
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2012

Extending Yioop! Abilities to Search the Invisible
Web
Tanmayee Potluri
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Potluri, Tanmayee, "Extending Yioop! Abilities to Search the Invisible Web" (2012). Master's Projects. 281.
DOI: https://doi.org/10.31979/etd.pk7g-qy5g
https://scholarworks.sjsu.edu/etd_projects/281

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F281&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F281&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F281&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F281&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F281&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/281?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F281&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

1

Extending Yioop! Abilities to Search the Invisible Web

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the

Degree Master of Computer Science

by

Tanmayee Potluri

December 2012

2

© 2012

Tanmayee Potluri

ALL RIGHTS RESERVED

3

SAN JOSÉ STATE UNIVERSITY

The Undersigned Writing Project Committee Approves the Writing Project Titled

Extending Yioop! Abilities to Search the Invisible Web

by

Tanmayee Potluri

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Chris Pollett, Department of Computer Science 11/20/2012

Dr. Sami Khuri, Department of Computer Science 11/20/2012

 Frank Butt, Department of Computer Science 11/20/2012

4

ACKNOWLEDGEMENTS

 I would like to take this opportunity to express my gratitude to Dr. Chris Pollett for being

my advisor and guiding me throughout my project. I would also like to thank my committee

members Dr. Sami Khuri and Prof. Frank Butt for accepting to be in the committee and

providing me necessary inputs regarding the project. Also, I am highly indebted to my family

and friends for their constant support throughout the project. I would also like to convey my

special thanks to my friends who have helped me in extensive usability testing.

5

ABSTRACT

EXTENDING YIOOP ABILITIES TO SEARCH THE INVISIBLE WEB

 Yioop is an open source search engine written in PHP. Yioop can be used for personal

crawls on predefined URLs or as any traditional search engine to crawl the entire Web. This

project added to the Yioop search engine the ability to crawl and index various resources that

could be considered a part of the Invisible Web. The invisible web refers to the information like

database content, non-text files, JavaScript links, password restricted sites, URL shortening

services etc. on the Web. Often, a user might want to crawl and index different kinds of data

which are commonly not indexed by the traditional search engines. Mining of log files and

converting them into a readable format often helps in system management. In this project, the

file format of log files has been studied and was noticed that they contain some predefined fields

and a user is provided with a user interface to provide details of field names and the field types

of the log fields. Indexing databases is one of the other features that would be helpful to a user.

This project will act as a resource to the user to index the database records by entering a simple

query into the interface created in Yioop and the specific database records are crawled and

indexed providing the user with the ability to search for his desired keywords. This project's goal

was to successfully embed these features in Yioop using the existing capabilities of Yioop.

6

Table of Contents
List of Figures ... 7

List of Tables .. 7

1 Introduction .. 8

2 Preliminaries .. 10

2.1 Yioop! ... 10

2.1.1 Simple crawl in Yioop ... 11

2.1.2 Archive Crawling in Yioop! .. 12

2.1.3 Architecture .. 14

2.2 Invisible Web .. 16

2.2.1 JavaScript links .. 16

2.2.2 URL Shortening ... 17

2.2.3 Log Files .. 18

2.2.4 Database Records ... 19

3 Design .. 20

3.1 User Interface Design.. 21

3.1.1 Log Files .. 23

3.1.2 Database Records ... 29

3.2 Backend Design .. 30

3.2.1 URL Shortening ... 31

3.2.2 Log Files .. 31

3.2.3 Database Records ... 33

4 Implementation .. 33

4.1 URL Shortening Links .. 34

4.2 Indexing Log Files in Yioop! .. 37

4.3 Indexing Database Records in Yioop! .. 41

5 Testing and Results .. 45

5.1 URL Shortening .. 45

5.2 Usability testing .. 47

5.3 Testing efficiency .. 55

6 Conclusion ... 59

7 References .. 61

7

List of Figures
Figure 1: Yioop Web User Interface ... 11
Figure 2: Recrawl Options Interface for Archive Crawling .. 14
Figure 3: Format of a line in a log file .. 19
Figure 4: Database Table .. 20
Figure 5: Manage Crawls Interface ... 22
Figure 6: Web Crawl options tab .. 22
Figure 7: Archive Crawl options tab ... 23
Figure 8: User Interface for Log Files Crawling ... 24
Figure 9: List of field types that can be specified ... 25
Figure 10: Steps to enter details for crawling the log files ... 28
Figure 11: Databases Interface .. 29
Figure 12: Database connection details entered .. 30
Figure 13: Process design for archive iterator in Yioop ... 32
Figure 14: Sequence of steps in the design flow of crawling and indexing log files 32
Figure 15: Sequence of steps in the design flow of crawling database records .. 33
Figure 16: Search results for Yahoo after the crawl ... 35
Figure 17: 301 redirect to the Yahoo link ... 35
Figure 18: Results shown before and after the code was added ... 36
Figure 19: nextPage function for creating HTML pages .. 39
Figure 20: Search results obtained after crawling log records .. 40
Figure 21: An open log record .. 41
Figure 22: Search for all log records with a 302 status code .. 41
Figure 23: Database connection details .. 44
Figure 24: Search results for databases ... 44
Figure 25: Results before the addition of code ... 46
Figure 26: Results after the addition of code .. 46
Figure 27: Time taken for each user to complete a task ... 50
Figure 28: Graph displaying the average time taken by users for each of the tasks 51
Figure 29: Accuracy Percentage of tasks performed by user .. 52
Figure 30: Graph showing the amount of time taken by users for the first time and second time 53
Figure 31: Average rating of satisfaction of user .. 54
Figure 32: Straight line graph of time versus the number of log records .. 56
Figure 33: Crawl results for second query .. 57
Figure 34 : Comparison of Yioop with Mysql LIKE operator .. 58

List of Tables
Table 1 : Assumed number of mistakes for each task ... 52

8

1 Introduction

 A search engine is often used to search for information about a particular keyword or a

topic in general known as a search query [16]. A search engine then retrieves all the results

matching that particular query and often, these results are web pages [16]. The two main

concepts behind search engines are crawling and indexing. Crawling is the process of fetching

pages or data and indexing is the process of storing the data in a processed format and provide

necessary help to rank the importance of the content [15]. Yioop is one such open-source search

engine written in PHP [1]. Yioop can be used for personal crawls on the Web and also can be

used to crawl and index different kinds of data not usually crawled by traditional search engines

[1]. The project added to Yioop the ability to crawl and index a part of the invisible web.

