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ABSTRACT

ULTIMAX CEMENT AND NONDESTRUCTIVE TESTING
OF HIGH STRENGTH CONCRETE

by Emma B. Aquino

This study is composed of two parts. The objective of the first part is to evaluate
the physical properties of fresh and hardened concrete made with a new type of rapid
hardening hydraulic cement commercially know as “Ultimax cement.” The properties are
compared with concrete containing ASTM Type I/II cement. The objective of the second
part is to evaluate the use of the Windsor probe test to nondestructively determine the in
situ compressive strength of normal and high strength concrete.

This study reveals that improved physical properties can be obtained when using
Ultimax cement in concrete. The Windsor probe test was found capable of predicting the

in situ compressive strength of normal and high strength concrete.
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Chapter 1

Introduction

1.1 Rapid Hardening Ultimax Cement and Nondestructive

Testing of High Strength Concrete

Rapid hardening cement is useful in applications requiring rapid early strength
development such as concrete repairs in roads and airport runways. Rapid hardening
cements can also be used for smaller applications such as the installation of dividing walls,
sealings in brick supports, sealings of inspection covers and manholes, door and window
frames, moldings of window ledges, setting walls, and finishing facades. In this
investigation, a new rapid hardening hydraulic cement commercially known as “Ultimax
cement” was studied. The compressive strength, modulus of elasticity, splitting-tensile
strength, bulk density, shrinkage, and expansion of concrete containing Ultimax cement
were evaluated and compared with the properties of concrete containing ASTM Type I/II
cement.

The use of high strength concrete in construction can result in a structure that
requires a lesser volume of concrete than is required by a structure constructed with
normal strength concrete. Many structures, especially high rise buildings, have been built

using high strength concrete. In order to evaluate the in situ strength of the high strength



concrete, nondestructive testing methods must be utilized. To date, nondestructive testing
methods have not been evaluated for in situ testing of high strength concrete.

There are several methods used in nondestructive testing that have the potential to
be utilized for high strength concrete testing including the penetration resistance method
which is based on measuring the depth of penetration of steel probes into the surface of
concrete. In this study, the most well known and widely used probe penetration
technique, the Windsor probe test, will be used to conduct nondestructive testing on

normal and high strength concrete.

1.2 Scope

In order to compare the physical properties of concrete made with Ultimax cement
and ASTM Type VI cement, twenty different concrete mixes were prepared with local
aggregates and cement. Fifteen of these mixes were prepared with Ultimax cement while
the other five were prepared with ASTM Type I/Il cement. The concrete mixes were
made with various water-to-cement ratios of 0.30, 0.35, 0.40, 0.45, and 0.50.

This research also investigates two types of probes for use in probe penetration
testing of normal and high strength concrete. Specimens from eight mixes were tested to
obtain compressive strength and probe penetration data. The exposed probe length was

plotted against compressive strength to obtain correlation equations for both probe types.



1.3 Objectives

The main objectives of this investigation were:

(1) To study the properties of fresh and hardened concrete made with a new type of
rapid hardening early strength cement commercially known as “Ultimax cement.”
Results will be compared with concrete made with ASTM Type I/TI cement.

(2) To evaluate the Windsor probe test using two new types of probes for conducting

nondestructive testing of concrete having high strengths up to 10,500 psi (70 MPa).

1.4 Thesis Outline

This thesis consists of six chapters. Chapter 1 introduces the investigations
conducted. The scope, objectives, and outline of the research are also presented. Chapter
2 contains a review of high strength concrete. The concrete properties and constituents of
high strength concrete are reviewed. The role of aggregates in high strength concrete is
also discussed. Chapter 3 contains a review of the probe penetration resistance test used
in this study. Chapter 4 describes the material investigation of concrete containing
Ultimax cement. A comparison of the fresh and hardened properties of concrete
containing Ultimax cement and concrete containing ASTM Type I/II cement is presented.
Chapter 5 describes the experimental program used for finding a correlation between the
compressive strength of normal and high strength concrete slabs and the depth of

penetration of newly designed probes using the Windsor probe test. The test results of the



experimental program are also presented in this chapter. Conclusions and future

recommendations are presented in Chapter 6.



Chapter 2

Review of High Strength Concrete

2.1 Introduction

The definition of “high strength concrete” has been revised through the years. In

the 1950s, 5000 psi (35 MPa) concrete was considered high strength. Today, 19,000 psi

(130 MPa) concrete is being used in cast-in-place buildings. With each successive

development and corresponding strength increase, this definition has changed. The exact

point at which concrete can be classified as either “normal-strength” or “high-strength”

cannot be determined. According to the American Concrete Institute (ACI), high strength

concrete is defined as concrete with compressive strength over 6000 psi (40 MPa). ™ A

strength classification system developed at the University of Illinois is shown in Table 2.1.

Table 2.1 Strength Classification of Concrete®

Conventional High-strength Very-high- Ultra-high-
Parameter concrete concrete strength concrete | strength concrete
Strength, psi (MPa) < 7250 (50) 7250-14,500 14,500-21,750 > 21,750 (150)
(50-100) (100-150)
Water-to-cement ratio >0.45 0.45-0.30 0.30-0.25 <0.25
Chemical admixtures Not necessary WRA or HRWR* HRWR* HRWR*
Mineral admixtures Not necessary Fly ash Silica fume** Silica fume**
Permeability coefficient > 1010 10" 10" <10™
Freeze-thaw protection Needs air Needs air Needs air No freezable
entrainment entrainment entrainment water

* WRA = Water reducing admixture, HRWR = high-range water reducer.

** Also may contain fly ash.




High strength concrete (HSC) is used when a reduction in weight is needed or
when smaller load-carrying elements are required. HSC allows for smaller vertical
members which achieve more efficient floor plans. HSC has been proven to be an
economical alternative by reducing the total volume of concrete, the amount of reinforcing
steel required, and the amount of formwork needed, thereby reducing total costs. The
number of applications of high strength concrete has increased as a result of developments
in material technology and a demand for higher strength concrete. Some examples of
concrete structures utilizing HSC are: Two Union Square in Seattle (1988) with strengths
up to 19,000 psi (130 MPa), Gateway Tower in Seattle (1990) with strengths up to
17,000 psi (120 MPa), and 311 South Wacker Drive in Chicago (1989) with strengths up
to 12,000 psi (80 MPa).

Another term which is used in technical literature when referring to high strength
concrete is “high performance concrete.” Some use these terms interchangeably, while
others make a distinction between the two. According to the Portland Cement
Association, high-strength concrete is a form of high performance concrete, but the
inverse is not necessarily true.?

In 1979, American Concrete Institute Committee 363 was formed for the purpose
of studying and reporting information on high-strength concrete. Its first document, the
ACI 363R-84 State-of-the-Art Report on High Strength Concrete,® contains information
about material selection, mixture proportions, mixing and placing, physical properties,
structural design, economics and examples of applications. It was necessary for the

Committee to define a range of concrete strengths for its activities. The Committee



decided that its immediate concern would be concretes with compressive strengths of
6000 psi (40MPa) or greater, excluding concrete made with exotic materials or techniques
such as polymer-impregnated concrete, epoxy concrete, or concrete with artificial normal

and heavy weight aggregates.

2.2 Materials and Proportioning

High-strength concrete consists of the same basic ingredients as normal-strength
concrete: cement, coarse and fine aggregate, and water. Its production is achieved by
optimization of characteristics of the cementing medium, characteristics of the aggregate,
proportions of the paste, paste-aggregate interaction, mixing, consolidating, curing, and
testing procedures.®

The differences between high-strength concrete and normal concrete are that in
high-strength concrete, entrained or entrapped air is reduced or removed, the addition of
normal and high-range water-reducing admixtures or “superplasticizers” is mandatory to
ensure workability at low water-to-cement ratios, and pozzolans are used to improve the
paste by physical and chemical processes.” Fly ash replaced by weight of cementitious
materials can increase strength up to 15,000 psi (100 MPa). To exceed this value, silica
fume replaced by weight of cementitious materials is necessary for a uniform and dense
cement paste. Only a minimum amount of space exists between the cement particles in the

paste. This space is filled with the silica fume particles which are much finer. High

strength is derived from chemical bonds created by the cement hydrates. Pozzolans



combine with free lime in the paste to form a dense, uniform paste. For the best source of
proportioning information, prestressed concrete plants, admixture suppliers, and ready mix

suppliers for these materials should be consulted.

Slump is not used much as a control for HSC because slump is obtained with high-
range water reducers (HRWR) and not extra water as in normal-strength concrete. The
maximum value of the water-to-cement ratio in HSC should be strictly regulated, because
it is very important in quality control. In addition, slump does not have much meaning for
flowing concrete, and most HSC is flowing. Finally, a maximum coarse aggregate dry unit

weight of 100 to 110 pcf must be specified.

2.2.1 Cement

Selection of cement should be based on strength tests of concretes at 28 and 90
days. The preferred cement is that which yields the highest compressive strength at 90
days. A high percentage of tricalcium silicate and a greater fineness are the best indicators
of optimum performance in cements. Increased fineness is advantageous for obtaining

high early strengths.

2.2.2 Paste
To achieve HSC, a cementitious materials content of 600 to 1000 Ib/cyd should be
used. Depending on desired strength, the exact amount can be determined. Higher

cement efficiencies are obtained with smaller maximum aggregate sizes. Unit strength



versus maximum aggregate size can be plotted to produce strength envelopes useful in

determining the maximum aggregate size which would provide the most efficient use of

cement (see Figure 2.1).
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Figure 2.1: Strength efficiency of cement related to
maximum aggregate size.®’

Comparisons should be made between mixtures with equal slumps. ACI 211 4R

recommends a target slump of 1 to 2 in. (25 to 50 mm) for HSC before the HRWR is



added, and a target slump of 2 to 4 in. (50 to100 mm) for HSC made without HRWR.
Many HSC mixtures are proportioned to achieve flowing conditions or slumps in excess of
7 1/2 in. (190 mm) by adding HRWR in excess of that recommended by the manufacturer.
As long as there is no segregation, flowing concrete for HSC is acceptable.

To ensure that pastes are as dense as possible, very low water-to-cement ratios are
used. The lowest optimal water-to-cement ratio is approximately 0.22. The small amount
of water in the mix combines chemically with the cement particles producing a low
porosity paste.

The manner by which cement is proportioned is very important because it can have

a great effect on the properties of the resulting material in its plastic and hardened state.

2.2.3 Aggregates

Concrete is comprised largely of aggregates; therefore, the characteristics of
aggregates significantly influence the properties of the concrete. The strength of the
cement paste in HSC is high enough to compete with the strength and other important
properties of the aggregate. Aggregate strength, adhesion between the cement paste and
aggregate, and absorption characteristics of the aggregate are all properties which could
limit ultimate strength in HSC.

Optimum size of the coarse aggregate depends on the relative strength of the
cement paste, cement-aggregate bond, and strength of aggregate particles. Trial batches

provide the information needed to select the best aggregate for a concrete mix. Unlike in
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normal-strength concrete, large sizes of coarse aggregate reduce concrete strength in
HSC. The use of small aggregates (3/8 to 3/4 in.) is usually sufficient to offset the higher
mixing water demand. The net effect would be an increase in strength with a decrease in
aggregate size.

In concretes of constant cement content and maximum aggregate size,
compressive strength varies as a result of differences in mixing water requirements. The
shape, texture, and coatings of the aggregate are responsible for differences in the mixing
water requirements. Due to changes in aggregate shape and texture, mixing water
requirements increase as void content of the aggregate increases.

In concretes of equal water-to-cement ratios, compressive strength varies with the
use of different types of aggregate. Variability in the bonding between the paste and
aggregate, and the strength of the aggregates are responsible for the strength variations. It
is important to use hard and strong coarse aggregates such as fine-grained traprock,
limestone, quartzite, or granite, in mixtures because they do not break down and produce
fines during mixing. Since these aggregates have higher specific gravities and moderate
absorption, strengths developed will be higher.

Fine aggregates provide a much larger surface area, therefore, the shape and
texture of fine aggregates have a greater influence on the amount of mixing water
required. Also, the bond of the paste to fine aggregate is less significant than the bond to
coarse aggregate due to the larger surface area of fine aggregate. Maximizing the coarse-
to-fine aggregate ratio results in the most efficient use of cementitious materials since all

aggregates must be coated with the cement paste. Mixtures made with natural sand
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produce higher strengths than those made with manufactured sands due to particle shape
and grading. Coarser fine aggregate is preferred because it has a lower water demand.

Since fine aggregate has a much larger surface area relative to its volume than does
coarse aggregate, it has more influence on the amount of mixing water required and the
properties of the paste. The shape and grading of fine aggregate as well as its proportion
to the coarse aggregate will have direct impact on the requirements of a paste. Fine
aggregate has a great influence on the amount of paste because more paste is required
when more fine aggregate is used. In general, the best paste strength is produced by using
the least sand required for the necessary workability.

Of all the components in a concrete mixture, coarse aggregate occupies the largest
volume. The amount of coarse aggregate in a concrete mixture depends on the amount of
fine aggregate. Concrete should be proportioned so that the paste coats all aggregates
and fills all the voids between particles. Because HSC is a rich mixture (a mixture with a
high cement content), the least amount of paste to coat all particles and fill all voids should

be used.

2.2.4 Mixing Water
In terms of workability, a higher slump is desirable. A higher slump can be
produced with the use of cool mixing water at 40°F instead of warm water at 70°F. If the

volume of mixing water can be decreased with the use of cool mixing water, concrete
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strength will increase. This increase, however, may not be significant and thus the

problems associated with obtaining cool mixing water might not be worth the effort.

2.2.5 Chemical Admixtures

The benefits of chemical admixtures in HSC have mandated their use. It is
common to use a high-range water-reducing admixture or “superplasticizer” in
combination with a water-reducing retarder.

The main components of water reducers or retarders are: salts of lignosulfonic
acid, hydroxycarbolic acids, carbohydrates, and other compounds. Of these four,
lignosulfonate-based compounds are the most widely used. Water requirements are
reduced and concrete setting is retarded because these admixtures slow the rate of
hydration of the cement for the first few hours. The most commonly used
superplasticizers are the sulfonated melamine formaldehyde (SMF) and sulfonated
naphthalene formaldehyde (SNF) based superplasticizers. They cause the cement to
behave like a liquid by dispersing cement particles when the mixing water is added. In
other words, the superplasticizers “plasticize” the paste.

Since air content within a concrete mix reduces compressive strength, no air-
entraining agent is used in these concretes under normal conditions. Under saturated
freezing-and-thawing conditions, however, air-entrained concrete must be used for

improved durability.
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Chemical admixtures should meet the requirements of ASTM C 494,
Specifications for Chemical Admixtures for Concrete.”® The amount of admixture that
should be used is either the manufacturer recommended amount or the optimum amount
determined by trial batches based on strength and workability.

Manufacturers of water-reducing admixtures (WRA) recommend dosages to
produce specific results. When exceeding the recommended dosages, caution should be
used. Excessive amounts of chemical admixtures have caused retardation of concrete
setting time and reduced early strength.

The recommended dosage for superplasticizers is usually higher than for normal
water-reducing admixtures.® Dosage for superplasticizers is measured as a percentage by
weight of cement and is typically between 0.5% and 1.0%.

Water reducers affect concrete by variations in water reduction and degree of
retardation. Changes in temperature, increases in cement fineness, and changes in
aluminate content, soluble alkalies, and free lime all influence water reduction and
retardation. The admixture must be compatible with the cement, as far as type and
amount of calcium sulfate (gypsum) additive, and amount of soluble alkalies is concerned.
Furthermore, slump loss is affected by the composition of the cement, composition of the
admixture, rate of admixture use, and temperature of the concrete and surrounding air.

Water-reducing admixtures have their greatest impact if added at the end of mixing
time of aggregates, cement, and total water. However, WRA should be added after 15 to
30 seconds of mixing the cement, aggregates, and one-half the water to assure uniform

dispersion. The benefits of using WRA are more consistent concrete properties,
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lengthening of the setting time, and higher water reduction with a corresponding increase
in compressive strength. Superplasticizers have their greatest impact on cement particles

if added a few minutes after all other components have been thoroughly mixed.

2.2.6 Mineral Admixtures

Mineral admixtures are added to concrete before or during mixing to improve or
change the plastic or hardened properties of the cement. Addition of mineral admixtures
can be beneficial to the ultimate strength and durability of concrete. Mineral admixtures
are classified as: cementitious materials, pozzolans, pozzolanic and cementitious
materials, and nominally inert materials.® Pozzolans are the most important to the
production of HSC. The two most commonly used pozzolans are fly ash and silica fume.
Ground granulated blast-furnace slag is a cementitious material that is commonly used in
Canada. The inert materials do not add more strength to the concrete, but they improve
workability and reduce alkali-aggregate reactions.

By itself, a pozzolan possesses little or no cementitious value. As cement hydrates,
it releases calcium hydroxide which reacts with water. This, in turn, causes the pozzolans
to produce compounds possessing cementitious properties.

Fly ash is a by-product of the combustion of pulverized coal in electric power
generating plants. Fly ash may cause a reduction in the water demand of the mixture
because fly ash particles are rounded and smooth and help to lubricate the mix. Silica

fume, also a pozzolan, is a by-product of the reduction of high-purity quartz with coal in
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electric arc furnaces. Like fly ash, it is an airborne material and has a spherical shape.
Unlike fly ash, silica fume is extremely fine with a surface area of about 20,000 m?/kg as
compared to fly ash which has a surface area of about 300 to 500 m%kg. Silica fume is
used in many high-strength concretes. It is always used in very- and ultra-high strength
concretes. Silica fume improves concrete strength by modifying the binding paste both
physically and chemically. Fly ash alone can help to achieve strengths up to 15,000 psi
(100 MPa). For higher strengths, fly ash and silica fume or slag and silica fume are used.

Silica fume is added as an addition, as opposed to a replacement for cement. In
general, silica fume dramatically increases the water demand of mixtures. However, for
high-cement content mixes having water-to-cement ratios below 0.25 and incorporating
superplasticizers, adding up to 10% silica fume as an admixture can actually lower the
required dosage of superplasticizer and reduce the amount of time and energy required for
thorough mixing.® Powdered silica fume is better than densified silica fume at reducing
the amount of superplasticizer needed for workability.’

Part of the cement in high-performance concrete may be replaced by less costly
materials such as fly ash or ground granulated blast-fumnace slags, but with a loss in
chemical reactivity. Use of these replacements allows a reduction in superplasticizer
dosage. These replacements offer long-term strength gain that may offset some short-

term loss in compressive strength.
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2.3 Mixing and Placing

2.3.1 Mixing

Conventional procedures can be followed for the mixing of HSC. However,
efficient mixing of high-strength concrete is more difficult than conventional concrete
because of low water contents, high cement contents, and the absence of large coarse
aggregate. Mixtures with high cement factors should be mixed longer. Two types of
mixers that may be used are drum mixers and turbine mixers. Minimum mixing times for
each should be determined by trial batches since the cohesive nature of HSC makes it
adhere to mixer drums. Non-air-entrained mixtures with low-slump and small-sized
aggregates may be sticky and difficult to mix. Special care should be taken to provide a
homogeneous mix.

Low concrete temperatures provide the best workability due to the fact that the
mixing water requirement, as well as, rate of slump loss increases with increased
temperature. As the mixing water requirement is increased, the strength of the concrete is
reduced. Ideally, the temperature of the mixing water and aggregates should be cooled to
40°F. Furthermore, temperature is not to exceed 75°F at the time the concrete is
delivered to the forms.

The water-to-cement ratio should be strictly regulated. Water added should not
exceed the maximum water-to-cementitious ratio prescribed. Though not recommended,

second or third dosages of superplasticizer can be added after initial dosage to restore
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slump. Compressive strength is not adversely affected by this practice since strength gain
is directly related to reduction in entrained air.

It is difficult to determine what causes slump loss. Many variables affect slump
loss including initial slump value, type and amount of cement, type, amount, and time of
addition of superplasticizer, humidity, temperature, mixing method, and presence of other
admixtures. For this reason, optimization of placement, delivery, and coordination is

preferable to modifying a mixture at a jobsite.

2.3.2 Placing

More care must be taken in placing high-strength concrete as opposed to normal-
strength concrete. Preparations to transport, place, consolidate, and finish the concrete at
the fastest possible rate should be made since workability time is reduced with HSC. An
effective method of placing concrete is pumping because it allows a single input point as
well as horizontal and vertical mobility.

