
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2012

SEMANTIC DISCOVERY THROUGH TEXT
PROCESSING
Bieu Binh Do
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Do, Bieu Binh, "SEMANTIC DISCOVERY THROUGH TEXT PROCESSING" (2012). Master's Projects. 282.
DOI: https://doi.org/10.31979/etd.gn9f-88ut
https://scholarworks.sjsu.edu/etd_projects/282

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70408313?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F282&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F282&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F282&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F282&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F282&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/282?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F282&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

1

SEMANTIC DISCOVERY THROUGH TEXT PROCESSING

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science

By

Bieu Binh Do

December 2012

2

© 2012

Bieu Binh Do

ALL RIGHTS RESERVED

3

The Designated Committee Approves the Writing Project Entitled

SEMANTIC DISCOVERY THROUGH TEXT PROCESSING

by

Bieu Binh Do

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

December 2012

 Dr. Tsau Young Lin Department of Computer Science

 Dr. Robert Chun Department of Computer Science

 Dr. Howard Ho IBM Almaden Research Center

4

ABSTRACT

SEMANTIC DISCOVERY THROUGH TEXT PROCESSING

by Bieu Binh Do

As the world embraces the digital era, unprecedented volumes of information are

generated and consumed daily. It becomes difficult to comb through mountains of

documents to locate search topics. With inherent ambiguity in human languages,

conventional methods using straight text pattern match cannot resolve words having

multiple meanings and often misinterpret user intent. There is a need to develop a system

able to identify the target topic and return quality relevant links, ending the tedium of

rummaging through piles of unrelated links that may get lost in the rubble. An example

search of the words “sound investment” helps to illustrate this point. Both Google and

Bing return result sets that disorderly interleave musical services and financial planning

links, two very different subject matters. User is left to cherry pick manually among the

results for the intended links. To combat this problem, this project seeks to develop a

new automated methodology for classifying web content by semantics, featuring machine

learning capability that can adapt to a rapidly changing environment. This will enable a

new type of search engine that organizes results according to related topics.

5

ACKNOWLEDGEMENTS

I would like to thank Dr. Tsau Young Lin, my teacher and advisor, for the honor

of working with him on this innovative project.

I’d like to thank Dr. Robert Chun and Dr. Howard Ho for their gracious

participation in my thesis committee.

Finally, I’d like to thank my wife Cathy for encouraging me to return to school to

pursue my advanced degree.

6

TABLE OF CONTENT

1 Introduction ... 8

2 Ordered Simplicial Complex to Model Human Concepts ... 9

2.1 Text Ordering ... 11

2.2 Keyword Simplicial Complex .. 13

3 Algorithm... 13

3.1 Techniques from data mining ... 13

3.1.1 Apriori .. 14

3.1.2 Support... 14

3.1.3 TF-IDF ... 15

3.2 Software Design ... 16

3.2.1 Top level design ... 16

3.2.2 Crawler ... 16

3.2.3 Preprocessor .. 16

3.2.4 Parser and Tokenizer ... 18

3.3 Candidate Generator and Pruning .. 19

3.3.1 Breadth first rather than depth first .. 19

3.3.2 Human Concepts .. 22

3.3.3 Knowledge Base ... 25

3.4 Implementation Details .. 26

3.4.1 Pseudo code ... 26

3.4.2 Runtime parameters of paragraph size and frequency thresholds 26

3.4.3 Known words and stop words ... 28

3.4.4 Algorithm Analysis ... 29

3.4.5 Code ... 30

3.4.6 Bottlenecks... 31

3.4.7 Detailed description of each C++ classes ... 31

4 Analyses and Results ... 33

4.1 Data set IEEE International Conference on Social Computing 33

7

4.2 Anomalies... 35

4.3 Google Data.. 38

4.3.1 Search for “mobile computing” ... 39

4.3.2 Search for “sound investment” .. 39

4.3.3 Search for “greenhouse effect” ... 41

4.3.4 Search for “court ruling” .. 42

5 Applications ... 43

5.1 Semantic Search ... 43

5.2 Examiner .. 44

6 Encouraging Results .. 45

7 References ... 46

8

1 Introduction

The enormity and wealth of information available on the net is undeniable.

Searching for a topic can end in frustration when it returns pages upon pages of

disorganized results to scan through until the relevant ones emerge. We are hitting the

limitations of the traditional search engine model, which are not semantically aware. By

using primarily pattern matching to index web pages, conventional search models cannot

automatically detect keyword semantics and therefore cannot organize results into

meaningful groups.

The purpose of this project is to develop an automated clustering technology that

self discovers document semantics through textual analysis. Through cumulative

machine learning by continually crawling the web and processing new documents, it will

build up a comprehensive knowledge base capable of supporting semantic aware

applications. The obvious first of such applications is the semantic aware search engine

that automatically classifies web pages by meaningful topics. This innovative approach

extrapolates semantic knowledge without requiring web sites to alter or augment their

HTML pages with special tags. Working with existing web content, this passive

approach to semantic learning is a major advantage over methods which require authors

to tag their web pages with special constructs or parallel metadata publishing, such as

using the Resource Description Framework (RDF). Such manual techniques are labor

intensive and are error prone.

The methodology discussed in this paper is based on Dr. Tsau Young Lin’s research

paper on Granular Computing in 2005 (Lin and Chiang) and subsequent work in 2008

9

(Lin and Hsu). He proposed semantic knowledge can be captured by using the geometric

structure called simplicial complex and explained how to apply it in actual

implementation. This project focuses on the application of that theory and delivers

working software that illustrates the methodology and analyzes the results as compared to

those from Google.

2 Ordered Simplicial Complex to Model Human Concepts

In Dr. Tsau Young Lin’s research paper on Granular Computing (GrC), he

transforms the knowledge learning problem into a mathematical model. He proposed the

semantics of a document can be captured using the simplicial complex structure. Built

upon processing comprehensive text documents, this structural model then becomes the

knowledge base from which to build a semantic search engine.

