
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2012

Secure Media Streaming for Android
Jaie Patil
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Patil, Jaie, "Secure Media Streaming for Android" (2012). Master's Projects. 272.
DOI: https://doi.org/10.31979/etd.bnd2-9e6f
https://scholarworks.sjsu.edu/etd_projects/272

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70408303?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F272&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F272&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F272&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F272&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F272&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/272?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F272&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Secure Media Streaming for Android

A Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Jaie Patil

December 2012

c© 2012

Jaie Patil

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Secure Media Streaming for Android

by

Jaie Patil

APPROVED FOR THE DEPARTMENTS OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

December 2012

Dr. Mark Stamp Department of Computer Science

Dr. Chris Pollett Department of Computer Science

Ms. Nishtha Patel Infostretch Corporation

ABSTRACT

Secure Media Streaming for Android

by Jaie Patil

Digital media distribution systems must protect the confidentiality and integrity

of content and ensure its authenticity, without introducing excessive overhead. Of-

ten, it is desirable to sacrifice some degree of cryptographic security for improved

performance.

In this project, we have implemented a secure streaming server for the Android

platform. We consider various encryption strategies for streaming video and analyze

the tradeoff between security and efficiency.

ACKNOWLEDGMENTS

I would like to take this opportunity to express my gratitude to Dr. Mark Stamp

for being my advisor and guiding me throughout my project. I would also like to

thank my committee members Dr. Chris Pollett and Ms. Nishtha Patel for accepting

to be on the committee and providing necessary input regarding the project. Also,

I am indebted to the university and its faculty members without whom this project

would not be possible.

I would also like to thank my friend Sarvesh Sharma for his valuable guidance

throughout this project.

v

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

1.1 Previous Work . 2

1.1.1 Adaptive Streaming . 2

1.1.2 Secure Streaming . 2

1.2 Contributions . 4

2 Background . 6

2.1 Video Streaming . 6

2.1.1 Streaming Principle . 6

2.1.2 Video Streaming Types . 7

2.2 Streaming Process . 7

2.3 AES for Encryption . 8

2.4 RSA for Authentication . 9

3 Web Server and Database . 11

3.1 Web Server . 13

3.2 Admin Panel and its Features . 14

3.2.1 Manage Users . 15

3.2.2 Manage Videos . 16

3.3 Database . 16

4 Android Application . 22

4.1 User Registration . 22

vi

vii

4.1.1 User Login \Sign In . 24

4.2 Video Streaming . 24

5 Encryption and Decryption . 27

5.1 .3gp video file format . 28

5.2 A Complete Video Encryption method using AES 30

5.3 Our approach of encryption using random block method 31

5.3.1 Random Block Video Encryption (RBVE) Algorithm . . . 32

5.4 Video Up-Loader . 34

5.5 Video Decryption . 34

6 Analysis of Encryption Schemes 35

7 Conclusions and Future Work . 44

LIST OF FIGURES

1 Streaming Process . 8

2 Project Infrastructure . 12

3 Admin Panel Home Screen . 15

4 Admin Panel Manage Contents . 15

5 Manage Users . 16

6 Manage Videos . 17

7 User Schema . 19

8 Video Schema . 20

9 User Registration . 23

10 Password Validation . 23

11 User Login Screen . 24

12 Media Streaming Welcome Screen . 25

13 Video Streaming . 25

14 Tabular Flow of User Login and Video Streaming 26

15 Video Encryptor and Uploader . 28

16 General Details of the .3gp file . 29

17 Video Details of the .3gp file . 29

18 Audio Details of the .3gp file . 30

19 Video Encryption Process . 33

20 Video Upload Process . 34

21 Comparison of Video Encryption Algorithms 38

viii

ix

22 Tabular view of comparison of Encryption Timings 39

23 Graphical representation of comparison of Encryption Timings using
CVE and RBVE . 39

24 Tabular view of comparison of Decryption Timings 40

25 Graphical representation of comparison of Decryption Timings using
CVE and RBVE . 40

26 Comparison of Encryption Timings 42

27 Comparison of Decryption Timings 43

CHAPTER 1

Introduction

For many decades, video has been an important medium for communication

and entertainment. Streaming visual data to various users is becoming popular,

thus protecting transmitted data from security threats has become one of the main

concerns both for end users and data providers.

As the Internet and media are developing rapidly, the availability of media

streaming applications is increasing. IPTV, video conferencing and distance edu-

cation are some of the examples of these media streaming applications [17]. In media

streaming, as soon as the file starts downloading, the end user can start viewing the

file; however, this process leads to security flaws and needs to be managed carefully

when valuable multimedia assets are hovering over the network [5].

Encryption and authentication, both play a vital role in the security of media

streaming applications. These two factors meet three information security require-

ments of confidentiality, authenticity, and non-repudiation [17]. When media content

is encrypted, only authorized users can access the protected content; this is called

the confidentiality of the media [11]. Authenticity means both the sender and the

integrity of the receiving media content is trustworthy. Non-repudiation ensures that

the sender cannot deny the action of sending the media [11].

The Internet, combined with smart phones and its peripherals, gives rise to un-

limited mobile possibilities [4]. One of these possibilities is explored and exploited by

capturing video on a mobile device, in real-time, which is then viewed by the entire

world. Currently, streaming video from a mobile phone is limited to commercial prod-

1

ucts [4]. Our paper states: how streaming can be achieved in an Android phone and

suggests a design for a secured system architecture using multimedia video streaming.

Our aim is to design an Android application that deals with HTTP based streaming

and simultaneously achieves flexibility and security by using media-aware protection.

1.1 Previous Work

In the research field of multimedia streaming, the focus is individually given on

the flexibility and security requirement, however, only a few research works jointly

consider both [17].

1.1.1 Adaptive Streaming

Video adaptation is the most crucial aspect of media streaming. Several coding

strategies address the issue of serving divergent clients with adaptive video quality

[17]. Simulcast is majorly used for video adaptation. In this technique a single video

is encoded into many individual streams, each having its own bitrate and quality,

according to the clients [17]. A client can select one of them as per the bandwidth.