 Yioop has the ability to crawl and index different file formats. This is called an archive

crawl in Yioop terminology. This ability allows Yioop to crawl different file formats. Code

written for a specific file format and code to iterate over this format are put in archive bundle

iterators in Yioop. Using this archive crawling set up, Yioop was extended to crawl log files and

databases in this project. Code to allow Yioop to deal with short URLs was also added.

 A log file is typically a file to which a computer system writes a record of its activities

[9]. Log files are automatically created and maintained by a server containing the information of

the activity performed by it [9]. An example of a log file is an Apache access log file which

maintains a history of page requests [9]. With the increase in science and technology, computing

systems are becoming more complex as a result of the varied software and hardware components

[2]. Analysis and mining of log files plays an important role in managing and monitoring these

systems [2]. For this reason, a user often might to analyze a log file, search for an activity, search

9

for successful requests, etc. AWStats, Webalizer, W3Perl and Analog are few of the log file

analyzers available in order to help the users check the statistics of the log files. AWStats is a

powerful tool that generates advanced log file statistics and provides all possible statistical

information about log files in the form of graphical web pages [10]. The kind of data provided by

AWStats is the number of visits, number of unique visitors, visits duration and last visits,

authenticated users, and last authenticated visits, browsers, HTTP codes, domains, etc [10].

 While it is useful to know the statistical information about the log files, it is also

important to search for a particular activity or a request or a keyword in log files. A search

engine to crawl log files will help in this regard. In this project, customized crawling of these log

files was made possible in Yioop. A user is given an interface in Yioop to provide his own

details of the fields in the log records. The type of the field and also the field names can be

specified by the user. Web pages are built in the archive crawling process performed by Yioop.

The building of these web pages and indexing is done in the archive bundle iterator written for

log files. Using AWStats, statistical information about log files is generated whereas using the

ability in Yioop to crawl and index log files, one can search for a particular request or activity in

log files using a search interface.

 A database is a collection of records which can contain any kind of data [12]. There can

be cases when a user wants to search for a specific word in a database. Database indexing is

often helpful in analyzing the data available in a database and search for information in a

database. Sphinx is one of the open-source search engines designed for indexing database

content specifically [8]. It performs indexing on the database file provided to it and returns

search results for a particular search keyword. It provides details of the record where the

particular search keyword is present. Sometimes, the user might want to limit the record search

10

according to a particular query. A similar kind of functionality is added to the Yioop search

engine in this project. The user is given the opportunity to enter the database connection details

and also a query. Based on the query entered by the user, the number of records to be crawled

and indexed are filtered and indexed by Yioop. The user can then search for any keyword in the

indexed data.

 We now discuss the organization of the rest of this report. The next section provides

insights into preliminaries of the project which are necessary in order to understand this project.

Later, the design of the project is described which includes both the user interface design and

also the backend design. Then the implementation details of the project are presented. Finally, a

brief conclusion is given.

2 Preliminaries

 In order to understand this project and its inner workings, a basic understanding of some

concepts becomes important. A brief introduction and explanation of these concepts has been

provided in this section. This section introduces Yioop and its web and archive crawling

concepts. It also provides a brief introduction to the architecture of Yioop. Following the

introduction to Yioop, this section also introduces the concepts of invisible web and explains

various resources of invisible web. These resources include the file formats crawled and indexed

in this project.

2.1 Yioop!

 Yioop! is an open source search engine written in PHP by Dr. Chris Pollett [1]. Yioop!

can be used both as a traditional search engine or it can be modified to act as a search engine

11

only for a predefined set of domains or URLs [1]. Yioop is licensed under GPLv3 and

SeekQuarry is the parent site for Yioop [17]. Yioop has been designed in order to ease the usage

of personal crawls, support distributed crawling of the web, make it easier to crawl archives and

perform archive crawls [17]. The user has complete control over the indexes of the crawls

performed in Yioop. The user can limit the search results based on his requirement.

 The web user interface of Yioop looks similar to a traditional search engine and is used to

enter search queries into it. The user interface looks as shown below in the figure:

Figure 1: Yioop Web User Interface

2.1.1 Simple crawl in Yioop

 For crawling and indexing web pages or any kind of file formats in Yioop, knowledge of

performing a simple crawl is necessary. In order to perform a simple crawl in Yioop, Yioop

needs to be downloaded and installed on the system. Xampp should also be downloaded and

installed on the system which provides Apache, PHP and MySql in order get Yioop to work. For

easier access, Xampp should be installed under the C:/ drive and Yioop should be extracted and

12

placed in the htdocs folder of Xampp. Yioop can be installed both on Linux or Windows 7

systems.

 After the successful installation of Yioop and Xampp on the system, a onetime

configuration of Yioop should be done [1]. The data folder for the crawls is created under the

htdocs folder in this step. This will hold the data that is indexed by Yioop. All the steps

necessary to perform a simple crawl in Yioop have been provided in Yioop's documentation in

SeekQuarry. The seed sites available in the web crawl options interface of Yioop can be used to

perform an initial crawl in Yioop. In order to perform a simple crawl in Yioop, two programs

need to be started from the command line or using the web interface of Yioop. They are

fetcher.php and queue_server.php. The queue_server program maintains a queue of URLs that

are going to be scheduled and also keeps track of what has been seen and robots.txt info [1]. This

program also performs the responsibility to create the index_archive that is used by the search

interface in the front end of Yioop [1]. The fetcher program downloads batches of URLs

provided by the queue_server [1]. A name can be given to the crawl and it can be set as index to

be searched. In order to test the code written for this project and also crawl the log files and

databases, it is important to know how a simple crawl is performed in Yioop and how the data

needs to be indexed.

2.1.2 Archive Crawling in Yioop!

 A major part of this project is connected to archive crawling in Yioop. Archive crawling

in Yioop is used to perform crawling of the previous crawls performed in Yioop or crawl one of

the web archive file formats like Arc, MediaWiki XML, ODP RDF [1]. In order to crawl each of

these file formats, separate archive bundle iterators have been written in Yioop.

13

 In order to perform an archive crawl in Yioop, one has to create a folder "archives" in the

cache folder of the WORK_DIRECTORY of Yioop. In the archives folder, another folder should

be created to store all the files of a particular format that are to be crawled. As an example, in

order to perform a crawl on the log files, one needs to create a folder like my_log_files in the

WORK_DIRECTORY/cache/archives folder and place all the .log files to be crawled in there.

 Each of those folders in archives folder should contain a file named arc_description.ini

which contains the text like,

arc_type = 'LogArchiveBundle';

description = 'Log Files';

 Once this folder is created ARCFILE::Log Files is seen as one of the options to recrawl.