The term human concept is used to represent an idea, an event, a topic, an abstract,

a unit of knowledge. We propose a method to capture human concepts through textual

analysis of regular documents. The basic premise of the theory is to scan documents to

mine for high frequency co-occurring set of keywords that appear in the same paragraph

or are close to each other, forming a list of keywords call keyword sets. Closeness is

defined by works appearing within the same paragraph or within a predefined maximum

distance, which is a word count value that determines how far apart words can be in a

document and still be considered co-occurring. In this way, keyword sets are not

required to appear consecutively in the document. They just need to satisfy this closeness

property. When a keyword set appear in significant frequency in many documents then it

10

becomes a human concept. In the simplicial complex model, the keywords are mapped to

vertices and the keyword sets are mapped to groups of vertices connected by edges to co-

occurring keywords. Each keyword set thusly forms an n-simplex (also called granule),

with n denoting the number of points (keywords) in the granule. Further, we only collect

the maximal n-simplexes in the graph in our final structure. A maximal simplex is

defined to be a simplex that is not the face of another simplex. Illustrated in Figure 1 is

an example of a partial simplicial complex structure that can be derived from a set of

documents relating to social networking study in a university. The following simplices

are found:

1) Two maximal 3-simplices (tetrahedron)

 computer science department university

 online social network analysis

2) Three maximal 2-simplices (triangle)

 computer network department

 computer network application

 social network application

3) Three maximal 1-simplices (segment)

 network cluster

 cluster coefficient

 mobile application

11

computer

social
network

science

university

analysis

department

application

online

cluster

coefficient

mobile

Figure 1: Keyword Simplicial Complex

2.1 Text Ordering

There is an underlying order assumption made that is not illustrated in the graph.

Observe that in real textual content, keyword (vertex) order matters. Most of the time, a

concept made up of several words only makes sense in one unique relative order.

Therefore, an n-simplex built from real text usually only originated from n words that

were used in a unique relative order within a paragraph, or otherwise the same set of

words is unintelligible and probably never occurs in real text. For example, “application

mobile” is not a normal way to speak about “mobile application,” at least not in the

English language. In the above graph example, the 3-simplex “online social network

analysis” was derived from a document which had a paragraph using these words in the

following context and relative order. Here is the excerpt:

12

The research of online social relations has indicated

that there exist different levels of engagement between

users

…

The social network under analysis was first identified

using the SMS and phone call logs of the handset-based

measurement data.

In this example, the four words were formed from multiple sentences that were

close together and were advanced as a human concept because the same four words

occurred in sufficiently high document frequency. We argue the same four words would

not have been derived from text with alternative relative order such as “online analysis

network social,” which is non-sensible in normal English speech. That relative sequence

may still occur in some documents but existence of such sequence will be coincidental

and will not occur in significant frequency to elevate it into 3-simplex structure in the

way that the natural English language order did.

However, there are some cases where a keyword set does have intelligible and

meaningful semantic when arranged in alternative ways. As another example above, the

2-simplex “social network application” takes on a different meaning when rearranged to

“social application network.” So it is conceivable another set of documents with such

meaningful alternative word arrangements can generate the same 2-simplex structure.

Therefore, we must account for that and preserve the order property in our graph. To that

end, we are employing ordered simplicial complex so that such situation will result in

two separate simplices. This is one key advantage of our methodology over conventional

search engines because it is able to capture and distinguish such ambiguities. For

13

uncluttered clarity, the ordered property is not illustrated in the simplicial complex graph

above but should be assumed to be part of the stored information in each simplex.

2.2 Keyword Simplicial Complex

We call the simplicial complex graph the Keyword Simplicial Complex (KSC) (Lin

and Hsu) or equivalently for this paper, the knowledge structure. Dr. Lin’s theory

implies that two documents of similar content would have the same or similar KSC.

Furthermore, documents with overlapping ideas will also share similar portions of the

KSC. Using this notion, we can build a comprehensive knowledge base by accumulating

and combining knowledge graphs from scanning many different documents.

The main focus of this paper is in the construction of such a comprehensive

knowledge base. We envision real world construction of such knowledge base to be

scanning all documents on the Internet and constantly monitoring for new additions to

ingest. The more documents ingested, the more complex the structure becomes and the

more knowledge it holds. From this extensive knowledge base, then smarter and

semantically aware applications can be developed.

This paper will also demonstrate the usage of the knowledge base in two

applications: a semantic search engine and in an examiner utility that attempts to decipher

the main topics of a previously unseen document.

3 Algorithm

3.1 Techniques from data mining

14

3.1.1 Apriori

There are a few existing data mining techniques that are utilized by this algorithm.

In determining the frequency of a keyword set, the Apriori principle is used to quickly

eliminate keyword set candidates that can never become frequent. Because Apriori states

that a set’s frequency of occurrence cannot be more than any of its subsets, it follows that

infrequent subsets implies infrequent superset. This notion is applied during candidate

generation. With 2
d
 possible subsets within a distance of d keywords, this theory helps to

eliminate many possible candidates, reducing the computation and storage requirements

by orders of magnitude.

3.1.2 Support

Another definition that comes from existing data mining techniques is the

measurement of support of an association rule. This value ranks the relative frequency

among all of the keywords found.

For this paper, the support of a keyword or keyword set is the percentage of

scanned documents that contains the keyword set. The keyword set is formed and

retained when its support satisfies a minimum threshold value.

Let keyword set K = {k1, k1, …, kn},

 ()

The confidence measure in data mining is not important and not used in this

methodology.

15

3.1.3 TF-IDF

Term Frequency-Inverse Document Frequency (TF-IDF) is a basic measure of not

only the frequency of occurrence of a term but it also attempts to rank its importance.

Based on this formula, a term may be accepted when it exceeds a frequency threshold

minimum but may be eliminated if it becomes too frequent. We modify this formula to

apply to a keyword set.

Let keyword set K = {k1, k1, …, kn} and let d be the document containing K
Let D be the set of all documents,
Let frequency F(K, d) to be count of K in document d

 (,)
 (,)

 (,)

 (,) (

)

 (,) (,) (,)

As seen in the TF-IDF formula, there is a penalty to a term occurring in too many

documents. This may seem counter-intuitive but the reasoning is that a common phrase

(stop words, conjunctions, articles) that appears in every single document is not important

and therefore its IDF approaches zero as it approaches 100% occurrence, consequently

resulting in zero TF-IDF regardless of the TF term.

In our algorithm, the concept of TF-IDF is used at different stages of the algorithm

to help prune candidate keyword sets.

16

3.2 Software Design

3.2.1 Top level design

Figure 2: Processing stages

The software (herein also described as the system) work flow diagram presents a

high level view of the key software components, illustrating the basic processing stages.

The processing stages to the right of the parser form the core of our design model and

perform the important work while the others are compacting and priming the data.

3.2.2 Crawler

The Crawler is a process that goes out and scans websites and downloads their files

into the local drive for processing. Although the Crawler is not an integral part of the

algorithm, for completeness, it is shown here as an entry point. This project does not

develop the Crawler and this project obtained a Crawler implemented by Dr. Lin’s past

classes.