However, this method is unsuitable for mid-network nodes, and simply switches be-

tween various video streams having different bit-rates [17]. Layered scalable coding

is another technique where the entire video file is divided into a base layer and many

other layers. Layers from the stream can be added and dropped to achieve video

adaptation [17].

1.1.2 Secure Streaming

Secure RTP (SRTP) was introduced with the focus of security of RTP flows that

provides the important features of cryptography, i.e., confidentiality, authentication

2

and protection for RTP traffic along with its associated control traffic [17]. SRTP

achieves secure streaming by providing the basic requirement of security services,

between a sender and a receiver, however, it does not provide the ability to securely

adapt the protected media, due to which sender authentication is kept unresolved for

consideration of computation cost and bandwidth overhead [17].

Initially, our efforts were towards researching the core section of the project,

i.e. the algorithm to implement Secure Video Streaming. The first milestone was to

perform video streaming on an Android platform. Hence, we performed our research

and implementations for streaming videos using RTSP.

In addition, the application needed to stream videos only to authenticated users

via an Android OS. We researched various authentication approaches and our main

research was based on an authentication methodology using a Darwin Streaming

Server (DSS). However from an Infrastructure point of view, we considered our study

of Web Servers and Databases to be more useful.

In the implementation phase, an “Administrator” was given complete access as

both a Member and a Manager of the application. After looking through various

research papers, we decided to conduct the authentication part using RSA, where

every user first registers and then logs into the application. We used AES as the

encryption algorithm, both because it is the current standard and is considered highly

secure, and because it is practically the only symmetric algorithm guaranteed to be

available on all Android versions. Streaming video files along with Security on the

Android Platform is done using HTTP. In order to improve the Response Time of

encryption and decryption of videos we developed a new approach, i.e., “Random

Block Video Encryption,” which helps in improving the total response time of the

process.

3

1.2 Contributions

The contribution of this project is in the design and implementation of an open-

source video streaming application on the Android Platform and deals with a HTTP

based streaming. The major emphasis is on two things: authentication of the user

accessing the application and encryption and decryption of videos based on perfor-

mance.

Many of the current algorithms encrypt videos at compression time and decrypt

at decompression time. However, these algorithms were not feasible for us because

they require a customizable video player in order to encrypt videos at compression

time and decrypt at decompression time. Also AES, the traditional encryption algo-

rithm, is unsuitable in real time video applications due to complex computation and

sloe speed. Therefore, we designed the new approach where we did selective encryp-

tion using random block method, and thus achieved faster results by compromising

some security. This project was integrated by combining the following components:

1. An Android application capable of serving secured and authenticated video

content;

2. A web interface to upload content and manage users as needed for application

authentication;

3. MySQL database for organization and ease of data between interfaces;

4. An Android based Java application (.apk) file for installation of application on

Android platforms;

5. An end-to-end performance evaluation of the resulting system.

4

The organization of this project report is as follows: Section 2 briefly describes the rel-

evant background regarding video streaming and other related topics such as stream-

ing principle, types of video streaming, etc; Section 3 describes the web server and

database details in addition to the use of an admin panel; Section 4 describes the

Android application along with authentication details using RSA; Section 5 covers

the implementation details of video encryption using AES and our approach using

a random block methodology; Section 6 covers the detailed analysis of a variety of

encryption strategies and their comparison with our approach; and finally, the paper

concludes with our conclusions and suggestions for future work in Section 7.

5

CHAPTER 2

Background

We begin with the implementation of related concepts and attempt to cover rel-

evant background information regarding our study and research on various concepts,

including video streaming, its principle, and types of video streaming. We also briefly

discuss the research made on how encryption of video and user authentication is

accomplished using AES and RSA respectively.

2.1 Video Streaming

A Streaming mechanism is a technique for transferring data where as the file is

sent to the end user and is processed as a steady and continuous stream [11]. Stream-

ing video is a sequence of moving images, which are transferred in the compressed

form and sent it over the Internet to viewers so that they can display it on the screen

as they arrive [5]. If video data is received by an end user as it streams, then users

do not have to wait to download a large set of files, before watching video or listening

to the audio [11].

2.1.1 Streaming Principle

In the process of streaming multimedia, media files are delivered by a provider,

and are constantly received by, and normally rendered to the end-user’s screen [31].

In streaming applications the transmission time of data packets is important since

the packets should reach their destination in a timely manner. Even the smallest

time delay in this process can cause network congestion, and eventually result in

the loss of delayed packets [25]. This results in a loss of quality data, breakage of

6

the synchronization between client and server, and error propagation in the rendered

video [25].

2.1.2 Video Streaming Types

1. Downloading

When a particular file is downloaded, it first gets saved on a local computer,

and then can be accessed for viewing. The major disadvantage of this platform

is having to wait for the entire file to download before the user can view it [29].

For smaller files this should not be a concern, however for larger files and long

presentations it can be inconvenient [4].

2. Streaming

In this type of video streaming, the end user has the advantage of instantly

watching file from the moment download starts. In effect, the file is sent to

the user in the form of (more or less) constant streaming; and the end user

can watch the video immediately as and when it arrives [28]. The obvious

advantage of this method is that the waiting time is zero. Streaming media also

has additional advantages such as being able to broadcast live events [4].

2.2 Streaming Process

Streaming takes place in following four steps:

1. The client will visit a Web page and will request a particular file;

2. The page then visits the Web server to find the requested file;

3. The Streaming server streams the file directly to the client and;

7

4. The Client software decodes and plays the requested file.

Please refer to Figure 1 for the basic streaming process:

Figure 1: Streaming Process

2.3 AES for Encryption

Advanced Encryption Standard (AES) falls under the category of cryptographic

mechanisms. It is mainly used to protect electronic data and to maintain its safety

[16]. AES is an iterative, symmetric-block cipher that makes use of keys with the

length of 128, 192 and 256 bits, and performs encryption and decryption on data

blocks with the size of 128 bits, i.e. 16 bytes [16]. However, a symmetric-key cipher

uses the same key to encrypt and decrypt data as compared to public-key ciphers,

which make use of a pair of keys [16]. In the case of Iterative ciphers, encryption and

decryption are performed in the form of a loop structure where input data undergoes

a series of permutations and substitutions [16]. These ciphers use a loop structure

that repeatedly performs permutations and substitutions of the input data [16].