The arc_type should be given as LogArchiveBundle, DatabaseArchiveBundle etc. The

description can be given as per the wish of the user and it is displayed on the web user interface.

14

Figure 2: Recrawl Options Interface for Archive Crawling

 In this project, two archive bundle iterators had to be developed in order to perform

crawls on log files and databases. Therefore, these crawls were in the form of archive crawls.

The archive iterators are LogArchiveBundleIterator and DatabaseArchiveBundleIterator. A brief

description of log files and databases is provided in the later part of this section.

2.1.3 Architecture

 The goal of this project is to add to the Yioop search engine the ability to crawl and index

log files and database records. In order to accomplish these tasks, it is useful to know the

architecture of Yioop and how it needs to be modified to implement these features.

 Yioop is designed using the web-based Model-View Controller framework [1]. A server

like Apache and PHP 5.3 or later are the main components required in order to install Yioop [1].

15

Both of these are available in Xampp. PHP multi-curl libraries are required for Yioop in order to

download the web pages [1]. Yioop can be configured to have multiple queue servers and fetcher

in order to perform crawls. This is made possible in Yioop using the simple distributed model

[1].

 There are three major scripts in Yioop: namely, queue_server.php, fetcher.php and

index.php. The queue_server program maintains a queue of URLs that are going to be scheduled

and also keeps track of what has been seen and robots.txt info [1]. This program also performs

the responsibility to create the index_archive that is used by the search front end [1]. The fetcher

program downloads batches of URLs provided by the queue_server. the index.php page acts as

the search engine web page [1].

 In order to implement this project, few of the existing files in Yioop needed to be

modified and also new files needed to be added into the Yioop's architecture. A brief

explanation of these files and folders has been provided in this section.

 The lib folder has the archive bundle iterators folder which contains all the archive

bundle iterators needed to crawl and index different file formats in Yioop. The two archive

bundle iterators namely, LogArchiveBundleIterator and DatabaseArchiveBundleIterator to crawl

and index the log files and databases respectively need to be added into this folder of Yioop. The

controllers folder contains all the controllers used by the Yioop search engine. The

admin_controller file in this folder of Yioop needs to be modified in order to build a user

interface in Yioop.

 The css folder in Yioop contains the stylesheets which have all the css styles defined for

all elements of html used in Yioop [1]. The search.css file needs to be modified in order to define

16

styles for all the html elements introduced into Yioop for the user interfaces of log files and

databases. There are also other folders present in Yioop which perform the necessary

functionalities in Yioop. In addition to all these folders, Yioop also has a WORK_DIRECTORY

which is used to store the pages crawled in Yioop and also the search results of Yioop [1].

2.2 Invisible Web

 This subsection provides a brief introduction to the field of invisible web and some

insights into few resources that constitute the deep web. The resources mentioned here constitute

the ones implemented in this project and also few of them which were implemented to a

considerable extent.

 Invisible web also known as deep web, deep net or hidden web is that part of the web

which is not indexed and is not a part of the surface web [4]. The invisible web is a lot more

larger in magnitude when compared to the surface web [4]. The invisible web may constitute

many resources like shortened links, database content, any content in specific file formats,

JavaScript links, password protected sites etc which are generally not indexed by the traditional

search engines.

 In this project, log files and databases are made to crawl and index in Yioop. Preliminary

work has been done in order to extract JavaScript links in web pages. A brief introduction to all

these resources of Invisible Web are explained in this section.

2.2.1 JavaScript links

 JavaScript content constitutes a major part of the web pages on the Web. There are few

pages in the Web which are accessible only through links in the JavaScript content [4]. These

17

links are dynamically created in the JavaScript files and therefore are not crawled and indexed by

traditional search engines. The challenge in accessing these links lies in the fact that they are

dynamically created by the code in the JavaScript. In order to extract such links, a JavaScript

parser needs to be created and the functions in the JavaScript need to be implemented.

 In this project, there was some research work done in this area. The simple URLs in

JavaScript content was extracted. The JavaScript content could be parsed using Spider Monkey

(a JavaScript engine) but Spider Monkey did not contain all the functions to convert a dynamic

link in JavaScript to a complete URL. As a result of this, it was a challenge implementing all the

JavaScript functions in PHP and trying to embed such functions in Yioop. Therefore, this feature

could not completely implemented in Yioop and can be included as an improvement for the

project.

2.2.2 URL Shortening

 URL shortening is a technique on the Web in which a URL is made short in length and

still redirected to the required page [14]. The redirection is achieved using an HTTP Redirect on

a short domain name which in turn links to the web page that has a longer URL [14]. For

example, the URL http://www.yahoo.com is shortened to bitly.com/4bYAV2. There are many

URL shortening services of which bit.ly and tinyurl are few of them.

 URL shortening is convenient for Twitter and Identi.ca in which the number of characters

are limited a particular number of characters [14]. The underlying address can be disguised using

URL shortening services [14]. URL shortening services are one source of dark content on the

Web. It is a source of dark content as in ranking results search engines often attribute the link to

the URL short link service rather than to where the link points to. In this project, research was

http://bitly.com/4bYAV2

18

done on how Yioop deals with these links and Yioop was made to work correctly with these

links. In this regard, a simple crawl was performed on a bitly link alone and the results showed

that the crawling and indexing was done on the short link and therefore code was written to

handle this behavior and make Yioop to work with the short links correctly.

2.2.3 Log Files

 Log files are one of those file formats that are not crawled and indexed by traditional

search engines. Log files are the files to which a computer system writes a record of its activities

[9]. Log files are generally automatically created and maintained by a server containing the

information of the activity performed by it [9]. An example of a log file is an Apache access log

file which maintains a history of page requests [9]. The format of these log files is standard and

is defined by W3C but there can be various other formats also defined by the users [9].

 A specific format is defined for Apache log files. This is a common log format that is

followed by a number of servers to generate log files. The predefined fields that are present in a

log file are:

• IP Address : IP Address is that of the client who sends a request to the server.

• Timestamp : Time when the server is done processing the request

• Request : Request made by the client to the server.

• Status Code : Code sent to client by the server

• Size in Bytes : Size of the object returned by the server to the client

• Referrer : The site that client reports is being referred from.

• User Agent : Information that client refers about itself

• - : Information not returned by the server

19

An example of a line in an Apache access log file is shown below.

Figure 3: Format of a line in a log file

 In this project, these log files have been crawled and indexed by writing an archive

bundle iterator. A user interface has been developed for the user to enter their own specified field

names for the entries in the log file. The data is then available for search to the user with Yioop.

2.2.4 Database Records

 Database files are a collection of similar kind of records [12]. A database can contain any

number of tables and tables can contain any number of records. The database content is one

kinds of deep web content which is not crawled by traditional search engines.