3.2.3 Preprocessor

The input data to the system is a set of documents provided by the Crawler. The

chain of processes from the preprocessor and on to the final human concept discovery

Crawler

Preprocessor Parser &
Tokenizer

Pruning

Human
concepts

Candidate
generator

17

constitutes the software system that was developed for this project. There are two types

of files encountered as input to this software: HTML and plain text. Strictly speaking

they are both text files.

Raw HTML data from the web will typically contain formatting information, layout

information, margins, hypertext, and other metadata that must be removed before feeding

it to our algorithm. This extraneous noise in the document, i.e. tags like

<html><link>style><bold><href>, contribute nothing to the knowledge base

and would waste computation cycle and storage. At worst these taints and distorts the

knowledge base.

Since we are concerned about a paragraph of text at a time, it is important to be

about to identify paragraph boundaries. This is a problem in both HTML and regular text

files. The actual text content is free flow and the author could have used any number of

ways to demarcate a paragraph. While a person reading a text document can visually

determine the beginning and end of a paragraph by cues such as blocks of text appearing

together, or double space between paragraphs, or indents, it is not easy for a program to

do so. If author chose to use a carriage return on every line, then programmatically,

every line may be detected as a separate paragraph. HTML tags can be used to detect

paragraph boundaries but that is also not used consistently nor enforced by the HTML

protocol, so it can’t be relied upon.

We still need to normalize the data to ensure the downstream stages are fed the

expected kind of data so they can spend their energy on the main functional processing

rather than having to anticipate errant inputs. In both types of files, proper preprocessing

18

requires some amount of heuristics and guesses to achieve good results. Because HTML

is a very loose standard and is not semantic aware, there is no easy way to extract only

the relevant content and throw away the junk data such as advertisements, site navigation

menus, command contacts information, and other irrelevant snippets. Such smart content

extraction and paragraph boundary determination would require an algorithm that is

beyond the focus of this project. Since the scope of this project is semantic extraction,

correctly detecting paragraph boundaries and removing all the extraneous noise in free

text is left as a future exercise. Therefore, the preprocessing stage was done manually to

extract only the main topic content from each document and discard the rest of the file.

3.2.4 Parser and Tokenizer

The parser starts the actual examination of each document and scans it for

keywords, essentially tokenizing the document and recording the term frequency of each

keyword. Any stop words encountered by it will be discarded. Stop words are words

that do not contribute to the core sentence topic. They are auxiliary words that help to

connect phrases and combine ideas but do not have core meanings by themselves. Such

words are the prepositions, articles, and modifiers. As it builds the keyword list,

decapitalization and stemming is simultaneously employed to find the unique root form

of each word so that there is one record that represent the same term. Removing

capitalization is straight forward as we don’t want to store something like “Spartans,”

“Spartans,” or “SPARTANS” as three different terms. Stemming is the process of

finding the unique root of a word. It is necessary for English text processing as many

forms of the same word occur due to conjugation, present and past tenses, and plurality.

19

The process of stemming decomposes the word to its root base so that we have just one

way to record a word. The code used is the Porter Stemming code that was downloaded

from the Internet (Martin Porter, 2006) and integrated into the code base.

After the document is tokenized and term frequency recorded, it will go through a

round of term frequency pruning. Only frequent keywords with at least minimum,

threshold frequency will be kept and the rest discarded. The output of this stage is a list

of frequent keywords.

3.3 Candidate Generator and Pruning

This stage starts the core of the algorithm. The algorithm’s uniqueness is in finding

co-occurring keywords that appear close to each other in a paragraph and record their

document frequencies. Note in the diagram, this stage is drawn as part of a cycle of three

processes. The cycle illustrates we will make multiple passes through it to generate the

candidates. It is essentially a bread-first search algorithm that finds all 1-keyword

candidates, then 2-keyword candidates, and so on. Therefore, each iteration results in a

new k-keyword list, starting with k=1. The algorithm stops when it gets to a k where

there is no more frequent k-keyword sets found or we artificially limit our algorithm run

to a maximum k.

3.3.1 Breadth first rather than depth first

Having to do one pass per k seem inefficient. Indeed, it is necessary to complete

the processing for one k before moving on to do it for k+1. Why not do depth-first and

simultaneously produce multiple k-lengths candidates? From the onset, it appears to

provide a more efficient generation strategy. That seems true until we look at the size of

20

the potential candidate space that must be generated at each stage. Using a bread-first

strategy allows us to employ some routines to mitigate this cardinality problem while

depth-first search will not. The bread-first strategy will allow us to discard many

candidates early on but not in depth-first search. In depth-first, that decision cannot be

made until the time and storage would have been expended. To better appreciate the

problem, let’s first let look at the exponential candidate growth problem in detail.

To find all the co-occurring keywords of length k within a paragraph, we need to

consider all the possible k-length “permutations” of the words in the paragraph.

“Permutations” is qualified here to be not permutations in its pure definition. We are not

permuting all the words in the paragraph. Instead, we are only considering permutations

that retain the relative order of the original word position. While this is a much smaller

set than the full permutation, it is still an exponentially large data set. The cardinality of

the candidate set is the following formula.

Let p = paragraph size, k = keyword set length

 ∑ (∏

)

Remember each keyword set retains the relative order in a paragraph so this

formula is a subset of k-permutations. Still, the growth of candidates is exponential and

is illustrated by the following example. For a short 20-word paragraph,

2-keyword possible candidates

 = (20*19) + (19*18) + (17*16) + ⋯ + (3*2) + (2*1) = 2660

3-keyword possible candidates

 = (20*19*18) + (19*18*17) + ⋯ + (4*3*2) + (3*2*1) = 35910

21

Suffice it to say, at higher k, the k-keyword candidates set quickly becomes

unmanageable. Luckily, to help mitigate this problem we have two tools to reduce the

candidate space. The first is Apriori and the second is TF-IDF.

Recall the Apriori principle has the property where a k-keyword set is frequent only

if all of its subsets are frequent. Turning it around with the antimonotone rule, if a k-

keyword set is not frequent, then any of its superset cannot be frequent. Leveraging this

fact, it implies if a k-keyword set is determined not frequent, then there is no need to

consider any of its superset for frequency. The bread-first search algorithm uses this fact

in each iteration to produce a list of retained candidates. That list becomes the only

candidate prefix to consider in the next iteration. In each successive iteration, it only

needs to consider those candidatete with prefixes that are part of that list handed off from

the last iteration. This is why the bread-first strategy is so desirable because such a k-

keyword set list cannot be determined until its iteration is complete. Only then can the

k+1 iteration be able to safely ignore the dead end keyword sets. The Apriori is

tremendously helpful and provides a huge reduction in the candidate set space.