Consolidation is important in achieving potential strength in HSC. After the
concrete is placed in forms, it must be immediately vibrated. Care must be taken so that
the concrete is not overly vibrated as this can result in segregation or loss of entrained air
in cases where it is used. Since most HSC is flowing, however, it requires little vibration

and contains little air.
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2.3.3 Curing

The potential strength and durability of concrete will be fully developed if the
concrete is properly cured for an adequate period of time. The chemical reaction between
cement and water or “hydration” is responsible for the strength-producing properties of
the cement paste. Time and favorable temperature and moisture conditions are required
for hydration. In the beginning, hydration takes place rapidly. With time, it takes place
more and more slowly and stops when the intemal relative humidity of the concrete drops
below 80%. The rate at which internal relative humidity decreases is very important in
HSC. HSC continues to develop strength for a longer period of time than normal-strength
concrete because relative humidity decreases more slowly in concretes of low water-to-
cement ratios.

HSC is typically placed with water-to-cement ratios below the 0.40 required for
(complete) hydration of cement.”” Water curing is, therefore, the preferred method of
curing during the first 24 hours because this method of curing provides the additional
water needed. The ultimate degree of hydration is significantly reduced if moisture is not
available. Water curing helps achieve more thorough hydration which leads to improved
strength and surface quality. Moist curing up to as long as 28 to 90 days increases
compressive strength. Fog spraying or sprinkling with spray nozzles are sufficient for
water curing if immersion is not feasible. Burlap, cotton mats, rugs, and other coverings

of wet absorbent materials will hold water on the surface. Sealing sheets or membranes
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are also acceptable for curing since they retain moisture without providing additional
moisture.

To assure sufficient curing moisture for the interior of the concrete, saturated
normal-weight aggregates should be used. This produces higher compressive strength in

concretes with low water-to-cement ratios.®

2.3.4 Testing

Standard ASTM methods of sampling, molding, curing, and testing of cylinders
should be followed.® ®+ 1940 However, since most of these procedures were developed
for testing normal-strength concrete, measures should be taken in addition to those
required by existing standards.

Specimens may be cast in reusable steel molds or single-use plastic molds. Fresh
concrete cast in cylinders should be finished very smooth, level, and parallel to the
opposite end. After cylinders are molded, they must be covered with a plastic cap. Plastic
bags and rubber bands may be used so that the surface is not distorted. Cylinders should
be protected from loss of moisture at all times. The use of damp burlap prevents loss of
moisture and helps to maintain a temperature of 60°F to 80°F. Storage at lower
temperatures may increase 28-day strengths, but will decrease earlier age strengths.
Normally, specimens are subjected to standard moist curing conditions after 24 hours.

The 4 x 8-in. (100 x 200-mm) cylinders are gaining acceptance as replacements for

6 x 12-in. (150 x 300-mm) cylinders. In Malhotra’s 1976 study"'® on the effect of
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specimen size, he found that for development work, 4 x 8-in. (100 x 200-mm) cylinders
are acceptable substitutes for 6 x 12-in. (150 x 300-mm) cylinders. In testing these
smaller cylinders, it must be noted that smaller cylinders give slightly higher compressive
strengths. Factors that influence measured compressive strength are specimen size and
aspect ratio, preparation of the ends of the specimen, and size of the test machine’s
bearing block. Smaller cylinders offer many advantages among which are simplicity of
fabrication, easier handling and transport, requirement of less storage space, economy, and
utilization of smaller testing machines.

Capping of cylinders becomes more critical as strength of concrete increases.
According to the PCA’s publication, High-Strength Concrete,® sulfur capping
compounds should be used for HSC and should be applied in a very thin uniform layer. A
minimum waiting period of two hours between capping and testing must be strictly
enforced. Capping may be eliminated if the ends of the cylinders are ground to required
tolerances. It may be a good idea to eliminate capping due to the intrinsic strength limits
of sulfur-based capping compounds. According to research by Burg and Ost,"" surface
grinding reduces skewness of data, standard deviations, and results in desired cone failures
of compression specimens. Polymer pads may be used as an alternative to capping for
concrete strengths up to 18,000 psi (125 MPa) if cylinder ends are smooth.

Bearing blocks on testing machines should be checked for planeness and alignment
prior to testing. Cylinders should be properly centered in the machine and a protective
screen or “cage” should be used to surround the cylinder. The operator should wear

goggles, safety glasses, or a face shield.
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The cylinders should be crushed to fracture. The appearance of a cylinder after
testing may reveal inadequate capping. A cylinder should break into two conical sections
with the caps intact. The capping material, planeness of caps, and machine bearing

surfaces should be checked if the break is through the cap or the specimen splits vertically.

2.4 Properties

Physical properties which make HSC a desirable building material are: modulus of
elasticity, drying shrinkage and creep, porosity, permeability, durability, corrosion

resistance, thermal properties, adiabatic temperature, and bond to steel.

2.4.1 Strength

Concrete having compressive strengths of up to 20,000 psi (140 MPa) are now
commercially available. According to research in progress,"*) strengths of 28,000 psi (190
MPa) will be achieved without using exotic aggregates, special processing, or special

atmospheres and high casting pressures.

The limit of compressive strength appears to be 25,000 to 30,000 psi (170 to 210
MPa) at 90 days. However, exploratory work with special aggregates, special cements, or
special processing has indicated that compressive strengths of 65,000 to 80,000 psi (450
to 550 MPa) are achievable."” Tensile strengths of normal-strength concrete are low and
thus often ignored. However, with HSC, the tensile strengths are improved. HSC is more

brittle than normal-strength concrete.
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Small reductions in strength in HSC at later ages were reported by several HSC
experts."” Minor strength regressions may be caused by self desiccation and surface

drying which cause internal stresses and microcracking.

2.4.2 In Situ Strength

In situ compressive strength is usually lower than that of test cylinders. Building
Code Requirements for Structural Concrete, ACI 3189 states: “Concrete in an area
represented by core tests shall be considered structurally adequate if the average of three
cores is equal to at least 85% of /. and if no single core is less than 75% of f°..” In HSC,
minor imperfections such as entrapped air, micro-cracks and boundary conditions
including cut aggregate and lack of total paste interlock of the near surface aggregate may
contribute proportionately more to a lower strength in cores."® The study done by Burg
and Ost did not find a significant strength difference between cores from the near surface
of 4-ft (1220-mm) cubes and cores from the center. Early heat rise in the cube centers did
not significantly affect core strengths. Cores from the bottom of the cubes had higher
compressive strengths than those from the top due to consolidation and moisture
movement. As in situ concrete ages, compressive strength is increasingly affected by

loading history and relative humidity.
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2.4.3 Modulus of Elasticity

Modulus of elasticity is the ratio of normal stress to strain for stresses below the
proportional limit of a material. The modulus of elasticity is useful in determining
deformation and stress distribution between concrete and steel in reinforced or prestressed
members. A strain value of 0.003, as determined by ACI Committee 363, satisfactorily
represents experimental results for HSC.

Reinforced concrete may be efficiently designed because both concrete and steel
yield or fail at the same load. Unreinforced concrete has some ductility which decreases
with increasing concrete strength. The higher the strength of the concrete, the more brittle
the concrete. In addition, faster rates of loading enhance the compressive strength and
stiffness of concrete.

Modulus of elasticity of concrete, £, is dependent on the moduli of the paste and
aggregate, and the relative amounts of the paste and aggregate. Different strengths and
moduli of concrete are achieved by using different types and combinations of fine and
coarse aggregate. E. changes with variation in the modulus of elasticity of the paste and
increased bonding with aggregates as curing continues. The general empirical relationship
between strength and modulus of elasticity can be expressed with the following equation:
E.=40,000 * ()'"* + 1.0 x 10° psi.®” To determine the E., an extensometer is used to
measure length and volume changes induced in the specimen by a load. The data obtained

is used to plot stress-strain curves from which the E, is determined.
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The modulus of elasticity of the paste is a function of water-to-cement ratio and
age. The lower the absorption of the aggregate, the higher the modulus of elasticity of the
aggregate. This means, the greater the volume of paste per unit of aggregate, the lower
the E will be. Concretes of similar strength, but made with different aggregates may have
different moduli of elasticity because modulus of elasticity is affected by paste strength and
aggregate type. Compressive strength alone is not a good indicator of modulus of
elasticity of different concrete mixtures.® For a particular mixture, however, strength is a
good indicator of the E.. Furthermore, the modulus does not increase as rapidly with age
as strength in HSC.

Burg and Ost"'® found that at equivalent strengths, E, values were higher for

moist-cured specimens than for air-cured specimens.

2.4.4 Drying Shrinkage and Creep

Drying shrinkage is a result of evaporation of chemically uncombined water. It can
affect not only appearance, but performance. Creep is the dimensional change or increase
in strain with time due to sustained stress. Effects of drying shrinkage and creep should be
compensated for in structural designs. HSC members will experience lower creep than
normal-strength members since specific creep (the measured creep strain divided by the
applied stress) in HSC is 40 to 70% of specific creep in normal-strength concrete.

Parameters which affect drying shrinkage and creep are: size of the concrete

element, cement paste content and characteristics, total water content, physical
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characteristics of the aggregate, environmental exposure conditions, ratio of volume-to-
surface area, and amount of reinforcement.

The size of a member affects shrinkage and creep of concrete under drying
conditions. The ultimate values of shrinkage and creep are smaller for larger members.
More time is required to undergo dimensional changes in larger members.

Cement paste largely determines drying shrinkage and creep due to variations in
chemical composition and fineness of the cement. These properties influence the rate of
hydration and thus, the strength gain of concrete. Concrete strength at the time of loading
affects the amount of creep. In the study by Burg and Ost,""? specific creep was lowest
for concretes with the highest compressive strengths. This trend is also observed in
normal-strength concretes. Changes in water-to-cement ratio do not generally affect
drying shrinkage."® Creep, however, increases with an increase in water-to-cement
ratio.'®

SMF superplasticizers increase drying shrinkage and creep by 10%. This increase
is offset by the reduction in mixing water requirement allowed by superplasticizers, thus,
superplasticized concretes experience approximately the same creep as reference
concretes. Concrete made with fly ash tends to creep less than normal-strength concrete
at ages later than 400 days. Low water content and improved strength achieved with the
use of silica fume should result in decreases in the amount of creep over normal-strength
concrete.

The purpose of aggregate in concrete is to minimize the paste content and restrain

shrinkage and creep of the paste. Restraint of shrinkage and creep of the paste reduces
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overall shrinkage and creep of the concrete. The use of hard aggregates with high density,
high modulus of elasticity, and moderate porosity or absorption, generally produces
concrete with the lowest drying shrinkage and creep.

Humidity, temperature, and air circulation influence the rate of drying and the
ultimate drying shrinkage and creep. Concrete exposed to a dry environment will have
greater drying shrinkage and creep than concrete exposed to high humidities or subjected
to a long moist-curing period.

Amount and rate of shrinkage and creep decrease as the ratio of volume-to-surface
area of the member increases. Furthermore, the ultimate deformation decreases and the
time required to reach ultimate deformation is lengthened with increased volume-to-
surface area ratio. Burg and Ost"” tested prisms in their study and found that the prisms
having smaller volume-to-surface area ratios had higher overall shrinkage due to the faster
rate of drying.

Shrinkage and creep is less in reinforced concrete as compared to plain concrete
because steel reinforcement restricts drying shrinkage. The reduction in shrinkage and

creep depends on the amount of reinforcement.
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2.5 Summary
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The exact point at which concrete can be classified as either “normal-strength” or
“high-strength” is vague. The American Concrete Institute defines high strength as
compressive strength over 6000 psi (40 MPa)."

High-strength concrete consists of the same basic ingredients as normal-strength
concrete. The differences are that in high-strength concrete, entrained or entrapped
air is reduced or removed, the addition of normal and high-range water-reducing
admixtures or “superplasticizers” is mandatory to ensure workability at low water-
to-cement ratios, and pozzolans are used to improve the paste by physical and
chemical processes.”

The production of high strength concrete is achieved by optimizing the
characteristics of the cementing medium, characteristics of the aggregate,
proportions of the paste, paste-aggregate interaction, mixing, consolidating, curing,
and testing procedures.?

Efficient mixing of high-strength concrete is more difficult than conventional
concrete because of low water contents, high cement contents, and the absence of
large coarse aggregate. Preparations to transport, place, consolidate, and finish the

concrete at the fastest possible rate must be made since workability time is reduced

with HSC.
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(5) Physical properties which make HSC a desirable building material are: modulus of
elasticity, drying shrinkage and creep, porosity, permeability, durability, corrosion

resistance, thermal properties, adiabatic temperature, and bond to steel.
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Chapter 3

Review of the Probe Penetration Test

3.1 Introduction

Nondestructive testing is useful in identifying the quality of in situ concrete and in
determining the relative strength of structural members. It is also useful in detecting areas
where defects may exist. Nondestructive testing methods measure properties of concrete
with which relative strength can be determined without testing specimens to failure.
However, nondestructive test measurements are influenced by many variables such as
aggregate type and size, age of concrete, moisture content, and mix proportions.”
Therefore, the correlation between measured properties and relative strength is different
for different concretes and must be adjusted for the particular concrete being tested.”’
There are several methods used in nondestructive testing including the penetration

resistance methods.

Penetration resistance methods are based on the depth of penetration of a probe or
a pin into concrete and are used for quality control and strength estimation of in situ
concrete. The depth of penetration is a measure of the hardness or penetration resistance

of the material which can be related to strength.
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The most well known and widely used technique is the Windsor probe system
which was introduced to the U.S. in the 1960s. The pin penetration test in Canada
followed in the 1980s. This chapter focuses on the probe penetration test which is the

method used in this study.

3.2 Probe Penetration Test System

The Windsor probe was advanced for penetration testing of laboratory and in situ
concrete between 1964 and 1966. The technique was developed by the Port of New York
Authority, New York, and the Windsor Machinery Co. in Connecticut.® It was designed
to estimate the compressive strength of concrete by measuring the depth of penetration of
probes driven into concrete by a powder-actuated driver. The probe penetration relates to
some property of the concrete below the surface, making it possible to develop empirical

correlations between compressive strength and probe penetration.

3.2.1 Description

The main equipment used in the Windsor probe testing system are a powder-
actuated driver, hardened alloy-steel probes, loaded cartridges, and a depth gauge as
shown in Figure 3.1. The standard probe has a tip with a conical point. The other end is
threaded and screws into a driving head which fits snugly into the bore of the driver. The
probe is driven into the concrete by firing of a powder charge. The power level can be

decreased by pushing the probe further into the barrel.
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Figure 3.1: Equipment of the Windsor Probe Test

(a) triangular template

(b) single probe template

(c) hardened alloy-steel probe
(d) powder-actuated driver

(e) depth gauge

(f) mechanical averaging device
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3.2.2 Method of Testing

The powder-actuated driver is used to drive probes into the concrete. Areas to be
tested must have smooth surfaces. If flat surfaces are to be tested, three probes are driven
into the concrete in a triangular pattern by means of a triangular template. A mechanical
averaging device is used to measure the average exposed length of the three probes fired
in a triangular pattern. If curved surfaces are to be tested, a single probe template is used
and three probes are driven in three different locations. In both cases, the average value of

exposed probe length is used to estimate the compressive strength of the concrete.

3.2.3 Correlation Procedure

The manufacturer of the Windsor probe test system has published tables relating
exposed probe length to compressive strength.”’ Different values of compressive strength
are given for each exposed length depending on the hardness of the aggregate. These
tables are based on empirical relationships. However, studies conducted by Keiller™ have
found that these tables are not always satisfactory. It is, therefore, imperative that each
user of the probe test system correlate probe test results with the type of concrete being
used. The exposed probe length must be plotted against compressive strength and a curve

or line fitted to the data by the method of least squares.
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3.2.4 Mechanism of Concrete Failure

Penetration of the probe causes a cone-shaped fracture. Penetration below this
fracture zone is largely resisted by the compression of the adjacent material. The
manufacturer of the Windsor probe testing system claims that the probe test measures the
compressibility of a localized area of concrete by creating a subsurface compaction bulb.®’
It is further claimed that the energy required to break pieces of aggregate is such a low
percentage of the total energy of the driven probe, that the depth of penetration is not
significantly affected.® Although there is no proof of these claims, it appears that the
probe penetrations relate to some strength parameter below the surface of the concrete,
which enables the establishment of empirical relationships between the depth of

penetration and compressive strength.

3.2.5 Correlations Between Probe Test Results and Compressive

Strength

Manufacturer’s tables may give unsatisfactory results because factors, other than
aggregate hardness, that affect probe penetration have not been considered. The largest
influence on probe penetration comes from the coarse aggregate. The type and size of
coarse aggregate have a significant effect on probe penetration.® Mixture proportions,
moisture content, curing, and surface conditions are other parameters which may affect
these correlations. Degree of carbonation may change the physical and chemical

characteristics of the concrete. Age is also another significant parameter. The probe test
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may indicate higher strengths than actually exist in very old concrete due to microcracking
between the aggregates and paste which affects compressive strength but does not affect
probe penetration.” Other factors related to particular testing conditions need to be

considered in using these correlation curves.

3.2.6 Variability

In general, within-batch variability of probe penetration tests can be attributed to
operator and equipment errors, and the heterogeneous nature of concrete.® Operator
error is generally minimal. Variations more likely result from the test equipment. For
example, more accurate devices to measure exposed probe length could possibly reduce
variations. The heterogeneous nature of the concrete is likely to be the major contributor

to the variations in test results.

3.2.7 Variations in Estimated Strength Values

Uncertainty in estimated strength is a function of both the variability of the
penetration measurements, and the degree of sensitivity of the penetration test in detecting
small changes in strength.® It is necessary to use statistical procedures that take into
account the variability of the penetration readings and the uncertainty of the correlation

relationship.®
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3.2.8 Use for Early Form Removal

By the late 1970s, the probe penetration test was probably the most widely used
nondestructive method for the determination of safe stripping times.® The main
advantage of this test is its great simplicity. Carette and Malhotra'® concluded that the
probe penetration test can estimate the early-age strength developments of concrete with a
reasonable degree of accuracy and can be applied to determine safe stripping times for

formwork removal.

3.2.9 Probe Penetration Versus Core Testing

The advantages of the probe penetration test should be judged against the
precision of its test results.®) Carette and Malhotra™ found that at early ages, the probe
penetration test results showed better correlation with standard cylinder strengths than
with core strengths due to variations in the temperature history of the test slabs. The core
test is the most reliable in estimating in situ strength since it is a direct measurement.
However, it is possible to establish relationships between probe penetration and strength
which are sufficiently accurate enough for probe testing to satisfactorily be substituted for

core testing.

3.2.10 North American Survey on the Use of the Probe Penetration Test

In the early 1980s, a North American survey determined that the Windsor probe

penetration technique was the second most often used method for in situ strength testing
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of concrete.® Methods including the rebound hammer, probe penetration, pullout, pulse
velocity, maturity, and cast-in-place cylinder were considered. In terms of reliability,
simplicity, accuracy, and economy, the probe test was given one of the best combined

ratings.®

3.2.11 Advantages and Disadvantages
The advantages of the probe penetration test include the following:®
e Simple to operate.
e Requires little maintenance.
* Built-in safety feature that prevents accidental discharge of the probe.
e Speed and simplicity.
e Requires only one surface for the test.

» Correlation with concrete strength is affected by a relatively small number of variables.

The disadvantages of the probe penetration test include the following:®
* Must correlate probe test results with the particular type of concrete being used.
¢ Minimum size required of the concrete member to be tested.
e Minimum thickness required of members to be tested.
¢ Distance from reinforcement may affect depth of penetration.

¢ Uncertainty of estimated strength value is relatively large.
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e Limitation to a certain range of strength (< 5800 psi or 40 MPa).
e Minor damage to concrete surfaces tested which need repair after the test is

performed.

3.2.12 Standardization of the Probe Penetration Test

In 1972, the ASTM C 9 Committee initiated the development of a standard for
penetration resistance techniques. A tentative test method covering their use was first
issued in 1975.%) A standard test method designated ASTM C 803 “Penetration
Resistance of Hardened Concrete™ was later issued in 1982 and the current edition of the
standard test method was published in 1990."" The only equipment available that meets
the ASTM C 803 requirements for probe penetration resistance methods is the Windsor

probe test.

3.2.13 Limitations and Usefulness of Penetration Resistance Methods

Penetration resistance methods are hardness methods and should not be expected
to yield absolute values of strength of concrete in a structure.® Penetration tests,
however, are useful in determining relative strength in the same structure. Penetration
tests may be used to estimate the strength of in situ concrete, but accurate correlations are
required. Each user of the probe penetration test should prepare his own correlation

curves for the specific type of concrete being tested since this test is sensitive to certain

41



characteristics of aggregate. New correlations must be established if there is a change in
the source of aggregates.