 In this project, a database is crawled and indexed by writing an database archive bundle

iterator. The table to be crawled depends on the query specified by the user. The records returned

after the query has been executed are indexed. A database table looks as shown below.

20

Figure 4: Database Table

3 Design

 This section describes the design of the various features embedded into Yioop in this

project. In order to ensure a smooth flow for the implementation, a good design was necessary

before hand. This design helped as a guideline for the implementation of the project. The design

section contains only the design flow and steps necessary to follow in order to implement the

features. The coding details and the changes made in Yioop's files are described in the

implementation section of the report.

 The project design consisted of two parts of which one is user interface design and the

other is the backend design. User Interface Design consists of the web interface design where the

user can enter the details of the field names for log records module and the database connection

details for the database module. The backend design consists of the modifications required to be

done to the Yioop architecture, the files to be added to Yioop etc. Each of these designs have

been explained in detail in the following section.

21

3.1 User Interface Design

 This section describes the user interface design for the crawling of log files and

also the database records. The options required for a crawl to be performed should be given by

the user prior to starting the crawl. There are two kinds of crawls that can be performed with

Yioop.

(1) Web crawl

(2) Archive Crawl

 Web crawling refers to the crawling done on the web sites or any domains whereas

archive crawling refers to the recrawling of the previously done crawls or crawling any of the

archive file formats like arc, MediaWiki XML, ODP RDF, log files, databases etc [1].

 The options for a crawl can be specified in the edit crawl options section of Yioop in the

web interface. There are two tabs of which one is for web crawls and the other is for archive

crawls. The user can navigate to this page from the manage crawls page. The images of manage

crawls interface and the edit crawl options interface are shown below.

22

Figure 5: Manage Crawls Interface

 The details concerned with web crawling can be specified in the web crawl tab of the edit

crawl options. The user can specify the seed sites, disallowed sites, any kind of meta words that

he wants to add in the web crawl edit options.

Figure 6: Web Crawl options tab

23

 The details concerned with archive crawling can be specified in the archive crawl tab of

the edit crawl options. In this project there are two separate interfaces that are displayed for the

log files and databases. The archive tab would show what are the available crawls to recrawl and

also the options to crawl different file formats if the user has created the necessary folders.

Figure 7: Archive Crawl options tab

3.1.1 Log Files

 This subsection describes the user interface design of the log files. Different log files

have different formats which are specific to each of them and the files are stored in the system as

.log files. The specific file format of each of these different files bring them into the category of

archive crawling in Yioop. To provide flexibility to the user in managing, crawling and indexing

these log files, a separate user interface has been designed and is displayed to the user when the

user selects log files from the crawl options of Yioop. The interface displayed is shown in

Figure8.

24

Figure 8: User Interface for Log Files Crawling

The first line of the first log file is displayed as the first line in the interface. An interface is

provided to the user to enter his own details regarding the log records. There are three fields that

the user needs to enter before saving the crawl options.

Field : This field can be copied from the line displayed to the user.

Field Name : This field is specific to the user. He can enter any name to the field he specified

and this name will be attached to the actual field retrieved in the final web pages.

Field type : This specifies the type of field in the log record. There are predefined fields in the

drop down box. These fields are IP Address, Timestamp, Request, URL, User Agent, Status

Code, Integer. The retrieval of fields from each log record is based on the field types chosen

here.

25

Figure 9: List of field types that can be specified

 The "Add New Field" button can be used to add new fields into the interface as needed.

The fields entered should be in the order as displayed in the first line of the log file. For example,

the IP address is first shown in the line, which means the IP address should be entered as the first

field in the interface and next the timestamp. Each line in a log file is treated as a log record. The

fields and the field names should be unique for each field of the log record.

 The user needs to specify the names for all the fields shown in the first line. A hyphen in

the first line implies a missing field, i.e., a field missing in that record but might be present in

other records. Any such missing field can be explicitly specified by the user as a separate field

provided the user knows what the field is and the placement of the field in the record. It should

be placed in the right position where it occurs in the line. After all the fields are specified by the

user, the save options button must be clicked in order to save all the details entered. The steps

that need to be followed in order to use the interface are shown below.

26

27

28

Figure 10: Steps to enter details for crawling the log files

29

3.1.2 Database Records

 The user interface for database records is limited to the database connection details. A

simple user interface which asks the user for the database connection details is displayed as soon

as the user selects the databases option from the re-crawls list. The database connection details

include the hostname, username, password, database name and the database query.

Figure 11: Databases Interface

30

Figure 12: Database connection details entered

 After all the database connection details are entered, the submit button should be clicked

and all the details are saved. The host name, user name and password are used to connect to the

host whereas the database name is used to establish a connection to the database. The query

specified by the user is used to limit the records to crawl and is used to retrieve the records from

the database. The records returned based on the query are only crawled and indexed and not all

the database records in the table.

3.2 Backend Design

 The backend design includes the process design that is followed to implement the

features in Yioop. The features added to Yioop include the crawling and indexing of log files,

databases and handling the short links correctly in Yioop. The modifications to Yioop

architecture and the process flow for each feature are described in this section.

31

3.2.1 URL Shortening

 In order to get Yioop to work with URL shortened links, it was required to make a study

on how Yioop handled theses links previously. The fetcher.php file is responsible for handling

all the pages and crawling them. This file had an array named "site" in the fetcher.php file which

stores all the attributes and information pertaining to a particular page being crawled and indexed

by Yioop. The attributes include location of the page, links, HTTP code, title etc. After the crawl

on bitly link, it was observed that all the bit.ly links possessed an HTTP status code greater than

300. A 301 redirect to the original link was being done and the original link was stored in the

location attribute of the URL. The URL attribute of site stores the actual URL which is ranked.

Yioop handled the short URLs in the same way it handled any other links. Therefore,

modifications needed to be done for this purpose.

 Therefore, the code to be developed for this purpose required changes in some of the

existing files of Yioop. There were no new files that were added to the Yioop architecture. The

implementation section would describe in detail the changes done to the files in Yioop to achieve

the feature.

3.2.2 Log Files

 In order to write an archive iterator for Yioop to index log files, all the iterators currently

available were studied. An archive bundle iterator in Yioop has the following process design.

32

Figure 13: Process design for archive iterator in Yioop

 In the log_archive_bundle_iterator.php, the above process design is followed accordingly

and necessary functionalities were achieved. A function is written in order to parse the log

records and the results are sent to the nextPages() function which are in turn converted into html

pages in nextPage() function.

