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ABSTRACT

Analysis of DPA and DEMA Attacks

by Cheuk Wong

Side channel attacks (SCA) are attacks on the implementations of cryptographic

algorithms or cryptography devices that do not employ full brute force attack or

exploit the weaknesses of the algorithms themselves. There are mant types of side

channel attacks, and they include timing, sound, power consumptions, electromag-

netic (EM) radiations, and more. A statistical side channel attack technique that uses

power consumption and EM readings was developed, and they are called Differential

Power Analysis (DPA) and Differential Electromagnetic Analysis respectively.

DPA takes the overall power consumption readings from the system of interest,

and DEMA takes a localized EM readings from the system of interest. In this project,

we will examine the effectiveness of both techniques and compare the results. We will

compare the techniques based on the amount of resource and time they needed to

perform a successful SCA on the same system. In addition, we will attempt to use a

radio receiver to down mix the power consumption readings and the EM readings to

reduce the amount of computing resources it takes to perform SCA. We will provide

our test results of performing SCA with DPA and DEMA, and we will also compare

the results to determine the effectiveness of the two techniques.
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CHAPTER 1

Cryptography

In cryptography, hardware implementations of cryptographic algorithms are used

to speed up the encryption and decryption processes [7, 9, 17]. Cryptographic al-

gorithms commonly used in everyday practices are DES, 3DES, AES, and RSA.

While these algorithms are mathematical secured, the hardware implementations can

sometime unintentionally leak informations regarding the implementation of the al-

gorithms, the data being encrypted, or even the secret keys. The process of attacking

the algorithms from these leaked information is called side channel attack, and two of

the most commonly used side channel attacks are by obtaining the power consump-

tion readings and electromagnetic field changes during cryptographic operations on

the hardware implementations [1, 2, 3]. This paper will compare the efficiencies of

using the power consumption model and electromagnetic field model as side channel

attacks on embedded systems. The motivation of this project is to determine the best

method of performing side channel attack on embedded systems. If we can determine

the best method of performing side channel attack on embedded system, then we can

begin the attack with such method and not spend time trying to figure out which

method is viable and which is not.

1.1 Cryptographic Algorithms

Cryptography is the practice of communicating in secrets. The basic idea of cryp-

tography is to allow two parties to securely communicate, so no other party can read

the messages between the two parties [10]. A message is referred as plain text, and

an encryption algorithm transforms a plain text into cipher text. A cipher text is
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unreadable unless the decryption algorithm is applied. A good encryption algorithm

will produce a seemingly random cipher text by employing confusion and diffusion

techniques. Confusion is to obscure the relationship between the plain text and the

cipher text, and diffusion is to spread the statistical information of the plain text all

around the cipher text.

A cryptographic algorithm can be thought of as a pair of mathematical functions.

The first function is the encryption algorithm, and it takes two arguments, the plain

text and a secret key, and produces the cipher text. The second function is the de-

cryption function, and it takes the cipher text and the secret key as arguments and

produces the plain text. If the secret key matches, the encryption and decryption

functions can be thought of as inverse function of each others. According to Kerck-

hoff’s principle, the strength of a cryptographic algorithm should only be dependent

on the length of the secret key, and it is assumed that the cryptographic algorithm is

known by everyone [10].

There are two types of cryptographic algorithms, and they are symmetric key cipher

and asymmetric keys cipher. In a symmetric key cipher, both parties share the same

secret key for encryption and decryption. Some of the most popular symmetric key

ciphers are DES, 3DES, and AES. On the other hands, an asymmetric key cipher,

or often referred as public key encryption, uses a key for encryption and a different

key for decryption. The key for encryption is often referred as the public key since

it is designed to be made public so that anyone can use it to encrypt messages. The

decryption key is often referred as the private key since the encrypted messages should

only be able to be decrypted by the person with the private key. Two of the most

popular asymmetric key ciphers are RSA and ECC.
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1.1.1 DES

Data Encryption Standard (DES) is a symmetric key block cipher that was first

selected by the National Bureau of Standards, now the National Institute of Standards

and Technology, as the official Federal Information Processing Standard in 1976 [12].

DES was developed by a team from IBM, and it was based on an earlier cipher called

Lucifer. The National Security Agency (NSA) was also involved in the final design of

DES, and it was later discovered that the NSA’s involvement actually helped increase

the strength of the cipher by the means of differential cryptanalysis [10].

DES is a 64 bits key block cipher with a block size of 64 bits. However, only 56

bits of the key is actually used, and every 8th bits of the key serves as a parity check

of the previous 7 bits and is discarded during the cryptographic operations. Thus the

effective key length of DES is only 56 bits. Since the effective key length of DES is

only 56 bits, it is susceptible to brute force attacks with this key length. There are

some successful brute force attacks that run in less than a day on modern machines

[14]. DES has been widely adopted since its inception, and there are many hardware

specifically designed to implement the DES algorithm to speed up the encryption

and decryption processes. In order to extend the life time of these hardware while

not adopting to other more secured ciphers, DES users adopted the use Triple DES,

or sometime referred as 3DES. Triple DES can either have a set of two 56 bits keys

or a set of three 56 bits keys [13]. In the two keys scheme, the plain text is first

encrypted with key number one, then it is decrypted with key number two, and it is

finally encrypted with key number one again. In the other scheme, the plain text is

encrypted with key one, then it is decrypted with key two, and it is encrypted with

key number three. The plain text is recovered from the cipher text by applying the
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decryption function, encryption function, and decryption function again with the keys

in reverse order in which they were applied during the encryption phase. Triple DES

allows users to keep using their old hardware accelerator while increase the effective

key length to either 112 bits or 168 bits depending on the Triple DES scheme used.

Although DES and 3DES is a popular cipher, we will not be performing side channel

attack on DES or 3DES, and we will being performing side channel attacks AES.

1.1.2 AES

Advanced Encryption Standard (AES) is a symmetric key block cipher. AES was

adopted in order to replace DES. AES was originally called the Rijndael cipher and

was developed by two Belgian cryptographers. The Rijndael cipher was submitted

as part of the AES selection process. In November 2001, AES was announced by

the National Institute of Standards and Technology as the winner of the selection

process. In addition, the NSA also approved AES for protecting documents as high

up in the classification level as top secret [18].

As mentioned before, AES is a block cipher, and it has a fixed block size of 128

bits, and the key length can be 128 bits, 192 bits, or 256 bits. Unlike its predecessor

DES, AES is not a Feistel cipher meaning that the plain text is not divided into two

halves and swapped during each round. On the other hands, AES does have many

identical rounds, and the number of rounds depends on the key size: ten rounds for

a 128 bits key, twelves rounds for a 192 bits key, and fourteen rounds for a 256 bits

key. The S-box used in AES is called the Rijndael S-box, and it is used in both the

key scheduling algorithm and the round function. The Rijndael S-box is generated

by finding the multiplicative inverse for a given number in the Rijndael’s finite field

denoted by GF (28), and the multiplication operation is multiplication of polynomials
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modulo of m(x) = x8 + x4 + x3 + x+ 1, which is an irreducible polynomial of degree

8 [10, 18].

In AES, everything is put into a four by four matrix of bytes called the state, and

there are four common operations that operate on the state throughout the entire

AES algorithm. The first operation is called the AddRoundKey, and the AddRound-

Key operation takes the subkey, derived from the main key using the Rijndael’s key

scheduling algorithm, and XOR each byte in the state. The second operation is called

SubBytes, and it is simply looking up each byte in the state and replacing it with the

values found in the Rijndael S-box. Similar to DES, the Rijndael’s S-box introduced

non-linear operations into the algorithm. The next operation is called the ShiftRows.

As the name implies, each rows in the state is being shifted. The first row doesn’t

change; the second row is shifted to the left by one; the third row is shifted to the

left by two; and forth row is shifted to the left by three. Finally, the last operation

is called MixColumns, and each column in the state is being multiplied by a known

matrix depending on the key size. All the operations are depicted in figure 1 This

operation is closely relately to the Rijndael finite field, and the multiplication is ac-

tually a valid operation in the Rijndael finite field. For each AES encryption, there is

an initial round, a final round, and the ten, or twelves, or fourteen rounds functions.

The initial round consists only of a single AddRoundKey operation, and the final

round consists of one of SubBytes, ShiftRows, and AddRoundKey operations. Each

of the round function will have all four operations described earlier [18].

Due to its key size, it is infeasible to perform a brute force attack on AES. A known

attack on AES is a related key attack on both the 192 bit and 256 bit version of AES

[19]. The complexity of this attack is of 2100 computations. Other known successful
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Figure 1: The operations of AES: SubBytes, ShiftRows, MixColumns, and Ad-
dRoundKey

attacks on implementations of AES are side channel attacks where information leaked

from the implementation of the algorithm is used to recover the secret key [1, 3]. These

side channel attacks are completely dependent of the implementation, and some of

these attacks are also chosen plain text attacks. However, the attackers need to be

able to have access to the hardware in order to perform the side channel attacks

successfully.
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CHAPTER 2

Side Channel Attacks

Side channel attacks are attacks on the hardware implementations of cryptographic

algorithms or cryptography devices that do not employ full brute force attack or

exploit the weaknesses of the algorithms themselves. In general, the goal of side

channel attacks is to gain the secret information, such as the secret key, from the

cryptography device with the information leakage due to its implementation on the

system. There are numerous successful side channel attacks that can be used to

recover the secrets stored within a cryptography system that uses secured algorithms

such as AES and RSA [24].

2.1 Timing

One side channel attack on a cryptography system is to measure the time it takes for

a cryptography system to perform a computation. The assumption in a timing attack

is that the computation is data dependent, and the attacker can recover the data based

on the amount of time that the system takes to performance the calculation. A simple

example is a program that takes a series of bits as input and perform calculations

based on each bit. The program, however, would take longer to calculate the result if

the bit is one. The attackers can recover the input bit by bit from judging the timing

of the calculation; if the calculation was short, then the bit is zero, otherwise the bit

is one. Another example is pin number validation. A naive approach to write a pin

validation program is to check the input bytes one at a time against the correct pin

number, and if there is a difference between the input and the correct pin number,

then the program would terminate. Since a correct first byte means that the program
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will check the second byte, the calculation would take sightly longer for a correct

first byte input versus an incorrect first byte input. Thus, the attack can mount a

timing attack to determine the correct pin number by testing the all possible first

byte until a longer calculation is measured, and repeat until all the pin numbers have

been revealed. In reality, a successful timing attack was used to recover a server’s

private key that uses RSA [25].

2.2 Sound

Another side channel attack is the use of sound as a channel of attack. The sound

that hardware produces can leak information regarding the secret information. Primi-

tive examples are keyboard and key pads. In keyboards or key pads, each key produces

a different sound, and an attacker can record the sound that the keyboard or key pad

makes and determine the keys pressed. The attackers can determine users’ passwords

if they managed to capture the sound that the keyboards or key pads make during the

time when the users entered their passwords. A more sophisticated sound based side

channel attack was demonstrated by Adi Shamir by capturing the humming emis-

sion produced by the capacitors surrounding the processing unit that is performing

cryptographic operations [26].

2.3 Power Consumption

A more complex form of the timing based side channel attack is taking the power

consumption reading of the system of interest while performing cryptographic opera-

tions [1]. Like the temperature based attacks, the attackers simply record the power

reading during cryptographic operations, and attackers can use that information to

determine the secret hidden within the system. Since most modern cryptographic
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devices are implemented using transistors, a charge will be applied, or removed, from

the transistors when electrons flow through the transistors. This change in charge

can be detected and can leak secret information. The leakage occurs due to different

transistors becoming active, or inactive, based on the secret information [2]. The

attackers do not necessary needed to know the details regarding the system of inter-

ests. In fact, the system of interests can be a black box, and the attack will still be

successful.

There are two types of power consumption based side channel attacks, and they are

Simple Power Analysis (SPA) and Differential Power Analysis (DPA). Both of them

were first introduced by Paul Kocher in 1998 [2]. The details of these two types of

attacks will be discussed more in section 4.1.

2.4 Electromagnetic

Using electromagnetic field as a channel for side channel attacks is closely related

to using power reading. While a power based side channel attack take the power

measurements from the entire system of interests, an electromagnetic based attack

localizes on the area of where the measurements will take place, such as where the

cryptographic functional unit resides. Since the measurements are taken at a spe-

cific location, a specialized probe is generally needed in order to the take the mea-

surements. Once again, the leakage of information occurs due to electrons flowing

through the transistors, and the act of electrons passing through the transistors will

also produce electromagnetic radiation which the probe can detect [1, 3]. In addition,

the location of the measurements has to be very precises in order to get any useful

information.
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Similar to the power based side channel attacks, there are two types of attacks, and

they are Simple Electromagnetic Analysis (SEMA) and Differential Electromagnetic

Analysis (DEMA) [3]. However, there is no conclusive evidences to show that whether

a power based or a electromagnetic based side channel attack is more effective or vise

versa [31, 32].
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CHAPTER 3

SPA and SEMA

3.1 SPA

Simple Power Analysis, or SPA for short, is a power based side channel attack. In

an SPA attack, attackers take the power measurements from the system of interests

while it is performing cryptographic operations, or other operations of interest, and

the attackers would visually inspect, or apply a template attack on, the power readings

and determine the information leakage. A power measurements over a fixed period

of time is usually referred as a trace [2]. It should be noted that SPA only requires

a small amount of traces, and it usually takes less than a thousand traces in order

to perform an SPA attack. If a successful attack only required one trace, and it is

referred as a single-shot SPA attack; and if a successful attack required more than

one trace, then it is called a multiple-shot SPA attack. In a multiple-shot SPA attack,

the attacker can either supply the cryptographic system with either the same plain

text or different plain text for each traces. The advantage of doing a multiple-shot

SPA attack is to reduce the noises within the traces and get a clearer picture of what

is happening in the system from the traces [1].