Although the probe penetration test is considered a nondestructive test, this is not
exactly true. Upon penetration, the probe leaves minor damage on a small area with a 1/3-
in. (8-mm) hole in the concrete. In mature concrete, the probe may also leave a fractured
cone-shaped region, which may extend to the depth of penetration.

Standard probes made of AISI 4140 steel have a tendency to break at the threaded
region when driven into concrete with compressive strengths above 3,000 psi (25 MPa).
To solve this problem, various probe tips and various steels were tested. It was found that
AISI 1045 steel probes with the standard probe tip and a rolled thread had the potential to
satisfactorily evaluate concrete with compressive strengths above 3,000 psi (25 MPa).

Figure 3.2 shows the standard probe and the proposed modified probe.

LTI

Standard Probe (AISI 4140)

/ rolled thread

. : R LTI TE 1Y)

Modified Probe (AISI 1045)

Figure 3.2: Standard Probe and Modified Probe
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3.3 Summary

(1) Nondestructive testing methods are useful in identifying the quality of in situ
concrete and in determining the relative strength of structural members.
Nondestructive methods measure properties of concrete without testing specimens
to failure. Nondestructive testing consists of several methods including the
penetration resistance methods.

(2) The Windsor probe test is a penetration resistance method designed to estimate the
compressive strength of concrete by measuring the depth of penetration of probes
driven into concrete by a powder-actuated driver.

(3) Itis imperative that each user of the probe test system correlate probe test results
with the type of concrete being tested since several factors affect probe penetration.
Among these factors are the type and size of coarse aggregate, mixture proportions,
moisture content, curing, surface conditions, degree of carbonation, and age.

(4) Standard probes made with AISI 4140 steel had problems in determining in situ
strength above 3,000 psi (25MPa). A new probe made of AISI 1045 steel with a

rolled thread was proposed for evaluation.
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Chapter 4

Material Investigation of Concrete Containing Ultimax

Cement

4.1 Introduction

This chapter describes the properties of concrete containing a new type of rapid
hardening hydraulic cement commercially known as “Ultimax cement.” Tests were
conducted to evaluate the fresh and hardened properties of concrete made with Ultimax
cement and concrete containing ASTM Type I/II Portland cement. These properties
included the slump, compressive strength, modulus of elasticity, splitting-tensile strength,

bulk density, shrinkage, and expansion.

4.2 Properties of Concrete Constituents

4.2.1 Cement
Two types of cement were used in this investigation, Ultimax cement, a new rapid
hardening hydraulic cement, and ASTM Type I/II Portland cement. The chemical

composition and physical properties of both cements are summarized in Table 4.1.
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Table 4.1: Chemical Composition and Physical Properties of Ultimax and

ASTM Type I'II Cements
Ultimax ASTM Type VII| ASTMC 150 ASTM C 150

[Chemical Composition % Cement* Cement** Specifications for | Specifications for

Type [ Cement Type Il Cement
Silicon dioxide (Si0;) 14.6 21.73 —_— 20.0 min
Aluminum oxide (Al,05) 13.1 412 —_— 6.0 max
Ferric oxide (Fe,05) 42 348 —_— 6.0 max
Calcium oxide (CaQ) 489 63.75 —_— —
Magnesium oxide (MgO) 1.2 1.72 6.0 max 6.0 max
Sulfur trioxide (SO;) 11.6 2.59 3.0 max 3.0 max
Loss on ignition 3.86 1.33 3.0 max 3.0 max
Sodium oxide (Na,0) 0.656 0.31 —_— —
Potassium oxide (K;0) 0.96 0.44 —_— ——
Equivalent alkalies (Na,O + 0.658K,0) 1.29 0.60 0.60 max 0.60 max
Insoluble residue 231 023 0.75 max 0.75 max
liompound Composition %***

Dicalcium silicate (C,S) —_— 21.31 —_— —_
ricalcium silicate (C;S) —_— 54.34 —_— _—
Tricalcium aluminate (C;A) — 5.01 —_— 8.0 max
Sum of tricalcium silicate and tricalcium _— 59.35 _— 58.0 max

aluminate
Tertracalcium aluminoferrite (C,AF) —_— 10.60 —_— —
lPlysical Properties
L!:laine fineness, m/kg 616 3772 160 min 160 min

0 325 fineness 85.0 % passing 92.7 — —

lAutoclave expansion, % 0.03 0.053 0.8 max 0.8 max
Setting time, Gilmore needles (min):

Initial 31 133 60 min 60 min

Final 46 259 600 max 600 max
Setting time, Vicat (min):

Initial — 61 45 min 45 min

Final 169 375 max 375 max
Air content of mortar, volume % 18.6" 7.2 12 max 12 max
Compressive strength (psi) at:

3 hours 3220 —_— _— —_

I day 5080 1702 _ —_—

3 days -— 2969 1740 min 1450 min

7 days —_ 3886 2760 min 2470 min

28 days — 5517 4060 min 4060 min

* Chemical composition and physical data were provided by Ultimax Corporation in Huntington Beach, CA.
** Chemical composition and physical data were provided by RMC Lonestar in Davenport, CA.

*#* Data not available for Ultimax cement
* Batched at 0.385 water-to-cement ratio
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4.2.2 Aggregate

The coarse aggregate used in this study was composed of crushed granite. The
maximum nominal size of the aggregate was 3/8 in. The aggregate was delivered from a
granite crushing plant at two different dates during this investigation; therefore, two sieve
analyses were performed in accordance to ASTM C 136 to determine the particle size
distribution. The specific gravity and absorption of the coarse aggregate were determined
in accordance to ASTM C 127.%

The fine aggregate was composed of crushed granite and had a fineness modulus
ranging from 2.71 to 3.07. Two sieve analyses were performed in accordance to ASTM C
136." The specific gravity and absorption of the fine aggregate were determined in
accordance to ASTM C 128.%

The results of the sieve analyses and the physical properties of the aggregates are
summarized in Tables 4.2 through 4.5. The sieve analyses are plotted in Figures 4.1

through 4.4. All data met ASTM C 33" specifications.

4.3 Mix Design

A total of twenty mixes were made to investigate the properties of concrete made
with Ultimax cement and ASTM Type I/II cement. The concrete mixes were made with
water-to-cement ratios of 0.30, 0.35, 0.40, 0.45, and 0.50.

Non-air-entrained concrete mixes were designed in accordance to the absolute

volume method as described by the Portland Cement Association.”” Fifteen mixes were
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Table 4.2: Results of the First Sieve Analysis

3/8 in. Coarse Aggregate ,

Fine Aggregate

J’

[ASTM C 33] ASTM C 33[ASTM C 33] Cumulativel]ASTM C 33] ASTM C 33] ASTM C 33] Cumulative]
Sieve Size | Lower Limit| Upper Limit| Percentage || Sieve Size [Lower Limit| Upper Limit Percentage
Passing Passing
1in. — —— — 3/8 in. 100 100 100.00
3/4 in. — ——— — [No. 4 95 100 100.00
172 in. 100 100 100.00 [No. 8 80 100 90.91
3/8 in. 85 100 100.00 |No. 16 50 85 63.64
[No. 4 10 30 11.04 |No. 30 25 60 40.00
No. 8 0 10 1.70 {No. 50 10 30 21.82
0 0 0.00 [No. 100 2 10 12.73
No. 200 —— —_— 7.27
lpan 0 0 0.00
Table 4.3: Physical Properties of the First Batch of Aggregate Delivered
3/8 in. Coarse Aggregate [ Fine Aggregate
Bulk specific gravity 2.64 ineness Modulus 2.71
Bulk specific gravity (SSD) 272 ulk specific gravity 2.18
Absorption 2.86% ulk specific gravity (SSD) 244
Total moisture content 2.88% [llAbsorption 1.37%
| Unit weight 93.50 pcf |[Total moisture content 0.70%
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% Passing by Weight

% Passing by Weight

100.00 -

[
90.00 +
80.00 +
70.00 +
60.00 +
50.00 +
40.00 +
- 4 7 Coarse Aggregate
20.00 - —&— ASTM C 33 Lower Limit
1000 0— ... —O— ASTM C 33 Upper Limit
0.00 === - + .
No. 8 No. 4 3/8 in. 1/2 in.
Standard Size of Square Mesh Sieve
Figure 4.1: First Sieve Analysis for the 3/8 in. Coarse
Aggregate
100.00 +
90.00 +
80.00 +
70.00 +
60.00 +
50.00 +
40.00 +
30.00 +
------ Fine Aggregate
20.00 - —— ASTM C 33 Lower Limit
10.00 —O— ASTM C 33 Upper Limit
0.00 ¢ + : , " 4 .
100 50 30 16 8 4 3/8 in.

Standard Size of Square Mesh Sieve
Figure 4.2: First Sieve Analysis for the Fine Aggregate
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Table 4.4: Results of the Second Sieve Analysis

3/8 in. Coarse Aggregate Fine Aggregate
ASTM C 33| ASTM C 33]ASTM C 33| Cumulativej ASTM C 33{ ASTM C 33|ASTM C 33| Cumulative
Sieve Size |Lower Limit| Upper Limit| Percentage | Sieve Size | Lower Limit|Upper Limit| Percentage
Passing Passing
lin ~— o — 100 100 100.00
3/4 in. —_— — — 95 100 99.32
121in. 100 100 100.00 80 100 84.35
3/8 in. 85 100 100.00 50 85 56.46
0.4 10 30 17.33 25 60 33.33
0.8 0 10 4.83 10 30 14.29
0 0 0.00 2 10 5.44
—_— — 272
0 0 0.00

Table 4.5: Physical Properties of the Second Batch of Aggregate Delivered

3/8 in. Coarse Aggregate ! Fine Aggregate
ulk specific gravity 2.7 ineness Modulus 3.07
ulk specific gravity (SSD) 21 ulk specific gravity 2.44
bsorption 2.27% ulk specific gravity (SSD) 2.56
otal moisture content 2.01% bsorption 5.26%
nit weight 97.40 pcf fTotal moisture content 6.16%
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Figure 4.3: Second Sieve Analysis for the 3/8 in. Coarse
Aggregate
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Figure 4.4: Second Sieve Analysis for the Fine Aggregate
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made with Ultimax cement while the other five mixes were made with ASTM Type I/II
cement. Tables 4.6 and 4.7 show the mix proportions for concrete made with Ultimax
cement and concrete made with ASTM Type /Il cement. The majority of the mixes were
mixed in more than one batch. The batches are indicated by the letters A, B, C, or D, next

to the mix numbers.

4.4 Mixing Procedure

The following mixing procedure was used in this study to avoid false setting and gave the

best results:

(1) Wet the mixer and drain the water.

(2) Add the coarse aggregate followed by the fine aggregate.

(3) Add the water until all aggregate is wet and uniformly mixed (approximately one-
third the water).

(4) Add the cement alternately with the remaining water.

(5) Mix for three minutes after all components are added, let stand for two minutes, then

mix for an additional three minutes.

4.5 Testing Program

The number and sizes of specimens cast from each mix are shown in Table 4.8. A
maximum of thirty-six 4 x 8-in. (100 x 200-mm) cylinders, six 6 x 12-in. (150 x 300-mm)

cylinders, and six 3 x 3 x 11 1/4-in. (76 x 76 x 285-mm) prisms were cast from each
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Table 4.6: Mix Proportions Before Adjustments for Moisture Content and Absorption

Volume of Mix Component
Coarse
Fineness Portland 3/8in.
Modulus of | Per Unit of Ultimax | Cement, Coarse Fine
Mix Fine Volumeof | Water | Cememt | Type VIl | Aggregate | Aggregate
No. *wicm | **Asem | ***CA/FA | Aggregate Concrete | (Ib/cyd) | (Ibicyd) | (Ib/eyd) | (Ib/eyd) (Ib/eyd)
1A, 1B, 1IC | 035 | 3.02 0.77 2.71 0.47 315 900 0 1186 1540
1D 0.35 3.13 0.70 3.07 0.44 315 900 0 1157 1653
24,28 040 | 349 0.74 2.71 0.47 320 800 0 1186 1603
2C 040 | 350 0.79 3.07 0.44 320 800 0 1157 1465
3A 0.45 3.12 0.70 2.71 0.47 315 700 0 1186 1694
3B 0.45 4.13 0.75 3.07 0.44 315 700 0 1157 1543
4A. 4B 0.50 5.01 0.65 2.71 0.47 300 600 0 1186 1825
4C 0.50 5.19 0.59 3.07 0.44 300 600 0 1157 1961
SA, 5B, SC | 0.30 2.07 0.97 2.71 0.47 350 1166 0 1186 1223
6A. 6B 0.30 2.18 0.93 2.71 0.47 340 1133 0 1186 1275
TA. 7B 030 | 229 0.89 2.71 0.47 330 1100 0 1186 1333
8A, 8B 030 | 241 0.86 2.71 0.47 320 1067 0 1186 1379
9A. 9B 0.30 2.54 0.83 2.7} 0.47 310 1033 0 1186 1429
10A.10B | 030 | 267 0.80 2.7 0.47 300 1000 0 1186 1483
11A,11B | 0.50 4.18 0.72 2.71 0.47 340 680 0 1186 1647
12A,12B | 0.50 4.37 0.70 2.71 0.47 330 660 0 1186 1694
13A.13B | 0.50 | 4.57 0.68 2.71 0.47 320 640 0 1186 1744
14A,14B | 0.50 4.78 0.67 2.71 0.47 310 620 0 1186 1770
15A.15B | 0.50 | 5.25 0.64 2,71 0.47 290 580 0 1186 1853
16A,16B" | 0.40 1.58 1.32 3.07 0.44 515 0 1288 1157 877
17 0.50 2.85 0.84 3.07 0.44 445 0 890 1157 1377
18" 030 | 062 14.06 3.07 0.44 600 0 2000 1157 82
19A, 19B° | 0.45 2.08 1.05 3.07 0.44 490 0 1089 1157 1102
20A.20B" | 035 | 097 2.65 3.07 0.44 575 0 1643 1157 437

-

* Mixes containing ASTM Type I/l cement.

wiem = Water-to-cementitious materials ratio by weight
" Adem = Aggregate-to-cementtitious materials ratio by weight
** CAFA = Coarsc aggregate-to-fine aggregate ratio by weight




Table 4.7: Mix Proportions After Adjustments for Moisture Content and Absorption

Moisture Content Absorption Mix Component
Portland | 3/8 in.

Coarse Fine Coarse Fine Ultimax | Cement, | Coarse Fine

Mix Aggregate | Aggregate | Aggregate | Aggregate | Water | Cement | Type V1l | Aggregate Aggregate

No. (%) (%) (%) (%) (lb/cyd) | (lbreyd) | (lbveyd) | (lb/cyd) (Ib/cyd)

1A, 1B, IC 2.88 0.70 2.86 1.37 315 900 0 1221 1544
1D 2.01 6.16 227 5.26 315 900 0 1180 1758
2A. 2B 2.88 0.70 2.86 1.37 320 800 0 1221 1615
2C 2.01 6.96 2.86 1.37 320 800 0 1261 1668
3A 2.88 0.70 2.86 1.37 315 700 0 1221 1711
3B 2.01 6.96 2.86 5.26 315 700 0 1261 1770
4A. 4B 2.88 0.70 2.86 1.37 300 600 0 1221 1831
4C 2.01 6.16 227 5.26 300 600 0 1180 2075
SA. 5B, 5C 2.88 0.70 2.86 1.37 350 1166 0 1221 1236
6A, 6B 2.88 0.70 2.86 1.37 340 1133 0 1221 1288
7A. 7B 2.88 0.70 2.86 1.37 330 1100 0 1221 1341
8A, 8B 2.88 0.70 2.86 1.37 320 1067 0 1221 1393
9A, 9B 2.88 0.70 2.86 1.37 310 1033 0 1221 1445
10A, 10B 2.58 2.50 2.86 1.37 300 1000 0 1217 1498
11A 11B 2.58 2.50 2.86 1.37 340 680 0 1217 1666
12A, 12B 2.58 2.50 2.86 137 330 660 0 1217 1707
13A. 13B 2.58 2.50 2.86 1.37 320 640 0 1217 1749
14A. 14B 0.00 6.99 2.86 1.37 310 620 0 1187 1790
15A. 15B 2.58 2.50 2.86 137 290 580 0 1217 1872
16A, 16B* 2.01 6.16 227 526 515 0 1288 1180 933
17" 2.01 6.16 2.27 5.26 445 0 890 1130 1466
18* 2.01 6.16 2.27 5.26 600 0 2000 1180 87
19A. 19B" 201 6.16 2.27 5.26 490 0 1089 1180 1172
20A, 20B* 2.01 6.16 2.27 5.26 575 0 1643 1180 463

* Mixes containing ASTM Type LIl cement.
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Table 4.8: Mix Date, Quantity of Specimens, and Slump

Measurements
Cement No. of
Mix w/cm | Content | Mix Date Cylinders No. of Slump
No. (Ibleyd) | (1997) | 4 x8-in. [6 x 12-in.] Prisms* (in.)
1A 0.35 900 10-Jan 9 2 0 8 5/8
1B 0.35 900 10-Jan 9 3 0 —
1C 0.35 900 11-Jan 18 0 0 J—
1D 0.35 900 18-Feb 0 1 6 812
2A 0.40 800 11-Jan 18 3 0 912
2B 0.40 800 11-Jan 18 2 0 —
2C 0.40 800 14-Feb 0 1 6 3 3/4%
3A 0.45 700 11-Jan 36 0 0 71/8
3B 045 700 15-Feb 0 6 3 7/8%*
4A 0.50 600 13-Jan 18 3 0 4
4B 0.50 600 13-Jan 18 3 0 —_—
4C 0.50 600 17-Feb 0 0 6 172
5A 0.30 1166 18-Jan 9 2 3 8172
5B 0.30 1166 18-Jan 9 3 0 —
5C 0.30 1166 18-Jan 18 0 0 —
6A 0.30 1133 18-Jan 17 3 3 8 1/4
6B 0.30 1133 | 20-Jan 18 3 0 9
7A 0.30 1100 | 2I1-Jan 18 3 3 83/4
7B 0.30 1100 | 21-Jan 18 3 0 81/8
8A 0.30 1067 | 21-Jan 18 3 3 9
8B 0.30 1067 | 21-Jan 18 3 0 83/8
9A 0.30 1033 | 22-Jan 18 3 3 95/8
9B 0.30 1033 | 22-Jan 18 3 0 93/8
10A 030 1000 | 23-Jan 18 3 3 6172
10B 0.30 1000 | 23-Jan 18 3 0 73/4
11A 0.50 630 24-Jan 18 3 3 91,72
11B 0.50 680 24-Jan 18 3 0 11
12A 0.50 660 25-Jan 18 3 3 95/8
12B 0.50 660 25-Jan 18 3 0 9 5/8
13A 0.50 640 25-Jan 18 3 3 10 1/8
13B 0.50 640 25-Jan 18 3 0 9172
14A 0.50 620 30-Jan 18 3 3 158
14B 0.50 620 30-Jan 18 3 0 11/4
15A 0.50 580 28-Jan 18 3 3 —
15B 0.50 580 28-Jan 18 3 0 178
16A° 0.40 1288 19-Feb 3 0 0 91/4
16B* 0.40 1288 19-Feb 12 0 6 91
17" 0.50 890 20-Feb 15 0 6 338
18" 0.30 2000 | 21-Feb 15 0 6 5
19A° | 045 1089 | 22-Feb 3 0 0 71/4
198° | 045 1089 | 22-Feb 12 0 3 81/8
20A" | 0.35 1643 | 22-Feb 3 0 0 73/4
20B° 0.35 1643 | 22-Feb 12 0 3 7 1/4
Total: 614 89 81

* Prism dimensions: 3x3 x 11 1/4 in.
** Value not used; out of norm.

* Mixes containing ASTM Type V1l cement.
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mix made with Ultimax cement. Fifteen 4 x 8-in_ (100 x 200-mm) cylinders and a
maximum of six prisms were cast from each mix made with ASTM Type UII cement. The
cylinders were cast in three layers and rodded with standard 5/8 in. rods as described in
ASTM C 192 The prisms were cast in two layers and rodded as described in ASTM C
1577 and C 192.° The cylinders and prisms made with Ultimax cement were left to cure
in a moist room for three hours, then stripped of their molds. The cylinders and 2 to 3
prisms from each mix were then placed in water tanks at 72° + 2°F (22° + 1°C) to cure for
28 days or until tested. The remaining 1 to 3 prism(s) were left to cure in air at a room
temperature of 74°F (23°C). Since the concrete containing ASTM Type I/II cement
required 1 day to completely harden, the specimens could not be stripped at 3 hours as
were the specimens containing Ultimax cement. Instead, the cylinders and prisms made
with ASTM Type I/II cement were left to cure in a moist room for 1 day before being
stripped of their molds. The cylinders and 2 to 3 prisms were then placed in water tanks
at 72° £ 2°F (22° £ 1°C) to cure for 28 days or until tested. The remaining 1 to 3 prism(s)
were left to cure in air for 28 days at a room temperature of 74°F (23°C).