 The design flow of the crawling of log files is shown below. The numbers in the figure

indicate the sequence of steps that occur in the crawling.

Figure 14: Sequence of steps in the design flow of crawling and indexing log files

33

3.2.3 Database Records

 The process of crawling database records is similar to that of crawling log records with

minor differences. The crawling of database records require the user to enter the database

connection details and also allows the user to limit the records to crawl based on the crawl. The

design flow is shown in the below figure.

Figure 15: Sequence of steps in the design flow of crawling database records

4 Implementation

 This section describes how each of the features described in the above sections have been

implemented in Yioop. The content in this section provides a description of the changes done to

the existing files in Yioop, description of programs that are newly added to Yioop to accomplish

the features and also the details of the implementation of user interface described in the user

interface design subsection of the design section. This implementation section mainly describes

the changes done in Yioop files in terms of code. This section also contains code snippets.

34

4.1 URL Shortening Links

 In order to get Yioop running correctly with the short links, it was necessary to know

how Yioop deals with these links previously. In order to perform this task, crawls were

performed in Yioop with different we crawl options specified before starting the crawl. The first

crawl was performed with Yioop's default options and domains whereas the second crawl was

performed only on a single bit.ly link. The results obtained for the keyword Yahoo when a bit.ly

link of Yahoo was crawled are shown below.

 Yioop has an array named "site" in the fetcher.php file which stores all the attributes and

information pertaining to a particular page being crawled and indexed by Yioop. The attributes

include location of the page, links, HTTP code, title etc. After the crawl on bitly link, it was

observed that all the bit.ly links possessed an HTTP status code greater than 300. A 301 redirect

to the original link was being done and the original link was stored in the location attribute of the

URL. The URL attribute of site stores the actual URL which is ranked. Yioop handled the short

URLs in the same way it handled any other links.

 In the code added to this project, Yioop was modified such that it treats the URLs with

response code greater than 300 in a different way. When Yioop encounters a URL with HTTP

code greater than 300, code was written to retrieve the location of the link which gives the

original URL of the short URL. The URL attribute of the site array is pointed to the original link

so that the rank is assigned to the original link. This way, the short URLs are made to be handled

correctly by Yioop.

35

Figure 16: Search results for Yahoo after the crawl

Figure 17: 301 redirect to the Yahoo link

 In order to make Yioop work correctly with these links, the code was added in three files

of Yioop.

crawl_constants.php - A new constant has been added in crawl_constants.php file for storing

the Location” attribute which has the original link where the short link service points

36

fetch_url.php - The extraction of the “Location” information from the short URL is done in this

file. This information was required to point the results to the original URL and not the short

URL.

fetcher.php - The final addition of code was done in this file. This step changes the short URL

to the original link using the location information extracted from fetch_url.php. The information

retrieved is assigned to the URL attribute of the site array in order to point to the original links.

 After the addition of code into all these files, the short URL is changed to the original

link and the crawling was performed on the original link and the search results displayed

reflected the same. The search results can be seen in the following figures.

Figure 18: Results shown before and after the code was added

37

 The figures show that before the code was added to Yioop, the results consisted of

unimportant links and not pertaining to the actual IBM domain whereas after the code was

added, the search results consisted of pages which are of IBM domain and also some important

links of IBM.

4.2 Indexing Log Files in Yioop!

 In order to add indexing of log files in Yioop, two tasks needed to be performed:

(1) Build a user interface for the log files

(2) Create an archive bundle iterator

 The user interface for log files needed to be created in the archive crawl options section

of the edit crawl options interface in Yioop. This interface is shown to the user only if he chooses

to crawl the log files option from the drop down provided in the archive crawl options interface.

The user interface provides user the options to enter the log fields, field names for them and also

the field type. The user is also given the option to add any number of fields as per the first

sample record displayed to the user by clicking on add new field button. Once the user clicks on

save options after entering all the required fields, the options for the particular crawl are saved.

In order to implement this user interface, code was added in the following files of Yioop.

admin_controller.php - A new array for log records has been created in this file in order to

store the details of the log records entered by the user in the web interface of Yioop.

crawloptions_element.php - The UI that needs to be displayed when log files is selected as an

option is created in this file. Also, the code is added in this file to show the user interface only

when log files is selected from the drop down menu of the recrawl options. Also, it retrieves the

38

details of inputs given by the user from the array stored in the admin_controller.php program and

displays the options. It also has the code to save the options entered by the user in a file into the

folder created by the user to store his log files. The table shown in the interface, "Add new field"

button in the interface are also added in this file.

search.css- The code is added here to specify the styles for the log records table shown in the

web interface to the user. The borders, width, padding, alignment etc are set in this file.

 After the addition of code in all the three files of Yioop, the user interface for log files is

created and is shown on Yioop when the user selects the log files option from archive tab options

from the edit crawl options.

 In order to crawl and index the log records in Yioop, an archive bundle iterator was

added into the yioop/lib/archive_bundle_iterators folder. The file that is added into the folder

was log_archive_bundle_iterator.php.

 The log_archive_bundle_iterator.php file consisted of five major functions:

__construct - This is the constructor responsible for creating an instance of an archive iterator

with timestamps and also for calling the createMasterAndRecords function.

createMasterandRecords - This would create the master.log file which would contain all the

log records from all the log files included in the folder created by the user. All the log records are

put into one file in order to make the processing easy.

parseLogRecord - This function is called for every log record and it parses the record according

to the regular expressions and returns the results into a global array.

39

nextPages - The nextPages function would have a loop running which calls the nextPage

function to convert each of the records into a web page, i.e., a HTML page to be indexed by

Yioop.

nextPage - The nextPage function is responsible for creating the HTML pages of each log

record. Changes made in nextPage function will change the web page of the log record or the

database record. The title of the web page can be changed in this nextPage function. The URL of

the page can be changed in the nextPage function and can be pointed to any file you want to

show to the user along with the details of the log record. One can also add new text nodes to the

web page in order to mention anything interesting about the log record. Therefore, nextPage

becomes an important function in the archive bundle iterators.

Figure 19: nextPage function for creating HTML pages

 Apart from the functions mentioned above, there are also other functions such as

saveCheckpoint, restoreCheckpoint, getFieldDetails, reset, weight etc, which perform the

necessary functions required in the archive iterator.

40

 After the implementation of archive bundle iterator, a crawl was performed with log

records with the options shown in Figure 10. A crawl was started and is set as index after the

crawl was stopped the following are the results obtained after the crawl. Also, each record in the

log files is named after the request field in the log record. In case a log record does not contain

any request information the records are by default named as "Line(Number of the record-1)". For

example, the 601th record is named as "Line600" as the count starts from 0. This number

indicates the line number of a particular log record in a log file.