Advanced Encryption Standard, is executed in four steps by performing a series

8

of an iteration on input data. AES performs ten iterations for an 128-bit length key,

12 iterations for an 192-bit key, and 14 iterations for a 256-bit key [30]. We discuss,

in brief the following in order to understand the steps performed in iterations during

an AES implementation:

1. SubBytes: at this step of the iteration, non-linear byte substitution for each

byte of the block takes place on the input data [30].

2. ShiftRows: then, the bytes are cyclically shifted within the block [30].

3. MixColumns: at this step, group of four bytes is formed, forming four-term

polynomials. It then multiplies the polynomials with a fixed polynomial

mod(x4 + 1)[30].

4. AddRoundKey: finally, it adds the round key with the block of data [30].

In our implementation of “MediaStreaming” application, we have completed en-

cryption and decryption of videos - 16-byte block of data using a 128-bit key.

2.4 RSA for Authentication

RSA is a widely used algorithm for encryption and authentication for many

websites and in the world of the Internet [20]. It was developed by Ron Rivest, Adi

Shamir, and Leonard Adleman in 1977. RSA is also included as part of the Web

Browsers from Microsoft and Netscape [20]. The encryption system produced by

RSA algorithms is owned by RSA Security [20].

This algorithm involves a series of mathematical operations performed on two

large prime numbers, resulting in a set of two numbers that constitutes the Public

key and another set as the Private key [20]. The encryption and decryption take place

9

with the help of these two keys generated pertaining to a particular user [20]. The

Public key is open to be read by everyone; however the Private key is only known to

the owner [20]. In an RSA algorithm the private key is never sent across the internet

[20], hence it is not susceptible to an attack by hackers.

The Public key is used to encrypt the text which is then decrypted using the

Private key obtained from the same set of numbers that underwent mathematical

operations [20]. Thus, when User A sends a message to User B, User A fetches User

B’s Public key from the central administrator and sends an encrypted message to

User B using B’s public key [20]. User B can decrypt this message using their own

Private Key. This process ensures privacy; however, User B can be authenticated to

the User A, by B using their own Private key to encrypt a digital certificate [20]. User

A can decrypt the sent digital certificate using B’s Public-key [20], assuring to User

A that the message received is from User B, hence User B, is authenticated [20].

10

CHAPTER 3

Web Server and Database

Every architectural implementation, irrespective of any domain, needs a strong

base beneath it and records to store inputs and outputs. Our application “MediaS-

treaming” also needed a platform to build the application and a Database to store

the information relevant to the application.

An Infrastructure (Server) helps different applications spread across the globe

at various geographical locations to work together as a single Enterprise [23]. It

easily manages the large number of users and transactions within an enterprise. The

Infrastructure behaves as a backbone of an Enterprise to work in a Unity [23]. It

also helps an enterprise to be more productive [23]. thus, the Infrastructure helps

developers build multi-tier applications [23] and acts as a platform by integrating

diverse computers, networks using multiple operating systems and software packages

[23].

Our Infrastructure widens over a diverse computer’s Window’s Operating Sys-

tem, an Android platform and various software packages. We shall discuss briefly the

architecture design, before we discuss the details of the Infrastructure involved in our

project.

1. Presentation Layer: The project demanded an user interface wherein users

with their privileges can create individual accounts and upload content (videos)

on a server. As the application was developed, keeping in mind worldwide users,

we needed a WWW domain.

11

2. Application Logic Layer: The application layer represents elements that are

specific to this application, and contain back-end processing for the UI, and

bindings between the application and business logic layer. It includes the video

streaming part of the application as well.

3. Business Logic Layer: The business logic layer contains logic that is specific

to a business domain, i.e. functionalities such as encryption, decryption of

videos needed to be performed.

4. Data Access Layer: A Database was needed to store in user information and

video details, and also the content for the entire application.

Please find Figure 2 for the pictorial representation of all the layers mentioned

above.

Figure 2: Project Infrastructure

12

3.1 Web Server

Roles and Significance of a Web Server: A Computer (hardware) or a

Computer Application (software) that renders content \information to web users

via the Internet can be referred to as a Web Server [32]. A Web Server is mostly

used to host websites. It is also used for the purposes of data storage, running

enterprise applications, etc. [32]. A Web Server deliveres web pages in response

to the requests sent by clients using the Hypertext Transfer Protocol (HTTP) [32].

These Web pages are simply HTML documents along with additional content such

as images, style sheets, and scripts [32]. While our project’s, you would see, while

the primary function is to serve content, a full implementation of HTTP also includes

ways of receiving content from clients. This feature is used for submitting Web forms,

including uploading files. Hence, the architecture elements mentioned in Figure 2

demonstrates an Infrastructure Layer that performs the execution and implement

each layer’s functionality.

Infrastructure Layer

The Infrastructure was intended to be such that the application was to be made

accessible by WWW. Hence, we needed to perform Hosting and have a domain for

the application.

Domains are available and provided by many Web dealers. As this was not a

major part of our project, we bought the domain “www.securemediastreaming.com”

from one of the dealers and hosted this domain on a Windows platform. Below are

the details for the Server:

General Details Primary Domain Name: securemediastreaming.com Platform:

Windows

13

Programming Languages Supported:

1. PHP v5

2. ASP

3. ASP .NET v3.5

Database:

1. MySQL

2. MsSQL

Infrastructure:

1. Dual Quad Core Xeon Processors

2. 24GB Ram

3. Highly redundant architecture

3.2 Admin Panel and its Features

The application intended to provide user privileges to all the users in order to

upload their choice of video files. Admin panel also contains an Administrative side,

for monitoring all content being uploaded and for accessing user information and

other managerial features. In our application, the Administrator is a manager who

is responsible for the required monitoring of the application by handling registered

users, their details, and information about the uploaded videos on the server. An

Admin can edit and delete a user and video contents. An Admin panel’s home screen

is shown in Figure 3.