For each mix, the cone slump test was performed in accordance to ASTM C
143." The slump data for the mixes are reported in Table 4.8.

The compressive strength of the concrete was determined in accordance to ASTM
C39.” Average strength data were reported at the ages of 6 hours, 1 day, 7 days, and 28
days for concrete containing Ultimax cement. Compressive strength data were obtained

by testing a maximum of four 4 x 8-in. (100 x 200-mm) cylinders and three 6 x 12-in.
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(150 x 300-mm) cylinders under uniaxial compression. Average compressive strength
data for concrete containing ASTM Type /Il cement were reported at the ages of 1 day
and 28 days by testing a maximum of three 4 x 8-in. (100 x 200-mm) cylinders.

The stress-strain curves were obtained from testing the 4 x 8-in. (100 x 200-mm)
and 6 x 12-in. (150 x 300-mm) cylinders in accordance to ASTM C 469 (1 The cylinders
were loaded uniaxially and corresponding longitudinal deformations were recorded at
equal loading intervals. Longitudinal deformations were measured with a digital dial
gauge connected to a digimatic mini-processor. The stress at each interval was calculated
by dividing the load by the cross-sectional area of the cylinder tested. The strain was
calculated by dividing the longitudinal deformation by the gage length of the cylinder
tested. Stress-strain curves were then plotted and the slope of the curves in the linearly
elastic region was calculated in accordance to ASTM C 469."? The slope of the stress-
strain curve in the elastic region is equivalent to the modulus of elasticity of the cylinder
tested.

Splitting-tensile strength was determined in accordance to ASTM C 496"
Average strength data were reported at the ages of 1 day and 28 days. Splitting-tensile
strength data were obtained by testing four 4 x 8-in. (100 x 200-mm) cylinders and three 6
x 12-in. (150 x 300-mm) cylinders for concrete containing Ultimax cement. Splitting-
tensile strength data for concrete containing ASTM Type /11 were obtained by testing a
maximum of three 4 x 8-in. (100 x 200-mm) cylinders.

Shrinkage and expansion were determined in accordance to ASTM C 157.™

Shrinkage and expansion data were reported at the following ages after stripping:
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0 hours, 3 hours, 1 day, 3 days, 7 days, 14 days, 28 days, 56 days, and 90 days.
Shrinkage and expansion data were obtained by testing a maximum of three 3 x 3 x 11

1/4-in. (76 x 76 x 285-mm) prisms for concrete containing Ultimax cement and concrete

containing ASTM Type /Il cement.

4.6 Test Results and Discussion

4.6.1 Fresh Concrete Properties

The cone slump data for concrete containing Ultimax cement and ASTM Type L/II
cement are summarized in Tables 4.8 and 4.9. Table 4.8 shows the slumps obtained by
testing the mixes. In addition to the mix slumps, Table 4.9 includes the slumps obtained
from testing smaller mixes made for the sole purpose of obtaining slump data. These
smaller mixes were discarded after the slump data were obtained. The slump data for
concrete containing Ultimax cement at different water-to-cement ratios of 0.25 to 0.50 is
plotted in Figures 4.5 through 4.10. It can be observed from Figure 4.5 that zero slumps
(slumps below 2 in.) were obtained for concrete having a water-to-cement ratio of 0.25.
The slump for the water-to-cement ratios of 0.30 through 0.50 for the concrete made
with Ultimax cement (Figures 4.6 through 4.10) was found to increase with increased
cement content. In comparing Figures 4.6 through 4.10, it can be observed that, in
general, lower cement contents were required to obtain workable concrete for mixes

having higher water-to-cement ratios.
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Table 4.9: Summary of Slump Data for Concrete Containing Ultimax Cement (in.)

Cement Cement
Content Mix Mix | Additional | Average Content Mix Mix | Additional | Average
wem | (Ib/cyd) No. Slump | Slumps Stump wem | (Ibicyd) No. Slump | Siumps Slump
1060 — — 5/8 5/8 1110 — —_— 103/8 10
0.25 1100 — — 7/8 78 0.40 — — 93/4
1140 —_— —_— 3/4 3/4 1200 — — 978 978
1180 — -— /8 5/8 644 — — 3/8 3/8
967 — o 0 1] 656 — — 7/8 7/8
983 —— —— 21/4 2 1/4 678 — —_— S b]
1000 10A 6172 6112 7 700 3A 71/8 7172 7173
10B 73/4 — 0.45 744 —— — 73/4 73/4
1033 9A 95/8 —_— 9112 789 — — 73/8 738
9B 93/8 — 811 — — 73/8 738
0.30 1067 8A 9 — 823 900 — — 514 S4/5
8B 83/8 —_— — —_— 63/8
1100 7A 83/4 —_— 849 1000 — ——— 83/4 8 3/4
7B 81/8 — 1100 — — 8172 83/8
1133 6A 81/4 —_— 85/8 — —— 8 1/4
6B 9 — 1200 ——— — 83/4 83/4
1166 SA 8172 —_ 8172 580 15B —~— 1/8 1/8
1200 — — 95/8 9 5/8 590 — — 1/8 1/8
840 — — 78 7/8 600 4C — 172 172
857 —— — 11/5 11/S 610 e - 172 172
900 1A 85/8 212 71/4 620 14A 15/8 -—_ 149
0.35 1D 8172 93/8 14B 11/4
940 — — 8172 812 630 — —_— 2 2
1070 —~— — 912 9122 640 13A 101/8 61/4 85/8
1140 —— —_— 10778 101/4 13B 9172
— 9 5/8 0.50 660 12A 95/8 878 93/8
1200 — — 7172 712 12B 95/8
750 — — 1/8 1/8 680 1A 91 63/4 9
765 —_— — 378 378 11B 11
780 —— —— 83/8 8 3/8 740 —— ——— 75/8 75/8
800 2A 912 —~— 9172 800 — —— 81/8 8 1/8
0.40 818 —_— — 878 87/8 900 — — 711 71/8
840 —_ -— 9 9 —_— — 63/4
930 —_ — 93/4 917 1000 — — 71/4 71/4
— 9 1/4 1100 — — 712 749
1020 — — 81/4 81/4 — — 73/8
1200 — — 73/4 73/4
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Figure 4.5: Slump of Concrete Containing Ultimax Cement
Versus Cement Content (w/cm = 0.25)
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Figure 4.6: Slump of Concrete Containing Ultimax Cement
Versus Cement Content (w/cm = 0.30)
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Figure 4.7: Slump of Concrete Containing Ultimax Cement
Versus Cement Content (w/cm = 0.35)
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Figure 4.8: Slump of Concrete Containing Ultimax Cement
Versus Cement Content (w/cm = 0.40)
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Figure 4.9: Slump of Concrete Containing Ultimax Cement
Versus Cement Content (w/cm = 0.45)
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Figure 4.10: Slump of Concrete Containing Ultimax Cement
Versus Cement Content (w/cm = 0.50)

63



Figures 4.11, 4.12, and Table 4.10 compare the concrete containing Ultimax
cement with the concrete containing ASTM Type VIT cement. In order to obtain a
reasonable comparison between the concrete containing Ultimax cement and concrete
containing ASTM Type I/l cement, it was necessary to compare mixes having similar
slumps at a given water-to-cement ratio (Figure 4.11). In order to achieve the comparable
slumps shown in Figure 4.11, it was necessary to increase the cement content of the
ASTM Type I/II cement at the different water-to-cement ratios. Figure 4.12 and Table
4.10 show the required cement contents for concrete containing Ultimax cement and
concrete containing ASTM Type /Il cement. It can be observed that concrete containing
Ultimax cement required cement contents of 600 to 1000 Ib/cyd while concrete containing
ASTM Type VII cement required cement contents of 890 to 2000 Ib/cyd to achieve similar
slumps at given water-to-cement ratios. (Note: Cement contents above 1200 Ib/cyd are
unrealistic in real world applications. The comparison shows that Ultimax cement allows
for larger slumps with reasonable cement content.) Table 4..10 also shows that the
concrete containing ASTM Type I/II cement required a 48 to 100% higher cement content

than concrete containing Ultimax cement depending on the water-to-cement ratio.

4.6.2 Hardened Concrete Properties
The properties of hardened concrete including the compressive strength, modulus

of elasticity, splitting-tensile strength, bulk density, shrinkage, and expansion are
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Figure 4.12: Cement Content Versus Water-to-Cement Ratio
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Table 4.10: Comparison of Cement Contents of Concrete Containing Ultimax

and ASTM Type I/ll Cements
T = ——
Cement Content of Concrete
Cement Content of Concrete | Containing ASTM Type /II | Percent Increase

wem Containing Ultimax Cement Cement of ASTM Type I/TI
| (lb/cyd) (Ib/cyd) Cement Content |
[ 030 1000 2000 100% |

0.35 900 1643 83%

0.40 800 1288 61%

0.45 700 1089 56%

0.50 600 890 48%

summarized in Tables 4.11 through 4.24. The raw data including the stress-strain data are

given in Appendices I-V1.

4.6.2.1 Compressive Strength

The compressive strength of concrete made with Ultimax cement at different
water-to-cement ratios is shown in Figures 4.13, 4.14, and Table 4.11. Detailed raw data
for individual cylinders are given in Appendix I (a) through I (c). In general, it can be
observed from the figures that the compressive strength is decreasing with increased
water-to-cement ratio. It can also be observed from Figure 4.13 that the compressive
strength increases with age. Figure 4.14 compares the compressive strength of 4 x 8-in.
(100 x 200-mm) cylinders with 6 x 12-in. (150 x 300-mm) cylinders at 28 days. The
figure shows that the strengths obtained from the 4 x 8-in. (100 x 200-mm) cylinders were

similar to those obtained from the 6 x 12-in. (150 x 300-mm) cylinders. The average

66



Compressive Strength (psi)

Compressive Strength (psi)

10000 +1000 —0—6 hours

9000 —&—1 day
8000 Cement content A7 days
(b/cyd) =328 days

00

600

2000 + e
1000 +
0 + ~+ ; 4

0.30 0.35 0.40 0.45 0.50
Water-to-Cement Ratio

Figure 4.13: Compressive Strength of Concrete Containing
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Table 4.11: Compressive Strength Data of Concrete Containing
Ultimax Cement at Different Ages

Cement Content
[ Age Cylinder Size] w/cm (Ib/cyd) Compressive Strength (psi) Average
0.30 1000 4794 | 4854 | 4612 | — | 4753 |
0.35 900 4416 | 4596 | 4834 —— 4615
6 hours 4 x 8-n. 0.40 800 2725 | 2666 | 2785 | --—- 2725
045 700 1970 § 1850 | 1910 | -~—- 1910
0.50 600 1751 1731 1731 e 1738
[ 0.30 1000 6450 | 5710 | 35968 | 6197 6081
0.35 900 7878 | 7003 | 3342 | 3143 5342
1 day 4x8-in. | 040 800 3740 | 3860 | 3720 | —- | 3773
0.45 700 3024 | 2964 | 2972 —— 2987
0.50 600 2566 | 2730 | 2650 — 2649 |
[ 0.30 1000 8893 [ 8913 | 9132 | —— | 8979 |
035 900 7440 | 7460 | 7202 -——- 7367
7 days 4 x 8-in. 0.40 800 5371 5431 | 4974 —— 5259
0.45 700 4019 | 3983 | 3919 | -—--- 3974
0.50 600 3263 | 3402 | 2944 | —— | 3203 |
0.30 1000 9450 | 8475 | 9609 | 9549 9271
0.35 900 9410 | 8455 | 7998 | 8614 8619
4 x 8-in. 0.40 800 6127 | 6476 | 5710 | 5899 6053
0.45 700 4755 | 4944 | 4914 | —— | 4871
28 days 0.50 600 3939 | 3820 | 3919 | 3919 | 3899
0.30 1000 9806 | 9134 | 8665 | —- | 9202
0.35 900 8762 | 7997 | 7268 N 8009
6x12-mn. 0.40 800 6295 | 5915 | 7675 o 6628
0.45 700 5765 | 5721 5862 e 5783
0.50 600 3882 | 3811 | 3395 | - | 3696
Table 4.12: Compressive Strength Data of Concrete Containing
ASTM Type /Il Cement at Different Ages (4 x 8-in.)
=
Cement Content
Age w/cm (Ib/cyd) Compressive Strength (psi) Average
0.30 2000 4635 | 4615 | 4625 ———— 4625
0.35 1643 4128 | 3679 | 3610 | ----- 3806
| day 0.40 1288 2964 | 3207 | 3044 ~——-- 3072
0.45 1089 2582 | 2407 | 2459 | -—--- | 2483
L 0.50 890 1950 | 2052 | 2109 | ----- 2037)_l
[ 0.30 2000 6056 | 7490 | 8017 [ —- | 7188 ]
0.35 1643 8356 | 7321 | 7739 e 7805
28 days 0.40 1288 7353 | 7202 ——- ——- 7278
0.45 1089 6903 | 7142 | 7062 | - | 7036
0.50 890 6525 | 6356 | 5988 —mmam 6290
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compressive strengths of the 4 x 8-in. (100 x 200-mm) concrete cylinders made with
Ultimax cement ranged from 2650 to 6080 psi at 1 day and from 3900 to 9270 psi at 28
days (Table 4.11).

Table 4.12 shows the compressive strength data for concrete containing ASTM
Type /Il cement. Detailed raw data for individual cylinders are given in Appendix I (d).
It can be observed that the average compressive strengths of the 4 x 8-in. (100 x 200-mm)
concrete cylinders made with ASTM Type /Il cement ranged from 2035 to 4625 psi at 1
day and from 6290 to 7805 psi at 28 days.

Figures 4.15 and 4.16 compare the average compressive strengths of concrete
containing Ultimax cement with concrete containing ASTM Type /Il cement at 1 day and
28 days, respectively. In both figures this comparison was based on the assumption that
concrete made with Ultimax cement and concrete made with ASTM Type I/II cement had
a similar slump at a given water-to-cement ratio as was shown in Figure 4.11. It can also
be observed from Figure 4.15 that the compressive strengths of concrete made with
Ultimax cement at 1 day were higher than those of ASTM Type I/l at all water-to-cement
ratios. At 28 days, as shown in Figure 4.16, the strength of concrete containing Ultimax
cement was higher than the strength of concrete containing ASTM Type /Il cement at the
lower water-to-cement ratios of 0.30 and 0.35. The opposite was true at the higher
water-to-cement ratios of 0.40 to 0.50.

Table 4.13 shows the average compressive strengths of the two types of concrete

and the percentage difference in strength. At 1 day, the compressive strengths of the
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Figure 4.16: Compressive Strength at 28 Days Versus
Water-to-Cement Ratio (4 x 8-in.)
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concrete containing Ultimax cement were found to be 20 to 40% higher than those of
concrete made with ASTM Type I/I cement. At 28 days, the compressive strengths of
concrete made with Ultimax cement were found to be 10 to 29% higher at water-to-
cement ratios of 0.30 and 0.35 and 17 to 38% lower at water-to-cement ratios of 0.40 to
0.50.

Table 4.13: Comparison of Compressive Strength of Concrete Containing
Ultimax and ASTM Type /Il Cements (4 x 8-in.)

———_—____—__1
Average Compressive Strength (psi) Percent Increase in
Strength of Concrete
Ultimax Cement ASTM Type 11 Cement Comainingihimx Cemexyq
6081 4625 31%
5342 3806 40%
3773 3072 23%
2987 2483 20%
2649 2037 30%
0.30 9271 7188 29%
0.35 8619 7805 10%
28 days | 0.40 6053 7278 -17%
045 4871 7036 -31%
0.50 3899 6290 -38%

Figures 4.17 and 4.18 show a series of photographs that were taken after

specimens made with Ultimax cement and ASTM Type I/II cement had failed

underuniaxial compression. The concrete specimens made with Ultimax cement exhibited

a brittle type of failure similar to concrete made with ASTM Type I/II cement.
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Figure 4.17: Compression Failure of Concrete Containing Ultimax Cement
at Different Water-to-Cement Ratios
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Figure 4.18: Compression Failure of Concrete Containing ASTM Type I/II
Cement at Different Water-to-Cement Ratios
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4.6.2.2 Modulus of Elasticity

The static modulus of elasticity of concrete made with Ultimax cement at different
water-to-cement ratios is shown in Figures 4.19 and 4.20. It can be observed that the
modulus of elasticity generally decreases with an increase in water-to-cement ratio. It can
also be observed from Figure 4.19 that the modulus of elasticity increases with age.
Figure 4.20 compares the modulus of elasticity for the 4 x 8-in. (100 x 200-mm) cylinders
with that of the 6 x 12-in. (150 x 300-mm) cylinders at different water-to-cement ratios.
In general, it can be observed that the 6 x 12-in. (150 x 300-in.) cylinders 'had a modulus
of elasticity similar to that of the 4 x 8-in. (100 x 200-mm) cylinders.

Tables 4.14 and 4.15 summarize the static modulus of elasticity data for concrete
made with Ultimax cement and concrete made with ASTM Type I/Il cement. Detailed
raw data for individual cylinders are given in Appendix II. The average static modulus of
elasticity for the 4 x 8-in. (100 x 200-mm) cylinders made with Ultimax cement ranged
from 2.4 x 10° psi to 3.6 x 10 psi at 1 day and from 3.6 x 10° psi to 4.6 x 10° psi at 28
days. The average static modulus of elasticity for the 6 x 12-in. (150 x 300-mm) cylinders
made with Ultimax cement ranged from 2.9 x 10° psi t0 4.0 x 10° psi at 28 days. The
average static modulus of elasticity for the 4 x 8-in. (100 x 200-mm) cylinders made with
ASTM Type I/IT cement ranged from 1.8 x 10° psi to 2.6 x 10° psi at 1 day and from 3.2 x
10° psi to 2.0 x 10° psi at 28 days.

The static modulus of elasticity of concrete made with ASTM Type /I cement is

compared to that of concrete made with Ultimax cement at different water-to-cement
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Figure 4.19: Static Modulus of Elasticity of Concrete
Containing Ultimax Cement Versus
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Figure 4.20: Static Modulus of Elasticity of Concrete
Containing Ultimax Cement Versus
Water-to-Cement Ratio at 28 Days
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Table 4.14: Static Modulus of Elasticity Data of Concrete Containing
Ultimax Cement at Different Ages

Cement Content Modulus of Elasticity
Age | Cylinder Size | wem (Ib/cyd) (10° psi) Average
o 0.30 1000 3.340 3.912 3.340 3.53 1]

0.35 900 3.504 — — 3.504
1 day 4 x 8-in. 0.40 800 2.466 2.678 — 2.572
0.45 700 2.220 2.220 —— 2.220
(L 0.50 600 2.480 2.168 —— 2.324
[ 0.30 1000 4720 | 4504 | 4774 | 4.666
0.35 900 4.046 4.004 4.548 4.199
4 x 8-in. 040 800 3.410 3.520 2472 3.134
0.45 700 3.168 3.168 3.442 3.259
28 days 0.50 600 2.932 4.096 —— 3.514
0.30 1000 4.244 3.835 —— 4.040
0.35 900 2.559 2.948 3.300 2.936
6 x 12-in. 0.40 800 2.618 3.694 3.300 3.204
045 700 2.903 3.597 2.829 3.110
0.50 600 3.726 3.274 — 3.500

Table 4.1S: Static Modulus of Elasticity Data of Concrete Containing

ASTM Type I/l Cement at Different Ages (4 x 8-in.)

Cement Content Modulus of Elasticity

Age w/cm (Ib/cyd) (10° psi) Average
0.30 2000 2274 | 2430 | — | 2.352 |

0.35 1643 2.466 2610 —— 2.538

1 day 0.40 1288 2.480 2.346 —— 2.413

0.45 1089 2.108 | 1.860 — 1.984

0.50 890 1.874 | 1.888 e 1.881

0.30 2000 3978 | 359 | — | 3.787

0.35 1643 4.004 4.004 — 4.004

28 days 0.40 1288 3.182 — — 3.182

0.45 1089 3.316 3.714 — 3.515

0.50 890 3.644 | 3.410 J— 3.527
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ratios in Figures 4.21 and 4.22. It can be observed that the modulus of elasticity of
concrete made with Ultimax cement and concrete made with ASTM Type I/II cement
generally decreases with increased water-to-cement ratio. In general, the static modulus
of elasticity at 28 days was similar for concrete made with Ultimax cement and concrete

made with ASTM Type /I cement especially at water-to-cement ratios above 0.35.

