that Kerberos won’t affect performance, so a GridFTP-Over-Secure HDFS system

could provide fast file transfer, and keep all the file at secure HDFS for distributed computing

applications.

One possible solution is adding Kerberos on GridFTP-Over-HDFS, but this design is not feasible

due to 2 limitations

• Apache HDFS Fuse module doesn’t have Kerberos support yet

• Kerberos is not supported on Globus GridFTP due to divergence in the capabilities ofGSI

and Kerberos

Currently, GridFTP usesGSI for authentication and encryption. CA is a trusted third party (TTP)

for GSI as Kerberos uses KDC as the authentication center. Although it is possible to replace GSI

with Kerberos on GridFTP, secure HDFS still can’t be accessed from GridFTP client without

specifying keytab of HDFS on the command line URL.

Therefore, we implement another system without Fuse mounting secure HDFS. GridFTP-Over-

Secure HDFS requires a user to operate through the command line from terminal. Here are the

steps for a client to get the file from secure HDFS server.

(1) Client starts gsiftp and connects with the server (”test”is my server name)

$ export GLOBUS_LOCATION=/sandbox/globus/globus-5.0.5

$ source $GLOBUS_LOCATION/etc/globus-user-env.sh

$ myproxy-logon -s test

33

Fig. 14. GridFTP-Over-Secure HDFS Design: Copy a file to local then use GridFTP to transfer file

(2) Client SSH into the server

$ ssh yang@test

(3) Connect with KDC and enter the password correctly to recieve Kerberos key. The key is

required to access the secure HDFS

kinit

(4) Search for files at HDFS

bin/hadoop dfs -ls /

(5) Calling a bash scriptread file with 3 parameters. It specifies source path, client name and

destination path

./read_file /hello testclient /home/yang/tmp

34

#!/bin/bash

/home/yang/Desktop/hadoop-1.0.2/bin/hadoop dfs -get $1/Desktop/tempfile

#copy the file out of secure HDFS to the server’s Desktop

globus-url-copy gsiftp://test/home/yang/Desktop/tempfile gsiftp://$2$3

#use GridFTP for file transfer between server and client

rm /Desktop/tempfile

#remove the file on the local disk

(6) After file transfer completes, delete the Kerberos key

kdestroy

(7) Logout of server

exit

Script ”read file” copies the secure HDFS data to the server’s local directory, and then starts

file transfer between server and client with GridFTP. We run the same performance test with

different file size, and the result is much better than secureHDFS. The script ”readfile” executes

Hadoop shell command ”copyToLocal” on the first line, and apparently it doesn’t cost much

time to copy the file to local disk. In addition, we optimize transfer speed by using GridFTP

since it is the fastest file transfer protocol in our experiment. After a client receives the file, the

server’s local copy is deleted immediately, because we do not want HDFS data exposed in any

insecure environment.

File Size 1GB 3GB 5GB

1 32.04 91.91 153.54

2 30.91 98.67 157.75

3 30.4 91.78 158.85

4 28.85 98.05 151.29

5 31.81 98.39 150.88

Avg. 30.8 95.76 154.46

TABLE VIII

GRIDFTP-OVER-SECUREHDFS PERFORMANCE(IN

SECONDS)

35

GridFTP-Over-Secure HDFS is the best solution comparing tothe alternative system in the

experiment. Firstly, FTP itself is inherently insecure, because it opens to packet sniffing and

eavesdropping. Therefore, we replace it with GridFTP, because it is faster and contains security

featureGSI for authentication and encryption to file transfers. However, GridFTP server alone

is only good for simple file transfer.HDFScould run applications with multiple nodes involving

thousands of terabytes, but lack of security features is itsmain issue. In addition to the security

concern, the experiment also shows that HDFS cluster performs worse than GridFTP server in

terms of file transfer. Thus, we build secure HDFS by adding Kerberos authentication, and use

GridFTP to transfer HDFS file from server to client. In conclusion, GridFTP-Over-Secure HDFS

outperforms HDFS and secure HDFS, so it is the best possible solution for HDFS file transfer.

Fig. 15. Terminal User Interface to Transfer File from GridFTP-Over-Secure HDFS Server to Client

36

VII. C ONCLUSION

From our experiment result, we find out that GridFTP performsbetter in file transfer comparing

to HDFS. The overhead of accessing HDFS is quite big even HDFScluster system cannot

nullify. However, with FUSE we could have GridFTP client stores content directly into HDFS.

It allows data from GridFTP serves to be directly stored intoHDFS instead of first copying the

data locally and then uploading it into HDFS. This will greatly simplify data being pulled from

GridFTP Servers to HDFS. In addition to fast data transfer, GridFTP could also solve the issues

of managing multiple cloud service accounts on the internet. Cloud storage systems today all

have their own file upload and download methods. GridFTP is based on FTP, so it is compatible

with most of the cloud service. We can use GridFTP to move or copy files between any accounts.