Now we explain what is meant by retained candidates in the previous paragraph.

The implication is there is a test performed on each keyword set to see if it should be kept

or discarded. That brings us to the second tool used to help mitigate the cardinality

problem, using principles of TF-IDF. What is attractive about the formula is the principle

and behavior of it but we do not use the pure formula itself. For our algorithm, we are

interested in document frequency so term frequency (TF) is not so important to track.

We still use it as part of the calculation, but its count is not used directly. The IDF

22

formula behavior is more relevant to us because we like that it can help discover frequent

keyword set while at the same time will eliminate keyword sets that are too frequent, too

commonplace. Instead of using the actual IDF formula we only use a simple document

frequency (DF) percentage calculation for each keyword set, and then set a minimum and

maximum threshold points to determine if a keyword set is to be discarded. This

preserves IDF’s general behavior and avoids having to calculate the log function or track

term frequency.

Let keyword set K = {k1, k1, …, kn}
Let D be the set of all documents

 (,)

By using these two tools to reduce the candidate set, we have effectively turned

around an insurmountable problem into a manageable one. The actual pruning threshold

(user configurable) determines how much of the candidate space has been reduced.

Using an aggressive pruning threshold would give us smaller candidate space but can risk

discarding the important candidates (false negatives). On the other hand, using a relaxed

pruning threshold might bring back the cardinality problem if almost all of the candidates

are kept (too many false positives). It is a balance that must be fine-tuned. Experience

with several types of data set shows that the right threshold value depends on the data

content being processed so ultimately it may depend on the type of content being

processed.

3.3.2 Human Concepts

23

After the pruning stage at the end of each iteration, the resulting list of k-keyword

set is the human concepts of k-length. This is the target unit of knowledge the algorithm

set out to produce. However, note the human concepts stage is part of the iterative cycle,

which means it is still susceptible pruning at a later iteration. The type of pruning

employed at this stage is slightly different. Instead of examining just the DF formula, we

employ the maximal simplex property, which is to say we find all the simplex that cannot

be a face of another simplex. What this means is if a k-length human concept is

determined to be frequent (meaning it forms a simplex), then any human concept formed

by its subset should be discarded. Following our previous sample example of “online

social network analysis,” it would have progressed in the following way:

Iteration k Resulting k-keyword set Discard

1 online

2 online social online

3 online social network online social

4 online social network analysis online social network
Figure 3: k-keyword set evolution

While the maximal simplex property is clear in mathematics, it seems to present a

problem when applied to real life text. By this rule, it precludes the concepts of “online

social network” and “online social network analysis” from simultaneously being different

concepts since the longer 4-keyword set would prune the shorter 3-keyword set.

Certainly, there is a problem with mapping this mathematics model to real life text

because the two topics in this case should be recorded as two different concepts.

Therefore, we have to make an adjustment to the maximal simplex rule. We have to

allow subsets of it to exist in the final simplicial complex graph. Instead of blindly

24

discarding the shorter concept once the longer one is formed, we add an additional

document frequency comparison before discarding. In summary, we try to determine if,

in fact, the shorter keyword set is another concept altogether. Here is the formula to

determine if a non-maximal simplex should be retained:

Let Mk be a maximal simplex of size k

Mk-1 be a simplex contained by Mk.

Retain Mk-1 if (| Mk-1 | = 2 *| Mk |), otherwise discard

The modification is to consider the frequency of the subset keyword set to

determine if it itself is more than twice as frequent as the maximal simplex. The

reasoning behind this formula is that normally a human concept is described by a unique

k-keyword set and any of its subset counts only existed because they were temporary

keyword sets formed on the way to the final k-keyword set. The subset counts were

merely artifacts of finding the final k-keyword set. However, when the subset exists in

significantly frequency higher than the final k-keyword set, then we have to conclude that

the subset is itself a concept. This can be better explained by example. The following

table shows the evolution of “social network analysis” formation, with the additional test

of whether to discard or keep its subset keyword sets. Suppose the minimum threshold

frequency is set at 50.

Iteration k Resulting k-keyword set Frequency Discard or Keep

1 social 130 Discard

2 social network 105 Keep

3 social network analysis 51 Keep
Figure 4: Deciding whether to keep shorter keyword set

25

By Apriori, the table clearly shows the frequency of “social network analysis” is

less than that of “social network” whose frequency is in turn less than that of “social.”

All of them meet the minimum frequency threshold so are potential candidates to keep.

Now we compare adjacent iteration frequency counts using the new formula. The

keyword “social” count of 130 is compared to its adjacent iteration for “social network”

count of 105. While the count of “social” is more, it is not two times more, and so it is

discarded. Next, the keyword set “social network” count of 105 is compared to the count

of “social network analysis” of 51. 105 is more than twice 51, and therefore “social

network” itself is retained as a concept along with “social network analysis.”

3.3.3 Knowledge Base

After surviving this last pruning, we have the resulting human concept list and

collectively this forms the semantic knowledge base. This is the final knowledge table

we set out to produce and here is a sample query of it from the database in the capture

below. It is from this table of information alone that stores all of the semantic knowledge

learned. How well the algorithm has performed is determined by the results in this table.

More true positive concepts discovered into this table means we will be able to identify

real world concepts accurately. Too many false positives or false negatives would mean

we will misclassify often. The process of fine-tuning the algorithm and judging

improvements will often look at the results of this final table. In an ideal case, this table

will only contain relevant human concepts and grow automatically as new concepts arrive

on the web.

26

Figure 5: Knowledge base

3.4 Implementation Details

The software is designed as an object oriented program and is implemented in

Microsoft Visual C++ as a multithreaded process. It is largely ANSI-C++ compliant

except in thread management, IO system calls, and SQL database access.

3.4.1 Pseudo code

Load from database knowledge learned so far

For each k starting with k=1

{

 For each file f

 Parse and tokenize file f

 keywords <= decapitalize and stem

 keywordsets <= Permute candidates(keywords)

 keywordsets <= PruneUsingDF(keywordsets)

 keywordsets <= PruneSubsets(keywordsets)

 Record human concept to database

 If no more frequent k-keyword set found, exit loop

}

3.4.2 Runtime parameters of paragraph size and frequency thresholds

The software is configurable through some input runtime parameters so that there is

a level of control over how it behaves. This is necessary to allow fine tuning the analysis

without reprogramming. The exposed parameters are:

27

 Term frequency min and max threshold (as percentage)

 Document frequency min and max threshold (as percentage)

 Maximum keyword set length (in word count)

 Min and max paragraph size (in word count)

 Number of threads

It is the case that certain threshold values are better suited for certain types of data.