One of the base assumption of SPA is that the cryptographic operations of interests

is running in sequential order. Under this assumption, a power trace will contain the

power in terms of voltage on the Y-axis, and the X-axis will be time. For example,

AES consists one or more of four general operations in each round. Recall that the

four operations are AddRoundKey, SubBytes, ShiftRows, and MixColumn, and each

of these operations will produce unique signatures within the power traces. Since the
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algorithm will run in sequential order, and there are at least ten repetitive round of

these four operations. Thus it is easy to identify the AES operations in the power

trace if the attackers simply look for these ten unique signatures for software imple-

mentation of AES. In addition, attackers can also learn the information about the

implementation of the algorithms solely based on the power traces [11]. For example,

a system will require less clock cycles to access internal memory than accessing ex-

ternal memory; and the system performing input/output operations will draw more

power than simple operations. Finally, if the operations of algorithms of interests is

data dependent, such as the input secret key, then it is possible to obtain the data just

by exampling the power traces [1]. On the other hands, the electromagnetic counter

part of SPA is Simple Electromagnetic Analysis.

3.2 SEMA

Simple Electromagnetic Analysis, or SEMA for short, is a side channel attack

that reads the electromagnetic field from the circuit that is being attacked. SEMA

is very similar to SPA; SEMA attacks take the electromagnetic field reading from

the circuit while it is performing cryptographic operations [3, 4]. The attacker will

visually inspect the electromagnetic traces and determine the parts of the traces

that correspond to the cryptographic operations performed, and the attacker will

eventually discover the secret key based on these traces. However, SEMA attacks

is localized to only a small portion of the circuits, so an extra step of finding out

where the area of interested on the circuits is needed. Locating the area of interests

on a circuit is done by forcing the cryptographic device to run in a loop while the

electromagnetic probe takes partial snap shops of the circuit during each cycle of the

loop. Once a susceptible area has been identified, the search will be refined to that
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area [1].

Unlike SPA or DPA that can obtain traces by simply measuring the power con-

sumption of a system by measuring either ends of the power source of the system,

SEMA requires a specialized electromagnetic probe to take precise measurements.

An inductive probe will be used for performing SEMA attacks; an inductive probe

is simply a wire looped into coils, and the coils’ diameter can range from 150 to 500

microns. When an electromagnetic field passes through the coils, the coils will act

like an inductor and will induce current through the wire, and the strength of the

electromagnetic field can be measured from the wire. When a transistor switches from

a zero to a one or vice versa, a short current pulse is produced and can cause the

surrounding electromagnetic field to fluctuate, and this fluctuation can be detected

by using the inductive probe. This fluctuation can be a form of information leakage.

This leakage of information can correlate the transition’s Hamming distance [3].
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CHAPTER 4

DPA and DEMA

4.1 DPA

Differential Power Analysis, or DPA for short, is a popular type of power analysis

attacks on cryptographic system [2]. The main reason for DPA’s popularity comes

from the advantage of not requiring the detail knowledge of the system of interests,

and the attacker only needs to know the algorithm that is being employed on the sys-

tem. However, thousands of traces are needed in order for the attack to be successful

with noisy signals. In general, DPA pre-computes a series of possible power traces

and compares these power traces against the actually power traces taken. The traces

with the highest correlation will most likely reveal the key [1].

DPA consists of five steps. The first step is to choose an intermediate result of the

cryptographic algorithm running on the system. The intermediate result should be a

function in the cryptographic algorithm, and a series of chosen plain text and possible

values of the secret key should be used to applied to the function in the later steps.

One example of a function is the Sbox in either DES or AES. The next step is to take

the actual power traces with the cryptographic system, and the attacker should use all

the chosen plain text from step one. The trace is then divided based on the operations

of the cryptographic algorithm observed. From this step, the matrix T is created

from the power traces and the recorded data values from applying the encryption

or decryption function, and it is important that all the column should correspond

to the same operations. The next step is to calculate the hypothetical intermediate

values. The end result of this step is also a matrix, V . The attacker calculates all the
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possible parts of the secret key. The entries in V would be applying the intermediate

value function chosen and the chosen plain text from step one with these hypothetical

keys. Hence, entry vi,j = f(di, kj where i = 1, ..., D and j = 1, ..., K), where D are

the intermediate values from step 1 and K are all the possible partial key values. The

fourth step in DPA is to take the matrix V and map it to the power consumption

values and produce the matrix H. In this step, the attacker uses simulation to

obtain the hypothetical power consumption based on the hypothetical intermediate

values. This simulation is usually done with the help of a power model, and the most

commonly used power models are Hamming distance and Hamming weights. Each

entry of H, hi,j, is simulated from vi,j The last step of DPA is performing statistical

analysis between the matrix H and the matrix T . The analysis is done column

wise, and a high correlation between a column on H and T means the corresponding

key hypothesis from that column is most likely be the partial key used during the

encryption phase [1]. Figure 2 shows step 3 to 5 in picture form.

The more measurements that the attacker makes during step two, the more likely

that the attacker will be able to the recover the key [11]. If it is the case that all

the correlation values on a column are all very similar, then it is most likely the case

that the attacker has not taken enough measurements to draw a strong correlation

between the key hypothesis and the actual key, and the other possibility is that the

key hypothesis is wrong [1]. In our experiments, we want to record the time it takes for

full key recovery, and the measurement of time includes acquisitions and the analysis

phase. Realistically, an attack would to be able to perform full key recovery in less

than a day, and perform full key recovery in less than an hour in some cases.
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Figure 2: Depiction of the steps in DPA

4.2 DEMA

Differential Electromagnetic Analysis, or DEMA for short, is similar to DPA except

with electromagnetic readings instead of power readings. Much like DPA, DEMA fol-

lows the same five steps to determine the secret key in a cryptographic system. Rather

than exploiting the relationship between power consumption and the data being pro-

cessed, DEMA takes a localized reading of the electromagnetic field of the circuit.

There has been successful DEMA attacks against an FPGA based DES and ECC
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cryptographic system with less than ten thousands traces [6, 8]. In addition, there

are also successful attacks on systems that perform AES encryption [5]. Currently, it

is unknown whether DPA or DEMA is more efficient in obtaining the secret key from

an embedded cryptographic system [3].

4.3 SPA vs DPA

The major difference between SPA and DPA is the number of traces required in

each attack. In general, SPA requires only a small amount of traces, and the number

of traces is usually less than a thousand. On the other hands, DPA requires thou-

sands of traces, and DPA sometime required up to the range of millions traces [11].

Furthermore, SPA usually requires the attacker to know some detail implementation

of the cryptographic system whereas attacker using DPA can treat the cryptographic

system as a black box [1].

4.4 Power Models

As mentioned before in section 4.1, there are two commonly used power models

for DPA, and they are Hamming weight and Hamming distance. Hamming distance

is the number of different symbols in the same position between two same length

strings. Hamming weight is the number of different symbols in the same position

between a strings and a string of the same length with all symbols being zeros. If a

better the model is used during DPA, then the amount of traces required to mount

a successful attack is reduced. Both Hamming weight and distance can be used for

attacking microcontroller made with CMOS technology [1].
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4.5 Correlation Coefficient

Correlation coefficient is the most common way to determine the linear relationship

between two values. The one of most effective method of calculating the correlation

coefficient between two values is the Pearson’s product-moment coefficient given by:

ri,j =
∑D

d=1(hd,i−h̄i×(td,j−t̄j))√∑D
d=1(hd,i−h̄i)2×

∑D
d=1(td,j−t̄j)2

where hi, ti denotes the ith columns of theH and T

matrix described earlier, and h̄i denotes the mean values of the columns. A coefficient

of either a -1 or 1 means a strong correlation between the values, and a coefficient

of zero means the values are completely independent of each other. The Pearson’s

product-moment coefficient is used for DPA because it can be calculated quickly [1].

4.6 DPA on AES

Performing DPA on different cryptographic algorithms requires different ap-

proaches. For instance, the DES algorithm states that only 48 bits of the key are

used in the first round, and the remaining 8 bits of the key are used in the second

round along with other bits of the key [12]. Thus, two rounds of DPA are needed in

order to achieve full key recovery for DES. As for AES, all bits of the key are used

in the first round of the encryption algorithm, so only one round of DPA is needed

in order to achieve full key recovery [18]. Recall that AES has four main operations

within each round function, and first operation is the SubByte operation. The Sub-

Byte operation takes each byte in the state and replace it with a value from the Sbox.

During DPA, the hypothetical intermediate values matrix, V , is calculated based on

the SubByte operation. Depending on the implementation of the AES algorithm,

the Hamming Weight or the Hamming Distance for the change in values before and

after the Sbox substitution can be leaked, so the intermediate value function is the

SubByte in terms of DPA. The matrix V contains all the possible key bytes based on
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the chosen plain text applying to the SubByte function. The rest of the DPA follows

as described in the earlier section.

4.7 Countermeasures

Countermeasures are techniques that used to prevent side channel attacks. There

are many ways to set up countermeasures on a device, and countermeasures can be

done on the software side as well as the hardware side. The main goal of counter-

measure is to minimize the amount of information leakage. More specifically, coun-

termeasures make the power measurements, electromagnetic measurements, timing,

or any other side channels be independent of the data processed. Some of the most

common techniques for countermeasures are hiding, masking, dummy instruction

insertion, randomized delays, non-deterministic computations, rail logic, and many

more [4, 11]. In this project, we will not be concerning about any countermeasures

that may arise from the embedded system.
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CHAPTER 5

Experiments

In this paper, we will run several sets of experiments. The first set of experiments

will be performing DEMA on an embedded system. This set of experiment will

consist of using high and low sensitivity probes with different configurations. The

different configurations consist of using hardware filters and performing DEMA at

different locations on the embedded system. We want to see the effects of using high

and low sensitivity probes as well as the effects of the different configurations. The

next set of experiments is performing DPA on the same embedded system. This

set will be divided into performing DPA with a power probe and a current probe.

The experiments with the power probe will be measuring the strength of resistor in

relationship with effectiveness of DPA; the results will be compared to the results

of experimenting with the current probe. We will then compare the best results of

DEMA and DPA to see which method is better for performing side channel analysis

on embedded systems.

In addition to performing known side channel attack methods, we will be performing

side channel attacks with the aid of a radio receiver. The goal of performing the

experiments with a radio receiver is to see if we can reduce the total time of performing

side channel attacks by reducing the amount of data with the radio receiver. We will

repeat the experiments with DEMA and DPA with the radio receiver and see if there

are any improvements in our results.
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CHAPTER 6

Embedded Cryptographic Systems

In this project, we will be performing DPA on an embedded system that performs

cryptographic operations. The system of interest is the ATXmega256A3B designed

by Atmel, and we will be using an evaluation board for this project.

6.1 Atmel AVR ATXmega256A3B

For our experiments, we will be using the ATXmega256A3B embedded micropro-

cessor. The Xmega family is designed and produced by Atmel. The ATXmega256A3B

is designed for large range of applications included but not limited to building, in-

dustrial, motor, board, climate control, hand-held battery applications, networking

and home appliances, and medical devices. The ATXmega256A3B has a total of 64

pins with a max I/O pins of 47. The main CPU of the chip is an 8 bit AVR. In

terms of memory, the ATXmega256A3B has 256 KB of in-system self-programmable

Flash, 8 KB of boot code sections with lock bits, 4 KB of EEPROM, and 16 KB of

internal SRAM. In addition, the chip has a set of internal 32 KHz, 2 MHz, and 32

MHz oscillators operating at 3.3 V and 150 mA. Finally, the chip has a cryptographic

engine that can perform DES and AES which would be useful for this project [27].

The ATXmega256A3B microprocessor will simply be referred as Xmega from this

point on.

6.2 Implementation of AES on ATXmega256A3B

The implementation of AES on the Xmega is hardware based, and the AES hard-

ware accelerator is directly connected to the main CPU of the chip as shown in figure
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3 [28]. However, the block diagram does not show us where the cryptographic accel-

erator is physically located for DEMA since the block diagram does not translate to

physical layout, and locating the cryptographic accelerator will be the first step in

DEMA. The AES and DES engine can be accessed via software from a couple of lines

of code. The programmer only needs to supply the key, plain text, and a buffer to

store the cipher text for encryption. The AVR code loaded onto the Xmega for our

experiments is provided in the appendix. The AES accelerator can only do 128-bit

key encryption/decryption with 128-bit plain text blocks. It also supports XOR data

load mode to the state memory for cipher block chaining (CBC). The encryption and

decryption are performed in 375 clock cycles per 16-byte blocks [28].
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Figure 3: ATXmega256A3B Block Diagram
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CHAPTER 7

General set up of the attack

The set up of the attack will be simple. First and fore most, a PC will be set up with

Inspector. Inspector is a platform designed to analysis signals developed by Riscure.

Inspector has many preloaded modules for signal processing for performing DEMA

and DPA for DES, 3DES, AES, RSA, and ECC, and the modules can be modified to

suits our needs. The PC is wired to an oscilloscope, and we will be using a LeCroy

610zi and/or Picoscope 5203 to capture signals. The oscilloscope is wired to the EM

probe or power tracer directly. In addition, the PC will also be communicating with

the system of interest in order to trigger cryptographic operations. Figure 4 shows a

generic set up of the attack.

Figure 4: Generic set up diagram for SCA

In order for the PC to take a trace, it begins by sending the system of interest a

command. The command contains the opcode for encryption and parameters (such

as data to encrypt, mode of encryption, etc), and this will force the system of interest
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into performing cryptographic operations. This step is shown in number 1 of figure

4. At the same time, the PC will send a trigger to the oscilloscope to begin recording

the signals from either the power probe or the EM probe. This is shown in number

2 of figure 4. Once the cryptographic operations have finished, the oscilloscope will

send the signals to the PC and a trace containing the signal, plain text and cipher

text will be recorded (Number 4a/b in figure 4). Ideally, the trigger will be set to

begin right before the cryptographic operations start and the signal will end right as

the cryptographic operations end. However, fine tunings will needed to be made in

order to produce well aligned trace set. As mentioned before in section 4.1, the more

traces that the attacker can acquire the more likely that the attacker will be able to

obtain the secret key.