Cloud service offers more dynamic features FTP server does not have, but our experiment also

shows that FTP is faster than one of the cloud storage platforms (HDFS). HDFS still has some

flaws to become a reliable cloud storage system. The authentication issue is solved partially by

adding Kerberos, but there are many security risks existing, including unencrypted data on the

network. With more work are being done in this field, the proposed design (GridFTP-Over-Secure

HDFS) is currently a great solution for a fast and reliable cloud based storage system.

37

REFERENCES

[1] SearchCloudComputing. (2012, Mar. 19) Hadoop. [Online]. Available: http://searchcloudcomputing.techtarget.com/

definition/Hadoop

[2] D. Borthakur. (2008) Hadoop 0.20 documentation – HDFS architecture. The Apache Software Foundation.

[3] K. Shvachko, “The Hadoop Distributed File System,” inIEEE Symp. on Mass Storage Systems and Technologies, 2010.

[4] Yahoo! Inc. (2012, May 7) Hadoop tutorial. Yahoo! Developer Network. [Online]. Available:http://developer.yahoo.com/

hadoop/tutorial/module2.html#perms

[5] R. Phulari. (2010, Mar. 22) Security in Hadoop, part - 1. Big data and etc. [Online]. Available:http://bigdata.wordpress.

com/2010/03/22/security-in-hadoop-part-1/

[6] Q. Shien, “Security architecture of private storage cloud based onHDFS,” in IEEE Computer Society, 26th Int. Conf. on

Advanced Information Networking and Applications Workshops, 2012.

[7] MIT. (2012) Kerberos: The network authentication protocol. MIT Kerberos. [Online]. Available:http://web.mit.edu/

kerberos/dist/historic.html

[8] H. Jacob. (2012, May 6) Up-armoring the elephant. [Online]. Available: http://www.slideshare.net/blueboxtraveler/

uparmoning-the-elephant-adding-kerberosbased-security-to-hadoop

[9] N. Chary. (2012, May 6) Security implementation in Hadoop. [Online]. Available: http://search.iiit.ac.in/cloud/

presentations/28.pdf

[10] B. Alcock, “Data management and transfer in high performancecomputation grid environments,”Globus.org Publications,

2002.

[11] G. Attebury, “Hadoop Distributed File System for the Grid,” inIEEE Nuclear Science Symp. Conf. Rec., 2009.

[12] B. Andrew. (2010) Hadoop security design just add kerberos?really? iSEC PARTNERS. [Online]. Available:http://

media.blackhat.com/bh-us-10/whitepapers/Becherer/BlackHat-USA-2010-Becherer-Andrew-Hadoop-Security-wp.pdf

http://searchcloudcomputing.techtarget.com/definition/{H}adoop
http://searchcloudcomputing.techtarget.com/definition/{H}adoop
http://developer.yahoo.com/hadoop/tutorial/module2.html#perms
http://developer.yahoo.com/hadoop/tutorial/module2.html#perms
http://bigdata.wordpress.com/2010/03/22/security-in-hadoop-part-1/
http://bigdata.wordpress.com/2010/03/22/security-in-hadoop-part-1/
http://web.mit.edu/kerberos/dist/historic.html
http://web.mit.edu/kerberos/dist/historic.html
http://www.slideshare.net/blueboxtraveler/uparmoning-the-elephant-adding-kerberosbased-security-to-hadoop
http://www.slideshare.net/blueboxtraveler/uparmoning-the-elephant-adding-kerberosbased-security-to-hadoop
http://search.iiit.ac.in/cloud/presentations/28.pdf
http://search.iiit.ac.in/cloud/presentations/28.pdf
http://media.blackhat.com/bh-us-10/whitepapers/Becherer/BlackHat-USA-2010-Becherer-Andrew-Hadoop-Security-wp.pdf
http://media.blackhat.com/bh-us-10/whitepapers/Becherer/BlackHat-USA-2010-Becherer-Andrew-Hadoop-Security-wp.pdf

	San Jose State University
	SJSU ScholarWorks
	Spring 2013

	Cloud Storage Performance and Security Analysis with Hadoop and GridFTP
	Wei-Li Liu
	Recommended Citation

	Glossary
	Introduction
	Background
	Introduction of Hadoop
	Hadoop Distributed File System (HDFS) Architecture
	HDFS Design Features Borthakur
	NameNode
	DataNodes
	File Read and Write

	MapReduce Borthakur
	Overview
	Inputs and Outputs

	HDFS security
	Overview
	Kerberos

	GridFTP
	Overview
	Two-channel Protocol
	Third-party control of data transfer
	Grid Security Infrastructure
	Parallel data transfer
	Partial file transfer
	Automatic negotiation of TCP buffer/window sizes

	Related Studies
	Hadoop Distributed File System for the Grid Attebury

	Implementation
	GridFTP
	Hadoop with Kerberos

	Experiment
	Environment Setup
	FTP v.s. GridFTP
	Design
	Analysis

	HDFS Cluster v.s. GridFTP Server
	Design
	Analysis

	GridFTP-over-HDFS
	Design
	Analysis

	Secure HDFS v.s. HDFS
	Design
	Analysis

	GridFTP-Over-Secure HDFS System Design
	Conclusion
	References