Only through many runs of the program and analyzing the results and fine tuning these

values do we arrive at some balanced approach.

The paragraph size parameter is an important one. It determines how far apart

words can be apart and still considered as potential concepts. By trial and error, we find

a good size for this to be 30. A smaller number may miss conceptual words that span

over many sentences. A number too small will end up processing short sentences, which

most likely do not have concepts to capture. Therefore, we specify a minimum paragraph

size and if a paragraph does not meet that minimum, it is merged together with the next

paragraph. On the other hand, a larger paragraph size will capture more but also may

capture more unrelated words and form false positives. It will also exponentially increase

processing time. As the next section shows, the algorithm’s complexity is largely driven

by the paragraph size. Therefore, it is necessary to specify an upper bound the maximum

paragraph size that will be analyzed so that the algorithm will finish. A good boundary

seems to be from a minimum of 25 to maximum of 30 words.

It is true that this algorithm processes keyword concepts by chunks of paragraphs

and it can miss those cases where a concept can span the paragraph boundary chosen. We

recognize this can happen, but if a concept is a true concept that occurs in many

documents, we may miss one but will capture the majority of its occurence.

28

The term and document frequency thresholds are obvious as their namesake. It is

found there are two basic ranges for these values. When the input data set is small, 20

files for example, the threshold percentage can be achieved quite easily by just a few

occurrences. For example, by just being found in 4 files in a 20 file data set, it is already

20% occurrence. However, if the entire data set was 1 million files, then demanding a

threshold of 20% (which is 200,000 occurrences) may seem too excessive. That is

because the criteria for determining keyword frequency are not linear as data set grows.

For example, if 10,000 unrelated people blogs about a particular topic, it ought to start

turning into a human concepts, regardless of whether it has passed a threshold minimum

percentage. However, for our project and in dealing with processing hundreds or even

thousands of files, the frequency threshold values chosen was between 0 to 95%.

3.4.3 Known words and stop words

The system allows manual input of known words or keyword sets directly into the

final human concepts database table. These become overrides and let the algorithm know

that they are real human concepts and need no further analysis. These entries become

permanent and will never be pruned during processing. This is a way to make the system

more accurate and identify known concepts to help jumpstart the system.

On the other hand, the system maintains a table of stop words. These are words that

are to be removed immediately when encountered. Stop words are defined to be things

like conjunction, preposition, articles, and abbreviations. The list is exhaustive and is

maintained in a special database table. There are already hundreds defined and user can

29

add more. If the word is in this table, it will be discarded immediately during parsing

time.

3.4.4 Algorithm Analysis

The algorithm runtime is dominated by the maximum desired keyword set length

(maximum k) and the number of potential candidates. In turn, the size of potential

candidates is determined by the size of an average paragraph. Therefore it is useful to

express the big-O analysis in terms of paragraph size and maximum k.

Recall that in processing one k-length keyword set in one paragraph, the number of

candidates generated was the sum of product formula. To simplify it, it can be bounded

by expressing it in terms of the average paragraph size.

Let p = paragraph size, k = keyword set length

 1 , 1 ∑ (∏

)

Then this formula is bounded by () < . This must be repeated for each k up

to the maximum k desired, call it K. So we have total

 1 ,

Let W = count of words in all documents processed, and let a constant C = (

) , then

the total candidates to process is

 (

)

30

With , the resulting big-O complexity is O (). That means the runtime is

determined by two factors, the maximum keyword length and the paragraph size. This

exponential complexity looks to run horribly infinite. If coded without an optimization

and pruning strategy, the execution runtime would never end in a real world system.

Luckily, as already explained, Apriori allowed us to safely ignore a sizable number of

dead end candidates in the early k-iterations. The algorithm can be viewed as front

loaded since it must fully process the initial iterations of k=1 and most of k=2 before it

has the ability to make decisions to ignore larger length candidates. As it progresses to

the higher k iterations, most of the permutations would have been eliminated. Therefore,

in read world situations, the behavior of the algorithm is probably closer to O ().

3.4.5 Code

The code was compiled as a true 64-bit executable and is designed to spawn

multiple threads in a multiple core system to speed up the process. The threading

happens in the parsing and tokenizing stage. Then all the candidates and final human

concepts determination are synchronized among all threads. A single database thread

writes the results to the database. Here are the specs of the computer system and retail

software used to compile and run the system:

• Core i7 dual core CPU

• Windows 7 64-bit

• Visual Studio 2010

• SQL Server 2008 R2

Running the algorithm in a modern dual or quad core CPU with hyper-threading

makes a big difference. Compiling in 64-bit as opposed to 32-bit also improved the

31

performance almost 100%. The number of threads to spawn is configurable so it can take

advantage of all cores available in the system. For example, a Dell PowerEdge R620

server with a dual Xeon six core CPU with hyperthreading has a total of 2 * 6 * 2 = 24

hardware threads. The program can utilize all of the 24 threads to process the files.

3.4.6 Bottlenecks

There are two major bottlenecks to the implementation, file IO and RAM memory.

The processing requires a lot of file reads and database reads, writes, and deletes.

Although keywords sets are not written to database until they are completed per iteration,

all records are subject to be further analyzed and pruned even after being recorded in the

database. All of this IO takes a toll on the system and tremendously depends on disk

drive performance. The other limitation to the algorithm is RAM. During processing, all

temporary objects and potential candidates are managed in RAM until they are relatively

permanent. The potential candidates, despite Apriori, can still be enormous, so the

program will require enough RAM in the system to operate properly. The larger the data

set the more physical RAM are required to run at acceptable speed. Reliance on virtual

memory and excessive paging should be avoided.

3.4.7 Detailed description of each C++ classes

This following describes the C++ modules of the Semantic Search project.

Filename Content

Sutoken.cpp main() function entry point to program

 starts running the algorithm

 initializes variables

32

 parses the command line

 open and close database connection

 manages the child threads.

Config.cpp/.h

Defines class CConfig for command line processing

PorterStemmer.cpp/.h

Stemmer functions

 Contains the stemmer function to find the root of a word.

This was code obtained from the Porter stemming algorithm

site http://www.tartarus.org/~martin/PorterStemmer. It was

modified to interface with the project.

TokenizerUtils.cpp/.h Defines various utility functions for initialization. It also

contains the CBenchmark class, which measures execution time

of the entire analysis, useful information for rating how well the

algorithm runs.

URLPage.cpp/.h

Defines class CURLPage for storing a webpage address and its

attributes.