4.6.2.3 Stress-Strain Relationship

Figures 4.23 through 4.28 show the average stress-strain relationships for concrete
made with Ultimax cement and ASTM Type I/II cement at different water-to-cement
ratios. Detailed raw data for individual cylinders are given in Appendix ITI. It can be
observed that the slope of the stress-strain curve in the elastic region generally decreases
as the water-to-cement ratio is increased. This observation was the same for both the
concrete containing Ultimax cement and the concrete containing ASTM Type I/II cement.
Figure 4.28 compares the stress-strain curves of 4 x 8-in. (100 x 200-mm) concrete
cylinders with those of 6 x 12-in. (150 x 300-mm) concrete cylinders containing Ultimax
cement. In general, the stress-strain curves of the 6 x 12-in. (150 x 300-mm) cylinders
were found to have similar slopes in the elastic region to those obtained from testing the 4

x 8 in. (100 x 200-mm) cylinders.
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Figure 4.21: Static Modulus of Elasticity Versus
Water-to-Cement Ratio at 1 Day (4 x 8-in.)
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Figure 4.22: Static Modulus cf Elasticity Versus
Water-to-Cement Ratio at 28 Days (4 x 8-in.)
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Figure 4.24: Stress-Strain Curves for Concrete Containing
Ultimax Cement at 28 Days (4 x 8-in.)
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Figure 4.28: Stress-Strain Curves for Concrete Containing
Ultimax Cement at 28 Days (4 x 8-in. and
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4.6.2.4 Splitting-Tensile Strength

The splitting-tensile strengths of concrete made with Ultimax cement at different
water-to-cement ratios are shown in Figures 4.29 and 4.30, and summarized in Tables
4.16 and 4.17. Detailed raw data for individual cylinders are given in Appendix IV (a)
through (¢). It can be observed from the figures that splitting-tensile strength decreases
with increased water-to-cement ratio. It can also be observed from Figure 4.29 that the
splitting-tensile strength increases with age. Figure 4.30 shows the splitting-tensile
strengths of the 4 x 8-in. (100 x 200-mm) cylinders as compared to the 6 x 12-in. (150 x
300-mm) cylinders. The average splitting-tensile strength of the 4 x 8-in. (100 x 200-
mm) cylinders made with Ultimax cement ranged from 245 to 495 psi at 1 day and from
385 to 705 psi at 28 days (Tables 4.16). In general, the splitting-tensile strengths of the 4
x 8-in. (100 x 200-mm) cylinders were 19 to 27% higher than those of the 6 x 12-in. (150
x 300-mm) cylinders (Table 4.17).

Table 4.18 shows the splitting-tensile strength data for concrete made with ASTM
Type I/II cement. Detailed raw data for individual cylinders are given in Appendix IV (d).
It can be observed from the table that the average splitting-tensile strength of the 4 x 8-in.
(100 x 200-mm) cylinders made with ASTM Type I/II cement ranged from 310 to 471 psi
at 1 day and from 560 to 650 psi at 28 days.

Figures 4.31 and 4.32 compare the average splitting-tensile strengths of concrete
containing Ultimax cement at different water-to-cement ratios to those of concrete
containing ASTM Type I/Il cement at 1 day and 28 days, respectively. It can be observed

that the splitting-tensile strength of both the concrete containing Ultimax cement and the
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Figure 4.29: Splitting-Tensile Strength of Concrete Containing
Ultimax Cement Versus Water-to-Cement Ratio
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Figure 4.30: Splitting-Tensile Strength of Concrete Containing
Ultimax Cement Versus Water-to-Cement Ratio
at 28 Days
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Table 4.16: Splitting-Tensile Strength Data of Concrete Containing

Ultimax Cement at Different Ages
Cement Content
(Ib/cyd) -Tensile Strength (psi)
0.30 1000 490 480 517 494
0.35 900 497 364 547 464
1 day 4x8-in | 040 800 403 349 336 367
0.45 700 343 293 323 320
0.50 600 267 264 241 245
[ T o3 1000 694 | 726 732 705 |
0.35 900 579 714 712 669
4x8in. | 040 800 565 525 535 531
0.45 700 438 465 453 448
28 days 0.50 600 376 415 376 385
0.30 1000 514 588 —_— 556
0.35 900 578 555 - 563
6x12-in | 040 800 352 473 e 433
0.45 700 348 404 — 376
0.50 600 344 336 — 318

Table 4.17: Comparison Between Splitting-Tensile Strength of 4 x 8-in.
Concrete Cylinders and 6 x 12-in. Concrete Cylinders Containing
Ultimax Cement

w/cm Concrete Containing Ultimax Cement (psi)

Average Splitting-Tensile Strength of

6 x 12-in.

Percent Increase
in Strength of
4 x 8-in. Cylinders

21%
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Table 4.18: Splitting-Tensile Strength Data of Concrete Containing
ASTM Type VIl Cement at Different Ages (4 x 8-in.)

Age w/cm | Cement Content | Splitting-Tensile Strength (psi) | Average
(Ib/cyd)
0.30 2000 475 T 445 T 493 | — 471 |
0.35 1643 440 450 424 —— 438
1 day 0.40 1288 376 418 433 ——— 409
045 1089 341 304 333 —- 326
0.50 890 298 323 308 — 310
0.30 2000 679 639 632 —— 650
0.35 1643 613 671 622 —— 635
28 days 0.40 1288 624 592 —— — 608
0.45 1089 647 657 624 —~— 642
0.50 890 525 578 574 | —— 559
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Figure 4.32: Splitting-Tensile Strength at 28 Days Versus
Water-to-Cement Ratio (4x 8-in.)
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concrete containing ASTM Type I/II cement generally decreases with increased water-to-

cement ratio.

Table 4.19 compares the average splitting-tensile strengths of concrete made with

Ultimax cement to concrete made with ASTM Type 11 cement and shows the percentage

difference in strength. At 1 day, the concrete made with Ultimax cement had § to 6%

higher splitting-tensile strengths at the lower water-to-cement ratios of 0.30 and 0.35, and

2 to 21% lower splitting-tensile strengths at the higher water-to-cement ratios of 0.40,

0.45, and 0.50. At 28 days, the concrete made with Ultimax cement had 5 to 8% higher

splitting-tensile strengths at the lower water-to-cement ratios of 0.30 and 0.35 and 13 to

31% lower splitting-tensile strengths at the higher water-to-cement ratios of 0.40, 0.45,

and 0.50.

Table 4.19: Comparison of Splitting-Tensile Strength of Concrete Containing
Ultimax and ASTM Type /Il Cements (4 x 8-in.)

F——T—_—_——_——_—_—‘ﬂ_‘_—_——— |
Average Splitting-Tensile Strength (psi) Percent Increase in
Age w/em 4 x 8-in. Cylinders (psi) Strength of Concrete
L. Ultimax Cement ASTM Type /Il Cement | Containing Uttimax Cement
[ 0.30 494 471 5%
0.35 464 438 6%
1 day 0.40 367 409 -10%
0.45 320 326 2%
0.50 245 310 -21%
0.30 705 650 8%
0.35 669 635 5%
28days | 0.40 531 608 -13%
) 0.45 448 642 -30%
0.50 385 559 -31% [
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Figures 4.33 and 4.34 show a series of photographs that were taken after the
specimens made with Ultimax cement and ASTM Type I/l cement had failed in tension.
The concrete specimens made with Ultimax cement exhibited a similar type of brittle

failure as specimens made with ASTM Type I/II cement.

4.6.2.5 Bulk Density

The bulk density of the concrete made with Ultimax cement at different water-to-
cement ratios is shown in Figures 4.35, 4.36, and Table 4.20. Detailed raw data for
individual cylinders are given in Appendix V (a) through (c). Figure 4.35 compares the
bulk density at 1 day with the bulk density at 28 days. It can be observed that there was
no significant difference in the bulk density of 4 x 8-in. (100 x 200-mm) concrete cylinders
at 1 day and 28 days. Figure 4.36 compares the bulk density of 4 x 8-in. (100 x 200-mm)
cylinders with the bulk density of 6 x 12-in. (150 x 300-mm) cylinders at 28 days and
shows no significant difference. The bulk density of the 4 x 8-in. (100 x 200-mm)
cylinders made with Ultimax cement ranged from 151 to 154 pcfat 1 day and from 152 to
154 pcf at 28 days (Table 4.20).

Table 4.21 shows the bulk density data for concrete made with ASTM Type I/II
cement. Detailed raw data for individual cylinders are given in Appendix V (d). The
average bulk density of the 4 x 8-in. (100 x 200-mm) cylinders made with ASTM Type

I/II cement ranged 145 to 150 pcfat 1 day and from 147 to 150 pcf at 28 days.
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Figure 4.33: Splitting-Tensile Failure of Concrete Containing Ultimax Cement
at Different Water-to-Cement Ratios
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Figure 4.34: Splitting-Tensile Failure of Concrete Containing ASTM Type /11
Cement at Different Water-to-Cement Ratios
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Table 4.20: Bulk Density Data of Concrete Containing Ultimax Cement

at Different Ages
Cement Content
| _Age | Cylinder Size | w/cm (Ib/cyd) Bulk Densi Avemge_'
[ 0.30 1000 154 154 154 154 154 |
0.35 900 153 152 150 —— 152
1 day 4 x 8-in. 0.40 800 153 155 154 —~— 154
0.45 700 150 152 151 —— 151
f 0.50 600 151 151 152 — 151 |
0.30 1000 154 155 154 154 154 ||
0.35 900 155 153 151 151 153
4 x 8-in. 0.40 800 154 155 152 155 154
- 0.45 700 152 151 153 ——— 152
28 days 0.50 600 151 151 153 152 152
0.30 1000 153 153 154 153 153
0.35 900 151 152 153 —— 152
6 x 12-in. 0.40 800 152 151 152 152 152
0.45 700 — — —— — 151
0.50 600 152 151 150 — 151
Table 4.21 Bulk Density Data of Concrete Containing ASTM
Type VIl Cement at Different Ages (4 x 8-in.)
Age wiecm | Cement Content Bulk Density (pcf) Average
(Ib/cyd)
0.30 2000 146 145 145 — 145
0.35 1643 148 147 145 146 147
1 day 0.40 1288 150 149 148 148 149
0.45 1089 151 149 148 148 149
L 0.50 890 150 150 149 —— 150
[ 0.30 2000 147 146 147 — 147
0.35 1643 149 147 148 149 148
28 days 0.40 1288 148 148 149 — 148
0.45 1089 151 149 149 149 150
0.50 890 150 150 150 150 150
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Figures 4.37 and 4.38 show the average bulk density of concrete made with
Ultimax cement as compared with that of ASTM Type I/Il cement. It can be observed
that the bulk density of the concrete made with Ultimax cement was higher than that of
concrete made with ASTM Type /Il cement.

Table 4.22 shows the average bulk density of concrete made with Ultimax cement
and concrete made with ASTM Type I/II cement and the percentage difference. At 1
day, the bulk density of concrete containing Ultimax cement was 1 to 6% higher than that
of concrete containing ASTM Type I/II cement. At 28 days, the bulk density of concrete
containing Ultimax cement was 1 to 5% higher than that of concrete containing ASTM

Type VI

4.6.2.6 Shrinkage and Expansion

Shrinkage and expansion of concrete made with Ultimax cement are plotted versus
age at different water-to-cement ratios in Figures 4.39 and 4.40. Detailed raw data for the
individual specimens are given in Appendix VI (a) through VI (c). It can be observed
from Figure 4.39 that there was a fluctuation in the shrinkage measurement for concrete
made with Ultimax cement at early ages up to seven days. After seven days, the shrinkage
became stable. At 28 days, the shrinkage reached values of 170 x 10° to 200 x 10% in/in.
depending on the water-to-cement ratio. At 90 days, the shrinkage generally appeared to
reach a flat plateau with values ranging from 277 x 10%to 390 x 10 in_/in. depending on

the water-to-cement ratio. It can be observed from F igure 4.40 that the specimens
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Figure 4.37: Bulk Density Versus Water-to-Cement Ratio
at 1 Day (4 x 8-in.)
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Figure 4.38: Bulk Density Versus Water-to-Cement Ratio
at 28 Days (4 x 8-in.)
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Table 4.22: Comparison of Bulk Density of Concrete Containing
Ultimax and ASTM Type /Il Cements (4 x 8-in.)

==
Average Bulk Density (pcf) Percent Increase in
Age | wicm Bulk Density of Concrete
Ultimax Cement ASTM Type I/II Cement | Containing Ultimax Cement

0.30 154 145 6%
0.35 152 147 3%
lday | 0.40 154 149 3%
045 151 149 1%
0.50 151 150 1%
0.30 154 147 5%
0.35 153 148 3%
28 days | 0.40 154 148 4%
0.45 152 150 1%
0.50 152 150 1%
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reached ultimate expansion at 90 days. The expansion values up to 90 days did not
exceed 100 x 10° in./in. for water-to-cement ratios between 0.35 and 0.50. At the water-
to-cement ratio of 0.30, higher expansion values of 245 x 10 in/in. at 28 days and 215 x
10% in.fin at 90 days were obtained.

Shrinkage and expansion of concrete made with ASTM Type I/II cement are
plotted versus age at different water-to-cement ratios in Figures 4.41 and 4.42. Detailed
raw data for the individual specimens are given in Appendix VI (d). It can be observed
from Figure 4.41 that all air-dried specimens made with ASTM Type I/II cement exhibited
a gradual increase in shrinkage. At 28 days, the shrinkage values varied from 690 x 10 to
757 x 10° in./in. depending on the water-to-cement ratio. At 90 days, the shrinkage
values varied from 1047 x 10 to 1280 x 10 in./in. depending on the water-to-cement
ratio. It can be observed from Figure 4.42 that a fluctuation in expansion measurement
was observed at early ages up to 7 days. The expansion at 28 days varied from 70 x 10
to 170 x 10 in./in. depending on the water-to-cement ratio. The expansion at 90 days
varied from 110 x 10 to 290 x 10 in./in. depending on the water-to-cement ratio.

Figure 4.43 and Table 4.23 compare the shrinkage of concrete specimens
containing Ultimax cement with concrete specimens containing ASTM Type I/II cement at
28 days. It can be observed from Figure 4.43 that concrete containing Ultimax cement

exhibited significantly less shrinkage than concrete containing ASTM Type I/II. Table
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4.23 shows that the concrete made with Ultimax cement exhibited 65 to 75% less

shrinkage than concrete made with ASTM Type I/II cement.

Table 4.23: Comparison of Shrinkage and Expansion of Concrete Prisms
Containing Ultimax and ASTM Type I/Il Cements at 28 Days

Average Shrinkage (x 10°in./in.) Percent Decrease in
w/cm Shrinkage of Concrete
L Ultimax Cement ASTM Tvpe /Il Cement Contaim'né Ultimax Cement
[ 030 170 690 75%
0.35 243 720 66%
0.40 253 783 68%
0.45 260 740 65%
'50.50 200 757 74%
— |
Average Expansion (x 10 in./in.) Percent Decrease in
wicm Expansion of Concrete
Ultimax Cement ASTM Type I/II Cement | Containing Ultimax Cement
0.30 245 170 -44%
0.35 67 170 61%
0.40 90 93 3%
045 37 75 51%
0.50 40 97 59%

Figure 4.44 and Table 4.23 compare the expansion of concrete specimens

containing Ultimax cement with concrete specimens containing ASTM Type /Il cement at

28 days. Figure 4.44 shows that, in general, specimens containing Ultimax cement

expanded less when subjected to water-curing than specimens containing ASTM Type I/II

cement. Table 4.23 shows that concrete made with Ultimax cement exhibited 44% more

expansion at water-to-cement ratio of 0.30 and 3 to 61% less expansion at water-to-

cement ratios of 0.35 to 0.50.
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Figure 4.45 and Table 4.24 compare the shrinkage of concrete specimens
containing Ultimax cement with concrete specimens containing ASTM Type /Il cement at
90 days. Similar to Figure 4.43, Figure 4.45 shows that concrete containing Ultimax
cement exhibited significantly less shrinkage than concrete containing ASTM Type V1L
Table 4.24 shows that the concrete made with Ultimax cement exhibited 68 to 74% less
shrinkage than concrete made with ASTM Type /Il cement at 90 days.

Figure 4.46 and Table 4.24 compare the expansion of concrete made with Ultimax
cement with concrete made with ASTM Type I/II cement at 90 days. Figure 4.46 shows
that all specimens containing Ultimax cement expanded less when subjected to water-
curing than specimens containing ASTM Type I/II cement. Table 4.24 shows that
concrete made with Ultimax cement exhibited 26 to 69% less expansion than concrete

made with ASTM Type /Il cement.
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Figure 4.45: Shrinkage of Air-Dried Prisms Versus
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Figure 4.46: Expansion of Water-Cured Prisms Versus

Water-to-Cement Ratio at 90 Days
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Table 4.24: Comparison of Shrinkage and Expansion of Concrete Prisms
Containing Ultimax and ASTM Type I/II Cements at 90 Days

—

Average Shrinkage (x 10®in./in.) Percent Decrease in
w/em Shrinkage of Concrete
Ultimax Cement ASTM Type /Il Cement Containing Ultimax Cement
0.30 320 1170 73%
0.35 390 1220 68%
0.40 370 1280 1%
0.45 300 1150 74%
0.50 277 1047 74% |
]
Average Expansion (x 10 in./in.) Percent Decrease in
w/em Expansion of Concrete
Ultimax Cement ASTM Type I/l Cement Containing Ultimax Cement
0.30 215 290 T 26%
0.35 87 280 69%
0.40 100 167 40%
0.45 63 110 43%
0.50 43 140 69%
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Chapter 5

Experimental Program and Test Results

5.1 Introduction

The Windsor probe test was used to nondestructively evaluate the in sifu
compressive strength of normal and high strength concrete slabs. The compressive
strengths of the slabs were obtained by testing 4 x 8-in. (100 x 200-mm) cylinders which
were subjected to uniaxial compression. The compressive strengths ranged from 2,200 to
10,500 psi (15 to 70 MPa). This research also investigates two probe types to determine
the most suitable probe for the probe penetration testing of normal and high strength
concrete by means of correlations between compressive strength and probe penetration.
Statistical verification was used to determine the accuracy of the measurements.

The equipment and procedures used to perform the probe penetration tests are
described in this chapter. In addition, specimen preparation is presented in detail. The
test results include equations for lines fitted to the probe penetration data by various

regression methods.
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5.2 Experimental Program

5.2.1 Mix Design
In this study, tests were performed on eight concrete mixes using two types of
cement. Mixes 1, 2, 3, and 6 were made with Ultimax rapid hardening hydraulic cement.
The remaining mixes were made with Type III Portland cement. The mixes contained
coarse aggregate consisting of crushed granite with a maximum nominal size ranging from
3/8 in. to 1 in. and fine aggregate with a fineness modulus varying between 2.7 and 3.0.
All mixes except mix 6 contained a high-range water-reducing admixture or
superplasticizer conforming to ASTM C 494" requirements for Type A and Type F
admixtures. Silica fume was used in mixes 1 and 2. Mix details are given in Table 5.1.
The chemical composition and physical properties of the Ultimax cement can be found in
Table 4.1. The chemical composition and physical properties of the Type III Portland

cement and silica fume can be found in Tables 5.2 and 5.3.

S.2.2 Mixing Procedure
The following mixing procedure was used for mixes 1 and 2:
(1) Wet the mixer and drain the water.
(2) Mix half the superplasticizer with half of the water.
(3) Add coarse aggregate to the mixer.

(4) Add water mixed with superplasticizer until all aggregate is wet.
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Table 5.2: Chemical Composition and Physical Properties of ASTM Type III Cement

ASTM Type [ ASTM C 150
hemical Composition % Cement® Specifications for
Type Il Cement
ilicon dioxide (SiOy) 21.08 -_—
uminum oxide (Al,O3) 5.01 —
erric oxide (Fe,O;) 1.34 —
alcium oxide (CaO) 68.78 —_—
nesium oxide (MgO) 299 6.0 max
ulfur trioxide (SO,) 3.54 4.5 max
on ignition 211 3.0 max
quivalent alkalies (Na,0 + 0.658K,0) 047 0.6 max
soluble residue 0.25 0.75 max
HCompound Composition %
Tricalcium silicate (C,S) 34 —
Tricalcium aluminate (C,A) 11 15 max
hysical Properties
laine fineness, m*/kg 598 —
utoclave expansion, % 0.18 0.80 max
ormal Consistency, % 28.40 —_
Setting time, Vicat (min):
Initial 55 45 min
Final — 375 max
Air content of mortar, volume % 717 12 max
ompressive strength (psi) at:
1 day 3520 1740 min
3 days 5250 3480 min
7 days 6060 _—
28 davs 7060 J—

* Chemical composition and physical data were provided by the Califomia Portland Cement
Company in Glendora, CA.
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Table 5.3: Chemical Composition and Physical Properties of
Silica Fume*

Chemical Composition Percentage by Dry Mass
Silicon dioxide (Si0,) 93.08
CL 0.19
Aluminum oxide (Al,O,) 1.17
erric oxide (Fe,0;) 0.19
Calcium oxide (CaO) 0.43
Magnesium oxide (MgO) 0.53
Sulfur trioxide (SO;) 0.22
Sodium oxide (Na-O) 0.42
'otassium oxide (K.O) 1.18
Available alkalies 1.27
Carbon (C) 3.47
SS on ignition 147
IPhysical Properties
325 sieve retained (%) 3.44
Specific gravity 2.20
Density - Fluffy (pcf) 10.50
Moisture Content (%) 0.14

* Chemical composition and physical data were provided by Norchem Concrete
Products Inc. in Fort Pierce, Florida.
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(5) Add silica fume to the mixer.