Once we have a trace set, we will begin our analysis phase. Assuming the trace

set is sampled at 1GHz, the first step in our analysis phase is to determine which

frequencies show the most activities. We can determine this by running the trace set

on the Spectrum module of Inspector. Further details about the Spectrum module

will be described in section 9.3.1. Once we figured out which frequencies are the

most active in the trace set, we will resample the trace set to these frequencies and

produce new trace sets. Resampling means applying a low pass filter to the data

and change the sampling rate of the signal. A low pass filter will only allow low

frequencies signal to pass through, thus eliminating all the high frequency signals.

The next step in the analysis phase is to align the trace set at the important section

(e.g. during the first round of AES encryption). We can achieve this by the means

of the Static Alignment module of Inspector. The details of this module will be

discussed in section 9.3.1. We can determine which section of the trace is important

by either visual inspection, running the data correlation module (details in section
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9.3.1), or the KnownKeyCorrelation module if we know the key (details in section

11.2). Finally, we will perform DPA/DEMA on the trace set

7.1 Expectation

In this project, the main goal is to compare and contrast the effectiveness of DPA

and DEMA on embedded systems. One of the methods of determining which analysis

technique is more effective is by the number of traces required in order to the break

the cryptography. The signal measurement technique that requires less traces will

be the more effective technique. From previous experience, we would expect DPA to

require less number of traces in order to successfully perform the attack than DEMA.

This is due to the noise capture by the EM probes that causes the traces in DEMA

to be more noisy. As a result, DEMA needs more traces in order to cancel out the

noises.

7.2 Locating the X-Y Coordinate of the Crypto Block

Upon learning the implementation of AES of the embedded system, we can begin

the attack on the embedded system by physically locating where the cryptographic

operation is being performed on the chip. This step is important in order to per-

form DEMA on the embedded system. Recall that DEMA requires very localized

electromagnetic readings on the system of interest, thus we will need to know the

physical location of the cryptographic operation before we can perform DEMA on

the embedded system.

To set up this step in the process, we will first force the embedded system to con-

tinuously perform cryptographic operations in a loop. This can be done by the means
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of sending commands to the system, wait for a respond, and repeat. The next step is

to divide the chip into 10 by 10 equal sections and begin taking raw electromagnetic

measurements of each section while running the cryptographic loop. By adjusting

the measurements to only filter to the frequency in which the cryptographic blocks

operate in, we can see the hot spots that correspond to the area of the cryptographic

engine. We can narrow the area down by performing the measurements in a smaller

area around the hot spot until we can identify where exactly is the cryptographic

blocks are. The full detail on how this is done on the Xmega will be described in

section 9.1.

7.3 Setting up the trigger

The next step, in both DEMA and DPA, is set up a good trigger. An ideal trigger

will allow the attacker to take traces that start at the exact moment when the cryp-

tographic operations start and end at the moment when the cryptographic operations

end. A hardware trigger is chosen for this project since we have full access to the

hardware, and we can load any firmware we desired. The full detail of this trigger

will be described in section 9.2.
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CHAPTER 8

Smart Triggering

In side channel attacks, setting up a good trigger is very important, and a good

trigger can reduce the time it takes to perform side channel attacks. A perfect trigger

can caused all the traces to be aligned without any modifications to the trace set. By

eliminating the alignment phase during the acquisition phase, the attacker can save

time by not performing alignment on the trace set. However, a perfect trigger is hard

to obtain unless the attacker has full control of the hardware. We will discuss how

we set up our trigger for the Xmega, and we will discuss a new approach to finding a

good trigger.

The icWaves is an Inspector module that is designed specifically for setting up a

good trigger. Referring to figure 4, the icWaves will reside between 2 and 3. The

signal from the probe will go directly to the scope as well as the icWaves. The trigger

line, number 3 in the figure, will go directly to the icWaves, and the icWaves has it

own trigger line that goes into the scope. The attacker can load a reference pattern as

large as 256 samples onto the icWaves via Inspector. During acquisition, icWaves will

compare the incoming signal from the probe to the reference pattern. The comparison

that the icWaves makes is sum of absolute difference (SAD). Note the two very similar

patterns will have a SAD value close to zero, so identical patterns will have a SAD

value of zero. The icWaves will send a signal out of its trigger port connected to the

scope if the calculated SAD value is below a certain threshold set by the attacker.

The biggest problem with using the icWaves for triggering is finding a good reference

pattern.
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In this section, we will discuss a new Inspector module that allows us to find a

good reference pattern, and we will also discuss the performance and accuracy of this

module. The goal of this module is to determine the best 256 samples pattern to load

into the icWaves as the reference trace given a trace set. The input of this module

will be a set of aligned traces, and the output of the module will be a 256 samples

pattern with a suggested threshold for the icWaves. The chosen area, by the user,

from the input trace set will be used to generate patterns as candidates for triggering,

and we will refer this area as inside from now on. The only additional options that

the user can decide for this module is the offset. The offset will affect the pattern

generation and the SAD calculations.

We will demonstrate how the offset works by describing how the pattern generation

works with two different offsets. The user can choose to use the following offsets: 1,

64, 128, and 256. Let T be a trace set with 100 traces, and each tn ∈ T trace has

30000 samples. Let the range of samples [1000, 3000] be the inside area selected by

the user. If the offset is 1, then the pattern set, P , will consist of the followings:

p1 = [1000, 1255], p2 = [1001, 1256], p3 = [1002, 1257]..., pm = [2744, 3000] from trace

0 of T . If the offset is 256, then the pattern set, P , will consist of the followings:

p1 = [1000, 1255], p2 = [1256, 1512], p3 = [1513, 1768]..., pm = [2536, 2792] from trace

0 of T . Each of these patterns will be a candidate for the final output of the module.

Once the module has generated the patterns, it will begin to perform the SAD value

calculations against the other traces.

The SAD calculations can be optimized from the brute force method, and we will

describe the brute force method and the optimized method for offset less than or equal

to 128. Let T be a trace set containing n traces, and each trace contains k samples.
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From the user’s selection, the algorithm was able to produce m patterns. Let SAD()

denotes the sum of absolute difference function between two arrays of numbers of the

same size, and let tn[i, j] denotes the samples ranged from i to j in the trace tn.

8.1 Brute Force Method

In this section, we will discuss the brute force method of calculating the SAD values.

For this discussion, we will assume the offset is 1. For each tn ∈ T , for each pm ∈ P ,

calculate SAD(tn[0, 255], pm), SAD(tn[1, 256], pm), ... SAD(tn[k − 256, k], pm). The

run time of the brute force algorithm is O(n3) where n is the number of samples in a

trace.

8.2 Optimized SAD Calculations

In this section, we will discuss the optimized method of calculating the SAD values.

For this discussion, we will assume the offset is 1. There are two optimizations that

we can employ. Assuming that the user selected i to j from the trace, then the first

optimization that we can employ is to calculate SAD values only up to j. For example,

if the user selects the samples from 2000 to 3256, then perform SAD calculations on

the followings: SAD(tn[0, 255], pm), SAD(tn[1, 256], pm), ... , SAD(tn[3000, 3256], pm)

for each tn ∈ T , for each pm ∈ P . We can do this because we are not interested in

any pattern that can trigger beyond the selected area, and any triggering happens

beyond the selected area is already too late for any useful effect.

The second optimization comes from an observation that a lot of the SAD calcu-

lations are being repeated. For example, given a trace t and a pattern set P , and

assuming offset is 1, note the following observation: s0 = SAD(t[0, 255], p0), s1 =
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SAD(t[1, 256], p1) = s0 - |t[0] − p0[0]| + |t[256] − p1[256]|. Thus, the following algo-

rithm can be used for calculating the SAD values: for each t ∈ T ; let i = 0, calculate

s0 = SAD(t[i, i + 256], p0), s1 = s0 - |t[i] − p0[0]| + |t[i + 256] − p1[256]|, s2 = s1 -

|t[i+1]− p1[0]| + |t[i+257]− p2[256]|, ... etc, then increment i by 1 and repeat until

done. The run time of the optimized algorithm is O(n2) where n is the number of

samples in a trace.

8.3 Optimized SAD Calculations Tests

Once the module was completed, we were able to perform a performance test and a

reliability test on the optimized algorithm. The test trace set is a trace set consisting

of 13000 traces, and each trace consist of 640000 samples. All the traces in the trace

set has been aligned before any testing was done. The main feature of this trace set

is that all of the traces contain seven peaks, and this trace set simulates a trace set

taken from a real embedded system. Figure 5 shows this test trace set.

Figure 5: icWaves Test Trace Set

The first test we performed was the performance test. This test is designed to see

if the optimized algorithm is faster than the brute force method. For this test, we

selected samples 2027 starting at sample 107674. For comparison, a module with the

brute force method with offset of 1 was able to complete all the calculations in 4 days

on a machine with a 3.0GHz processor. On the other hands, the optimized module

31



takes about 20 hours to complete all the calculations with an offset of 1. Furthermore,

if the offset is set to 64, the optimized module takes 30 minutes to complete all the

calculations, and it takes 10 minutes to complete execution with offset set to 128. At

offset 256, the module takes 5 minutes to complete execution. Note that a higher

offset means less accurate result will be produced. Overall, the optimized module is

provably faster in execution time than the brute force method.

The next test we performed was the reliability, and this test is designed to test the

accuracy of the module. The offset is set to 1, and only 100 traces will be used in

the following tests. For the first test (test 1), we selected 2000 samples centered at

the raising edge of the second peak. Test 1 is shown in figure 6. Test 1 is designed

to test the module in a high false positive environment. A false positive is when the

pattern triggers outside of the selected area given a threshold, and a false negative is

when the pattern failed to trigger in the selected area given a threshold. The result

of test 1 is as follows: a pattern is selected at the beginning of the raising edge, and

50 false positives and 5 false negatives were reported. As explained, the high false

positive was to be expected due to the design of this test.

Figure 6: icWaves Test 1

Test 2 of the reliability test designed for low false positives, and it is designed to

test the false negatives. For this test, we selected 2000 samples centered at the raising
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edge of the first peak. Test 2 is shown in figure 7. The result of test 2 is as follows: a

pattern is selected slightly after the beginning of the raising edge, and 5 false positives

and 0 false negatives were reported. In other words, the module was able to find a

pattern where icWaves will trigger early 5 percent of the time.

Figure 7: icWaves Test 2

The smart triggering is based on the observation that a lot of SAD calculations are

being repeated. We developed an Inspector module that uses this fact to optimize

the SAD calculations to find the best pattern for icWaves triggering. The result of

executing the module shown that the optimization does indeed show improvement

over the brute force method time wise. The optimized module is extremely accurate

in finding the pattern with the least amount of false positives and false negatives.
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CHAPTER 9

DEMA on ATXmega256A3B

In this chapter, we will describe in detail how we perform DEMA on the Xmega’s

AES cryptographic accelerator, and the results will be presented and compared to

DPA in a later section. In our experiments, we would like to perform DEMA under

different configurations, and we wanted to know the results of performing DEMA

under these different configurations. The different configurations are the types of

EM probe, the location of acquisitions, putting a hardware filter in our set up, and

performing DEMA with resampled traces.

9.1 Locating X-Y on Xmega

For the Xmega, we have full control over the embedded system, so we program the

Xmega to continuously perform AES cryptographic operation at 32MHz while taking

measurements at different sections on the Xmega. The Xmega is divided into a 10 by

10 grid, and measurements are taken for each of these 10 by 10 blocks. The resulting

traces are ran through a module for Inspector called Spectral Intensity. This module

shows the amount of the average amplitude of the signal after applying a band pass

filter as a grid. Blue means there are minimum activities at such frequencies at that

location, and red means relatively maximum activities at such frequencies at that

location. Figure 8 is the resulting grid of running the spectral intensity module on

the trace set.

As we can see, there are two hot spots on the chips around the 32MHz frequency

band. That means there a lot of activities on these parts of the chips around the
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Figure 8: Spectral Intensity of Xmega during AES operations around 32MHz with
+/- 0.2MHz bandwidth

32MHz frequencies band. Since the chip is programmed to only perform AES op-

erations over and over again, we will assume that one of these hot spots is where

the AES cryptographic engine is located. However, it is possible that this location

can be where the clock generator is located or other components, and there is no

telling what exactly is at that location without the actual circuit schematic of the

Xmega. Furthermore, if we refer back to figure 3, we can see that the I/O operations

are located on the edge of the chip, so we will assume that the AES cryptographic

operations must be performed on the other hot spot. The I/O operations exist due to

number 1 and numebr 4a/b from figure 4; the commands being sent from Inspector

to the Xmega, and the responds from Xmega to Inspector are the caused of the I/O

activities. From now on, we will refer the center hot spot as location 1 and the hot

spot on the edge as location 2. Note that the Xmega is flipped 180 degree during the

X-Y measurements, so the orientation of the spectral intensity versus the block dia-
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gram is flipped. Thus, we have located the X-Y coordinate of the AES cryptographic

operation on the Xmega, and we can begin taking a large amount of traces provided

we have a good trigger.

9.2 Setting up the trigger for DEMA

Since we have full control over the embedded system, we could program the embed-

ded system with a very accurate trigger. In this project, the Xmega is programmed

to receive 16 bytes of randomly chosen plain text and recorded by Inspector, and the

Xmega will send 16-bytes of cipher text back to Inspector. The key for encryption is

programmed onto the embedded system. For this project, the secret key is chosen to

be: 0x52 0x49 0x53 0x43 0x55 0x52 0x45 0x49 0x53 0x43 0x4F 0x4F 0x4C 0x21 0x31

0x00. In addition, port C1 (as shown in figure 3) will send out a 5 volts signal just

before the AES encryption operation begins, and the signal will disappear as soon as

the operation is completed. This port is connected to channel B of the LeCroy 610zi

in order to trigger on the raising edge and begin taking traces.