Figure 20: Search results obtained after crawling log records

 Each of the records when opened show a web page which shows the record details in

detail. Each field extracted and the field name given for each of them by the user are displayed in

this page. Also, one can search for a particular query and the search results return the records

which consist of that search query. The two figures below show the search results in Yioop after

crawling and indexing the log records.

41

Figure 21: An open log record

Figure 22: Search for all log records with a 302 status code

4.3 Indexing Database Records in Yioop!

 In order to add indexing of database files in Yioop, there were two tasks performed:

(1) Building a user interface for the database files

(2) Creating an archive bundle iterator for database files

42

 The user interface was implemented by adding code into the following files of Yioop. It

needs to be seen in the same section as log files was shown. It is displayed when database files is

chosen as the option to crawl.

admin_controller.php - A new array has been created in this file in order to store the database

connection details of the log records entered by the user in the web interface of Yioop.

crawloptions_element.php - The UI that needs to be displayed when databases is selected as an

option is created in this file. The table displayed to the user to enter the details is built in this file.

search.css- The code is added here to specify the styles for the database connections table shown

in the web interface to the user.

 After the addition of code in all the three files of Yioop, the user interface for database

connection table is created and is shown on Yioop when the user selects the databases option

from archive tab options from the edit crawl options. The code looks similar to that log records

and therefore is not shown here.

 In order to crawl and index the database records in Yioop, an archive bundle iterator was

added into the yioop/lib/archive_bundle_iterators folder. The file that is added into the folder

was database_archive_bundle_iterator.php. This file consisted of three major functions:

createRecords - This would create the array of records after executing the query specified by the

user. This array is later used to process the records.

nextPages - The nextPages function would have a loop running which calls the nextPage

function to convert each of the database records into a web page, i.e., a HTML page to be

indexed by Yioop.

43

nextPage - The nextPage function is responsible for creating the HTML page with the database

record.

 Apart from the functions mentioned above, there are also other functions such as

saveCheckpoint, restoreCheckpoint, reset, weight, a constructor etc, which perform the necessary

functions required in the database archive iterator.

 After the implementation of archive bundle iterator, a crawl was performed with database

records with the options shown in Figure 23. A crawl was started and is set as index after the

crawl was stopped the following are the results obtained after the crawl. Also, each record in the

database is named as "DatabaseRecord(Number of the record-1)". For example, the 101th record

is named as "Database Record100" as the count starts from 0. The record when opened will

display the details of the particular record to the user. The search on a query would return the

records which have that search query in them. A search on the keyword Srujana is done on the

crawl of database records. There was one record with that name and the record is returned. The

results are shown in Figure 24.

44

Figure 23: Database connection details

Figure 24: Search results for databases

45

5 Testing and Results

 This section describes the testing performed in order to test the usability of the user

interface developed in Yioop, to test the efficiency of the results and also displays the test results.

It is divided into three sub sections; URL shortening testing, usability testing of the interface,

efficiency of the results. In order to test if Yioop is treating the short links correctly, crawling has

been done on the short links and the results obtained were observed. The testing of crawling and

indexing of log files and database files in Yioop included both usability testing and testing the

efficiency of the implemented features. The testing methods and results are also described in this

section.

5.1 URL Shortening

 Testing for this feature is done in order to test if Yioop works correctly with short links. It

checks to see if the results improved after the code is embedded into Yioop.

 Firstly, a crawl is performed on a bitly link. This crawl is performed before applying the

patch and also after applying the patch. The results were compared and it showed that Yioop

improved on the results displayed. Also, the short links were avoided and redirected to the

original links and these links were crawled and indexed.

46

Figure 25: Results before the addition of code

Figure 26: Results after the addition of code

 As seen in the above figures, before the addition of code, Yioop displayed the Yahoo

URL as a plain text in the title of the page. After the addition of code, Yioop had redirected the

bitly link correctly and the Yahoo link is displayed as the title and as the first result.

47

 Secondly, another crawl was done in Yioop with the Yioop's default sites and domains. A

search was done on the word "IBM". The results obtained before the patch and after the patch

differed, the results improved and were much clearer. The results of this crawl can be seen in

Figure 18.

5.2 Usability testing

 Usability testing is a technique used in the field of user interface design or user centered

design to evaluate a product by testing it on users [5]. This practice is very much used while

building various applications in order to measure the amount of satisfaction provided to the

users. It is also done to check if the product is able to perform well in those areas for which it is

designed [5]. This is one of the best practices as it involves the users directly to evaluate the

design [5].

 Usability testing is done to measure to what extent the user is satisfied in the following

four subject areas :

• Efficiency - The time taken or the number of steps taken for a user to complete a

particular task [5].

• Accuracy - The number of mistakes made by a user while performing a particular task

[5]. It can be calculated as a measure of the number of mistakes made a particular user by

a predefined assumed number of mistakes that can be made by the user.

• Recall - This measure refers to the amount of work that a user could recall after a period

of time concerned with a particular task [5]. It can be measured in the amount of time that

the user takes to complete the task after a period of time. If the amount of time decreases

for a user, it can be said that the recall measure is improved.

48

• Emotional Response - This refers to the amount of satisfaction and the kind of emotion

felt by a person while performing a particular task [5]. It can be measured by providing a

scale of rating and asking the user to rate the task in terms of the satisfaction gained.

 The feature of crawling and indexing of log files and databases in Yioop included the

creation of new user interface for the user to enter details on the web interface of Yioop. In order

to test the usability of this interface testing was performed with five users whose age lies

between 22-26 years. The users chosen were familiar with the usage of computers and also

possessed some prior knowledge on the basic search engine and crawling concepts. In order to

perform testing, there were seven tasks that the user was asked to perform. The seven tasks were

assigned in such a way that they possess the same difficulty level and can be completed in the

same amount of time. For these purposes the resources given to the users were the location to

download Yioop, documentation of Yioop, log files, a database and a brief explanation of this

project.

 The tasks given to the users involved both working with Yioop and also tasks related to

this project. This is done in order to gain a comparative analysis between both of them and also

to see if the features embedded in Yioop are compatible enough to work with Yioop.

Task1 : Download and Install Yioop (Includes downloading and installing Xampp)

Task2 : Configure Yioop

Task3 : Start a new crawl in Yioop

Task4 : Set up log files folder in Yioop for archive crawling

Task5 : Set up a folder for database in Yioop

49

Task6 : Input details into log files interface, save them and start a crawl with them

Task7 : Input details into database interface, save them and start a crawl with them

 The user was being observed while performing all the above functions and questions

were asked in order to measure the effectiveness of the interface in all the four subject areas of

usability testing mentioned above.