(6) Add water mixed with superplasticizer until mixture is completely wet and all
aggregate is coated with mixture.

(7) Add the cement alternately with remaining water until wet and uniform.

(8) Add the fine aggregate alternately with remaining water.

(9) Add remaining superplasticizer.

The mixing procedure for mixes 3 to 8 was basically the same except for the

elimination of steps S and 6 since these mixes did not contain silica fume.

S.2.3 Preparation of Test Specimens

One 18 x 24 x 3 1/2-in. (460 x 610 x 90-mm) slab and a minimum of three 4 x 8-
in. (100 x 200-mm) cylinders were cast from each mix for testing. The cylinders were
rodded 25 times in three layers, while the slabs were rodded in two layers, one rodding for
every 2 in.” (129 mm?®) of surface area as described in ASTM C 192.? All specimens were
covered with plastic sheets after casting to minimize moisture loss. Cylinders and slabs
cast from mixes 1, 2, and 6 were stripped the next day and cured in a moist room under
standard conditions. Cylinders and slabs cast from mixes 3, 4, 5, 7, and 8 were stripped

six days later when the concrete had completely hardened.
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5.2.4 Equipment

The main equipment used in the penetration probe test are a powder-actuated
driver, steel probes, loaded cartridges, and a depth gauge as shown in Figure 3.1. The
two sets of probes were made of AISI 1045 steel. This type of steel was used instead of
the AISI 4140 steel because the AISI 4140 steel had problems when used to test concrete
having strengths above 3,000 psi (25MPa). One set of probes was baked for stress relief
for 3 1/2 hours at 350°F while the other set was baked for 7 hours at 350°F. The probes
baked for 3 1/2 hours had no identifying grooves and will hereafter be referred to as the
“no-line” probes. The probes baked for 7 hours were marked with two identifying
grooves on each probe and will be referred to as the “double-line” probes. The

dimensions for both sets of probes are shown in Figure 5.1.

5.2.5 Testing

The specimens were tested at different ages as shown in Tables 5.4 and 5.5. For
each age a minimum of one cylinder was tested for compressive strength and a minimum
of one probe from each of the two sets was driven into the corresponding slab(s). The
tests, as shown in Figure 5.2, were performed in accordance to ASTM C 803®

specifications.
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Figure 5.2: The Windsor Probe Test
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5.3 Test Results

5.3.1 Regression Analysis

The ultimate compressive strength for the concrete is plotted against the probe
penetration in Figures 5.3 through 5.10. Regression analysis was carried out using linear,
exponential, power, and logarithmic curves for the two sets of probes tested, as well as,
the combined probe data. Correlation coefficients were obtained from each set of data.
The equation used to calculate the correlation coefficient, R, is given in Appendix VII.
Plots of the fitted curves are also shown in Figures 5.3 through 5.10.

The following equations were determined for the double-line, no-line, and

combined probe data:

Table 5.6: Correlation Equations for Estimating Compressive Strength of Normal
and High Strength Concrete*

Probe Type Linear Exponential Power Logarithmic

Double-line | y= 7362x-6610 y = 663¢' 2* ;= 1722x> y = 13026Ln(x) - 882
y )

R=0.78 R=0.75 R=0.76 R=0.79

No-line | y=11353x-13215 | y=216e > y = 989x>% y = 19282Ln(x) - 3959

R=0.92 R=0.89 R=0.90 R=091

Combined | y=9145x - 9525 y=406e"* | y=1345x*%® | y= 15906Ln(x) - 2269

Data R=0.84 R=0.82 R=0.82 R=0.84

where y = compressive strength (psi)
X = exposed probe length (in.)
R = correlation coefficient
* Each equation and R were computed from the combined data of all 8 mixes.
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Table 5.6 shows the correlation coefficients obtained for the double-line, no-line,
and combined probe data for each method of regression analysis. It can be observed that
the best correlation coefficient in the case of the double-line probes was obtained for the
logarithmic regression. Similarly, the best correlation coefficient for the no-line probes
was obtained in the case of a linear regression. The best correlation coefficient for the
combined probe data was obtained using both linear and logarithmic regressions.

Double-line, no-line, and combined probe data were analyzed to determine which
of these produced the most consistent readings of exposed probe length. Of the three sets
of data analyzed, the no-line probe data produced the highest correlation coefficient of
0.92. Therefore, the linear regression for the no-line probe data produced an equation that
was the best fit to the data. This implies that the no-line probes produced the most

consistent readings of exposed probe length.

5.3.2 Statistical Analysis

Tables 5..7 and 5.8 summarize the analysis of the probe data and the compressive
strength data, respectively, for all eight mixes. The equations used to calculate standard
deviation and coefficient of variation are given in Appendix VII. The values shown in
these Tables 5.7 and 5.8 were used to plot Figure 5.11 which shows the coefficient of
variation obtained at a given age for the double-line data, no-line data, combined probe
data, and the uniaxial compression test. The uniaxial compression test showed a decrease

in coefficient of variation with an increase in age. The double-line probes and the
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Table 5.7: Analysis of Probe Data*

Embedded Probe Length (in.)
Age (days) |
8 15 28 63 90 |
[ 1.565 1475 1.500 p— — ]
1.500 1.350 1.487 — ——
AISI 1045 steel 1.625 1.550 1.587 — —
(baked for 1.151 1.690 1.518 — —
7 hours) 1.250 1.631 1.087 —— ——
"Double-Line" 1.425 0.900 1.075 — —
1.450 1.037 — — —
1.612 1.850 — — ——
Probe 1.585 e e — ——
Type 1.625 1.525 1.450 1.012 1.100
1.485 1.362 1.437 1.112 1.162
AISI 1045 steel 1.200 1.537 1.524 1.125 1.050
(baked for 1.250 1.602 1.013 1.187 1.125
3 1/2 hours) 1.475 1413 — — ——
"No-Line" 1.885 — — — —
1.525 — — —— —
| 1675 | — — — — |
[ Average Embedded | Double-Line 1.463 1.435 1.376 — — ]
Probe Length No-Line 1.515 1.488 1.356 1.109 1.109
Combined 1.487 1.456 1.368 1.109 1.109
Standard Double-Line 0.166 0.326 0.231 — —
Deviation No-Line 0.223 0.098 0.232 0.072 0.047
Combined 0.190 0.256 0.218 0.072 0.047
Coefficient of Double-Line 11.3 227 16.8 — —
Variation No-Line 147 6.6 17.1 6.5 42
(%) Combined 12.8 17.6 16.0 6.5 4.2

* Data is from all mixes combined.
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Table 5.8: Analysis of Compressive Strength Data*

Age (days)

8 15 28 63 90
4974 5929 7023 10882 10464
4496 6486 6963 10146 10405

7361 7361 6963 10265 —_—

7003 4695 4755 9951 ——

4357 4337 9092 —_— —

4906 6283 6923 —_— —

2268 6207 6613 — —

Compressive 2208 6004 6446 — —

Strength 2248 3024 — — —

(psi) 9076 2785 — — ——

4663 2726 — — —_—

9434 — — — —

7918 — —— —_— —_—

7679 — —_— —_— —_—

8356 — —_— — —_

9076 —_— —_— — —_—

7361 —_— — — —_—

[ 7162 — — —_— —
h[ Average 6141 5076 6847 10311 | 10435
{l  Standard Deviation 2424 1649 1177 402 425+
I Coefficient of Variation (%) 39.5 32.5 17.2 3.9 0.4%*

* Data is from all mixes combined.

** Data is limited and this value is not a good indicator.
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combined probe data showed a slight increase in coefficient of variation up to 15 days.
The coefficient of variation then decreases up to 90 days. The coefficient of variation of
the no-line probe data fluctuated with the age of the concrete. All data showed a possible
sensitivity to age. The uniaxial compression test, double-line probe data, and combined
probe data showed a general decreasing trend in the coefficient of variation with age,
while no trend could be established for the no-line probe data.

Figures 5.12 and 5.13, respectively, show the standard deviation and coefficient of
variation of the combined probe data at various compressive strengths. It can be observed
from Figure 5.12 that the standard deviation of the combined probe data did not exceed
0.14 in. at any compressive strength. It can also be observed from Figure 5.13 that the
coefficient of variation for all compressive strengths was below 9%. The coefficient of
variation was within acceptable practical limits.

Figures 5.14 and 5.15, respectively, show the standard deviation and coefficient of
variation of the uniaxial compression test at various compressive strengths. It can be
observed from Figure 5.14 that the standard deviation was below 3000 psi. In general, the
standard deviation of the majority of the mixes did not exceed 1000 psi. It can also be
observed from Figure 5.15 that the coefficient of variation, in the worst case, did not
exceed 35%, and the majority of the points fell below 10%. The coefficient of variation
was within acceptable practical limits.

In general, low coefficients of variation were obtained for the Windsor probe data

and the compressive strength data indicating that the Windsor probe test can be used
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reliably to establish trends to predict the ultimate compressive strength of concrete up to

10,500 psi (70 MPa).

130



5.4 References

(D

@)

@)

1996 Annual Book of ASTM Standards, “Standard Specification for Chemical
Admixtures for Concrete,” American Society for Testing and Materials,
Philadelphia, V. 04.02 (C 494).

1996 Annual Book of ASTM Standards, “Standard Practice for Making and Curing
Concrete Test Specimens in the Laboratory,” American Society for Testing and
Materials, Philadelphia, V. 04.02 (C 192).

1996 Annual Book of ASTM Standards, “Standard Test Method for Penetration

Resistance of Hardened Concrete,” American Society for Testing and Materials,

Philadelphia, V. 04.02 (C 803).

131



Chapter 6

Conclusions and Future Recommendations

6.1 Conclusions

6.1.1 Ultimax Cement Versus ASTM Type I/II Cement
Concrete containing Ultimax cement exhibited improved properties when
compared with concrete containing ASTM Type I/II cement. The following conclusions

can be drawn on the use of Ultimax cement as compared to ASTM Type LIl cement.

(1) The slump for concrete containing Ultimax cement at a given water-to-cement ratio
was found to increase with increased cement content. In general, lower cement
contents were required to obtain workable concrete for mixes having higher water-

to-cement ratios.

(2) In order to achieve a slump with concrete containing ASTM Type I/II cement that
was comparable to concrete containing Ultimax cement at a given water-to-cement
ratio, a higher cement content was required. The cement content required of
concrete containing ASTM Type I/II cement ranged from 890 to 2000 Ib/cyd while
the cement content of concrete containing Ultimax cement ranged from 600 to 1000

Ib/cyd. Concrete containing ASTM Type I/II cement required about 48 to 100%



3

4)

(5)

higher cement content than concrete containing Ultimax cement. The use of Ultimax
cement could be advantageous since lower cement content than conventional
concrete is required to achieve similar slump, however, cost comparison must be

considered.

The compressive strength of concrete made with Ultimax cement generally decreases
with an increase in water-to-cement ratio. The strengths obtained from the 4 x 8-in.
(100 x 200-mm) cylinders were similar to those obtained from the 6 x 12-in. (150 x

300-mm) cylinders.

The compressive strengths of the 4 x 8-in. (100 x 200-mm) cylinders made with
Ultimax cement at 1 day ranged from 2650 to 6080 psi and were found to be 20 to

40% higher than those of concrete made with ASTM Type I/II cement.

At 28 days, the compressive strengths of the 4 x 8-in. (100 x 200-mm) cylinders
made with Ultimax cement ranged from 3900 to 9270 psi and were 10 to 28%
higher at water-to-cement ratios of 0.30 and 0.35. On the contrary, the compressive
strengths of the 4 x 8-in. (100 x 200-mm) cylinders made with Ultimax cement were
17 to 38% lower at water-to-cement ratios of 0.40 to 0.50 than those of concrete

made with ASTM Type /I cement.
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(6)

(7)

®)

%)

The modulus of elasticity of concrete containing Ultimax cement generally decreases
with an increase in water-to-cement ratio. The modulus of elasticity of the 4 x 8-in.
(100 x 200-mm) cylinders made with Ultimax cement ranged from 2.4 x 10° psi to
3.6 x 10° psi at 1 day and from 3.6 x 10° psi to 4.6 x 10° psi at 28 days. In general,
the 6 x 12-in. (150 x 300-mm) cylinders containing Ultimax cement had a modulus

of elasticity similar to that of the 4 x 8-in. (100 x 200-mm) cylinders.

The modulus of elasticity of concrete containing Ultimax cement and concrete
containing ASTM Type I/II cement was similar for concrete made with both types of

cement and generally decreases with an increase in water-to-cement ratio and.

The slope of the stress-strain curve in the elastic region generally decreases as the
water-to-cement ratio is increased for concrete containing Ultimax cement and
concrete containing ASTM Type IVII cement. In general, the stress-strain curves of
the 6 x 12-in. (150 x 300-mm) concrete cylinders made with Ultimax cement were
found to have similar slopes in the elastic region to those obtained from testing the 4

x 8-in. (100 x 200-mm) cylinders.
The splitting-tensile strength of concrete made with Ultimax cement decreases with

an increase in water-to-cement ratio. At 28 days, the splitting-tensile strengths of

the 4 x 8-in. (100 x 200-mm) cylinders containing Ultimax cement were 21 to 27 %
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(10)

(11)

(12)

higher than those of the 6 x 12-in. (150 x 300-mm) cylinders. The splitting-tensile

strengths of the 6 x 12-in. (150 x 300-mm) cylinders ranged from 320 psi to 560 psi.

At 1 day, the splitting-tensile strengths of the 4 x 8-in. (100 x 200-mm) cylinders
made with Ultimax cement ranged from 245 to 494 psi and were 5 to 6% higher
than those of concrete containing ASTM Type I/II cement at the water-to-cement
ratios of 0.30 and 0.35. On the contrary, the splitting-tensile strengths of the 4 x 8-
in. (100 x 200-mm) cylinders made with Ultimax cement were 2 to 21% lower than
those of concrete containing ASTM Type I/II cement at the water-to-cement ratios

of 0.40 to 0.50.

At 28 days, the splitting-tensile strengths of concrete containing Ultimax cement
ranged from 385 to 705 psi and were 5 to 8% higher than those of concrete
containing ASTM Type I/II cement at water-to-cement ratios of 0.30 and 0.35.
However, the splitting-tensile strengths of concrete containing Ultimax cement were
13 to 31% lower than those of concrete containing ASTM Type /Il cement at the

water-to-cement ratios of 0.40 to 0.50.

The bulk density of the 4 x 8-in. (100 x 200-mm) cylinders made with concrete
containing Ultimax cement was similar to that of the 6 x 12-in. (150 x 300-mm)
cylinders. At 1 day, the bulk density of concrete made with Ultimax cement ranged

from 151 to 154 psi and was 1 to 6% higher than the bulk density of concrete
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(13)

(14)

containing ASTM Type /Il cement. At 28 days, the bulk density of concrete made
with Ultimax cement ranged from 152 to 154 psi and was 1 to 5% higher than the

bulk density of concrete containing ASTM Type I/II cement.

The shrinkage of concrete specimens made with Ultimax cement fluctuated at early
ages up to seven days, after which the shrinkage became stable. At 28 days, the
shrinkage reached values of 170 x 10°to 200 x 10* in./in. depending on the water-
to-cement ratio. At 90 days, the shrinkage generally appeared to reach a flat plateau
with values ranging from 277 x 10%to 390 x 10 in./in. depending on the water-to-
cement ratio. The expansion values up to 90 days did not exceed 100 x 10® in./in.
for water-to-cement ratios between 0.35 and 0.50. At the water-to-cement ratio of
0.30, higher expansion values of 245 x 10® in/in. and 215 x 10” in./in were obtained

at 28 days and 90 days, respectively.

At 28 days, the shrinkage values of concrete specimens containing ASTM Type I/
cement varied from 690 x 10 to 757 x 10® in./in. depending on the water-to-
cement ratio. At 90 days, the shrinkage values varied from 1047 x 10 to 1280 x
10° in./in. depending on the water-to-cement ratio. A fluctuation in expansion
measurement was observed at early ages up to 7 days. The expansion at 28 days

varied from 70 x 10° to 170 x 10® in./in. depending on the water-to-cement ratio.
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The expansion at 90 days varied from 110 x 10 to 290 x 10 in./in. depending on

the water-to-cement ratio.

(15) At 28 days, concrete made with Ultimax cement exhibited 65 to 75% less shrinkage
than concrete made with ASTM Type I/II. Concrete made with Ultimax cement
exhibited 44% more expansion at water-to-cement ratio of 0.30 and 3 to 61% less

expansion at water-to-cement ratios of 0.35 to 0.50.

(16) At 90 days, concrete made with Ultimax cement exhibited 68 to 74% less shrinkage
than concrete made with ASTM Type I/Il cement. Concrete made with Ultimax
cement exhibited 26 to 69% less expansion than concrete made with ASTM Type

I/IT cement.

6.1.2 Probe Penetration Test

(1) The standard probes made of AISI 4140 steel were not satisfactory for testing
concrete with strengths above 3000 psi (25 MPa). The modified AISI 1045 steel
probes were satisfactorily used to predict in situ concrete strengths up to 10,500 psi

(70 MPa).
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(2) Linear, exponential, power, and logarithmic relationships were established to
estimate the ultimate compressive strength of normal and high strength concrete.

These equations are as follows:

Probe Type Linear Exponential Power Logarithmic
Double-line | y=7362x-6610 | y=663¢""* | y=1722x*" y = 13026Ln(x) - 882
R=0.78 R=0.75 R=0.76 R=0.79

No-line y=11353x-13215 | y=216e""* v =989x>% y = 19282Ln(x) - 3959

R=0.92 R=0.89 R=0.90 R=091

Combined | y=9145x-9525 y=407e"* | y=1345x*% | y=15906Ln(x) - 2269

R=0.84 R=0.82 R=0.82 R=0.84

where y = compressive strength (psi)
X = exposed probe length (in.)
R = correlation coefficient

(3) A logarithmic regression was found to be the most satisfactory for the double-line
probe data giving a correlation coefficient of 0.79. A linear regression was found to
be the most satisfactory for the no-line probe data giving a correlation coefficient of
0.92. Both linear and logarithmic regressions were found to be the most satisfactory

for the combined probe data giving a correlation coefficient of 0.84.
(4) Ofthe three sets of data analyzed, the no-line probes (baked for stress relief for 3 1/2

hours) produced the highest correlation coefficient of 0.92. This implies that the no-

line probes produced the most consistent readings of exposed probe length.
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(5)

(6)

(M

Plots of standard deviation and coefficient of variation of the combined probe data
versus compressive strength revealed that the coefficient of variation was within
acceptable practical limits. The standard deviation of the combined probe data did

not exceed 0.14 and the coefficient of variation was below 9% for all compressive

strengths.

Plots of standard deviation and coefficient of variation of the uniaxial compression

test versus compressive strength revealed that the coefficient of variation was within
acceptable practical limits. The coefficient of variation for the majority of the points
fell below 10%. The standard deviation for the majority of the points did not exceed

1000 psi.

In general, coefficients of variation below 10% were obtained for the Windsor probe
data and the compressive strength data indicating that the Windsor probe test can be
used reliably to establish trends to predict the ultimate compressive strength of

concrete up to 10,500 psi (70 MPa).
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6.2 Future Recommendations

The basic properties of concrete containing Ultimax rapid hardening hydraulic
cement have been studied in this investigation. Future studies on the addition of silica
fume at different percentages, use of different aggregate sizes, addition of
superplasticizers, and the effect of air entrainment should be conducted to determine the
performance of concrete containing Ultimax cement. In addition, durability issues such as
freeze-thaw resistance and permeability should be evaluated.