9.3 DEMA at Location 1

9.3.1 DEMA with Low Sensitivity Probe at Location 1

Now that we have a good trigger, we can begin taking a large amount of traces. In

order to minimize the number of samples in a trace while leave as much leakage as

possible, we will begin taking traces as soon as the trigger is detected with no delays

and end taking traces as soon as port C1 no longer has a 5 volts signal. As such, we

will take traces at sampled at 1GHz with 26000-27000 samples in order to maximize

the information we get from the traces within only the AES operations. There are

two types of EM probes come with Inspector, and they are low sensitivity and high
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sensitivity probes. As the name suggested, the high sensitivity probe can capture

weaker signal. The trade off of using the high sensitivity is that it can also capture

more noises as well. We will begin with using the low sensivity probe. Figure 9 is

one of the million traces taken with the parameters described above.

Figure 9: An EM trace taken at 1GHz with 27000 samples; LS probe

We can begin analysing the traces now that we have taken 1 million traces. Re-

ferring back to figure 9, we can take a note of a couple important details about the

Xmega and its AES accelerator. First, the Xmega generates a 2 volts EM field of

signal from where we positioned the EM probe. This 2 volts generation is affected by

the position of the EM probe; the further away the probe is, then the voltage emission

is also lowered. Second, the entire AES operation can be performed in 260 microsec-

onds. As for performing DEMA/DPA, the plain text and cipher text are store as the

first 16 bytes and last 16 bytes in the ”Data” section of the trace respectively.

While we know that the Xmega is clocked at 32MHz, it is good verify this claim.

We shall do so by running the Spectrum module of Inspector on the trace set. The

Spectrum module will show all the frequencies that are most active given the trace set.

Figure 10 is the result of running the Spectrum module on the trace set. The module

is a fast Fourier transform based spectrum analyzer. Thus, we only see frequencies

up to 500MHz in figure 10 instead of the sample rate of 1GHz due to the Nyquist
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limit.

Figure 10: Spectrum of the EM trace set

As we can see, the frequency 32.74MHz stands out the most, and this tells us that

the Xmega is not operating at exactly 32MHz. In addition, two upper harmonics

frequencies also stands out the most: 65.46MHz and 130.98MHz. The next step in

analyzing the trace set is to resample the traces at these three frequencies in order

to get reduce the noises presented in the traces. The resampling is done via fast

Fourier transform. Since we oversampled the traces to 1GHz, extra information are

introduced to the trace set, and these extra informations will affect the success of

DEMA. The results are shown in figure 11. In this figure, the example traces as

the result of resampling to 32.74MHz, 65.46MHz, and 130.98MHz are shown. If we

examine the trace resampled at 32.74MHz, we can see different regions. The first

region is from 1.5 ms to 6.5 ms; the second region is from 6.5 ms to 11.5 ms; the third

region is from 11.5 ms to 23.5 ms; and the last region is from 23.5 ms to 27 ms. For

the next step, we would like to identify the exact timing of when the AES encryption

occurs.

Now that we have reduced some of the noises presented in the trace set, we would

like to identify the exact timing of the AES cryptographic operations. While we

programmed the traces to be taken as soon as the AES operations begin, there are

still operations within the AES operations that we want to exclude during DEMA such
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Figure 11: EM traces resampled

as input and output processing. By capturing signal with only the AES encryption

operation, we can reduce the number of samples per trace, and this will reduce the

time it takes to perform DEMA on the trace set. We can identify the actual AES

encryption operation by identifying the AES input and output operations. We can do

so by running the Correlation module. The correlation module will run a correlation

on the specific bytes of the data section of each traces. Refer to section 4.5 for more

detail about data correlation. A high correlation on a byte will correspond to the

time when the byte is being input/output during the AES operations.

Figure 12 and 13 show the input and output data correlation on the trace set

resampled at 32.74MHz respectively. Thus, it is logical to conclude that the AES

encryption operations must reside in between these two sections of the trace. Figure

14 shows where the AES encryption is located within a trace.
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Figure 12: Correlation on the input data

Figure 13: Correlation on the output data

Figure 14: Location of AES encryption during the trace

The last step in this signal processing before we can perform DEMA is to align

the first round of the AES encryption for all the traces in the trace set. This can be

easily done with the Static Alignment module of Inspector. The Static Alignment

module will allow user to select an area in the trace as well as allow user to specify

a max shift range and a threshold. The module will shift the same range as the user

selected area left and right up to the max shift range, and the module will calculate

the correlation value for each shift. If the correlation value is above the threshold,
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then the whole trace is shifted to that location. If the correlation value of each shift is

below the threshold, the trace is thrown out of the trace set. Alignment is important in

performing DEMA/DPA as the H matrix (Refer to section 4.1) is produced assuming

all the traces are aligned. Once we have done static alignment for all three resampled

trace set, we can begin perform DEMA on these trace sets. The FirstOrderAnalyst

module of Inspector is ran on all these trace sets with Hamming Weight targeting

the 1st round of SubByte (SBox), Hamming Distance targeting the 1st round of

SubByte, and Hamming Distance targeting the 10th round of AddRoundKey as their

power model. By running the different power model and target combinations, we can

see leakage model of the Xmega and allow us to perform DEMA based on this leakge

model. Table 1 shows the resulting keys recovering from the different trace sets,

power model, and target combinations. Note that HW denotes Hamming Weight,

HD denotes Hamming Distance, and ”Round 10th round” denotes the AddRoundKey

function of the 10th round.

Power Model/Target Frequency Key Recovered Correct
Key
Bytes

HW/SBox 1st round 32.74MHz 5d465397005200495c4300004cd5314f 6
HW/SBox 1st round 65.46MHz 5d49534355524549534300004c2131f4 12
HW/SBox 1st round 130.98MHz a200534355a0b54958434f000f21c1f4 7
HD/SBox 1st round 32.74MHz 3e83e0c0e6d16c253fc06c836c4da293 0
HD/SBox 1st round 65.46MHz 00ca3fc06c836c253fc06c836c926c4c 0
HD/SBox 1st round 130.98MHz Not ran –
HD/Round 10th round 32.74MHz 00459c7518da4201d36300ef4917ba23 0
HD/Round 10th round 65.46MHz e4ca1f431c871c7ffefd991a7d2e2abd 1
HD/Round 10th round 130.98MHz 8300d3e527f9ba41bbcb33420b662840 0

Table 1: DEMA with Different power models and targets with 1 million traces
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9.3.2 DEMA with High Sensitivity Probe at Location 1

As we can see, the best approach for DEMA on Xmega is using Hamming Weight

as power model and target the first round of SBox. We nearly recover all of the

key bytes. In order to capture as much leakage as possible within our traces, we

began taking more traces with the high sensitivity (HS) probe. Table 2 shows the

results of analyzing these new trace sets. We were able to capture 1.5M traces within

24 hours, and another 1.6M traces the next 24 hours. In between the captures, we

perform DEMA on the 1.5M trace set. While the trace set resampled to 32.71MHz

and 131.1MHz show improvement over their LS trace set, the trace set resampled to

65.43MHz shows no improvement even with HS probe and move traces in the trace

set. In addition, doubling the amount of traces to 3.1M traces did not improve the

result as we can see in table 2.

Power Model/Target Frequency Traces Key Recovered Correct
Key
Bytes

HW/SBox 1st round 32.71MHz 1.5M 004900435552000053434f004c003100 10
HW/SBox 1st round 65.43MHz 1.5M 004900435552454900434f4f00213100 12
HW/SBox 1st round 131.1MHz 1.5M 004900435552000053434f0000218d0d 8
HW/SBox 1st round 32.71MHz 3.1M 004900435552000053434f004c003100 10
HW/SBox 1st round 65.43MHz 3.1M 00490043555245495343004f002131f4 11
HW/SBox 1st round 131.1MHz 3.1M 004900005552450053434f4f002149f4 9

Table 2: DEMA; Hi Sensitivity Probe

9.3.3 DEMA with High Sensitivity Probe and Hardware Filter at Loca-
tion 1

Since switching to HS probe shown no improvement over the LS probe, we apply

a hardware filter of 48MHz. In figure 4, the filter is placed between the probe and
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the LeCroy at number 3. The hardware filter will eliminate all the high frequency

noises during acquisition. Figure 15 shows an example trace with filter on as well as

the spectrum of the trace set. A million traces were taken in this trace set.

Figure 15: Sample trace and spectrum of filtered trace set

In this new trace set, we can see two dominating frequencies: 32.78MHz and

65.49MHz. We resampled the trace set to these two frequencies and the resulting

traces are shown in figure 16. We began running the DEMA module on different

power models and targets once again, and the results are presented in table 3. As we

can see, the best approach would be attacking the first round of SBox using Hamming

Weight as power model on 32.78MHz.

Table 4 shows the correlation between the number of traces and key bytes recovered

on trace set resampled at 32.78MHz with Hamming Weight as power model and

targeting the first round of SBox. Figure 17 shows the graph representation of table

4. As we can see, we recovered about the same number of key bytes with HS probe

low pass filtered at 48 MHz as to oppose of using the low sensitivity (LS) probe, but
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Figure 16: Filter trace set resampled

Power Model/Target Frequency Key Recovered Correct
Key
Bytes

HW/SBox 1st round 32.78MHz 0049533d555245495343ad4f4c21000b 11
HW/SBox 1st round 65.49MHz 00b0e5f00016db91675b6cb4f63dd00f 0
HD/SBox 1st round 32.78MHz 001dc9170d286a10e02f635c7b85974c 0
HD/SBox 1st round 65.49MHz 00b1cb57f17ee289e09b861f77dca993 0
HD/SBox 10th round 32.78MHz 001dc9170d286a10e02f635c7b85974c 0
HD/Round 10th round 32.78MHz 001dc9170d286a10e02f635c7b85974c 0
HD/Round 1st round 65.49MHz 00b1cb57f17ee289e09b861f77dca993 0

Table 3: 48 MHz low pass Filtered DEMA with Different power models and targets
with 100k traces

we were able to achieve such results with only 240k traces as to opposed to 1 million

traces. Thus this was a huge improvement over using the LS probe since the number

of traces required to achieve similar results with 4 times less traces.
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Power Model/Target Traces Key Recovered Correct Key Bytes
HW/SBox 1st round 25000 009e08d8a3a24d3336e1104f3d2119b8 1
HW/SBox 1st round 50000 004953d88b3c6d7288e1104fe021bd0b 2
HW/SBox 1st round 75000 00495353553c458e0043104f94214f4b 7
HW/SBox 1st round 100000 00495373551945495343104f912100b6 9
HW/SBox 1st round 125000 0049530055a245495343144f912100b6 9
HW/SBox 1st round 150000 00495300552745495343104f9121000b 9
HW/SBox 1st round 175000 00495300555245495343144f0021004b 10
HW/SBox 1st round 200000 00495300555b454953431b4f9121004b 9
HW/SBox 1st round 225000 004953525552454953431b4fb621000b 10
HW/SBox 1st round 240000 004953a2555b454953431b4fb621000b 9

Table 4: DEMA on 32.78MHz; Hi Sensitivity Probe; 48 MHz Low Pass filtered

Figure 17: Traces vs Correct Key Byte; DEMA on 32.78MHz; Hi Sensitivity Probe;
48 MHz Low Pass filtered

9.4 DEMA at Location 2

9.4.1 DEMA with High Sensitivity Probe at Location 2

Since taking a large amount of traces shown no improvement, we beginning looking

for alternative leakage. Recall that figure 8 displays two different hot spots on the
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chip. We initially assumed that the other hot spot (this location will now be referred

as location 2 from now on) was simply I/O activities. We revised our assumption

and begin taking traces at location 2. The data correlation of these traces shown

that there are possible leakage similar to the previous traces. Thus, we took traces at

this location with HS probe and no filtering. Figure 18 shows the difference between

traces from location 1 and location 2 resampled at 65.43 MHz. Table 5 shows the key

bytes recovered at 32.71 MHz, 65.43 MHz, and 130.86 MHz with various trace set

sizes, and figure 19 displays this data in graphical form with more data. The number

of traces shown in the table and chart are after alignment, and all the unaligned

traces has been thrown out. Nearly full key recovery was achieved with just 225k

traces for 32.71 MHz resampling, and similar result was achieved with 125k traces for

65.43 MHz resampling. However, full key recovery was not achieved despise taking

as much as 4 million traces. Note that the time to run the analysis for 32.71 MHz

and 65.43 MHz are similar; and this is due to 32.71 MHz resampling takes twice as

many traces as 65.43 MHz resampling, but there are roughly twice as many data in

65.43 MHz resampling to be processed.

Figure 18: Traces of AES operations resampled at 65.43 MHz; Location 1 on top;
Location 2 on bottom

46



Frequency Traces Key Recovered Correct Key Bytes
32.71MHz 25k aba673b384d566d067b50214b1f50fcf 0
32.71MHz 100k 004953439e52c449a4434fd44c21310a 10
32.71MHz 500k 004953435552454953434F4F4C213100 15
32.71MHz 1M 004953435552454953434F4F4C213100 15
32.71MHz 2M 004953435552454953434F4F4C213100 15
32.71MHz 3M 004953435552454953434F4F4C213100 15
32.71MHz 4M 004953435552454953434F4F4C2131f4 14
65.43MHz 25k 35498c29cb9366a7b3b59a2a3368ddcf 1
65.43MHz 100k 004940009e52454953434f4f4c21310a 11
65.43MHz 500k 004953435552454953434F4F4C213100 15
65.43MHz 1M 004953435552454953434F4F4C213100 15
65.43MHz 2M 004953435552454953434F4F4C213100 15
65.43MHz 3M 004953435552454953434F4F4C213100 15
65.43MHz 4M 004953435552454953434F4F4C2131b4 14
130.86MHz 25k cbff59f7abf8c4ff3db5abec1a8a19cf 0
130.86MHz 50k 00f8e0447c4312493d5069af6222b60a 1
130.86MHz 75k 00005d5e085264923d741dc6d55b0d97 1
130.86MHz 100k 000053329e5291494b434f004c520d56 6
130.86MHz 150k 00005343a0520249e8434f4f4c21f01b 9