(1) Efficiency

 The efficiency is calculated in terms of the time taken to complete a particular task for a

particular user [5]. The time taken for each user to complete each task is recorded and the results

are shown in the graph in Figure 27. Most of the users took the same amount of time to complete

each of the tasks. Few of them found issues in order to start a crawl when they were starting a

crawl using the manage machines section of Yioop and some of them spent time reading the

documentation of how to achieve certain tasks.

50

Figure 27: Time taken for each user to complete a task

 The average amount of time taken for each of the tasks by the users is shown in the graph

shown below. It gives a good comparison between the amount of time taken by normal Yioop

processes and the new features implemented. The graph shows that the user takes comparatively

the same amount of time taken for the normal Yioop processes which shows the new interface

developed is efficient and compatible enough with Yioop.

0

2

4

6

8

10

12

14

16

18

20

22

24

User1 User2 User3 User4 User5

Time (Mins)

Users

Task1

Task2

Task3

Task4

Task5

Task6

Task7

51

Figure 28: Graph displaying the average time taken by users for each of the tasks

(2) Accuracy

 In order to test the accuracy of the users performing the tasks, the average number of

mistakes made by the users for a particular task are calculated. A certain number of mistakes are

assumed to take place for every task. The average number of mistakes done are compared over

the assumed number of mistakes and the accuracy percentage is calculated. The table below

shows the assumed number of mistakes for each of the tasks assigned to the user. A graph is also

plotted in order to show the percentage of accuracy for each task. This is calculated as the

percentage of average number of mistakes by users for a particular task by the assumed number

of mistakes of each ask.

0

2

4

6

8

10

12

14

16

Task1 Task2 Task3 Task4 Task5 Task6 Task7

Average Time
(minutes)

Tasks

52

Table 1 : Assumed number of mistakes for each task

Figure 29: Accuracy Percentage of tasks performed by user

 (3) Recall

 Recall is the area where testing is done on order to measure the amount of work that

could be recollected without the need of referring back to the previous work done [5]. This

measure can be calculated by measuring the amount of time taken by the user to do the tasks for

0

10

20

30

40

50

60

70

80

90

100

Task1 Task2 Task3 Task4 Task5 Task6 Task7

Accuracy
Percentage

Tasks

53

the first time and the second time and comparing them [5]. A decrease in the amount of time

shows improvement in the tasks performed.

 In this project, a gap of five days has been given to the users and testing was performed

again asking the users to perform the same tasks as before. The times taken for the first time and

the second time are plotted and there is an improvement in the times. The users performed few

tasks much faster than before. There were very few instances of some of them taking a longer

time due to some issues with their systems. Most of them claimed that they could remember a

large amount of work done before and only few minute things needed to be referred again. The

graph below shows the average time taken by users for the same tasks for the first time and the

second time.

Figure 30: Graph showing the amount of time taken by users for the first time and second time

0

2

4

6

8

10

12

14

16

Task1 Task2 Task3 Task4 Task5 Task6 Task7

Average Time
(minutes)

Tasks

First Time

Second Time

54

 (4) Emotional Response

 In order to measure the emotional response of the users, questions were being asked

during the time when they were accomplishing the tasks. Each user was asked to give a rating

based on their satisfaction levels. The rating was on a scale of 1 to 10, where 1 is completely

dissatisfied and 10 is completely satisfied. The satisfaction factor includes the ease with which

the user could use the interface, how confident the user feels about repeating the steps after a

period of time and also the feel of the interface. A graph is plotted to show the average rating of

satisfaction of users on a scale of 10 for each of the tasks performed. The results show that the

users are satisfied with Yioop and the new interface to a lot of extent.

Figure 31: Average rating of satisfaction of user

0

1

2

3

4

5

6

7

8

9

10

Task1 Task2 Task3 Task4 Task5 Task6 Task7

Rating (1 to 10)

Tasks

Rating

55

5.3 Testing efficiency

 Testing efficiency of the written code is one of the most important consideration in a

project. In order to test the efficiency, few types of tests were performed. The first test is

performed by measuring the amount of time taken to crawl and index the log records and the

second test is performed to check how the code is working when different kinds of queries are

given in the database interface. Also, performance testing was done by testing the query time that

is taken by Yioop in order to return the results for a search query versus the query time taken in

MySQL to return the records using the LIKE operator. The testing using the LIKE operator was

performed as it is the most commonly used method to perform a text based search if a database

indexer is not available. Therefore, the query times taken by the LIKE operator and Yioop would

give a good comparison between both of them and provide a good picture on the performance of

Yioop with the new features implemented. Also, the number of records returned are also

recorded.

 Firstly, the code written for log records was tested by varying the number of records

ranging from 100 record to 100,000 records. These crawls were performed using a single

machine with a single server. The times taken for each of these crawls is recorded. It was noted

that the time taken to crawl and index the log records increased gradually with the increase in the

number of records. A graph was plotted to show the exponential growth of time as the number of

log records increases.

56

Figure 32: Straight line graph of time versus the number of log records

 Secondly, testing was done for the databases code. In order to test the correctness of

code, testing was done by providing different queries in the database interface and checking if

the records are limited and extracted based on the queries inputted. The database table used for

this purpose is populated with 20000 records by using a PHP script. The first query inputted was

to query the entire table whereas the second query inputted was to chose and crawl only those

records in the table whose age field is 24. For the second crawl, the records with age 24 are only

crawled and all the other records in the table are ignored. The search results of the first crawl is

the same as the one shown for database records in Figure 24. The results of the second crawl are

shown below.

0

20

40

60

80

100

120

140

160

180

200

Time
(Mins)

Number of Log records

57

Figure 33: Crawl results for second query

 Thirdly, testing was performed to compare the performance of Yioop with MySQL LIKE

operator. This testing was performed with the LIKE operator as it is the default method used to

index if a database indexer is not available. The method of testing is described in this section.

 In order to perform this test, a table with 2000 records is created in a database. The table

contained four fields namely, company ID, company name, number of employees and a

description about the company. The description field of this table is of main interest in this

particular test. An index has been created in Yioop to query the table, i.e., the database indexing

in Yioop feature was used to index the entire table. The query given to Yioop in the user

interface of Yioop was "SELECT * FROM TABLE4", where table4 is the table having all the

company details. This crawl was set as index in Yioop to search for various search queries.