14

Figure 3: Admin Panel Home Screen

Figure 4 shows the Manage Contents screen, after successfully logging in using

admin credentials.

Figure 4: Admin Panel Manage Contents

3.2.1 Manage Users

“Manage Users” is one of the sections present in the UI application that only

an Administrator can access. When the Administrator successfully logs into the UI

application, the “Manage Users” button helps the Admin user navigate to the User

Information section as shown in 5. This section of the application allows the Admin

User to edit or delete User Accounts related to the application. Figure 5 shows the

15

Manage Users feature of admin panel.

Figure 5: Manage Users

3.2.2 Manage Videos

“Manage Videos” is another section present in the UI application, that only

Administrator can access. When the Administrator successfully logs into the UI

application, the “Manage Videos” button helps the Admin user navigate to the video

information section as shown in 6. This section of the application allows the Admin

user to delete video files present on the server and its relevant information from the

Database. Figure 6 shows the Manage Videos feature of an admin panel.

3.3 Database

The database is widely used for data storage and for dynamicity of website and

applications. It is a major part of the application where users interact with the system

to fetch and upload content.

Designing the Database is a very crucial stage involved in the development [26]

of an application and is a requirement before actual coding begins in order to produce

16

Figure 6: Manage Videos

a high-performance application [26]. The database needs to be designed efficiently, so

that it contains only relevant and required information [26]. A well-designed database

keeps queries simple for faster and efficient results [26]. Hence, it is always recom-

mended that a good amount of time is spent on designing the database before coding

in IDE [26].

The database for our application was designed in MySQL and we stored it on a

Windows OS web server. When the user registers through an Android application to

access the videos, they have to fill up required information such as: First Name, Last

Name, Address, Email Address and Password. After successfully registering, this

data is stored within the database on the server side. The password is converted to

an encrypted password and stored along with Salt to increase and ensure the security

of the system.

The application has a Data Management Layer where all the information related

to the authentic user’s details is stored as a security parameter.

17

A MySQL Database controls the complete storage management of data in the

form of schemas, pertaining to users and videos.

A “Media Streaming” application consists of two schemas in the database:

“Users” and “Videos” for storing the respective information in tables.

Users Schema: This table is used to store user-related information gathered

during registration of the application and also authentication details required for users

to access the Android application. Listed below are the columns defined within the

schema:

1. Unique id: Primary key of the schema

2. Firstname: First Name of the User

3. Lastname: Last Name of the User

4. Email: Email address of the User

5. Encrypted password: Password of the user stored in encrypted form

6. Salt: Salt information to improve the strength of password encryption

7. Created at: Account creation date

8. Updated at: Account last modified date

9. Pkpublic: Public key assigned to the user during registration which would be

used for user’s authentication

See Figure 7 as it represents the User Schema.

18

Figure 7: User Schema

Videos Schema: This table is used to store video related Information for videos

uploaded by an Administrator on the Web server. Listed are the columns defined

within the schema:

1. Title: Title \Name of a video

2. Path: Complete location along with the filename

3. Aeskey: The secret key used for the symmetric algorithm

4. Aesiv: The initialization vector (IV) required for the symmetric algorithm

5. Format: Video format

6. Seed: Seed value that is used during the AES encryption and decryption of

videos.

Figure 8 represents the Video Schema.

19

Figure 8: Video Schema

Encrypt Password using Salt: Usually most of modern Web applications need

to encrypt a user’s passwords. As soon as an end user signs in using a password, from

that moment onwards, their password is encrypted and stored in order to maintain

security.

Data stores and communication can be compromised. Therefore, we should take

into consideration that our user’s passwords are delicate personal data. Passwords

are keys to their personal privacy and include sensitive data, therefore we do not have

the right to hinder their privacy or to know their passwords.

In the case where passwords are simply encrypted, they are easily accessible (such

as the traditional UNIX password file). Without a Salt, the attacker can take a list

of encrypted passwords and run a pre-encrypted dictionary against each quickly and

effortlessly.

In a cryptographic system, Salt plays an important role. It consists of random

bits and creates one of the inputs to a one-way function that generally uses a cryp-

tographic hash function. A password is treated as the other input. Along side of the

Salt, the output of an one-way function is stored, rather than storing the password,

and is used for the user authentication.

Hence, the Salt just needs to be random. It can be freely known as it doesnot

help an attacker gain password information. Our system will store the plain text Salt

within our database in a column next to the hashed password.

20

The main purpose of a Salt is to identify if two users are sharing the same

password. If the random Salt is not present for every individual password, then the

hash value of each password will be the same; this becomes obvious if the password

for the first user is cracked then the second user must be sharing a similar password.

Public Key: A cryptographic system uses two keys, a public key known to

everyone and a private or secret key known only to the recipient of the message.

When User A wants to send a secure message to User B, A uses B’s public key to

encrypt the message. User B then uses his private key to decrypt it.

The crucial factor about a Public-key cryptosystem is the relation between the

Public and Private keys as encryption could be possible only with the public key,

whereas for decryption one needs to use its corresponding private key. Furthermore,

it is virtually impossible to discover Private key even if the Public key is known.

21

CHAPTER 4

Android Application

As introduced in the earlier phases of this paper, video application “MediaS-

treaming” is developed and dedicated for the Android platform; and this application

takes care of the security of media being transmitted onto the Android platform. This

application is developed using the Android Java language, and it has two parts:

1. User Registration

2. Video Streaming

When the users launch a “MediaStreaming” application on their device, they

are presented with a Sign In screen. If the user is not registered, there is an option

to register before Login. After successful registration, the user now has an access to

various videos, which are uploaded to the server. The User can select a video and then

play, pause, rewind, and forward it. The user may logout once they have watched the

desired video.

4.1 User Registration

User Registration is completed using the Android Java code. The steps for

registration are explained as follows: 1. The user first installs an Android application

and gains a servers RSA public key. 2. The user creates RSA keys while registering

within the application by providing the information as per Figure 9:

Figure 9 represents the User Registration part of the Android application.

22

Figure 9: User Registration

During the registration, if the values for the user’s password and confirm pass-

word do not match, then user receives an error message stating, both passwords

should match. Figure 10 represents this function.