Table 5: DEMA at location 2; Hi Sensitivity Probe; HW/SBox 1st round

9.5 Summary of DEMA on Xmega

Three different options in configurations were introduced in our experiments: LS

and HS probes, 48MHz hardware filter, locations 1 and location 2 of the Xmega,

and trace set resampling. In all of our experiments, we used Hamming Weight as

our power model and targeted the first round of the SubByte operation, and all the

other power model and target combinations shown no results (Zero bytes of the key

recovered). In sections 9.3.1 and 9.4.1, we obtained trace sets from two different

locations based on the spectrum shown in figure 8. The best result we obtained from

location 1 is recovering 12 bytes of the key. On the other hands, we were able to
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Figure 19: Traces vs Correct Key Byte; DEMA on Location 2; Hi Sensitivity Probe

recover 15 bytes of the key with location 2. Based on these results, we can conclude

that there are more than one location where the leakage can occur on the Xmega,

and the most leakage occurs the most at location 2 where we believed where the

input/output operations of the Xmega is located. In section 9.3.3, we attempted to

perform DEMA by introducing a 48MHz hardware filter into our set up to eliminate

high frequencies noises. With the hardware filter, we were able to recover 11 bytes

of the key with only 100k traces, while 12 bytes of the key were recovered with

the unfiltered set up as shown in section 9.3.1. Both of the unfiltered and filtered

experiment were done at location 1. This indicated that the hardware filter does

eliminate the high frequencies noise picked up by the EM probe. In addition, we also

tested the uses of LS probe and the uses of HS probe. In section 9.3.2, we performed

DEMA with the HS probe, and we were able to recover 12 bytes of the key with 1.5M

traces. However, we cannot draw conclusion on which probe shown better results
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since the experiment done in section 9.3.1 was with 1M traces. Further research will

need to be done in order draw conclusion regarding the use of LS probe and the use

of HS probe. Finally, we resampled all of our trace sets to 32.71MHz (clock frequency

of the Xmega) and 65.43MHz (upper harmonic) in all of our experiments. In section

9.4.1, the trace set resampled to 32.71MHz was able to recover 15 bytes of the with

225k traces; the trace set resampled at 65.43MHz was able to recover the same key

with 125k traces. While the trace set resampled 65.43MHz takes less traces, it also

takes twice as much data as the trace set resampled at 32.71MHz. Thus, the amount

of resource (data storage and processing time) is doubled for the same key recovery

for the trace set resampled at 65.43MHz

In summary, we were not able to achieve full key recovery with DEMA, but we

were able to recover up to 15 bytes of the key. The location of the probe is one of

the most important factor in determining if we can achieve full key recovery. For the

experiments with the EM probe, we placed the EM probe in two different locations.

The first location that we placed the EM probe is located at the center of the chip,

and we believed location 1 is where the cryptographic engine is located on the chip.

However, we were only able to recover up to 12 bytes of the key with 1.5 million

traces resampled to 65.43MHz with our best attempt of DEMA at this location, and

increasing the number of traces did not improve the number of bytes of the key

recovered. The next location that we placed the probe is near the edge of the chip,

and we believed location 2 to be the input/output lines between the chip and the

serial interface. We were able to recover up to 15 bytes of the key with traces taken

from this location, and 225k traces resampled to 32.71MHz or 125k traces resampled

to 65.43MHz were needed to achieve the 15 bytes recovery. The calculation times

between the two resampled trace sets are roughly the same due to the number of
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samples per trace and the number of trace in the trace set. The best configuration

we found from our experiment is to used the HS probe, unfiltered, at location 2,

and perform DEMA on the trace set resampled at either 32.71MHz or 65.43MHz

depending on the computational resource one might have. In the next section, we

will begin performing DPA on the Xmega and discuss the results.
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CHAPTER 10

DPA on ATXmega256A3B

As mentioned in the previous sections, DPA is a side channel attack technique

that uses the power measurements of the system of interests while it is performing

cryptographic operations. For this project, we will be taking measurements in two

ways, and the two ways are across the resistor on the ground end and the current

on the VCC end of the chip. We will first present the result of analyzing the traces

from measuring across the resistor, and we will also present the result of analyzing

the traces from measuring the current.

10.1 DPA: Measuring across the resistor

The set up for measuring across the resistor is very similar to that of measuring the

EM leakage for Xmega. Once again, we will have a work station running Inspector,

the LeCroy oscilloscope, and the Xmega. The Xmega is connected to the work station

for transferring plain text and cipher text between the two by the means of USB/serial

converter. The trigger is done exactly the way as described in the DEMA section.

Figure 20 is a diagram of the set up described above. The major differences are how

the chip is powered and how the oscilloscope is taking measurements. The chip is no

longer being powered by the work station, but it is powered by 3V DC power source.

For taking measurements, we put a resistor between the ground of the power source

and the Xmega. The strength of the resistor will affect the quality of the traces; a

resistor with higher resistance will increase the quality of the traces. The probe will

be measuring the drop in voltage across the resistor as the Xmega is performing the

cryptographic operations. According to Ohm’s law, V = I × R, where V is voltage,
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I is current, and R is resistance. Since the resistance is constant in this set up, this

means the change in voltage is linearly related to the current. In addition, we noticed

that the ground end of the trigger probe is drawing more current than the ground end

of the power source. This causes an incomplete circuit for the Xmega and rendered

it inoperable, so we put a 10M ohm resistor on the ground end of the trigger probe

in order to make the Xmega operatable again.

Figure 20: Set up diagram for DPA with resistor

During the acquisition of the traces, we also noticed that the power signal is very

weak compared to the EM signal. The EM signal ranges from 2V to 3V, and the

power signal ranges from 50mV to 100mV. As such, we increased the strength of the

power signal by adding a 12V amplifier between the probe and oscilloscope. Figure

21 shows traces with and without the amplifier. Furthermore, we observed that

there are periodic power spike in our traces as demonstrated in the bottom trace

of figure 21. This power spike occurred due to the changes in voltage of the other

active components of the chip such as LEDs and USB controller. With this additional
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power spike, we need to acquire more traces and throw out the ones with power spikes

occurring in the region that we are interested during our trace alignment phase.

Figure 21: Power Traces of overall operations sampled at 1 GHz; With amplifier on
top; Without amplifier on bottom

Since using more than 4 million traces with no notable result means that this set

up will not as efficient as the set up for DEMA, we have not take more than 4 million

traces with this set up. Due to time constrain, we only capture 1.5M aligned traces

by measuring with the 1k ohm resistor and capture 2.5M aligned traces by measuring

with the 1M ohm resistor. Figure 22 shows sample traces using the set up with the

resistor, and the two traces show power signal sampled at 1 GHz and resampled at

32.96 MHz.

During the analysis phase, we resampled the traces down to 32.96MHz and

65.67MHz as suggested by running the Spectrum module on the trace set. How-

ever, the trace sets resampled down to these two frequencies yield no notable results

up to 2.5 million traces. That means zero byte of the key was recovered from the

resampled trace set. On the other hands, we were able to get significant results by
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analyzing the raw traces sampled at 1 GHz. Table 6 shows the results by analyzing

the traces. Noted that we were able to achieve a full key recovery with 2.5 million

traces by measuring across an 1M ohm resistor sampled at 1 GHz. The time it takes

to acquire 2.5 million traces is roughly two days, and the time for analysis is about

1 days. Thus it will take about a total of 3 days in order to achieve full key re-

covery. Figure 23 shows the number of traces compared against the number of key

bytes recovered. Based on the figure, we can see that the 1M ohm resistor shown

better results than the 1k ohm resistor, and the 1M ohm resistor was able to recover

twice as many bytes of the key as the 1k ohm resistor between 400k and 1M traces.

However, the 1k ohm resistor recovered 14 bytes of the key with 1M traces, which is

one byte short of the trace set with 1M ohm resistor with the same number of traces.

Below 1M traces, the 1M ohm resistor was able to show better results, but we cannot

draw conclusion on which resistor shows better results. We can further research this

question by taking more traces with the 1k resistor until we achieve full key recovery.

Figure 22: Power Traces of AES operation over 1M ohm resistor; Sampled at 1 GHz
on top; Resampled to 32.96 MHz on bottom
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Resistor Traces Key Recovered Correct Key Bytes
1k ohm 25k 070eaa3011604f9556c9fbd4a48a3664 0
1k ohm 250k 33728a43554d5ad60d3d1d14676dba9b 2
1k ohm 500k 5272fd4e71771ef0539f2043660b4df2 2
1k ohm 1M 5249e443556bb04953430eb78a0b0b00 8
1k ohm 1.5M 5249534355c3454953434F434C213100 14
1M ohm 25k d4e6257cafc99014d0a600942f87646f 0
1M ohm 250k 302a851659a774e336b58b6717cd7595 0
1M ohm 500k 5249704a55e2ae4932434f624ce55000 8
1M ohm 1M 524926435552454953434fb04c213200 13
1M ohm 1.5M 524953435552424953434f924c213100 15
1M ohm 2M 524953435552454953434fb04c213100 15
1M ohm 2.5M 524953435552454953434f4f4c213100 16

Table 6: DPA with resistors; HW/SBox 1st round; Sampled at 1 GHz

Figure 23: Traces vs Correct Key Byte; DPA with Resistor

10.2 DPA: Measuring the current

In this section, we will describe our set up for measuring the current of the Xmega

while it is performing cryptographic operation, then we will discuss the results of

analyzing the traces obtained with this set up. Note that this set up is the same as

55



the previous side channel analysis effort [30]. As expected, the result of this set up

closely resemble that of the previous work.

The overall set up for measuring current is quite similar to that of the set up for

measuring across the resistor. The major differences are once again the power source

and the probe that we are using. Instead of using a 3V DC power supply, we used

two AA batteries in series to provide a stable 3V power supply for the Xmega. The

current probe is attached onto the VCC end of the batteries instead of the ground

end. This was suggested by a colleague, and we would to repeat the experiments done

in sections 9.3.1, 9.4.1, and 10 with the battery as power source in the near future

as further research. Finally, we power the chip via the programming pin rather than

from the power inlet provided on the chip. The only difference between our set up

and the set up from the previous work [30] is that we did not remove the onboard

LED(s). The diagram for this set up is shown on figure 24.

Figure 24: Set up diagram for DPA with current
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Similar to measuring across the resistor, the signals for measuring the current are

also very weak. The signals are in the -/+ 10 mV range. In addition, the periodic

power spikes are once again present in the traces, and the process of throwing out

unusable traces is once again employed with the use of the Static Alignment module

(details in section 9.3.1). Figure 25 shows resulting traces with this set up. The top

trace shows trace with the periodic power spike, and the bottom trace is power spike

free. If we examine the traces, we can once again identify the different stages of the

AES operation in the traces. The 10 ms to 21 ms range is where the AES encryptions

occur, and we verified this findings by once again running the data correlation module.

The major difference from the traces of this set up and from the traces of the previous

set up is that a very low frequency signal, at 1MHz, is presented in the traces. We

applied a software, as part of Inspector, band pass filter ranged from 1.5 MHz to

5 GHz in order to get rid of this low frequency signal while preserving the original

signals. Figure 26 shows traces of the first half of the AES encryption operations. A

band pass filtered is applied to these traces to remove the low frequency signal. The

bottom trace is the original trace sampled at 1 GHz, and the top and middle traces

are resampled to 32.71MHz and 65.43MHz from the original trace.

In the previous side channel attack effort of the Xmega, only 30k traces were

needed in order to achieve full key recovery [30]. In our attempts, we were able to

produce similar results. We achieve full key recovery with 45k traces resampled to

32.71 MHz. In addition, 100k traces resampled to 65.43 MHz were needed to achieve

full key recovery. Note that for traces resampled at 65.43 MHz, 15 bytes of the key

were recovered from analysis attempts between 60k traces and 100k traces, and the

difference of correlation values for the missing byte between the real key and the key

guess was no more than 0.0002. That means there is a high probability that we should
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be able to achieve full key recovery with about 60k traces resampled at 65.43 MHz.

We will discuss the success rate against number of traces in a later section. Finally,

the analysis on the original traces was able to recover up to 15 bytes of the key with

40k traces. However, the execution time, clocked at 24 hours, of analysis of the 1

GHz traces is much higher than the analysis of the 32.71 MHz and 65.43 MHz traces.

Table 7 and figure 27 show the full results discussed in this paragraph. Overall, we

reproduce similar results to that of the previous side channel attack on the Xmega

with only 20k more trace [30]. While we need 2.5M traces for the trace set measuring

across the resistor to perform full key recovery, we only need 50k traces in order to

perform full key recovery by measuring with the current probe. This result shows us

that the leakage from change in current is stronger than that of measuring the change

in voltage.