This study has established linear, exponential, power, and logarithmic relationships
to estimate the ultimate compressive strength of in situ normal and high strength concrete
by means of the Windsor probe test. Research should be done to evaluate the
performance of the Windsor probe test using the AISI 1045 steel probes baked for stress
relief for 3 1/2 hours and 7 hours on concrete with compressive strengths above 10,500

psi (70 MPa).
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Appendix I (a): Compressive Strength Data of Concrete
Containing Ultimax Cement (w/cm = 0.30)
—
|
Cylinder Compressive
Cement Content | Mix Size Strength
(Ib/cyd) No. Age (in.) (psi)

L )
[ 6 hr 4x8 | 4794 | 4854 | — |

1 day 4x8 6450 | 5710 —

10A | 7days 4x8 8893 — ——

28days | 4x8 | 9450 | 8475 | —

1000 6x12 9806 ——— ~—

6 hr 4x8 4612 | —— —~—

1 day 4x8 5968 | 6197 ——

10B | 7 days 4x8 8913 | 9132 ——

28 days 4x8 9609 | 9549 ———

L 6x12 | 9134 | 8665 | —=

[ 6hr | 4x8 | — 1 — | —

1 day 4x8 6306 | 6257 ——

9A | 7days 4x8 9132 | 7600 —

28days | 4x8 | 9108 | 8913 | —

1033 6x12 8311 —— ———

6 hr 4x8 4695 | 4775 | 4775

1 day 4x8 5759 | 5740 | -

9B | 7days 4x8 7222 — —

28 days 4x8 8554 | 8330 ———

6x12 8806 | 8842 ——

6 hr 4x8 —— —— ——

1 day 4x8 —_— ] — ] —

8A | 7days 4x8 8574 | 8196 —

28days | 4x8 [ 9231 | 9211 | —

1067 6x12 | 8541 | 8435 | —

6 hr 4x8 | 4934 1 4775 | 5097

1 day 4x8 5328 | 5819 | 6157

8B | 7days 4x8 | 854 | — [ —

28 days 4x8 10385 | 9275 —

6x12 ——— —— ——e—e

6 hr 4x8 4635 | 5093 | 4978

1 day 4x8 —— — ————

7A | 7days 4x8 8515 | 8196 ——

28 days 4x8 9410 | 8789 ——

1100 6x12 8612 | 8347 ——

6 hr 4x8 — — —~———

1 day 4x8 6135 | 6326 | 6177

7B | 7days 4x8 8316 —— ——

28 days 4x8 7719 | —— —

6x12 9594 | —— ——
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Appendix I (a): Compressive Strength Data of Concrete
Containing Ultimax Cement (w/cm = 0.30)

Cylinder Compressive
Cement Content | Mix -~ Size Strength
(Ib/cyd) No. Age (in.) (psi)
6 hr 4x8 —— — —
1 day 4x8 7222 | 7261 7679
6A 7 days 4x8 8972 | 8813 ——
28 days 4x8 11081 | 10007 | e
1133 6x12 9470 | 10349 | ——
6 hr 4x8 4874 | 5272 | 4934
1 day 4x8 8932 —— —
6B 7 days 4x8 —~— —— —
28 days 4x8 8921 | 9529 —
6x12 9408 —- —-
6 hr 4x8 6068 | 5698 | 6092
1 day 4x8 — —— B
5A 7 days 4x8 8455 —— ———e
28 days 4x8 9808 —— ——
6x12 9461 — —
6 hr 4x8 — — —
1 day 4x8 ——— — —
1166 5B 7 days 4x8 8336 — —
28 days 4x8 9211 8634 —
6x12 8948 —
6 hr 4x8 — — —
1 day 4x8 5690 | 5899 | 5839
5C 7 davs 4x8 7341 — —
28 days 4x8 8435 —— —
6x12 ~—— — —

142




Appendix I (b): Compressive Strength Data of Concrete Containing
Ultimax Cement (w/cm = 0.35-0.45)

Cylinder Compressive
Cement Content | Mix Size Strength
w/em (1b/cyd) No. Age (in.) (pst)
6 hr 4x8 4416 | 4596 | —
1 day 4x8 7003 | 3143 | —
1A 7 days 4x8 — — —_—
28 days 4x8 — —_— —
6x12 — — —
6 hr 4x8 4834 | — ——
1 day 4x8 7878 | 3342 | —
IB 7 days 4x8 — — —
28 days 4x8 9410 | — —
035 900 6x12 — —_ —
6 hr 4x8 — — —_—
1 day 4x8 —_— —_ —
1C 7 days 4x8 7440 | 7460 | 7202
28 days 4x8 8455 | 7998 | 8614
6x12 — — —
6 hr 4x8 — o —
1 day 4x8 — —_ —
ID 7 days 4x8 — — —
28 days 4x8 e — —
6x12 | 7268 | 6989 | 7012
6 hr 4x8 — _—
1 day 4x8 — —

2A 7 days 4x8 5371 | 5431
28 days 4x8 6127 | 6476

6x12 — —
6 hr 4x8 2725 | 2666
1 day 4x8 3740 | 3860
0.40 800 2B 7 days 4x8 — —
28 days 4x8 5710 § 5899
6x12 — —_—
6 hr 4x8 —_—
1 day 4x8 —

2C 7 days 4x8 — —
28 days 4x8 — —
6x12 7675 | 7300
6 hr 4x8 1970 ] 1850
1 day 4x8 3024 | 2964
3A 7 days 4x8 4019 | 3983
28 days 4x8 4755 | 4944

3B 7 days 4x8 —_—
28 days 4x8 —
6x12 | 5765

JHGalEEEE EauaaasiEE s

045 700 6x 12 — —
6 hr 4x8 — —
1 day 4x8 — —

3
o

3862
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Appendix I (c): Compressive Strength Data of Concrete
Containing Ultimax Cement (w/cm = 0.50)
Cylinder Compressive
Cement Content | Mix Size Strength
(Ib/cyd) No. Age (in.) (psi)
[ 6 hr 4x8 [6963] 7958 | —
1 day 4x8 1094 1198 —
15A | 7days 4x8 [ 1910 | — | —
28 days 4x8 2328 | 2367 ——
580 6x12 3498 — —
6 hr 4x8 736.1 — —
1 day 4x8 1068 | 1188 | —
15B 7 davs 4x8 1999 1900 - |
28 days 4x8 | 2102 | 2463 | — ||
L 6x12 ] 2467 | 22443 | — |
[ 6 hr 4x8 [ 1751 | 1731 | 1731 |
1 day 4x8 2566 | 2730 2650
4A 7 days 4x8 3263 3402 —
28 days 4x8 3939 | 3820 e
600 6x12 3882 — ——
6 hr 4x8 — — ——
1 day 4x8 — ] -] —
4B 7 days 4x8 2944 — e
28 days 4x8 3919 | 3919 | —-
6x12 3811 3395 —
6 hr 4x8 1015 1104 —~—
1 day 4x8 2119 | 2421 —
14A | 7 days 4x8 4357 | — | —
28days | 4x8 | 4914 | 5033 | —
620 6x12 | 4978 | — | ——
6 hr 4x8 1313 —
1 day 4x8 2471 2741 ——
14B | 7days 4x8 4586 | 4546 | ——
28 days 4x8 4739 | 4690 —
6x12 5544 5579 — l
6 hr 4x8 ] 8554 — | — |
1 day 4x8 1601 1492 ——
13A 7 days 4x8 2755 2676 —
28 days 4x8 3382 3253 ————
640 6x12 | 3263 | 3333 | ——
6 hr 4x8 875.4 | 805.7 ———
1 day 4x8 1552 1596 ——
13B 7 davs 4x8 2636 — —
28days | 4x8 | 3136 | 3127 | —
6x12 3165 — —
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Appendix I (c): Compressive Strength Data of Concrete
Containing Ultimax Cement (w/cm = 0.50)

Cylinder Compressive
Cement Content | Mix Size Strength
(Ib/cyd) No. Age (in.) (psi)
I N |
i 6 hr 4x8 [ 85547 8952 | —
1 day 4x8 1472 | 1564 | —
12A | 7 days 4x8 2924 | 2844 | —
28 days 4x8 3064 2590 e
660 6x12 | 3033 | — —
6 hr 4x8 | 71361 | — ——
1 day 4x8 1466 | 1500 | —
12B | 7days 4x8 2447 | 2487 | 2596 |
28 days 4x8 3280 | 2960 | — ||
IL 6x12 | 3165 | 3310 | —
6 hr 4x8 1293 | 1214 --—Hl
1 day 4x8 1890 | 2025 | —
11A | 7days 4x8 2805 | — — |
28 days 4x8 3760 | 3549 | —
680 6x12 | 3855 ——
6 hr 4x8 1194 | — | —
1 day 4x8 2129 | 2029 | —
11B | 7davs 4x8 2924 | 2844 | — "
28 days 4x8 3621 | 3863 | —
6x12 | 3687 | 3882 | — ||
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Appendix I (d): Compressive Strength Data of Concrete Containing
ASTM Type I'TT Cement (w/cm = 0.30-0.50)

Cylinder Compressive
Cement Content| Mix Size Strength

w/em (Ib/cyd) No. Age (in.) (psi) l
[030 2000 18 [_Iday 4x8 | 4635 | 4615 | a625 |
I 28days | 4x8 | 6056 | 7490 | 8017 |
I 20A | lday | 4x8 | 4128 | - ] — |
0.35 1643 28 days 4x8 8356 | — ~— |
20B 1 day 4x8 3879 | 3810 — |l
28days | 4x8 7321 [ 7739 | — ||
1 dav 4x8 2964 | — —_— ]

16A 7 days 4x8 4886 —— —

0.40 1288 28days | 4x8 — | — —

I day 4x8 3207 3044 —

16B 7 days 4x8 4894 4874 —

_ 28days | 4x8 7353 | 7202 | —
[ 9A | Tday | 4x8 | 2582 | — | — ||
0.45 1089 28days | 4x8 | 6903 | — | — |
19B | 1day 4x8 | 2407 | 2459 | — 1}
28days | 4x8 7142 | 7062 | —— ]
0.50 890 17 1 day 4x8 1950 | 2052 | 2109 |
28days | 4x8 6525 | 6386 | 5988 ||
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Appendix [T (a): Modulus of Elasticity of Concrete Containing
Ultimax Cement (w/cm = 0.30)

Cylinder
Cement Content | Mix Size Modulus of Elasticity
(Ib/cyd) No. Age (in.) (x 10° psi)
[ 1 day 4x8 [3340 [ —— [ —
10A 28 days 4x8 4.720 ——— e
1000 6x12 — — o
1 day 4x8 3912 | 3340 | ---—--
10B 28 days 4x8 4.504 | 4.774 ———
6x12 4.244 | 3.835 ——
1 day 4x8 3.260 | ---- -
9A 28 days 4x8 4.548 | -—-- ——-
1033 6x12 4.222 ——— e
1 day 4x8 3.520 | 3.260 o~
9B 28 days 4x8 4244 | 4.264 e
{ 6x12 3.772 ] 3.772 |
T Tday | 4x8 | o | o | — |
8A 28 days 4x8 4.046 ——— ———
1067 6x12 4.797 | 4.197 e
1 day 4x8 3.872 | 3.824 | 3.586
8B 28 days 4x8 4774 | 4.774 -
6x12 4222 | -—-- o
1 day 4x8 e -eene —— ]
TA 28 days 4x8 4.004 e ~nen
1100 6x12 | 4.751 | 4.222 | 4.244
1 day 4x8 | 3340 | 3.586 | -—
7B 28 days 4x8 4.548 ———— P
6x12 e -meme =]
Tdav | 4x8 | 3078 | 3978 | - ||
6A 28 days 4x8 4082 | ---—-- o
1133 6x12 4.161 | 3.966 -
1 dav 4x8 ——aee el Bl
6B 28 days 4x8 4.046 | 4.046 S
6x12 4244 | e | ----- .
1 day 4x8 J— . —
SA 28 days 4x8 P ————- -—eee
6x12 4.797 e P
1 day 4x8 P el B
1166 SB 28 days 4x8 4.264 | 4.860 —eee-
6x12 3.408 | -—--—- e
1 day 4x8 3.126 | 3.126 | 3.340
5C 28 days 4x8 4.252 e -ene
6x12 | - | oo | oee-
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Appendix II (b): Modulus of Elasticity Data of Concrete Containing
Ultimax Cement (w/cm = 0.35-0.45)

— |

Cylinder
Cement Content | Mix Size Modulus of Elasticity
[ w/cm (Ib/cyd) No. Age (in.) (x 10° psi)

[ 1 day 4x8 — — — |

1A 28 days 4x8 —— —— —

6x12 — — ——

1 day 4x8 3.504 — ——

IB | 28days | 4x8 | 4.046 | — | —

0.35 900 6x12 —— — —

1 day 4x8 ——— — ——

1C 28 days 4x8 4.004 | 4.548 —

6x12 —— — ——

1 day 4x8 — —— —

1D 28 days 4x8 ——-

6x12 | 2559 | 2.948 | 3300

1 day 4x8 — — e

2A | 28days 4x8 3410 | —— | —
6x12 ——— —— -~ |
1 day 4x8 2466 | 2678 | — |

0.40 800 2B | 28days 4x8 3520 | 2472 | —
6x12 —— | -] — 1‘

1 day 4x8 — | -] —

2C | 28 days 4x8 — | - | —

6x12 | 2618 | 3.694 | 3.300

1 dav +x8 ] 2220 | 2220
3A [ 28days | 4x8 | 3.168 | 3.168 | 3.442

0.45 700 6x12 — — —
1 day 4x8 — | — ] — |

3B 28 days 4x8 — — —
6x12 2.903 | 3.597 2.829%]

148



Appendix IT (c): Modulus of Elasticity Data of Concrete
Containing Ultimax Cement (w/cm = 0.50)

Cylinder
Cement Content | Mix Size Modulus of Elasticity
(Ib/cyd) No. Age (in.) (x 10° psi)
T 1 day 4x8 [ 2052 — | —
15A | 28 days 4x8 2.428 — —
580 6x12 12292 | — | — 1,
1 day 4x8 1.276 | 1432 | —
15B | 28 days 4x8 1912 | 2342 | — |
i 6x12 | 1967 ] 1.768 | — |
[ 1 day 4x8 [ 2480 ] 2.168 | —
4A | 28days 4x8 [ 2932 — | —
600 6x12 | 3726 | — [ —
1 day 4x8 —_— ] -] —
4B | 28 days 4x8 | 4096 | — | —
6x12 [3274 ] — | —
1 day 4x8 2068 — | —
14A | 28 days 4x8 | 4132 | —~— | —
620 6x12 | 4040 | — | —
1 day 4x8 2342 | 2342 [ —
14B | 28 days 4x8 | 4136 ] 4.162 | —
L 6x12 | 34671 3.120 | —
[ 1 day 4x8 | 1888 ] — | —
13A | 28days 4x8 | 2480 | — | —
640 6x12 | 3721 | 2.080 | —-
1 day 4x8 1.888 | 1.912 | —
13B | 28 days 4x8 | 2480 ] 2480 | —
6x12 [ 2795 — | —
I day 4x8 [ 188 — | — |
12A | 28 days 4x8 2698 | —— | — |l
660 6x 12 — | — | —
1 day 4x8 1.592 | 1.908 | — "
12B | 28 days 4x8 | 2894 | 2342 | —
6x12 | 3274 | 3.031 | — ]
1 dav 4x8 1874 [ — | — 1
I1A | 28 days 4x8 2.960 — ——
680 6x12 | 2467 | — !
1 dav 4x8 2228 | 2228 | — "
11B | 28 days 4x8 3332 ] - | —
6x12 | 2467 | 2526 | — |
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Appendix II (d): Modulus of Elasticity Data of Concrete Containing
ASTM Type I/H Cement (w/cm = 0.30-0.50)

|
Cylinder
Cement Content| Mix Size Modulus of Elasticity

w/em (Ib/cyd) No. Age (in.) (x 10° psi)
L ]
[0.30 2000 18 | lday | 4x8 ] 2274 ] 2430 | — |
28days | 4x8 | 3.978 [ 3596 | —— |
20A | 1day 4x8 | 2.466 — ]
0.35 1643 28days | 4x8 | 4.004 — |

20B | lday 4x8 12610
28days | 4x8 | 4.004
[ 16A | 1day 4$x8 | 2480
0.40 1288 28days | 4x8 —

16B | 1day 4x8 | 2.346
28days | 4x8 | 3.182
19A | 1day 4x8 | 2.108
0.45 1089 28days | 4x8 —

19B 1 day 4x8 1.860
28days | 4x8 | 3316
0.50 890 17 1 day 4x8 1874 ] 1.888 | — |
28days | 4x8 | 3.644

|
HHERH T
1

w
~
—
$

“w
£
s
o
L
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Appendix IV (a): Splitting-Tensile Strength Data of Concrete Containing
Ultimax Cement (w/cm = 0.30)

Cylinder Splitting-Tensile

Cement Content | Mix Size Strength
(Ib/cyd) No. Age (in.) (psi)

1 day 4x8 490.0 | 480.0
1I0A | 28 days 4x8 693.8 | 726.1
1000 6x12 | 513.7 | 588.0

1 day 4x8 | 4900 | 517.0 o
10B | 28 days 4x8 | 6689 | 731.6 —- |l
6x12 | 5659 | —— — |

1 day 4x8 | 514.8 | 547.1
9A | 28days | 4x8 | 703.8 | 733.6
1033 6x12 | 569.9 | 574.7
1 day 4x8 | 5098 | 544.6
9B [ 28days | 4x8 | 6118 | 6366

00 (G0 datt
il

1 6x12 | 4708 | —- -— ]
T 1 day 4x8 —— —~— —
8A | 28days 4x8 | 740.1 | 7684 —
1067 6x12 | 4859 | — J—
1 day 4x8 | 5993 | 4974 | 4849 | 5148
8B | 28days 4x8 | 7560 | 6864 | —— | —
6x12 | 5261 ] 6402 | — | —
1 day 4x8 —— — — —
7A | 28days 4x8 [ 6759 ] 7227 | — | —
1100 6x12 | 4766 | ~— | — | —
1 day 4x8 | 547.1 | 5148 | 519.7 | 504.8
7B [ 28 days 4x8 | 6277 ] 7162 | — | —
I 6x12 | 5084 | 532.7 | — | — |
7 lday | 4x8 | 5720 | 5148 | 527.2 | 4900 |
6A | 28days 4x8 | 7883 | 6814 | — | —
1133 6x12 | 5084 | — | — | —
1 day 4x8 — ——— — —
6B | 28days 4x8 | 6078 | 7187 | —— | —
L 6x12 [ 6388 16357 | — | —-
[ 1 day 4x8 — | = | - |
5A 28 days 4x8 636.6 | 763.4 —— —
6x12 | 5261 | — | — | —
1 day 4x8 — | — ] — ] =
1166 5B [ 28days 4x8 | 6963 ] — | —— | —
6x12 | 5743 [ 6388 | —— | —-
1 day 4x8 | 4824 | 480.0 | 4675 | 5023
5C 28 days 4x8 e —— — —
6x12 | — | — | — | —
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Appendix IV (b): Splitting-Tensile Strength Data of Concrete Containing

Ultimax Cement (w/cm = 0.35-0.45)

Cylinder Splitting-Tensile
Cement Content | Mix Size Strength
w/cm (Ib/cyd) No. Age (in.) (psi)
1 day 4x8 4974 | 364.1 ——— ———
1A 28 days 4x8 579.4 — — —
6x12 578.0 —— — —
1 day 4x8 446.6 | 547.1 — ———
1B 28 days 4x8 713.7 —— —
0.35 900 6x12 554.8 | 557.5 —— ———
1 day 4x8 — —
1C 28 days 4x8 6714 | 7122 — ~——
6x12 e — — —
1 day 4x8 ——— —— e —
ID [ 28days | 4x8 — | —= | — | —
6x12 —— — —— ————
Tday | ax8 | — | — ] — ] — |
2A 28 days 4x8 564.5 | 524.7 e ——
6x12 351.5 | 473.0 —— ——
1 day 4x8 | 4034 | 3486 | 3785 | 3357
0.40 800 2B 28 days 4x8 499.8 | 534.7 —— —_—
6x12 | 4741 | — | — | —
1 day 4x8 | — | — | —/— [ —
2C | 28days | 4x8 | — | — | — | —
6x12 | — | — | — | — |
Tday | 4x8 | 3432 ] 203.4 ] 3183 | 3233 ||
3A 28 days 4x8 437.7 | 465.0 | 437.7 | 452.6
0.45 700 6x12 — e e —
1 day 4x8 e ———— — —
3B 28 days 4x8 -—- — — —
6x12 390.0 | 3900 | 390.0 ——
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Appendix IV (c): Splitting-Tensile Strength Data of Concrete Containing
Ultimax Cement (w/cm = 0.50)