Figure 10: Password Validation

The registration part of the application is well supported with all the field vali-

dations, as per Web standards, and the requirements of the application.

Only after successfully registering their required information can the user send

their RSA Public key to the server.

23

4.1.1 User Login \Sign In

The Login screen of the Android application is shown in Figure 11.

Figure 11: User Login Screen

Once at the the Login Screen, the user needs to enter their credentials, which

were created during the initial registration process. Once the user logs in using

these credentials, they are redirected to the welcome screen of our media streaming

application.

4.2 Video Streaming

When the user registers through the Android application, they have access to

videos that are being uploaded by the Admin on the server.

The user is taken to the welcome screen when they are logged in. Videos can

be uploaded by the Admin and the name of the videos can be changed. This will be

reflected as videos names and seen by the users when they come across this screen.

Figure 12 represents the “Welcome Screen” in the Media Streaming application that

displays the list of available videos for the user to stream.

24

Figure 12: Media Streaming Welcome Screen

The user can select the video of their choice from available video options and

then play it. Once the user starts watching the video, they can take advantage of

the features such as, Pause, Rewind, and Forward. Figure 13 represents the actual

streaming of the selected video where the user can pause, rewind and forward the

video.

Figure 13: Video Streaming

25

Figure 14 represents the sequence of flow and the back end functionalities taking

place during the entire process after the user logs into the Android application until

the video is streamed.

Figure 14: Tabular Flow of User Login and Video Streaming

26

CHAPTER 5

Encryption and Decryption

Video encryption is an extremely useful method for stopping unwanted inter-

ception and viewing of any transmitted video. The main goal of cryptography is

keeping data secure from unauthorized attackers. The reverse of data encryption is

data decryption, which recuperate the original data. Security, time efficiency, for-

mat compliance, and compression friendliness are some of the important features of

a video encryption algorithm. Security is a basic requirement, which means that the

cost of breaking the encryption algorithm is equal to the cost of buying a video au-

thorization. The time efficiency means, encryption and decryption should not take

much time as the heavy delay is not acceptable in real time.

In order to encrypt a video before it gets uploaded to the Web server for stream-

ing, we used the complete video encryption methodology using the AES algorithm.

However, later we discovered that the time it takes to encrypt a video is comparatively

high, and it could cause an issue when we encrypt a video of larger size. Looking at

the time efficiency of the algorithm, we decided to design an algorithm that does not

need to encrypt an entire video but only random blocks of it. We then used a ran-

dom block encryption method, which is explained in Section 5.3, to make the video

encryption more time efficient. The file format we used during the implementation

of this project is .3gp.

27

Figure 15: Video Encryptor and Uploader

5.1 .3gp video file format

The “.3GP” file extension is a well known mobile video file format and it delivers

multimedia over third generation mobile networks [33]. Generally, mobile phones that

are equipped with a recording facility use this file extension as a standard file format

to record multimedia clips. One of the crucial factor of using .3GP technology is that

it downloads or transfers video and audio clips faster [33].

The latest mobile phones use the .3GP file format for creating, playing, and

transferring media files over third generation wireless networks. Typically, this fast

paced, .3GP file format contains audio and video streams [33]. MPEG-4 Part 10 or

MPEG-4 Part 2 usually contain video streams that are structurally based on MPEG-

4, whereas audio streams can be stored in various formats, which includes AAC or

AMR [33]. Third generation file format refers to big-endian formats; where the first

bytes contain the most significant data and are stored in the earlier section of the file

[33].

28

Figure 16 , Figure 17, and Figure 18 represents the “General”, “Video” and

“Audio” details of the .3gp file format respectively.

Figure 16: General Details of the .3gp file

Figure 17: Video Details of the .3gp file

29

Figure 18: Audio Details of the .3gp file

5.2 A Complete Video Encryption method using AES

In this type of encryption, the entire content of the video is first compressed and

then encrypted using a standard traditional algorithm, AES. We use the AES as the

encryption algorithm, both because it is the current standard and is considered highly

secure, and because it is the only symmetric algorithm guaranteed to be available

on all Android versions. However, this technique is unsuitable in real-time video

applications due to heavy computation and slow speed.

The idea of this algorithm is to treat the .3gp bit stream as text data and

does not use any of the special structure. This algorithm provides the security to

the entire 3gp stream since every byte is encrypted. Using this algorithm is not an

applicable solution for larger videos, since it is very slow, especially when we use a

triple AES. Because of the encryption operation, delays increase and the overload will

be unacceptable for real-time video applications.

The algorithm starts with the creation of an AES object, and then the generation

30

of a KEY and an IV for that object. Once the object and key creation is completed,

we read the video file as a stream with its content, which is followed by passing that

data onto an encryption function. This function creates a “CryptoStream” object

from an AES key and an AES IV which then eventually reads the byte data, encrypts

this data, and writes encrypted data into the “FileStream” Object. Object forms

an AES key and an AES IV. This CryptoStream object reads byte data, encrypts

this data, and writes encrypted data into a FileStream Object. The basic steps of a

“Complete Video Encryption” are as follows:

1. Create AesCryptoServiceProvider object and generate an AES key.

2. Create file stream object and read video data.

3. Pass this data to an encryption function which creates the CryptoStream Object

to encrypt the data and FileStream Object to write the encrypted data into a

file.

5.3 Our approach of encryption using random block method

The algorithm used for our purposes randomly encrypts the bytes within video

frames. Since our algorithm is not encrypting every single byte of the video data,

it reduces the computational complexity. This section discusses the random block

encryption, which only encrypts a subset of the data. The aim of a random block

encryption is to reduce the amount of data that is encrypted while preserving a

sufficient level of security.

In general, the size of a video file is larger than other files such as images, text files,

etc. We wanted a more efficient and effective method for video encryption. However,

we faced two major issues such as: time and streaming. Looking at these factors we

31

decided to design an algorithm that is more time efficient with large video files and, at

the same time, has effective streaming. Currently accomplished algorithms exist, that

can encrypt videos at compression time and decrypt at decompression time. However,

these algorithms are not feasible for us because they require a customizable video

player in order to encrypt videos at compression time and decrypt at decompression

time.