DataStorage.cpp/.h

Defines class CDataStorage, which accesses the SQL Server

database. To support another DBMS such as Oracle, this is the

class to replace.

Token.cpp/.h

Defines class CToken which is used to represent a

token/keyword or a human concept.

FreqList.cpp/.h

Defines class CFreqList, which holds a list of CToken objects;

this would be a list of token or human concept objects. This

class will use CDataStorage class to save to the database.

ThreadManager.cpp/.h

Defines class CThreadManager. This is the heart of the

application and has all the core functionality. Its

responsibilities:

 database

 load existing data from database

 save analyzed data to database

 facilitates accumulating knowledge from the past runs

 manage start and stop child threads

 defines the child thread body itself

 defines the CSLock class for thread synchronization

 parse text files

 analyze permutations of co-occurring words (maintains

relative order)

http://www.tartarus.org/~martin/PorterStemmer

33

 data pruning

 determine stop words

 detect US address (currently not used)

 output to text files (currently not used since it writes to DB)

4 Analyses and Results

4.1 Data set IEEE International Conference on Social Computing

This is the training set of 21 file that was used to develop the algorithm. The

content of these files are the topics coming from the 2006 conference. The main topic is

on social computing. Running the files through the system, we would expect it to find all

the concepts related to social computing. If we take the top 50 concepts found, this is

what it found as human concepts:

 Human concepts

(stemmed)

Keyword

count Freq

Doc

Freq Original Text Distance
1

network social 2 207 16 networks Social 12

2
network structur 2 71 15 networks structural 42

3
network connect 2 66 13 networks connectivity, 52

4
network data 2 88 13 network data. 19

5
network analysi social 3 46 12 Network analysis social 42

6
network set 2 29 12 network. set 46

7
node network 2 76 12 nodes. networks 62

8
et al 2 67 12 et al. 3

9
network type 2 22 11 Network types 23

10
network result 2 31 11 networks, results 37

11
measur number 2 20 11 Measurements number 15

12
network commun 2 47 11 networks, communities. 36

13
network base 2 69 11 Network based 43

14
network comput 2 21 10 network. Computing 14

15
network edg 2 28 10 Networks edge 18

16
network group 2 47 10 networks. groups 14

34

17
network method 2 29 10 network method 12

18
network link 2 32 10 network links. 60

19
level differ 2 18 10 level different 36

20
network scienc 2 23 10 network science. 41

21
network relat 2 70 10 networks, related 56

22
node edg 2 27 10 nodes edge 12

23
identifi network 2 41 10 identify networks 15

24
futur work 2 18 9 future worked 39

25
group network 2 36 9 group network 50

26
figur network 2 34 9 Figure networks. 31

27
analyz network 2 26 9 analyzed Network 15

28
cluster network 2 39 9 clusters network 50

29
construct network 2 33 9 construct network 28

30
network studi 2 18 9 networks studied 34

31
network technolog 2 18 9 Networks Technology 13

32
paper network 2 32 9 paper network. 69

33
pp vol 2 28 9 pp. Vol. 50

34
proceed confer 2 20 9 Proceedings Conference 8

35
larg number 2 15 9 large number 2

36
network model 2 48 9 networks, model 46

37
network number 2 29 9 network number 23

38
network introduct 2 17 9 networks, INTRODUCTION 12

39
network gener 2 27 9 networks general 22

40
network includ 2 22 9 networks. include 16

41
network individu 2 32 9 network individual. 26

42
network cluster 2 47 9 networks cluster 38

43
user data 2 68 9 users data 43

44
small group 2 19 8 small groups 4

45
solv problem 2 18 8 solve problems 4

46
small network 2 14 8 small networks 4

47
vol social 2 14 8 vol. social 38

48
user research 2 22 8 users research 26

49
web network 2 18 8 Web network 46

Figure 6: Social network

As expected, what turned up as the primary topic was that of social networking. At

the top, the keyword sets have something to do with networking. Just by looking at the

35

results in the database, it is apparent that the topics being discussed in the papers were

networking. While the topic of the conference is social networking, which did turn up at

the top, the majority of the concepts picked up seem to be just networking topics in

general such as structure, connectivity, clusters, etc. Indeed, through reading the papers,

those are the topics being addressed as it discusses problems and solutions to social

networking.

4.2 Anomalies

As discussed, the methodology preserves the relative order of the keywords in the

original text. A concept should appear as a unique sequence and generally, the scrambled

sequence will not occur as frequent as the natural sequence. So why is it “network

social” and not “social network” that turned up at the top? Where is “social network,” it

is not even the top 50 returned? The short answer is that this exercise operated on a

rather limited 21 set of files and so it was not large enough to filter out anomalies such as

these. Still, we’re interested in how this could have happened. Here is an explanation.

The concept “social network” was captured by the software in the form of 3-keyword

sets. As indicated in the following table of results, it shows the “social network” counts

were divided and consequently were less that the number of “network social” found.

Human concepts (stemmed)

Keyword

count Freq

Doc

Freq Original Text

pp social network 3 13 7 pp. social networks

repres social network 3 29 6 Representing social networks,

servic social network 3 24 6 Service social network

web social network 3 13 6 Web, social networks

complet social network 3 9 6 complete Social networks.

interact social network 3 19 6 interactions Social Networking

36

complex social network 3 6 5 complex social network

Figure 7: Social network topic

Note that it found “pp. social networks” as a concept. This illustrates the

importance of preprocessing where noise such as these should be eliminated. This was

discovered by the software due to the bibliography construct:

Gruhl, D., Guha, R., Liben-Nowell, D., and

Tomkins, A. (2004) Information diffusion through

blogspace, Proceedings of the 13th international

conference on World Wide Web, New York, NY, USA, pp.491-

501

Yoo, S., Yang, Y., Lin, F., and Moon, I. (2009) Mining

social networks for personalized email

prioritization, Proceedings of the Knowledge Discovery

and Datamining 2009, Paris, France, pp. 967-976

In this small data set of 21 files, the bibliography represents a sizeable percentage of

the data and apparently this combination appeared so often that it was identified as a

human concept.

It still begs the question how did “network social” found its way to the top?

Analyzing the original text, here are a few sentences that illustrate how that happened.

This work demonstrates the importance of inter-

disciplinary work, particularly between the content and

the network analyses, in the social web study.

In these communities, the social patterns that people

form are often organized without explicit leaders,

chains of command, or fixed communication networks.