Cylinder Splitting-Tensile
Cement Content | Mix Size Strength
(Ib/cyd) No. Age (in.) (psi)

| -

1 day 4x8 1442 | 141.2
15A | 28 days 4x8 291.0 | 308.4
580 6x12 265.2 | 236.5
1 dav 4x8 139.3 | 149.2
I5B | 28 days 4x8 298.4 | 291.0
6x12 247.1 o
1 day 4x8 266.6 | 263.6
4A 28 days 4x8 375.5 | 4153

T

[
o
~)
O
»
&
o
~

600 6x12 3444 | 3356
1 day 4x8 e R

4B 28 days 4x8 373.0 | 375.5

6x12 275.2 | -——

1 day 4x8 | 2785 | 2745
14A | 28days | 4x8 | 473.5 | 4650
620 6x12 | 442.5 | 4244
1 day 4x8 | 3213 | 309.4
14B | 28days | 4x8 | 4924 | 4824
6x12 | 4156
I day 4x8 | 1915 ] 2114
13A | 28days | 4x8 | 3482 | 3606
640 6x12 | 3338 | —
1 day 4x8 | 2188 | 1964
13B | 28days | 4x8 | 412.8 | 363.1
6x12 | 358.1 | 3404
1 day 4x8 | 1915 ] 2014
12A [ 28days | 4x8 | 363.1 | 3556
660 6x12 | 3669 | 3227
1 day 4x8 | 2014 | 186.5
12B | 28days | 4x8 | 3755 | 370.5
6x12 | 4266 | —
1 day 4x8 | 2437 ] 2412
11A | 28days | 4x8 | 392.9 | 392.9
680 6x12 | 298.4 | 3112
1 day 4x8 | 2611 | 2711
11B | 28days | 4x8 | 380.5 | 3830
6x12 | 3780 | —

HE T e
TR A A A it
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Appendix IV (d): Splitting-Tensile Strength Data of Concrete
Containing ASTM Type /Il Cement

(w/ecm = 0.30-0.50)

Cylinder Splitting-Tensile
Cement Content| Mix Size Strength
w/ecm (Ib/cyd) No. Age (in.) (psi)
0.30 2000 18 1 day 4x8 475.0 | 445.1 | 493.4
28 days 4x8 678.9 | 639.1 | 631.6
20A 1 day 4x8 440.2 — ——
0.35 1643 28 days 4x8 —— o —
20B 1 day 4x8 450.1 | 4238 | -—
28 days 4x8 6127 | 6714 | 621.7
16A 1 day 4x8 375.5 —— e
0.40 1288 28 days 4x8 ——— — ——
168 1 day 4x8 417.8 | 4327 | -
28 days 4x8 6242 | 591.8 | -
19A 1 day 4x8 340.7 o e
0.45 1089 28 days 4x8 — ———— ——
19B 1 day 4x8 3044 | 3332 | —
28 days 4x8 646.6 | 656.5 | 624.2
0.50 890 17 1 day 4x8 298.4 | 323.3 | 308.4
28 days 4x8 524.7 | 5779 { 5744
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Appendix V (a): Bulk Density Data of Concrete Containing
Ultimax Cement (w/cm = 0.30)

Cylinder
Cement Content { Mix Size Bulk Density
(Ib/cyd) No. Age (in.) (pch)
1 dav 4x8 153.5 | 1540 | —
10A | 28days | 4x8 1540 | 1549 | —
1000 6x12 | 1533 ] 1532 | —
1 day 4x8 153.7 | 1542 | —
10B | 28days | 4x8 1544 | 1538 | —
6x12 11536 | 153.3 | —
1 day 4x8 151.8 T 1523 | —
9A | 28days | 4x8 152.3 | 1523 | —
1033 6x12 | 1516 | 1514 | —
1 day 4x8 1523 | — | —
9B | 28days | 4x8 152.1 | 1528 | —
6x12 [ 1524 | 1522 | —
1 day 4x8 — | — | —
8A | 28days | 4x8 1525 | 1525 | —
1067 6x12 | 1512 | 1516 | —
1 day 4x8 [ 1528 | 152.5 | 1514 il
8B | 28days | 4x8 | 153.7 | 1540 | — |
6x12 | 1516 | 1492 | — |
1 day 4x8 —— —— —
7A | 28days | 4x8 153.0 | 151.8 | —
1100 6x12 | 1519 | 151.0 | —
1 day 4x8 153.0 | 152.3 | 153.0
7B | 28days | 4x8 153.2 | 1538 | —
6x12 | 1519 [ 151.6 | — |
lday | 4x8 ] 1502 | 1509 | 1528 |
6A | 28days | 4x8 154.5 | 1525 | —
1133 6x12 | 1512 | 1515 | —
1 day 4x8 — | — ] —
6B | 28days | 4x8 152.1 [ 1528 | —
[ 6x12 [ 150.1 | 150.4 | —
I 1 day 4x8 | — T 1 —
SA | 28days | 4x8 152.1 | 1518 | —
6x12 | 1506 | 1501 | —
I day 4x8 —— — —
1166 SB [ 28days | 4x8 1523 | — | —
6x12 | 1505 [ 1505 | —
1 day 4x8 1513 | 1514 | 1516
5C 28 days 4x8 152.5 —— —
6x12 — —- ——
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Appendix V (b): Bulk Density Data of Concrete Containing Ultimax
Cement (w/cm = 0.35-0.45)

Cylinder 1
Cement Content | Mix Size Bulk Density
wiem (Ib/cyd) No. Age (in.) (pch
]
1 day 4x8 —_— —— — |
1A 28 days 4x8 155.4 e ——
6x12 151.4 — ———
1 day 4x8 — — —
1B 28 days 4x8 153.3 | 151.4 ——
0.35 900 6x12 151.6 | 152.8 e
1 day 4x8 152.6 | 152.3 150.2
IC | 28days | 4x8 | 1514 | — | —
6x12 ———- — —e
1 day 4x8 o o e
ID [ 28days | 4x8 | —— | — | —
6x12 ]
1 day 4x8 [ 1532 [ 154.7 | 153.5 |
2A 28 days 4x8 154.2 | 1549 e
6x12 152.0 | 150.8 ——
1 day £x8 — | — | —
0.40 800 2B 28 days 4x8 152.3 | 154.7 e
6x12 151.5 | 151.7 —
1 day 4x8 — — —
2C 28 days 4x8 —— —— -
6x12 153.8 | 154.2 | 153.8 ]
1 day 4x8 [ 1504 [ 1523 ] 151.4 |
3A 28 days 4x8 152.3 151.4 153.0
0.45 700 6x12 — — —
1 day 4x8 —— — —
3B [ 28days | 4x8 | —— | — | —
6x12 1534 | 1520 | 1529
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Appendix V (c): Bulk Density Data of Concrete Containing
Ultimax Cement (w/cm = 0.50)

Cylinder
Cement Content | Mix Size Bulk Density
(Ib/cyd) No. Age (in.) (pch)
| |
[ 1 day 4x8 1502 | 1502 | —
15A | 28 days 4x8 151.8 | 151.1 | —
580 6x12 | 150.0 | 1511 | —
1 day ix8 1489 | 1502 | —
15B | 28 days 4x8 150.2 | 1507 | —-
6x12 | 1493 1 1500 | —-
1 day 4x8 151.1 | 151.3 | 151.8 |
4A | 28 days 4x8 1514 | 1514 =~
600 6x12 | 1516 | 1514 | —
1 day 4x8 — | — ] —
4B | 28days 4x8 152.5 ] 1518 | —
6x12 | 150.3 — |
1 day 4x8 1535 J152.6 | — |
14A | 28 days 4x8 152.8 | 151.8 | —
620 6x12 | 1520 [ 1522 | —-
1 day 4x8 1514 | 1533 | -—
14B | 28 days 4x8 153.7 | 1526 | —-
6x12 | 1528 [ 1527 | — |
Tday | 4x8 ] 1521 ] 1514 ] — |
13A | 28 days 4x8 1514 | 151.9 | —
640 6x12 ] 1508 | — | —
1 day 4x8 1509 | 1513 | —
13B | 28 days 4x8 151.8 | 150.7 | —
6x12 | 1496 [ 1498 | — |
1 day 4x8 1502 [ 150.7 | — |}
12A | 28days 4x8 1516 | 151.1 | ——
660 6x12 | 1494 ] 1502 | —
1 day 4x8 150.7 { 1502 | —
12B | 28 days 4x8 152.1 | 151.8 | —-
6x12 11507 — T —1
1 day 4x8 ] 1516 | I51.9 | — |
11A | 28days 4x8 1502 | 150.7 | —-
680 6x12 | 1497 | 1493 | —
1 day 4x8 1516 | 1513 | ——-
11B | 28days 4x8 1523 ] 1530 | —
6x12 | 1506 ] 1503 | —
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Appendix V (d): Bulk Density of Concrete Containing ASTM Type /Il
Cement (w/cm = 0.30-0.50)

Cylinder
Cement Content| Mix Size Bulk Density
w/cem (Ib/cyd) No. Age (in.) (pch)
0.30 2000 18 1 day 4x8 [ 1456 | 1452 | 145.4 ]
28days | 4x8 147.0 | 146.1 | 146.6 |
r 20A | 1day 4x8 [ 1482 | — | — |
0.35 1643 28days | 4x8 1488 | — | —

20B 1 dav 4x8 146.6 | 146.4 | 146.4
28 days 4x8 147.3 | 1480 | 1485
16A [  1day 4x8 149.7 [ 1494 | —
0.40 1288 28 days 4x8 e — —omem
16B 1 day 4x8 1476 | 1475 | —
28 days 4x8 147.6 | 1480 | 1487 |
19A | lday | 4x8 ] 1507 | — | — |
0.45 1089 28 days 4x8 1513 | — — |
198B 1 day 4x8 148.5 | 1480 | 148.0 ||
28days | 4x8 149.2 | 149.0 | 148.8 |
0.50 890 17 1 day 4x8 149.7 T 150.1 | 149.4 ]
28 davs 4x8 150.4 | 150.2 | 150.4 ||
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Appendix VI (a): Shrinkage and Expansion Data of Concrete
Containing Ultimax Cement (w/cm = 0.30)

Cement Content | Mix Shrinkage (x 10 in_/in.)
(bcyd) No. | Age(days) | Air-dried Water-cured Average
(Shrinkage) (Expansion) Expansion

0 ] 0 0 0

0.125 (3 hr) 20 -30 -40 38
1 -10 -110 -150 -130
3 40 -220 220 20
1000 10A 7 50 20 230 225
14 _— — — —
28 170 -250 -240 245
56 240 -180 -230 205
90 320 210 -220 215

0 0 0 0 )

0.125 (3 br) 0 10 -10 25

1 0 -100 -90 95
3 -30 -130 -150 -140
1033 9A 7 20 -160 -170 -165
14 60 -160 -180 -170
28 140 -190 -220 -205
56 260 -260 -260 -260
90 320 -350 -340 -345

0 0 0 0 0

0.125 (3 hr) 30 50 60 55

1 80 -50 -0 -55
3 110 -110 -110 -110
1067 8A 7 70 -170 -140 -155
14 120 -140 -150 -145
28 250 -170 -220 -195
56 350 240 -40 -140
90 400 -360 -340 -350

0 0 0 0 0

0.125 (3 hr) 80 60 50 55

1 80 0 -30 45

3 % -110 -70 90
1100 7A 7 60 -170 -140 -185
14 100 -170 -120 -145
28 210 -190 -140 -165
56 290 -160 -130 -145
90 330 -210 -180 -195

0 0 ] 0 0

0.125 (3 hr) 80 20 -50 -35
1 10 -100 -100 -100
3 40 -120 -110 -115

1133 6A 7 70 -160 -150 -155
14 80 -170 -170 -170
28 240 -200 -180 -190

56 350 210 200 -205
90 460 -330 -330 -330

0 ] 0 0 0

0.125 3 hr) 60 20 10 15

1 30 -90 -70 -80

3 10 90 90 90

1166 SA 7 30 -140 -120 -130
14 80 -170 -150 -160

28 190 -170 90 -130

56 250 -170 -140 -155

90 350 -230 -200 215
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Appendix VI (b): Shrinkage and Expansion Data of Concrete Containing
Ultimax Cement (w/em = 0.35-0.45)

Cement Content | Mix Shnnkage (x 10* n.sin )
wic (Ib/evd) No Age (days) Arr-dned Average Water-cured Average
(Shnnkage) Shnnkage (Expansion) Expansion
[s} 1} 0 0 (] 0 (4] ] V]
01253 hr) -10 -30 -30 -3 -90 -2 -120 -n
1 80 S0 70 67 -70 -30 -80 50
3 T0 20 30 40 -100 -70 -100 90
03s 900 D 7 0 40 80 63 -100 -70 -110 -93
14 150 110 160 140 -80 -60 -80 -3
28 260 220 250 243 -70 -50 -30 £7
56 410 360 380 383 -50 -20 -50 -0
Q0 310 370 390 390 -110 -70 -80 -87
0 0 0 [ 0 0 0 0 0
0125(3 hr) 20 50 30 33 60 -70 10 <40
1 30 50 -10 23 -11o -100 -80 97
3 100 110 110 107 -50 -80 -100 -n
04 800 2c 7 80 110 110 100 -90 -l110 -100 -100
14 120 160 160 147 -70 -110 -100 93
28 220 300 240 253 -70 -100 -100 -9
56 350 410 380 380 10 -80 -70 63
90 340 400 370 370 -90 -100 -110 -100
0 0 (o} 0 0 0 [ 0 [
0.125(3 hr) -120 50 100 10 -20 -50 -30 -33
1] -120 -10 60 -3 -100 <20 50 60
3 -50 20 80 17 -100 -0 -80 .73
045 700 3A 7 130 140 -290 -7 0 0 -S0 .17
14 30 160 260 150 -20 10 -10 -7
28 190 250 340 260 -30 -70 -10 -37
56 280 340 430 350 0 -0 -20 -20
90 180 310 410 300 -80 -90 -50 63
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Appendix VI (¢): Shrinkage and Expansion Data of Concrete Containing
Ultimax Cement (w/cm = 0.50)

Cement Content | Mix Shrinkage (x 10 inin.)
(Ib/cyd) No. | Age (days) Air-dried Average Water-cured Average
(Shrinkage) Shrinkage (Expansion) Expansion
0 0 J— — 0 0 0 —_ [
0.125 (3 hr) 30 —_ -— 30 -30 -70 _— -50
1 40 —_ _— 40 10 90 — -40
580 15A 3 170 —_ — 170 70 <70 —_— 0
7 160 —~— _— 160 20 -110 —_— 2]
14 190 — _— 190 20 -100 — -0
28 280 —_ -_— 280 30 -110 —_— 40
56 310 _ —_— 310 70 -80 — -5
90 380 — o 380 60 -50 — S
0 0 0 0 0 0 0 0 0
0.125 (3 hr) -80 -20 -30 43 -70 -30 90 -80
1 -70 0 -50 40 40 -70 -110 -3
600 4C 3 30 100 60 63 -10 -20 -100 43
7 -10 30 30 17 =20 -20 90 63
14 80 160 150 130 10 -50 -50 -30
28 140 230 230 200 0 -50 -70 -40
56 230 320 280 2n 20 20 70 -10
90 220 310 300 277 0 50 -70 43
0 0 — J— 0 0 0 —_— 0
0.125 (3 hr) 40 —_— — 40 -10 =70 — -40
1 10 _ — 10 -140 -200 —_— -170
620 14A 3 30 —_— — 30 -190 <240 — =215
7 60 — — 60 -170 270 — -220
14 90 —_— — 90 -200 -280 —_— -240
28 160 _— — 160 -210 -310 — -260
56 220 — —_— 20 -280 2270 — 275
90 270 — — 270 -180 -280 — -230
0 0 — — 0 0 0 — 0
0.125 (3 hr) 30 —_— — 30 10 i} _— s
1 20 — _— 20 -50 -70 — 60
640 134 3 10 — — 10 -90 -50 -— -70
7 20 —_— — 20 -130 90 — -110
14 150 —_— _— 150 -80 50 —_— -70
28 230 —_— — 230 -100 40 — -70
56 260 —_ — 260 -100 ) —_— -80
90 320 —_— — 320 -80 40 — 60
0 0 —_— — 0 0 0 Ju— 0
0.125 (3 hr) 30 — -_— 30 -80 -80 —_— -80
1 20 — — 20 -190 ~200 —_— -195
660 124 3 20 — —_— 20 -250 -240 — 245
7 20 —_— —_— 20 -260 -260 — -260
14 130 -— —_— 130 -240 -230 — -235
28 220 — _— 220 -260 2260 — -260
s6 240 —_— -— 240 -260 =270 —_ -265
90 310 — f— 3 -210 -220 — 215
0 0 —_— — 0 0 0 —_ 0
0.125 (3 hr) 30 —_— — 30 -50 -50 —_— -50
1 10 —_— — 10 -100 -100 -— -100
680 1A 3 -10 —_ — -10 -150 -120 —_— -135
7 30 _— — 30 140 -120 —_— -130
14 70 —_— — 70 -150 -90 —_— -120
28 120 —_— _— 120 -150 -130 — -140
56 290 _— — 290 -190 -90 —_ -140
90 290 —— — 290 -140 -70 — -105
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Appendix VI (d): Shrinkage and Expansion Data of Concrete Containing
ASTM Type I/II Cement (w/cm = 0.30-0.50)

Cement Content | Mix Shnnkage (x 10* in/in)
wicm (Tbreyd) No. Age (days) Auwr-dned Average Water-cured Aversge
(Shrinkage) Shrinkage (Expansion) Expansion
o 0 — —_— 0 0 0 —_— [t}
0125 hr) 120 — _— 120 -30 0 —_ -15
1 150 —_— — 190 -50 60 — -55
3 20 — — 20 -80 -80 — -80
0.30 2000 18 7 380 _— — 380 -100 -90 — -95
13 580 — —_— 580 -120 -100 —_— -110
28 650 — _-— 690 -180 -160 — -170
56 910 — _— 910 -280 -210 —— -260
90 1170 - - 1170 -310 -270 — -290
0 0 —_— — 4] 0 0 — 4]
0.125(3 hr) 80 — — 80 -30 -20 —-— -25
1 100 — —_— 100 -80 -50 — 65
3 210 — —_ 210 -110 -50 —_— -100
035 1643 20B 7 360 —_— _— 360 -90 -80 — -85
14 540 -—_ —_ 540 -120 -90 — -108
28 T20 -— — 720 -170 -170 — -1
56 990 -— —_— 990 -240 .230 -— -23§
90 1220 —— — 1220 -280 -280 — -280
V] 0 ] 0 0 0 0 0 0
0.125(3 hr) 130 150 100 127 k() 50 30 50
i 100 150 90 113 -10 10 -50 -17
3 230 300 160 230 10 -10 -0 -23
0430 1288 16B 7 300 290 310 300 -50 -80 -90 -3
14 530 510 530 523 -50 -70 -80 67
28 800 750 800 783 -830 -100 -100 93
56 1150 1080 1130 1120 -90 -130 -140 -120
90 1300 1240 1300 1280 -150 -170 -180 -167
[} 0 — — 0 o (] —_— 0
0125(3 hr) 80 —_— — 30 [} -170 —_— -85
1 80 _— — 80 -0 -180 -— -i10
3 200 — — 200 -70 -10 — -0
045 1089 198 7 330 — — 330 -10 20 — -10
14 480 —— —— 480 -70 i0 — -30
28 740 — — 740 -110 <40 — -7s
56 990 — —— 990 -130 60 — -95
90 1150 e — 1150 -140 -80 — -110
0 0 0 ] 0 0 0 0 0
0.125(3 hr) 30 80 90 67 -0 20 0 -7
! 110 120 140 123 -100 -30 -100 -7
3 160 170 160 163 -100 -70 -80 -83
0.50 890 17 7 360 350 330 7 -120 -70 -90 -93
4 490 520 510 7 -120 -0 -80 -90
28 m 750 150 757 -120 60 -110 97
56 960 NO 950 950 170 -100 -130 -133
90 1040 1040 1060 1037 -170 -120 -130 -140
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Appendix VII: Equations for Statistical Analysis

mean, U, = (Zx)/n

The standard deviation, G, is a measure of how widely values are from the average value

(the mean).

The coefficient of variation, v, is used to compare the relative dispersion of more than one

kind of data.

v=0o/u

The covanance, Cov (X, Y), is the average of the products of deviation for each data point

pair. It is used to determine the relationship between two data sets.

Cov(X, ¥) = Z(x - u)(y - 1y)
n

The correlation coefficient, R, is used to determine the relationship between two

properties.

R=Cov(X Y)

OxOy
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