Figure 25: Power traces with current; With random spike on top; Without random
spike on bottom

10.3 DPA: Success rate

In this section, we will determine the side channel attack’s success rate by measuring

across the resistor. There is a module in Inspector, called First Order Stats, that will
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Figure 26: Power traces with current on 32.71 MHz, 65.43 MHz, and 1 GHz

Frequency Traces Key Recovered Correct Key Bytes
32.71MHz 25k 5214d9bf6e52454953434f4f2d21318f 10
32.71MHz 30k 524953b4555245491e434f4f3c213100 13
32.71MHz 40k 5256534355524549534c4f4f4c213100 14
32.71MHz 45k 524953435552454953434f4f4c213100 16
32.71MHz 50k 524953435552454953434f4f4c213100 16
65.43MHz 25k 52cdd9535552d04953434f4f9e210800 10
65.43MHz 30k 527453535552568b53434f4f4c213100 12
65.43MHz 50k 52eb53435552564953434f4f4c213100 14
65.43MHz 60k 524953435552564953434f4f4c213100 15
65.43MHz 75k 524953435552564953434f4f4c213100 15
65.43MHz 100k 524953435552454953434f4f4c213100 16
1GHz 25k 52c453935552dc4953434f4f4c213100 13
1GHz 30k 52e553975552dc4953434f4f4c213100 13
1GHz 40k 527b53435552454953434f4f4c213100 15
1GHz 50k 527b534355520e4953434f4f4c213100 14
1GHz 60k 527b53435552d44953434f4f4c213100 14

Table 7: DPA with current probe; HW/SBox 1st round

perform the success rate calculation provided that we have a large amount of traces.

The First Order Stats module will split the trace set into k smaller and equal in size

sub trace sets. For each of these k sub trace sets, the module will perform DPA on
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Figure 27: Traces vs Correct Key Byte; DPA with Current

a small number, i, of traces and increase i by some constant until the all traces in

the sub trace sets have been used. The module will then report the number of traces

needed to achieve full key recovery in each k sub trace sets for each i number of traces.

We can then determine the side channel attack’s success rate based on these results.

For our experiments, we will be measuring the success rate of performing DPA

with current. We were able to obtain 5.2 million traces for this experiment. We will

only perform the experiment on trace sets resampled to 32.71 MHz and 65.43 MHz

since these are the frequencies that we were able to achieve full key recovery. Based

on the results from the previous section, we know that the highest number of traces

that we need to achieve full key recovery is 100k traces, so we will use this number as

our limit. Hence, we have 52 sub trace sets with 100k traces each. For each of these

sub trace sets, we will perform DPA at every 1000 traces (e.g. DPA on 1k traces,

2k traces, ... 100k traces). Table 28 shows the results of this experiment. Note that
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both frequencies produced similar graphs. Based on these results, we can see that the

minimum amount of traces needed to achieve full key recovery with some probability

of success is 30k traces, and this is consistence with the previous side channel attack

effort [30]. On the other hands, both frequencies show that performing DPA with

80k traces will guarantee a full key recovery. However, performing DPA on traces

sampled at a lower frequency will yield faster execution time. Thus, performing DPA

on trace sets resampled to 32.71 MHz execute twice as fast as trace sets resampled

at 65.43 MHz. Hence, resampling traces to the operating frequency of the Xmega is

suggested for DPA in terms of overall performance.

Figure 28: Success rate vs Number of traces at 32.71 MHz and 65.43 MHz

10.4 Summary of DPA on Xmega

In summary, we achieve full key recovery in multiple occasions. We performed DPA

in two different ways. The first way is to measure the change in voltage by placing

a resistor on the ground wire of the target, and the second way is placing a current
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probe on the VCC wire of the target. Full key recovery was achieved using both

ways. By measuring the voltage across the resistor, we achieve full key recovery with

2.5 million unfiltered traces. On the other hands, we achieve full key recovery using

only 45k resampled traces with the current probe. In addition, the First Order Stats

module shows us that only 80k traces are needed for guaranteed full key recovery.

In the case of measuring across the resistors, we cannot conclude if increasing the

resistance of the resistors will decrease the number of traces needed to perform full

key recovery. Further experiments is required to make such claim. However, since

we perform full key recovery from measuring both the change in voltage and change

in current, we can conclude that measuring the change in current yield better results

than measuring the change in voltage. The difference in the amount of traces needed

to perform full key recovery between the two methods is 2 millions, and the total time

(acquisitions and analysis) for performing DPA by measuring across the resistor is 3

days whereas the total time for performing DPA by measuring the current probe is

an hour. In the next section, we will discuss the experiments and results with using

a radio receiver as a downmixer and perform DPA and DEMA on the demodulated

signals.
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CHAPTER 11

Downshifting with Icom R7000

The Icom R7000 is a radio frequency radio receiver capable of capturing a wide

range of signals. In this section, we will be using the Icom R7000 (or simply referred

as Icom from now on) for downmixing. Downmixing is the process of applying a

bandpass filter on the received signals down to a base band. The Icom can receive

radio signal and downmix the signal to produce a single channel audio signal. The

Icom can receive signals from 25MHz to 999MHz and from 1025MHz to 2000MHz

in AM, AM-W, FM, FM-W, FM-N, USB, and LSB modes [29]. We chose the Icom

because it can receive a wide range of frequencies where as modern radio receivers

have restricted range of frequencies that they can receive. We like to expand the use

of the Icom outside of the scope of this project in the near future. In this section, we

will describe the set up for acquisitions with the Icom, and the results of performing

DPA and DEMA on the Xmega with the Icom as a demodulator.

11.1 Set up with the Icom

We will begin by discussing about the set up for DEMA on the Xmega with the

Icom. The set up with the Icom is exactly the same as the set up described in the

DEMA section. The Icom is equipped with an N-type connector on the back, and this

connector is used for attaching an antenna to the Icom for receiving radio signals. For

this experiment, we connected the high sensitivity EM probe to the N-type connector

port using a modified coax cable. There is an intermediate frequency (IF for short)

port used for other audio functions of the Icom. We connect the LeCroy to the

Icom using the IF port. The IF port will always produce a 10.7MHz out put signal
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regardless of the frequency of the radio receiver is tuned to listen on. Finally, we put

a 50 Ohms impedance matcher between the LeCroy and the Icom to prevent the Icom

from overloading the LeCroy with currents. Figure 29 shows a diagram of the set up.

Figure 29: Set up diagram for DEMA with the Icom R7000

As for DPA, we will only perform experiment with the Icom using only the current

probe since the current probe produced a much better result than measuring across

the resistor. Once again, the set up for DPA with the Icom is almost exactly the

same as the set up for DPA as described in the DPA section. The Icom is once again

connected to the current probe on the antenna port and connected to the LeCroy on

the IF port. Refer to number in figure 29 regarding where the Icom is located in the

set up.

As mentioned earlier, we can tune the Icom to listen to any frequencies that we

set as long as it is with in specifications, and the out put on the IF port will always

be 10.7MHz. If we tune the Icom to listen to the operating frequency of the target

and capture the out put signal on the IF port, we will be downshifting the operating

frequency down to 10.7MHz. The point of this experiment is to see if we can downshift

the operating frequency while successfully perform DPA or DEMA on the target. If
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we can manage to perform DPA/DEMA at 10.7MHz, then it means we can perform

DPA/DEMA more efficiently since performing DPA/DEMA at 10.7MHz takes less

calculations than traces taken at the operating frequency; this is due to the clock

frequency of the Xmega is 32MHz, and there are less samples per trace to perform

DPA/DEMA on per trace in the trace set (re)sampled at 10.7MHz than trace sets

(re)sampled at 32MHz. In our experiments, we will be downshifting the 32.71MHz

of the Xmega to 10.7MHz with the Icom.

Before we discuss the results of DPA and DEMA with the Icom, we will point out a

few observations about taking traces with the Icom. The first observation is that the

out put signal of the IF is very weak, and it is in the -/+10mV range. We strengthened

the signal by putting a 12V amplifier between the Icom and the LeCroy, and the signal

with the amplifier is in the -/+50mV range. The second observation is that the Icom

can, and occasionally will, pick up other radio signal then the ones we intended since

the Icom is a radio receiver. The Icom can pick up signals from cell phone, EM

radiations from other electronic equipments nearby, or etc. Figure 30 shows a sample

trace with signals not coming from the current probe. This interference means more

traces are needed in order to perform DPA/DEMA on the target, and the traces

with this interference will have to be thrown out during the alignment phase of the

analysis. Finally, the spectrum of the traces (shown in figure 31) taken from the

IF port revealed three dominating frequencies. The three frequencies are 4.15MHz,

10.742MHz, and 17.334MHz. These frequencies are independent of the target, and

they are produced by the Icom by downmixing the received signal down to these

frequencies. This information will become useful when we begin analyzing the traces

from measuring the IF port of the Icom.
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Figure 30: Sample trace of interference with Icom

Figure 31: Spectrum of traces taken with the Icom

11.2 DPA with the Icom

In this section, we will be discussing the results of performing DPA on traces taken

with the Icom. Recall that we will only be taking traces with the current probes since

only 80k traces are needed in order to perform a full key recovery. Thus, if we can

perform full key recovery with less than 80k traces, then using the Icom will definitely

be an improvement. In this section, we like to see if downshifting with the Icom can

be an improvement over traditional method of performing DPA on our target.

Figure 32: Sample traces of all AES operations with current probe at 100MHz; un-
filtered on top; 17.334MHz resampling on bottom
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We will begin by examining the traces with the over all AES operations. Figure 32

is a sample trace of the over all AES operation with the current probe. The trace on

top is sampled at 100MHz and unfiltered, and the trace on the bottom is resampled

to 17.334MHz as suggested by the Spectrum module. The Icom was set to receive at

32.71MHz during acquisition. The actual AES encryption operations are between 10

ms and 21 ms. We were able to perform the input and out put data correlations on

the resampled trace set. However, no correlations were found between the input/out

put data and the unfiltered trace set. This suggests that there are a lot of noises

in the unfiltered traces and we should resample the trace sets down to one of three

frequencies listed earlier.

We resampled the trace sets down to the three frequencies, 4.15MHz, 10.742MHz,

and 17.334MHz, as suggested by the Spectrum module. These frequencies are inde-

pendent of the target, and they are produced by the Icom by downmixing the received

signal down to these frequencies. However, we were not able to recover any byte of

the key with 100k traces. The next step we took in this experiment is to figure out

the exact frequency in which is the leakage is happening. We reexamined the spec-

trum of our old trace sets taken with the current probe, and we found the following

frequencies are also leaking key information: 13.184MHz, 19.531MHz, 23.926MHz,

26.123MHz, 39.06MHz, and 45.65MHz. We found these frequencies by running the

Spectrum module of Inspector on traces taken in section 9.3.1 and locate the peak

frequencies. We were able to perform full key recovery with only 80k traces by resam-

pling our old trace sets to these frequencies. Once again, we were not able to recover

any bytes of the key by taking traces from the IF port while tuning the Icom to these

frequencies.
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Figure 33: Sample traces with current probe and Icom; unfiltered trace on top; 5MHz
to 25MHz band pass filtered on bottom

Since we were not able to recover any byte of the key by simply resampling the

trace sets, band pass filtering is our next option. Band pass filtering allows us to

extract samples at a certain range of frequencies from a trace. In our experiments,

we applied a band pass filter from 5MHz to 25MHz to our trace set, and the purpose

of applying the band pass filter is to eliminate the higher frequencies noises while

preserving the 10.742MHz and 17.334MHz signals. Figure 33 shows a trace before

and after applying the band pass filter. In this figure, the trace on top exhibits

high frequencies noises in between each low frequency peaks, and the trace at the

bottom are free of all the high frequency noises and contains only signals between

the frequencies of 5MHz and 25MHz. Before we attempt to perform DPA on the

filtered trace set, we ran a diagnostic tool called KnownKeyCorrelation. This tool

allows us to see the correlation value between the trace set and the known key. The

tool will take the known key and calculate the correlation value at each part of the

trace with different power models (e.g. Hamming weight and Hamming Distance)

and targets (e.g. 1st round of SubByte and 10th round of AddRoundKey). The

user can compare the correlation values of all the different power models and targets

combinations and determine which combination and the location in the trace are
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best suited for performing DPA/DEMA. Note that is tool can only be used when

the key is known by the attacker, and it is useful for attackers who have access

to a copy of the system of interest before attempting to attack the actual target.

For AES, the tool will test for Hamming Distance as well as Hamming Weight for

both Sbox in and Sbox out. Refer to section 4.1 about the different power models,

targets, and correlation calculations. Figure 34 shows the results of running the

KnownKeyCorrelation module for 1.6 million traces. Each of the trace set shown in

the figure is overlapped with 16 traces, and each of these traces corresponds to a byte

of the key. The figure shows that there is a small correlation between the known

key and the Hamming Weight of the first round of SBox out between 0.9ms and

1.3ms. Furthermore, the figure also shows a small correlation for the second round

between 2.0ms and 2.7ms and a small correlation for the third round between 2.7ms

and 4.0ms. The results show us a weak correlation between the known key and the

trace set. Nonetheless, there are still correlation between the key and the trace set,

so it is entirely possible to recover the key by performing DPA on the trace set.

Figure 34: Known key correlation on 1.6M PWC traces with Icom
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With the results of running the KnownKeyCorrelation module, we are confident

that performing DPA on the band pass filtered trace set should be able to recover some

bytes of the key. With 1.6 million traces in the trace set, we recover up to 10 bytes

of the key, and we perform a full key recovery with an additional 1.2 million traces.

Thus, we perform full key recovery at 2.8 million traces. For further experiment, we

resampled the this 2.8 million traces trace set after applying the frequency filter to

4.15MHz, 10.742MHz, and 17.334MHz and perform DPA on each of these resampled

trace sets. None of these new trace sets were able to recover any bytes of the key.

Table 8 displays this said results. This suggests that the some of the information

leakage is hidden in the 10.742MHz frequency while some of the other information

leakage is hidden in the 17.334MHz frequency.