With this in minds, we designed our new algorithm, “Random Block Video En-

cryption,” which is efficient in terms of timing and streaming. Our algorithm first

divided the video file data into blocks of 16 bytes. We then generated a series of

random numbers from a seed. The size of this series depends upon the encryption

ratio. We encrypted blocks using AES, which are being generated in a random se-

ries. The security of this algorithm depends upon two factors: an AES key and a

Seed used for Random Series. We increased the security of our algorithm by using a

series of random numbers. If we encrypt a video by using a predefined method, then

anyone can identify which blocks are encrypted and which are not. With tandom

block encryption method, as the sequence of encryption is dependent upon a seed,

an attacker cannot find the encrypted and unencrypted blocks. So “Random Block

Video Encryption,” is Secure, Fast, and efficient for streaming.

5.3.1 Random Block Video Encryption (RBVE) Algorithm

• Read a video file: Here we first read the video file in the format “3gp”.

• Define the block size used for encryption and decryption: We use 16 bytes as a

block since we are using AES; it works on 16 and multiples of 16 bytes, and if

do not use 16, then it does padding.

32

• Get total bytes of video: We are calculating the total bytes of a video by dividing

the file length by our defined block size i.e. 16.

• Define the encryption ratio: In this algorithm, we used the encryption ratio as

0.1.

• Calculate the encrypted blocks: Encrypted blocks are calculated by multiplying

the total blocks with the encryption ratio.

• Create a series of random numbers from seed: The size of the series is equal to

encrypted blocks.

• Sort that series in ascending order: Once we obtain the series of random num-

bers, by first sorting in ascending order before proceeding to the next step.

• Encryption of blocks: After finishing all the above steps, we have now encrypted

the blocks that are in the series of random numbers using AES.

Figure 19: Video Encryption Process

33

5.4 Video Up-Loader

Once the video is encrypted we need to upload this encrypted video onto the

Web-server so that authentic users can access and play video. We then need to

upload video information onto the Web-server such as, video format type, AES key,

and IV (Initialization Vector) used for encryption.

We used an FTP method to upload the encrypted video onto the Web-server.

The encrypted video is uploaded to the Web-server, which then writes the video

information, seed of random series, AES key and AES IV within the database of the

Web-server. To write the data into a database, we have written the PHP code.

Figure 20: Video Upload Process

5.5 Video Decryption

For a video decryption, we first created a series of random numbers from the

Seed where the size of the series depends upon the encryption ratio. We then fetched

the data from defined positions of our series, followed by its decryption using AES.

Finally, we wrote the decrypted data, which is then used for playing the video.

34

CHAPTER 6

Analysis of Encryption Schemes

Data encryption is a suitable method to protect data. Until now, various encryp-

tion methodologies have been proposed, that are mostly used for encryption of text

and binary data [33]. Since video data are often used in real time applications and are

large enough to handle, it becomes difficult to use them directly in video encryption.

The wide use of multimedia files in various applications brings serious attention to

security and privacy issues [33]. This section provides the evaluation and comparison

of the established encryption algorithms based on performance parameters. We also

discussed the graphical comparison of both the video encryption methods explained

in Section 5. The complete video encryption method takes more time in encrypting

and decrypting the video as compared to the random block encryption method. This

comparison becomes more evident when the video size gets larger.

Encryption ratio (ER): This parameter gives the ratio between the size of an

encrypted part, and the whole data size. To achieve a less complex computation, one

should make sure that an encryption ratio should be minimized [33].

Speed (S): Generally in all the media and real-time video applications, speed

is the crucial factor, as along with security, it becomes necessary for an algorithm to

be time efficient to meet the real time requirements [33].

Compression Friendliness (CF): An encryption algorithm should not affect

the data compression efficiency. Some encryption algorithms introduce more data that

are necessary for decryption [33]. One should take care that the size of encrypted

data will not be increased only after which, it will be considered as a compression

35

friendly algorithm.[33].

Cryptographic Security (CS): Cryptographic security is the most vital fea-

ture of cryptography. Checking the security, means verifying if the encryption al-

gorithm would be safe with various cryptography and different plaintext-cipher text

attacks [33]. Multimedia applications should consider this feature, as they contain

the sensitive data which has valuable information [33].

Security, time efficiency, format compliance, and compression friendliness are

the crucial factors of any video encryption algorithm, as multimedia files are widely

used in real life applications [33]. Among them, security is the basic requirement,

because the cost of breaking the encryption algorithm is equal to the cost of buying a

videos authorization. Time efficiency means the total response time of encryption and

decryption should be as low as possible as the heavy delay may affect the performance

of applications [33]. Apart from that, the video should not be compressed after the

encryption and decryption. The format compliant means that the data format of an

encoded bit stream is not changed after an encryption process, to support such direct

operations as browsing, playing, cutting, copying, and so on [33].

Pure Permutation: This algorithm implements an encryption by scrambling

the bytes within a frame of MPEG stream with the help of permutation[33]. It is

an extremely useful algorithm, when the hardware decodes the video, however, the

software helps in decryption [33]. This algorithm is prone to a plaintext attack, and

hence should be carefully used; since by comparing the ciphertext with the known

frames, the attacker could easily recognize the secret permutation list. Once this list

is figured out, it becomes easy to decrypt all other frames [33].

Fully Layered Encryption: This method uses, the traditional algorithms such

36

as AES or DES, to encrypt every single byte in the entire video stream. The aim of

this algorithm is to treat the MPEG bit-stream as text data and does not use any of

the special structure [33]. As every byte is encrypted, it provides the security to the

entire multimedia stream, and until now, no algorithm has been introduced to break

DES or AES. It is definitely not an applicable solution for large video files, because of

its slow speed. Additionally increased encryption operation delay and overload will

be unacceptable for real-time video application [33].

Our first method of video encryption, i.e., “Complete Video Encryption,” is based

on the above established technique where we encrypt every byte of data and thus it

takes a more amount of time to both encrypt and decrypt the videos.