Examples of such spontaneously emerging social groups

include fans at a sport stadium …

In research on how OSS developers collaborate, research

considers the OSS movement as a self-organizing system

37

and a collaborative social network [11]. Social Network

Analysis was used for analyzing …

Our social network is based on the entire Wikipedia edit

history, and therefore is a summary of all recorded

author interactions. This social network can be used to

assess …

By nature of the algorithm to analyze closeness of words without regards to any

other factors such as punctuations and sentence structure, such abnormality will occur. In

a small data set, these occurrences can overtake the real natural order. Also note in the

third excerpt, the words “social network” appeared twice very close to each other,

making “network social” become a valid candidate. We propose that in real world

situations when millions of files are ingested, this type of error will be masked by the real

concept sequence.

Another interesting point is that beyond 3 tokens, there are only a few interesting

things found. In the table below of keyword sets greater than 3, most of the concepts

identified were due to noise, such as the words “vol.” and “pp.” Overall, there does not

appear to be many real concepts identified beyond 3 keywords. This was also the result

after subsequent runs with other data sets. Perhaps this reflects reality as most concepts

can be described in 2-3 words.

Human concepts (stemmed)

Keyword

count Freq

Doc

Freq Original Text

newman commun structur network 4 10 5 Newman community structure network

applic cambridg univers press 4 7 5

Applications, Cambridge University

Press,

dept comput scienc univers 4 12 5 Dept. Computer Science University

network cambridg univers press 4 10 5 Network Cambridge University Press,

network method applic cambridg press 5 9 4 Network Methods Applications,

38

Cambridge Press,

network method applic cambridg univers press 6 9 4
Network Methods Applications,
Cambridge University Press,

network method applic press 4 6 4 Network Methods Applications, Press,

network method applic univers press 5 6 4

Network Methods Applications,

University Press,

network method cambridg press 4 9 4 Network Methods Cambridge Press,

network method cambridg univers press 5 9 4

Network Methods Cambridge University

Press,

network method univers press 4 6 4 Network Methods University Press,

network nation academi scienc vol 5 4 4
networks, National Academy Sciences,
vol.

network nation academi vol 4 4 4 networks, National Academy vol.

network nation scienc vol 4 4 4 networks, National Sciences, vol.

network natl acad sci 4 5 4 networks Natl Acad Sci

network scienc vol pp 4 5 4 networks, Sciences, vol. pp.

Figure 8: Human concepts longer than 3

4.3 Google Data

In order to study the behavior of the algorithm with more data, Google search was

used to collect some current real world web pages to run the algorithm against. The data

collection was done by using Google to search a topic and retrieving the top 40-50 links.

The four topics were searched using the following search strings:

 mobile computing

 sound investment

 greenhouse effect

 court ruling

In total, there were over 200 files of Google results. All of the files were manually

preprocessed to remove the noise (such as navigation menus, advertisements, HTML

tags, etc) and leave only the relevant textual content.

These groups of files become the controlled data input. Since the main subject

matter of each group is well-known, the test is to see if the algorithm is able to learn and

39

discover the expected human concepts from each group and classifies them as the top

most frequent.

4.3.1 Search for “mobile computing”

The top 40 files were retrieved from the search result. This was then fed to the

algorithm to see if it will discover mobile computing as a top human concept. The results

are in the table below. As expected, the top results did turn up mobile computing as the

number one identified human concept, among many related mobile computing concepts.

There are a few undesirable concepts that turned up such as “mobile developed,”

“computing new,” and “mobile new.”

Human concepts (stemmed)

Keyword

count Freq

Doc

Freq Original Text

mobil comput 2 212 29 mobile computing

comput mobil 2 62 22 Computing mobile

mobil devic 2 87 17 Mobile devices

mobil new 2 25 13 Mobile new

mobil develop 2 27 12 Mobile developed

mobil technolog 2 41 12 mobile technology

tablet devic 2 17 12 Tablets devices

new comput 2 16 11 new computing

comput new 2 15 11 Computing new

develop comput 2 15 11 developed computing

Figure 9: Results for mobile computing

4.3.2 Search for “sound investment”

The top 62 files were retrieved from the search result. This was then fed to the

algorithm to see if it will discover sound investment as a top human concept. This was a

real surprise. At the onset, the search string was intended to find links related to advice

40

on financial investment and making good money decisions. Unexpectedly, what turned

up from Google were both musical entertainment services and financial links, with the

former topic being an overwhelming majority of the links. This is the reason why a little

more files were retrieved for this search string since it actually returned two different

subject matters.

As is normal for Google, the links were interleaved with no regard to grouping

related ones together. Not surprisingly, our software was able to capture both subject

matters as its top human concepts.

However, this group of data files revealed a potential problem in the algorithm.

The words “sound investment” was discovered as a top rank concept but the phrase itself

is ambiguous in the human language. Ideally, “sound investment” should not be

identified as a human concept but rather its superset should be, such as “sound

investment music” and “sound investment money.” As it is, anything classified into this

group is not differentiated by the software. We recognize this can be a problem but it can

also be attributed to not having enough data for processing. The superset versions of the

concept probably never materialized because there was not enough document frequency.

It is an area that needs to be looked at for further study.

Human concepts (stemmed)

Keyword

count Freq

Doc

Freq Original Text

sound invest 2 155 41 Sound investment,

sound servic 2 36 18 Sound service

sound busi 2 24 16 Sound Business

sound compani 2 28 16 Sound Company

fund invest 2 16 16 funds invested

monei invest 2 24 16 money invested

41

great invest 2 18 14 great investment

financi invest 2 24 14 financial invest

compani invest 2 20 14 Company investments

creat invest 2 16 14 create invests

sound entertain 2 16 14 Sound entertainment

sound music 2 18 14 Sound musical

music invest 2 20 14 musical Investment

sound year 2 20 14 Sound years

stock invest 2 14 14 stocks investment

stock market 2 20 14 stocks markets

Figure 10: Results for sound investment

4.3.3 Search for “greenhouse effect”

A data set of files was collected by typing “greenhouse effect” in Google and

retrieving the top 46 files returned from it. It was manually preprocessed and fed to the

algorithm and the results are below. This example illustrates that whatever was typed as

a search string does not necessarily end up being the most frequent keyword occurrence.

The results suggest to the user that the software was able to correlate greenhouse effort

with all the related hot topics such as “climate change” and “gas emissions.”