Frequency Traces Correct Key Bytes
5MHz to 25MHz 1.6M 10
5MHz to 25MHz 2.8M 16
4.15MHz 2.8M 0
10.742MHz 2.8M 0
17.334MHz 2.8M 0

Table 8: DPA with current probe; HW/SBox 1st round; Downshifting with Icom

In summary, we perform full key recovery at 2.8 million traces with the set up

involving the Icom. However, recall that only 80k traces are needed to guarantee a

full key recovery without the Icom, so frequency downshifting with the Icom is not an

improvement over the traditional set up with the current probe. The signal that the

IF port of the Icom produced contains high frequency noises that need to be filtered

out. In addition, the Icom also receives external noises from other sources such as cell
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phones and other nearby electronic equipments, and traces containing these noises

will have to be thrown out. The total execution time of performing DPA with the

Icom on 2.8M traces is 3 days with acquisitions and analysis whereas traditional

method required only an hour of execution time. Thus, using the Icom as a method

of performing DPA is not viable replacement, or an improvement, for DPA. In the

next section, we will explore how downshifting affects DEMA.

11.3 DEMA with the Icom

In this section, we will be discussing the results of performing DEMA with the set

up with the Icom. We have already described the set up in section 11.2, and figure 29

shows a diagram of the set up. The only difference is replace the current probe with

the HS EM probe. Once again, an impedance matcher is placed between the Icom

and the LeCroy in order prevent the Icom from overloading the scope with current,

and we will show results of removing the impedance matcher in a later section.

Figure 35: Sample trace of EM during AES with Icom; unfiltered trace on top; 5MHz
to 25MHz band pass filtered on bottom

For the experiment with DEMA, we obtain 3.5 million traces. We once again at-

tempt to perform DEMA by simply resampling the trace set to 4.15MHz, 10.742MHz,
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Figure 36: Known key correlation on 3.5M EM traces with Icom

and 17.334MHz. Again, none of these new trace sets were able produce any correct

key bytes, so we applied the band pass filter to the trace set once again. Since the

IF port of the Icom always produce signals in the same frequencies, we simply apply

the same band pass filter from 5MHz to 25MHz to the trace set. Figure 35 shows

sample trace before and after applying the band pass filter. Note that the filtered

trace from the EM probe looks very similar to the filtered trace from the trace taken

with the current probe; this is most likely due to the signals coming from the same

source, which is the IF port.

Before we perform DEMA on the filtered trace set, we ran the KnownKeyCorre-

lation module on the trace set. Figure 36 shows the result of running the KnownK-

eyCorrelation on the filtered trace set. The result shown is once again Hamming

Weight of SBox out, and each trace shows the correlation between the key bytes and

the trace set. We can see that the key bytes correlate to the first round’s Hamming

Weight of the SBox out between 0.9ms and 1.5ms; the correlation between the key

bytes and the second round’s Hamming Weight of the SBox out is between 2.0ms and

72



3.0ms, and the third round is between 3.0ms and 4.0ms. If we compare the result

of the KnownKeyCorrelation between the EM trace set and the trace set with the

current probe shown in figure 36 and figure 34 respectively, we can see that the EM

trace set have a much stronger correlation between the key bytes and the trace sets.

This is merely a demonstration of how a stronger correlation looks like as there are

0.7M more traces to perform the known key correlation in this trace set than the one

presented in figure 34.

Since the result of the KnownKeyCorrelation shows a strong correlation between

the key bytes and the trace set, we expect a full key recovery if not near full key

recovery. The key we recovered from the performing DEMA on the trace set is the

following: 524953435552454953f74f4f4c2131f0. Examining the recovered key bytes

shown that only 2 key bytes are incorrect. Recall that we recovered 15 bytes of the

key with 4 million traces on the normal set up, so the number of traces needed to

recover most of the key is consistence with previous results.

In summary, we recover 15 bytes of the key bytes with the set up with the Icom up

to 3.5 million traces, and this is comparable to the previous results without the Icom.

None of key bytes was recovered from performing DEMA on trace sets resampled

to 4.15MHz, 10.742MHz, and 17.334MHz. This is consistence with the previous

experiment of performing DPA with the Icom by resampling to these frequencies,

and the two results highly suggests the information leakage is hidden in combination

of the 10.742MHz and 17.334MHz frequencies. Overall, the set up with the Icom

is a possible alternative set up for the normal set up. Since the signal has been

downshifted from a higher frequency down to below 20MHz, performing a DEMA

will require less samples per traces. This implies less calculation is needed in order to
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perform DEMA on a target. It is possible that we can use the set up with the Icom

for target operating at a higher frequency for downshifting in order to improve the

efficiency of performing DEMA, but further research will needed to be done in order

to confirm such claim. In the next section, we will discuss the results of using the set

up with the Icom in different configurations.

11.4 DPA with the Icom with other configurations

In this section, we will show the results of applying different configurations to the set

up with the Icom. The set ups are current probe with no impedance matcher, current

probe with AC coupling and no impedance matcher, and finally, current probe with

AC coupling and no impedance matcher and Icom tuned to 65.43MHz. The reason

for applying these configurations is to see if we can apply different configurations to

improve the performance of performing DPA/DEMA with the Icom.

The first configuration is simply remove the impedance matcher. Recall that we

place a 50 Ohms impedance matcher between the Icom and the LeCroy in order to

prevent the Icom from overloading the scope with current. However, the impedance

matcher will cause some signal loss between the Icom and the scope, and this can

potentially distort the captured signal enough that the information leakage is no

longer within the signal [33]. In order to verify that the impedance matcher is not

interfering with our experiment, we used a multimeter to check that the current

coming out of the IF will not overload the LeCroy. Hence, it is safe to connect the

IF port directly to the scope without the impedance matcher. We took 150k traces

with the Icom directly connected to the impedance matcher since only 80k traces are

needed to perform full key recovery on the normal set up. We performed DPA on the

aligned trace set sampled at 1GHz, but zero key byte was recovery from the trace set.
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In addition, we resampled the trace set to 10.742MHz and 17.334MHz and performed

DPA on the resampled trace sets with no success. We once again applied a band

pass filter of 5MHz to 25MHz to the trace set, then we ran the KnownKeyCorrelation

module on the filtered trace set, and figure 37 shows the results of running the module.

From the figure, we can see that there is little to no correlation between the key bytes

and the trace set on the first round, and absolutely no correlation between the key

bytes and the trace set on the second round. Thus, the 50 Ohms impedance matcher

is not a negative factor in our experiments.

Figure 37: Known key correlation on 150k PWC traces with Icom and no impedance
matcher

The next configuration is to use the current probe with no impedance matcher and

set the LeCroy scope to AC coupling with 1M Ohms impedance. If the scope is set to

DC coupling, the actual signal is measured; if the scope is set to AC coupling, then

the DC component of the signal is removed from the trace after a high pass filter is

applied. By removing the DC component of the signal, we increase the resolution of

the signal [34]. Figure 38 shows sample traces of both DC coupling and AC coupling.

Note that the signal range for the trace with DC coupling is at -/+20mV, and the

signal range for the trace with AC coupling is at -/+50mV. Figure 39 shows sample
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trace captured during the entire AES operations; the top trace is unfiltered sampled

at 1GHz, and the bottom trace is resampled to 17.334MHz. Note that the resampled

trace shown more distinguishable AES operations (e.g. input/output operations and

AES encryption) as we have seen in section 9.3.1 in the trace compared to the traces

in figure 32. The input and put operations can easily be identified, and the AES

encryption operations are between 10ms and 22ms. However, zero byte of the key

was recovered from performing DPA on the aligned trace set resampled at 1GHz.

In addition, none of the key bytes was recovered from trace sets with 150k traces

resampled to 10.742MHz and 17.334MHz. The trace set applied with a 5MHz to

25MHz band pass filter also recovered zero bytes of the key. Thus, the DC coupling

setting is also not a negative factor in our experiments.

Figure 38: Sample traces with current probe and Icom; DC coupling on top; AC
coupling on bottom

The last configuration we tried is to set the Icom to tune to 65.43MHz. Recall that

this 65.43MHz frequency is the upper harmonic frequency of the operating frequency

of the Xmega. In the experiments we conduct earlier, we see that the trace set

resampled to 65.43MHz shown similar, if not better, DPA results than trace set

resampled to 32.71MHz. Thus, it is worth while to attempt to take traces with
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Figure 39: Sample traces of all AES operations with current probe and AC coupling
at 1GHz; unfiltered on top; 17.334MHz resampling on bottom

the Icom tuned to 65.43MHz. This set up also has no impedance matcher and the

scope is set for AC coupling. Figure 40 shows a sample trace taken with this set up.

Unfortunately, zero byte of the key was recovered from the aligned trace set sampled

at 1GHz. In addition, performing DPA on trace set resampled at 10.742MHz and

17.334MHz and trace set applied with band pass filtered ranged from 5MHz to 25MHz

recovered zero bytes of the key up to 100k traces. Therefore, tuning the Icom to the

upper harmonic did not improve the efficiency on DPA.

Figure 40: Sample trace with current probe and Icom tuned for 65.43MHz

Although this is not a configuration, this last experiment we ran was to cover all

of our basis to make sure we did not miss anything. Recall that we perform the

band pass filter from 5MHz to 25MHz in all of our experiments in this section, so

the 4.15MHz frequency in the signals was eliminated from the trace sets. For all the

trace set that we obtained in this section, we run the band pass filter and perform
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DPA on all of them again, but the band pass filter is from 1.5MHz to 25MHz instead.

The DPA performed on these filtered trace sets did not produce any byte of the key.

Therefore, the 4.15MHz frequency did not contribute to the information leakage.

11.5 Summary of the Downshifting with Icom

In this section, we experimented DPA and DEMA with a slightly different set up.

We place an Icom R7000 radio frequency receiver between the probes and the LeCroy

oscilloscope. The Icom served as a signal downmixer, and it shifts high frequency

signals down to a mere 10.742MHz. By shifting the signal down to 10.742MHz, we

can reduce the number of calculation during DPA and DEMA and thus improve their

efficiencies.

The results of our experiment show that the downshifting does not improve the

efficiency of DPA with the current probe. The number of traces needed for full key

recovery increased from 80k to 2.8 million traces. On the other hands, we produced

similar results for DEMA with the downshifting experiments. Fourteen bytes of key

were recovered from performing DEMA on 3.5 millions traces taken with the Icom,

and fifteen bytes of the key were recovered from performing DEMA on 4 millions

traces taken with the normal set up. Thus, it is possible to increase the efficiency of

DEMA using this downshifting technique.
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CHAPTER 12

Comparison between DPA and DEMA

Several experiments were perform on the Xmega in regards to side channel at-

tacks. In sections 9.3.1 and 9.4.1, we began with measuring the Xmega with the EM

probe, and we began taking measurments of the Xmega’s change in voltage while it

is performing AES encryption in section 10.2. Finally, we took measurements of the

Xmega with the current probe while it is performing AES encryption in section 10. In

addition, we performed experiments where we used a radio receiver as a demodulator

in section 11.2. Table 9 shows the best results of each experiments.

Model Frequency Traces Downshift Correct Key Bytes
EM@L1 65.43MHz 3.1M No 11
EM@L2 32.71MHz 225k No 15
EM@L2 65.43MHz 125k No 15
EM@L2 130.86MHz 150k No 9
PWR 32.71MHz 0.5M No 0
PWR 65.43MHz 0.5M No 0
PWR 1GHz 2.5M No 16
PWC 32.71MHz 45k No 16
PWC 65.43MHz 100k No 16
PWC 1GHz 40k No 15
EM@L1 1GHz* 3.5M Yes 14
PWC 1GHz* 2.8M Yes 16

Table 9: Summary of all experiments with best results; PWR denotes power/resistor,
and PWC denotes power/current; * = band pass filtered from 5MHz to 25MHz

12.1 Summary of DEMA

We began by examining the results of the experiments conducted with the EM

probe. In our experiments, we placed the EM probe at two different locations. Lo-

cation 1, or L1 for short, is located near the center of the chip, and location 2, or
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L2 for short, is located on the edge of the chip. We chose these two locations based

on the Spectral Intensity graph shown in figure 8. The figure shows that L1 and L2

have the highest amount of activities at the 32MHz frequency, with a bandwidth of

-/+0.2MHz, while performing AES encryption operations.

The first experiment we conducted with the EM probe is at location 1. This location

was chosen first since it is most likely where the cryptographic engine is located based

on the schematic diagrams. We set the LeCroy oscilloscope to sample at 1 GHz. The

signals from the EM probe can ranged from -/+500mV to -/+3V depending on how

far the probe is away from the Xmega; these signals is much stronger compared to

the current probe and the signals from measuring the change in voltage. Note that

only 27000 samples per trace is needed in order to capture the entire AES encryption

operation sampled at 1 GHz, and this holds true for all the experiments conducted

with the Xmega. While we measured the Xmega with both the high sensitivity and

low sensitivity probes, the results discussed in this section will only consists of traces

taken with the high sensitivity probe.

At location 1, we were able to captured up to 3.1 million traces with the high

sensitivity probe. We resampled these 3.1 million traces to 32.71MHz and 65.43MHz,

which are the operating frequency of the Xmega and the upper harmonic, and we per-

formed DEMA on these resampled trace sets. The trace sets resampled at 32.71MHz

recovered up to 10 bytes of the key with 1.5 million traces and recovered up to 10 bytes

with 3.1 million traces. On the other hands, the trace sets resampled at 65.43MHz

recovered up to 12 bytes with 1.5 million traces and recovered up to 11 bytes with 3.1

million traces. Since doubling the amount of traces shows no improvement in number

of key bytes recovered, we looked for an alternative source of leakage, and that is
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location 2.

Location 2 is located on the edge of the chip, and we believed this location is where

the input/output operations are being conducted for the chip. Regardless of what we

believed which functions are located on the chip, the leakage information of the key

exists in location 2 as well. We were able to capture up to 4 millions traces at location

2. By resampled to the trace set down to 32.71MHz, we were able to recover up to

15 bytes of the key with 225k traces. Furthermore, we were able to recover up to 15

bytes of the key with 125k traces with the trace set resampled down to 65.43MHz.