Perceptual Encryption: This type of encryption is generally used in, pay-per-

view video, and video on demand situation. This feature requires that quality of audio

and visual data is only partially degraded by encryption [33]. Due to this percepti-

bility it becomes possible for potential users to listen and view low quality versions

of multimedia products before buying them [33]. Factor p continuously controls the

visual quality degradation, which usually represents a percentage corresponding to

the encryption strength [33].

Random Block Encryption: There are already accomplished algorithms that

are based on Selective encryption techniques, and encrypt videos at compression time

and decrypt at decompression time. However, these algorithms are not feasible for us

since they require a customizable video player for encrypting videos at compression

time and decrypting at decompression time.

We increase the security of our algorithm using a series of random numbers. If we

encrypt the video using a predefined method, then anyone can identify which blocks

37

are encrypted and, which are not. With this method, the sequence of encryption

depends upon the Seed, therefore an attacker cannot find the encrypted and unen-

crypted blocks; this feature makes our algorithm fast and efficient by maintaining its

security.

Figure 21 represents the comparison of above mentioned algorithms with respect

to various parameters such as ER, S, CF, and CS. However, often it is desirable to

sacrifice some degree of cryptographic security for improved performance.

Figure 21: Comparison of Video Encryption Algorithms

It is difficult for a single algorithm to satisfy all performance parameters [33].

Encryption algorithms should be selected based on the requirements of an application

in use [33]. It is challenging for researchers to design an encryption algorithm that

maintains tradeoff among all parameters like speed, encryption ratio, compression

friendliness, format compliance and cryptographic security [33].

Figure 22 and Figure 24 represents the encryption and decryption time compar-

ison using both the methods which we described in this paper.

Figure 23 shows the graphical representation of above table, where “X” axis

stands for the size of video and “Y” axis stands for their corrosponding encryption

38

Figure 22: Tabular view of comparison of Encryption Timings

time taken by “CVE” and “RBVE”.

Figure 23: Graphical representation of comparison of Encryption Timings using CVE
and RBVE

Figure 25 shows the graphical representation of above table, where “X” axis

39

Figure 24: Tabular view of comparison of Decryption Timings

stands for the size of video and “Y” axis stands for their corrosponding decryption

time taken by “CVE” and “RBVE”.

Figure 25: Graphical representation of comparison of Decryption Timings using CVE
and RBVE

Comparison between the above-mentioned implementations, i.e. Complete Video

40

Encryption and Random Block Video Encryption can be easily depicted and inter-

preted in Figure 26 and Figure 27. The below graphs give the Performance analysis,

at each iteration during encryption and decryption of a video, and help showcase the

Time Difference between execution of both the algorithms. The analysis involves 10

iterations to display the Performance in the form of a Graph. The comparison is

done based on Time taken in seconds at each iteration along the Y-axis and Iteration

count along X-axis, during the process of encryption and decryption.

The application developed, graphically displays encryption and decryption mea-

surements in terms of time consumed along with numerical figures to minutely locate

time values involved in the completion of each iteration. The whole analysis is man-

aged by a user interface that helps user browse a video file, on which encryption and

decryption are to be performed using the two algorithms, and performs actions as per

the mentioned instructions and events.

Once the user browses through a video file and clicks on “Encryption and Decryp-

tion,” an event is fired to start the encryption and decryption of the selected video file

using both the algorithms. “Show Performance” helps to view a time analysis of both

algorithms in a graphical manner, measured in Time along the Y-axis and iterations

along X-axis. “Show Encryption Time” and “Show Decryption Time” events display

the same, i.e. time difference for encryption and decryption numerically.

41

Figure 26: Comparison of Encryption Timings

42

Figure 27: Comparison of Decryption Timings

43

CHAPTER 7

Conclusions and Future Work

An Android-based application “MediaStreaming” was created for the World

Wide Web users to stream their choice of videos, securely. The application is sup-

ported through user authentication before accessing the videos available on the Web

store. The video streaming design using security uses minimal processing with little

overhead while maintaining security.

The authentication of each user is made strong by storing sensitive credentials

for each user by using Salt in the database. The algorithm involved in authentication,

is an RSA algorithm.

Encryption and decryption of videos are done via “Random Block Video Encryp-

tion” algorithm, which is based on AES. With an RBVE method, the sequence of

encryption depends upon the Seed, therefore the attacker cannot find the encrypted

and unencrypted blocks, creating a more secure, fast, and efficient video streaming.

The project has been constructed for easy integration and modification to take

full advantage of future technologies. Few factors like bandwidth and video quality

have not been taken into consideration during the development and performance

testing of our application. As video streaming is managed via HTTP, the speed and

efficiency also depend upon the network bandwidth. The application has been strictly

created to work and execute on the Android Platform. Efforts should be made that

an efficient application can be used across platforms such as Mac, Google, etc.

As of today, the application is capable of successfully encrypting and streaming

44

“.3pg” file formats. However, we have kept the application flexible enough to extend

its functionalities to other file formats.

A perceptual hash algorithm extracts perceptual features from the multimedia

content and achieves certain robustness. Though it allows, some amount of content-

preserving processing, it is only sensitive to perceptually significant content modifica-

tion.Perceptual hash should be studied as this approach implies possible breakthrough

for multimedia authentication [17]. Many interesting issues related to scalable video

coding, and its corresponding secure streaming mechanism need to be resolved so that

more secure and adaptive media streaming can be achieved [17]. Also, during the re-

sponse time, there are many other factors one needs to consider namely Network,

video size, and so on.

The “Random Block Video Encryption” can be modified further using other

encryption methods such as Hash key-based video encryption scheme for H.264\AVC,

MPEG encryption algorithms, etc. A comparison and performance need to be tested

for the best efficient algorithm implementation.

The project paper does not address the LIVE content streaming of videos. The

scope could further be extended to the process of fetching LIVE video content securely

by implementing an RBVE algorithm and performing user authentication, as this is

an emerging factor within the field of video streaming.

45

LIST OF REFERENCES

[1] Abomhara. M, Zakaria. O, & Khalifa. O, An Overview of Video Encryption
Techniques International Journal of Computer Theory and Engineering, Vol. 2,
No. 1 February, 2010, 1793-8201.