58

 Testing was performed by giving various search queries in the Yioop search interface and

searching for the same search queries in MySQL using the LIKE operator. The various search

queries were "on demand", "popular", "Fortune 500", "best companies", etc. These search

queries were entered in the Yioop search interface and also in MySQL with a query using the

LIKE operator. The query used in MySQL was "SELECT * FROM TABLE4 WHERE

DESCRIPTION LIKE '%search query%'". The search query was replaced with the search

queries that are mentioned above. All the query times taken in Yioop and MySQL are recorded

and also the number of records returned by each of them are recorded. A graph was drawn in

order to give a comparison between both of them. The graph is shown below.

Figure 34 : Comparison of Yioop with Mysql LIKE operator

 The results obtained in this test show that the performance of Yioop is better than the

performance of the MySQL LIKE operator. The time taken for LIKE to return all the results for

the search queries was higher than the amount of time taken for Yioop.

0

1

2

3

4

5

6

7

8

9

10

11

12

0 200 400 600 800 1000 1200 1400 1600

Time
 (in seconds)

Number of records returned

Yioop

MySQL LIKE

59

 Therefore, the test results in this section showed the code works efficiently and the user

interface is satisfactory for the users.

6 Conclusion

 Often, users might want to crawl and index different file formats and be able to search for

keywords in them. These kind of file formats that are often not crawled and indexed by

traditional search engines fall into the category of invisible web. In this project, an

implementation has been done to add to Yioop the abilities to crawl and index log files and

database content.

 In order to make it possible for Yioop to accomplish crawling and indexing of log files

and databases, the existing concept of archive crawling in Yioop was used. There were two new

archive bundle iterators added to Yioop, namely, LogArchiveBundleIterator and the

DatabaseArchiveBundleIterator. Firstly, a user interface is designed for this purpose to help the

user in customized crawling. For log files, the users can specify their own field names and also

select a field type from the predefined field types provided to them for the log fields. Secondly,

for database indexing, the user can limit the number of records depending on the query entered

by the user. This feature in database indexing provides the user with a greater personalized

crawling experience. Implementation was done to retrieve the records and create web pages for

each of these records so that Yioop could crawl and index them. A search was done on few

keywords which were known to be present in the records and the search results were displayed

appropriately in Yioop search interface.

 There was extensive testing performed in terms of efficiency of the user interface built

for log files and databases and also for the backend code. The usability testing has been done in

60

four areas, namely, efficiency, accuracy, recall and emotional response. The time taken by the

users, their ratings and feedback given have been recorded and plotted in terms of graphs. In

order to test the efficiency of the backend code in terms of time taken to index and crawl records,

100,000 records were generated and Yioop was made to crawl and index all the records. Also,

different kinds of queries were given to the database interface to test if the records were being

retrieved appropriately. The results of the testing phase were recorded and were displayed

graphically in the testing section of the report.

 Also, as a modification to the Yioop search engine, code was added in order to make

Yioop handle short URLs in a more meaningful way as explained in the previous sections of this

report. Yioop provided the necessary framework for the implementation of this project as a

reason of its archive crawling feature. In order to improve this project, a study can be done on

how the page relevance is calculated for the log records and database records in Yioop. Presently

the page relevance is being calculated using the algorithm in Yioop. Based on the study, the

search results can be improved by implementing a new algorithm to calculate the page relevance

of these records. This could improve the search results of the records. This can be considered as

a potential future work for this project.

61

7 References

1. Pollett, C. (2012). Yioop! Documentation v 0.90. Retrieved from

http://www.seekquarry.com/?c=main&p=documentation

2. Peng, Wei., Tao, L., & Ma, S. (2005). Mining logs files for data-driven system management.

ACMSIGKDD Explorations Newsletter - Natural language processing and text mining, 7(1).

3. He, B., Patel, M., Zhang, Z., & Chang, K.C. (2007). Accessing the Deep Web. ACM, 50(5),

94-101.

4. Deep Web. (2012, November 9). In Wikipedia. Retrieved from

http://en.wikipedia.org/wiki/Deep_Web

5. Usability Testing. (2012, October 23). In Wikipedia. Retrieved from

http://en.wikipedia.org/wiki/Deep_Web

6. Bailey, B. (2006, March). Getting the complete picture with Usability Testing. Retrieved from

http://www.usability.gov/articles/newsletter/pubs/030106news.html

7. Lewandowski, D., & Mayr, P. (2006). Exploring the academic invisible web. Library Hi Tech,

24(4), 529-539.

8. Sphinx Documentation. (n.d.). In Sphinx website. Retrieved from

http://sphinxsearch.com/docs/

9. Server Log. (2012, July 18). In Wikipedia. Retrieved from

http://en.wikipedia.org/wiki/Server_log

10. Destailleur, L. (2008, December). AWStats. Retrieved from http://awstats.sourceforge.net/

11. Log Files. (2012). In Apache website. Retrieved from

http://httpd.apache.org/docs/1.3/logs.html

62

12. Databases. (2012, November 26). In Wikipedia. Retrieved from

http://en.wikipedia.org/wiki/Database

13. Zillman, P. M. (2012, November 1). Deep Web Research and Discovery Resources 2012.

Virtual Private Library.

14. URL Shortening. (2012, November 23). In Wikipedia. Retrieved from

http://en.wikipedia.org/wiki/URL_shortening

15. Sebastian. (2008, October 20). Crawling Vs Indexing. Retrieved from http://sebastians-

pamphlets.com/crawling-vs-indexing/

16. Web Search Engine. (2012, November 25). In Wikipedia. Retrieved from

http://en.wikipedia.org/wiki/Web_search_engine

17. Open Source Search Engine Software. (2012). In SeekQuarry. Retrieved from

http://www.seekquarry.com

	San Jose State University
	SJSU ScholarWorks
	Fall 2012

	Extending Yioop! Abilities to Search the Invisible Web
	Tanmayee Potluri
	Recommended Citation

	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Preliminaries
	2.1 Yioop!
	2.1.1 Simple crawl in Yioop
	2.1.2 Archive Crawling in Yioop!
	2.1.3 Architecture

	2.2 Invisible Web
	2.2.1 JavaScript links
	2.2.2 URL Shortening
	2.2.3 Log Files
	2.2.4 Database Records

	3 Design
	3.1 User Interface Design
	3.1.1 Log Files
	3.1.2 Database Records

	3.2 Backend Design
	3.2.1 URL Shortening
	3.2.2 Log Files
	3.2.3 Database Records

	4 Implementation
	4.1 URL Shortening Links
	4.2 Indexing Log Files in Yioop!
	4.3 Indexing Database Records in Yioop!

	5 Testing and Results
	5.1 URL Shortening
	5.2 Usability testing
	5.3 Testing efficiency

	6 Conclusion
	7 References