Human concepts (stemmed)

Keyword

count Freq Doc Freq Original Text

climat chang 2 117 22 climate change

ga emiss 2 128 22 Gas Emissions

global warm 2 146 21 global warm.

effect greenhous 2 88 21 effect greenhouse

gase greenhous 2 77 19 gases greenhouse

heat atmospher 2 35 18 heat atmosphere.

effect atmospher 2 41 17 effect atmosphere

ga greenhous 2 41 16 Gas Greenhouse

dioxid atmospher 2 36 16 dioxide, atmosphere.

carbon atmospher 2 48 16 carbon atmosphere.

carbon dioxid atmospher 3 39 16 carbon dioxide. atmosphere,

carbon emiss 2 54 15 carbon emissions.

Figure 11: Results for greenhouse effect

42

4.3.4 Search for “court ruling”

A data set of files was collected by typing “court ruling” in Google and retrieving

the top 52 files returned from it. It was manually preprocessed and fed to the algorithm

and here is the result. There was no surprise from this run and it validates that the

algorithm is able to capture the relevant concepts.

Human concepts (stemmed)

Keyword

count Freq Doc Freq Original Text

suprem court rule 3 62 33 Supreme Court ruling

suprem rule 2 68 33 Supreme ruled

suprem decis 2 53 27 Supreme decision

suprem law 2 44 25 Supreme law,

suprem court decis 3 41 25 Supreme Court decision

law court 2 57 25 law, Court

said rule 2 44 23 said. ruling

suprem court law 3 42 22 Supreme Court law

said court 2 40 21 said court

law said 2 36 21 law said

care law 2 71 21 care law,

health law 2 82 21 health law,

law rule 2 34 20 law ruling

mitt romnei 2 28 20 Mitt Romney

state law 2 60 20 state law

said law 2 38 19 said. law.

presid obama 2 34 19 President Obama

health care law 3 71 18 health care law

health insur 2 65 17 health insurance

Figure 12: Results for court ruling

43

5 Applications

With the knowledge base built, there are many important applications for which this

technology can be utilized to make them semantic aware. In this paper, we illustrate two

applications: semantic search and examiner utility.

5.1 Semantic Search

By using the knowledge base of human concepts built, we build a simple search

engine to demonstrate how a semantically aware search would work. It will feature

ability to divide ambiguous search string by subject matter and it will use document

frequency as a rudimentary way to rank page results.

The knowledge base built for this project contains the three essential things needed

for the semantic search engine: human concepts, document frequency, and human

concept-web address relationship. The idea is to implement a 2-tier search whenever

there is ambiguity in the search string. The following block diagram illustrates the basic

data flow.

When asked to search a topic, the search engine will look for the closest match

against the table of human concepts first. If there is an exact match or there is a single

partial match then it can proceed to retrieve all of the URL pages associated with the

concept. If there are more than one partial match to the concepts table, then it will

present the list of concepts to user and prompt for a selection of the intended one. After

Search
page UI

Semantic
Search
Engine

Table of
human

concepts
with freq

Table of
URL pages

44

this selection, the software will be able to return only the topic links desired. This is a

much more friendly way of interacting with the user than the current way of unorganized

results.

5.2 Examiner

This is a utility that is able to scan a previously unseen document and able to tell

what its main topic is. It can do this by using the same knowledge base built for this

project. The way it does this is by relying on what is already learned in the system. It

regards it as the “goldmaster” of knowledge base. When given a file to analyze, it will

scan through it and tokenize it to the candidate concepts list, very similar to the learning

mode. The difference is that in this case, it won’t be discovering new concepts or saving

back anything new to the database. It will query the database to see if the concepts it

found in the new file exists in the database. The concepts that are found in both the new

file and exist in the database will point to the main topic or topics of the document. With

a sizeable knowledge base built, such a utility will be able to dynamically classify web

content as they come in. Obviously, the larger the knowledge base, the better it will be

able to reveal the main topics of more documents. On the other hand, it will be limited

by the topics that it has already seen. Therefore, for example, if it has never learned

about mobile computing and a file about mobile computing is fed to it to analyze, it

would report unknown subject matter.

45

6 Encouraging Results

The test results and the sample applications show the technology to be very

encouraging. In the test runs against the Google search data, the software has shown it is

able to capture the main subject matter using the proposed algorithm without human

guidance or special data tagging. The resulting records in the database together form the

knowledge base of the semantic engine. As it is a cumulative data collection engine, the

more data it ingests the more knowledge it gains.

As noted, there are some undesirable results that turn up. Some errors are trivial

such as those that indicate inadequate preprocessing or that there was not enough data

files to build up the real human concept in the correct word sequence. Other problems

are more serious when words with dual meanings are still discovered a single human

concept. In learning software such as this, some error is to be expected. It is enough to

be right most of the time. It is still suggested that most of these problems are due to this

exercise being a small test run and not having enough data samples.

The important conclusion we set out to demonstrate how the algorithm can learn

human concepts on its own and be able to classify web content. We have achieved that.

We demonstrated it is able automatically parse and identify the key human concepts by

processing existing web pages that don’t have any special semantic formatting. We have

shown this algorithm can run in finite time and able to return favorable results. The

average speed of processing was at about 5000 words/second. Overall, we have

demonstrated the technology has a good start, though with some artifacts, to take us

further into more studies and eventually to solving the semantic awareness problem.

46

7 References

Ethem Alpaydin, Introduction to Machine Learning 2
nd

 edition, Massachusetts Institute of

Technology, 2010.

Google Search, http://www.google.com, 2012.

Info growth rate, http://www.emc.com/leadership/programs/digital-universe.htm

Martin Porter, The Porter Stemming Algorithm,

http://tartarus.org/martin/PorterStemmer/, 2006.

RDF Working Group, Resource Description Framework (RDF),

http://www.w3.org/RDF/, February 2004.

Roger E. Bohn and James E. Short, How much information,

http://hmi.ucsd.edu/howmuchinfo_research_report_consum.php, January 2010.

Tsau Young Lin and Jean-David Hsu: Knowledge Based Search Engine: Granular

Computing on the Web. Proceedings of the Web Intelligence Conference (2008) 9-

18.

Tsau Young Lin and I-Jen Chiang, A simplicial complex, a hypergraph,structure in the

latent semantic space of document clustering, Int. J. Approx. Reasoning 40(1-2):

55-80 (2005).

http://www.google.com/
http://www.emc.com/leadership/programs/digital-universe.htm
http://tartarus.org/martin/PorterStemmer/
http://www.w3.org/RDF/
http://hmi.ucsd.edu/howmuchinfo_research_report_consum.php

	San Jose State University
	SJSU ScholarWorks
	Fall 2012

	SEMANTIC DISCOVERY THROUGH TEXT PROCESSING
	Bieu Binh Do
	Recommended Citation

	tmp.1356192873.pdf.xrL_K