[2] Agi. I, & Gong. L, An emprical study of MPEG video transmissions, in Proceed-
ings of The Internet Society Symposium on Network and Distributed System
Security, (San Diego, CA), pp. 137-144, February 1996.

[3] Ali. W, & Nigam, A. Java RTP Implementation, Retrieved from
http://www.cs.columbia.edu/~hgs/teaching/projects/java_rtp/report.html/

[4] Apostolopoulos. D, & Wee. P, (2002). Video Streaming: Concepts, Algorithms,
and Systems, Mobile and Media Systems Laboratory. 1-35.

[5] Asghar. M, & Sadaf. S, (2010). SVS - A Secure Scheme for Video Streaming
Using SRTP, AES and DH, pp 177-188.

[6] Bhargava. B, & Shi. C, An Efficient MPEG Video Encryption Algorithm, IEEE
Proceedings of the 17th Symposium on Reliable Distributed Systems, 1998, Pages
381–386.

[7] Cheung. S, Ammar. M, & Li. X On the use of Destination Set Grouping to Im-
prove Fairness in Multicast Video Distribution, IEEE INFOCOM, March 1996.

[8] Chiariglione. L, MPEG Technology Group, http://www.chiariglione.org/mpeg,
(Accessed on March 2, 2009).

[9] Girod. B, Chakareski. J, Kalman. M, Liang. Y, Setton. E, & Zhang. R, Ad-
vances in Network-Adaptive Video Streaming, 2002 Tyrrhenian Inter. Workshop
on Digital Communications, September 2002.

[10] Griwotz. C, Video protection by partial content corruption, Proceedings of Mul-
timedia and Security Workshop at the 6th ACM International Multimedia Con-
ference, (Bristol, England), pp. 37-39, 1998.

[11] Holankar. D, (2011). Secure Streaming Media and Digital Rights Management.
International Technical Paper, 1-4.

[12] Huo. L, Fu. Q, Zou. Y & Gao. W, Network adapted selective frame-dropping
algorithm for streaming media, IEEE Trans. Consumer Electron. 53 (2) (2007)
417-423.

46

[13] Joshi, A, (2009). How to setup Darwin streaming server on windows,
Retrieved from
http://generally.wordpress.com/2007/darwin-streaming-server-on-windows/

[14] Lian. S, Multimedia Content Encryption: Techniques and Applications. CRC,
2008.

[15] Maples. T, & Spanos. G, Performance study of selective encryption scheme for
the security of networked real-time video, in Proceedings of the 4th International
Conference on Computer and Communications, Las Vegas, NV, 1995.

[16] McCaffrey. J, AES: Keeping Your Data Secure with Advance Encryption Stan-
dard,
http://msdn.microsoft.com/en-us/magazine/cc164055.aspx

[17] Mou. L, & Huo. L, (2009). A secure media streaming mechanism combining
encryption, authentication, and transcoding. Signal Processing: Image Commu-
nication, 825-833.

[18] Paul. D, How To create Streaming Video
http://www.mediacollege.com/video/streaming/overview.html/

[19] Reibman. A, Jafarkhani. H, Wang. Y, Orchard. M, & Puri. R Multiple-description
video coding using motion-compensated temporal prediction, IEEE Trans. Circuits
Syst. Video Technol. 12 (2002) 193-204.

[20] Rouse. M, RSA Algorithm, September 2005.
http://searchsecurity.techtarget.com/definition/RSA

[21] Schulzrinne. H, RTP: A Transport Protocol for Real-Time Applications,
http:// www.ietf.org/rfc/rfc3550.txtS, July2003/

[22] Shi. C, & Bhargava. B, A Fast MPEG Video Encryption Algorithm, Proceedings
of the 6th International Multimedia Conference, Bristol, UK, September 12-16,
1998.

[23] Sirsalewala. M, Application Infrastructure makes enterprises more productive,
(December, 2012)
http://www.networkmagazineindia.com/200212/inperson1.shtml

[24] Spanos. G, & Maples. B Security for Real-Time MPEG Compressed Video in
Distributed Multimedia Applications, in Conference on Computers and Commu-
nications, 1996, pp. 72-78.

[25] TEA, a tiny encryption algorithm,
http://www.ftp.cl.cam.ac.uk/ftp/papers/djw-rmn/djw-rmn-tea.html/

47

[26] The Importance of Database Design in Web Designing,
http://www.eliteinfoworld.com/website-design-service/importance-of-database

[27] The Secure Real Time Transport Protocol, IETF draft,
http://www.globecom.net/ietf/draft/draft-ietf-avt-srtp-00.html/

[28] Venkatramani. C, Westerink. P, Verscheure. O, & Frossard. P, Securing Media
for Adaptive Streaming, in: ACM, Conference on Multimedia, November 2003.

[29] Vetro. A, Christopoulos. C, & Sun. H, Video transcoding architectures and tech-
niques: an overview, IEEE Signal Process. Mag. 20 (2) (2003) 18-29.

[30] Vocal Technologies Ltd. Advanced Encryption Standard(AES),
http://www.vocal.com/cryptography/advanced-encryption-standard-aes/

[31] Wang. Y, Ostermann. J, & Y. Zhang, Video Processing and Commu- nications,
Prentice-Hall, New Jersey, 2002, pp. 368-393.

[32] Web Server, http://en.wikipedia.org/wiki/Web_server

[33] What is .3gp file format. Retrieved from,
http://www.winxdvd.com/resource/3gp.htm

[34] Winkler. K,(2010). Just development. Retrieved from
http://justdevelopment.blogspot.com/video-streaming-with-android-phone.html/

[35] Wu. D, Hou. Y, Zhu. W, Zhang. Y, & Peha. J, Streaming Video over the Inter-
net: Approaches and Directions, IEEE Transactions on Circuits and Systems for
Video Technology, March 2001.

48

	San Jose State University
	SJSU ScholarWorks
	Fall 2012

	Secure Media Streaming for Android
	Jaie Patil
	Recommended Citation

	tmp.1356193702.pdf.fOVtf