However, we were not able to recover the last byte of the key even using up all 4

million traces. Note that there are twice as many samples per trace in the trace set

resampled to 65.43MHz compared to the samples per trace in the trace set resampled

to 32.71MHz, so the amount of time to perform DEMA on 125k traces resampled to

65.43MHz is about the same as the amount of time to perform DEMA on 225k traces

resampled to 32.71MHz.

12.2 Summary of DPA

In terms of DPA, we conducted the experiments in two ways. The first way is to

place a resistor on the ground wire of the chip, and we measure the change in voltage

across the resistor as the Xmega performs AES encryption. The second way is simply

place a current probe on the VCC wire of the Xmega, and we measure the signal

from the current probe. Once again, the LeCroy was set to sample at 1 GHz, and the

signals ranged within the -/+ 100mV with a 12V amplifier placed between the scope

and the probes in both cases. The signal strength of the current and power probe

is much weaker compared to the signals from the EM probe. The signal strength of

the EM is based on the distance between the probe and the target. In our case, we
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placed the probe about 1mm away from the target. However, the signals from the

current probe and measured across the resistor shown much better results than the

signals from the EM probe regardless of the strength of the signals.

We began DPA with measuring the change in voltage across the resistor placed

on the ground wire of the Xmega. This method of doing DPA will depend on the

resistance of the resistor. A stronger resistor will give a stronger signal to perform

DPA on, but the stronger resistor has a higher chance of causing failure on the Xmega.

Luckily, we did not encounter any calculation error from the Xmega cause by placing

resistor as strong as 1M Ohm. We began with measuring across a 1k Ohm resistor,

and we managed to capture 1.5 million traces with this set up. Initial attempts at

performing DPA with trace set resampled to 32.71MHz and 65.43MHz showed no

result up to 0.5 million traces, so we perform DPA on the unfiltered traces sampled

at 1 GHz. We recovered 8 bytes of the key with 1 million traces, and we recovered 14

bytes of the key with 1.5 million traces. Afterward, we tested the effects of using a

stronger resistor, and we replaced the 1k Ohm resistor with a 1M Ohm resistor. We

were able to capture 4 million traces with the 1M Ohm resistor for our experiments.

At 1M traces, this trace set taken with the 1M Ohm resistor was able to recover 13

bytes of the key and was able to recover 15 bytes of the key with 1.5M traces. This

was a sign of improvement over the 1k Ohm resistor. At the end, we did not need

all 4 million traces to perform a full key recovery, and we only needed 2.5 million

traces. This result was already an improvement over DEMA since we never managed

to perform a full key recovery with DEMA.

The next set of experiments was measuring the current on the VCC wire of the

Xmega while it is performing AES encryptions. In addition, a battery power source
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was used in place of the DC lab power supply that we were using in the previous

experiments. The signals captured with this set up is even weaker than the set up

with the resistor, and the range of the signal with this set up is in the -/+10mV

without an amplifier. On the other hands, this set up proved to be most effective

among all the other experiment that we have conducted. Trace set resampled from 1

GHz down to 32.71MHz is used to perform DPA, and only 45k traces are needed to

perform full key recovery. In addition, trace set resampled to 65.43MHz only required

100k traces to perform full key recovery. The First Order Stats module shown that

only 80k traces are needed to guarantee full key recovery. Over all, using the current

probe seems to be the best method in performing side channel attack on an embedded

system.

Lastly, we will briefly mention about the experiments with using a radio receiver

as a demodulator. In this experiment, we performed the experiments with the EM

probe and the current probe with an addition component to the set up. We placed

an Icom R7000 radio receiver between the probes and the LeCroy. The radio receiver

was tuned to the operation frequency of the Xmega at 32.71MHz, and the LeCroy

was connected to the Icom via the IF port. The IF port always produces a 10.74MHz

signal. In summary, we were able to recover 14 bytes of the key with 3.5 million EM

traces taken at L1, and we were able to recover all key bytes with 2.8 million traces

taken with the current probe. In terms of performance, the set up with the Icom is

comparable for EM, but the set up with the Icom is no improvement for the current

probe. It is a possible alternative set up for EM.
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12.3 DEMA vs DPA

We will compare the perform of DEMA and DPA with and without the Icom. We

will begin with the case without the Icom. In section 12.1, we concluded that the

best result for performing DEMA on the Xmega is to acquire traces at location 2

presented in figure 8. We shown that the time it takes to perform DEMA on 125k

traces resampled to 65.43MHz is the same amount of time it takes to perform DEMA

on 225k traces resampled to 32.71MHz, and this will allow us to recover all bytes

of the key. The said time is 1 hour on a 3.0GHz machine. However, it takes 45

minutes to acquire 125k traces, and it takes 1.5 hour to acquire 225k traces. Thus,

the best strategy, time wise, for performing DEMA on the Xmega is to acquire 125k

traces on location 2 with the HS probe, and perform analysis on trace set resampled to

65.43MHz. The total time for DEMA with this strategy will be 1 hour and 45 minutes

on a 3.0GHz machine. On the other hands, we mentioned that the best strategy for

performing DPA is to acquire 80k traces using the current probe in section 12.2. The

total time for performing DPA with this strategy is 1 hour on a 3.0GHz machine.

Thus, DPA has a 45 minutes gain in full key recovery over DEMA in term of time

performance. The difference in number of traces is 45k in favor of DPA. According

to our data, DPA 50 percent faster than DEMA in the case with the traditional

methods. Thus, an attack should perform DPA with the current probe for the best

perform time wise with the least amount of traces.

In section 11.2, we performed DEMA/DPA with the Icom as a downmixer. In

section 12.2, we mentioned that 3.5 millions EM traces were taken at location 1, but

only 14 bytes of the key were recovered. Time wise, it takes 4 days to acquire 3.5

millions traces, and it takes 1 day to analysis the aligned trace set sampled at 1GHz
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to produce the 14 bytes key recovery on a 3.0GHz machine. Thus, the total time it

takes to perform DEMA with only 14 bytes of key recovered is 5 days. On the other

hands, full key recover was performed with DPA by acquiring traces with the current

probe. This was done with 2.8 millions aligned traces sampled at 1GHz, and it takes

3 days for the acquisition to complete. Furthermore, the analysis phase takes 1 day

to complete. Thus, the total time to perform full key analysis with the current probe

and the Icom is 4 days on a 3.0GHz machine. The total gain in time for DPA over

DEMA with the Icom is 1 day, and the DPA need 0.7 million less traces than DEMA

with the Icom. With the Icom, DPA is still faster than DEMA, but DPA is only

faster by 20 percent according to our data. In both case with and without the Icom,

DPA with the current probe is best method in performing full key recovery on the

Xmega.
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CHAPTER 13

Conclusion

Side channel attack is an emerging field of studies in computer hardware designs.

Side channel attacks can allow attackers to obtain the secrets hidden inside hardware

without attacking the logic behind the cryptographic algorithms. There are many

forms of side channel attacks; temperature and sound based side channel attacks are

some examples. Some of the more complex side channel attacks are Differential Power

Analysis (DPA) and Differential Electromagnetic Analysis (DEMA). They are statis-

tical attacks that require the use of power or electromagnetic traces of the target while

it is perform cryptographic operations. A power or electromagnetic trace consists of

the voltage or current readings of the target in respected to time. Given enough

traces, an attacker can determine the secret key that is hidden in the hardware.

In this paper, we performed DPA and DEMA on an ATXmega256A3B microcon-

troller, and it is a popular series of microcontroller that is used in many places. We

chose the ATXmega256A3B microcontroller as our target because it is capable of

performing AES encryption and decryption on the hardware level. The goal of this

paper is to compare the effectiveness of DPA and DEMA on embedded system such

as the ATXmega256A3B microcontroller. In terms of raw strength, the EM probe

was able to produce a much stronger signal than the current probe. For DEMA, we

used a high sensitivity EM probe to obtain traces, and we were one byte short of

full key recovery with 125k traces. On the other hands, only 45k traces were needed

to perform full key recovery using a current probe. Thus, while the EM probe can

produce stronger signals, the signals capture by the EM probe can also be very noisy
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compared to the current probe. Overall, DPA with the current probe is more effective

than DEMA with the results that we produced.

In addition to the comparing the effectiveness of DPA and DEMA on embedded

system, we also performed experiment with using a radio receiver as a signal demod-

ulator. The radio receiver will take any signal and shifts it down to a mere 10.7MHz

signal. This downshifting can reduce the number of calculations needed to perform

DPA and DEMA. Once again, the number of traces needed to perform DPA was

recorded to be less than that of number of traces needed for DEMA. Thus, the down-

shifting experiments reinforced the claim that DPA is more effective than DEMA. On

the other hands, we also found that the set up with the radio receiver serving as a

downmixer could potentially be used as an alternative to the traditional DEMA set

up, but further research would need be conducted to verify this claim.
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APPENDIX A

AES driver

// \brief Polled function that does an AES encryption on one 128-bit data

block.

// \note This code is blocking and will dead lock if no interrupt flags

are set.

// \param plaintext Pointer to the plaintext that shall be encrypted

// \param ciphertext Pointer to where in memory the ciphertext (answer)

shall be stored.

// \param key Pointer to the AES key

// \retval true If the AES encryption was successful.

// \retval false If the AES encryption was not successful.

bool AES_encrypt(uint8_t * plaintext, uint8_t * ciphertext, uint8_t * key)

{

bool encrypt_ok;

/* Load key into AES key memory. */

uint8_t * temp_key = key;

for(uint8_t i = 0; i < AES_BLOCK_LENGTH; i++){

AES.KEY = *(temp_key++);

}

/* Load data into AES state memory. */

uint8_t * temp_plaintext = plaintext;

for(uint8_t i = 0; i < AES_BLOCK_LENGTH; i++){

AES.STATE = *(temp_plaintext++);
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}

/* Set AES in encryption mode and start AES. */

AES.CTRL = (AES.CTRL & (~AES_DECRYPT_bm)) | AES_START_bm;

PORTC.OUT |= (1<<1) | 0x01; //Begin HW trigger

do{

/* Wait until AES is finished or an error occurs. */

}while((AES.STATUS & (AES_SRIF_bm|AES_ERROR_bm) ) == 0);

PORTC.OUTCLR |= (1<<1); //Clear HW trigger

/* If not error. */

if((AES.STATUS & AES_ERROR_bm) == 0){

/* Store the result. */

uint8_t * temp_ciphertext = ciphertext;

for(uint8_t i = 0; i < AES_BLOCK_LENGTH; i++){

*(temp_ciphertext++) = AES.STATE;

}

encrypt_ok = true;

}else{

encrypt_ok = false;

}

return encrypt_ok;

}
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APPENDIX B

AES run

/* Key used when AES encryption is done operations. */

uint8_t key[BLOCK_LENGTH] = {0x52, 0x49, 0x53, 0x43, 0x55, 0x52, 0x45,

0x49,

0x53, 0x43, 0x4F, 0x4F, 0x4C, 0x21, 0x31, 0x00};

uint8_t lastsubkey[BLOCK_LENGTH];

uint8_t read_key[BLOCK_LENGTH];

/* Variable used to check if decrypted answer is equal original data. */

bool success;

int main(void) {

int data;

int index=0;

char buffer[BLOCK_LENGTH];

Config32MHzClock();

CLK.PSCTRL = 0x00; // no division on peripheral clock

PORTC.DIR |= (1<<1);

PORTCFG.CLKEVOUT = PORTCFG_CLKOUT_PE7_gc;

PORTE.DIR = (1<<7); // clkout

// configure PORTF, USARTF0 (PORTF:3=Tx, PORTF:2=Rx) as asynch

serial port
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// This will connect to the USB-Serial chip on EVAL-USB boards

// For other boards rewrite all occurences of USARTF0 below with

USARTE0

// then you can use PORTE:2,3 as asynch serial port (EVAL-01,

EVAL-04 boards)

PORTF.DIR |= (1<<3) | (1<<0); // set PORTF:3 transmit pin as output

PORTF.OUT |= (1<<3); // set PORTF:3 hi

USARTF0.BAUDCTRLA = 207; // 9600b (BSCALE=207,BSEL=0)

USARTF0.CTRLB = USART_TXEN_bm | USART_RXEN_bm; // enable tx and rx

on USART

while(1) {

data=UsartReadChar(); // read char

if(index==sizeof(buffer)-1) {

buffer[index]=data; // null terminate

index=0; // reset buffer index

DoAES(buffer);

} else {

buffer[index++]=data;

};

};

};

void DoAES(char plaintext[]) {

/* Variables used to store the result from a single AES

encryption/decryption .*/

uint8_t single_ans1[BLOCK_LENGTH];

/* Assume that everything is ok*/
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success = true;

/* Before using the AES it is recommended to do an AES software

reset to put

* the module in known state, in case other parts of your code has

accessed

* the AES module. */

AES_software_reset();

AES_interruptlevel_set(1);

/* Generate last subkey. */

AES_lastsubkey_generate(key, lastsubkey);

success = AES_encrypt(plaintext, single_ans1, key); //Call

AES_driver.c for encryption

if(success) {

UsartWriteChar(0x00); //For Inspector’s protocal

UsartWriteChar(0x10);

UsartWriteDatabytes(single_ans1);

} else {

UsartWriteString("Failed to encrypt\n");

}

}

void UsartWriteDatabytes(char *string) {

int i;

for(i=0;i<BLOCK_LENGTH;i++) {

UsartWriteChar(*string++);

}

};
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void UsartWriteChar(unsigned char data) {

USARTF0.DATA = data; // transmit ascii 3 over and over

if(!(USARTF0.STATUS&USART_DREIF_bm))

while(!(USARTF0.STATUS & USART_TXCIF_bm)); // wait for TX

complete

USARTF0.STATUS |= USART_TXCIF_bm; // clear TX interrupt flag

};

unsigned char UsartReadChar(void) {

while(!(USARTF0.STATUS&USART_RXCIF_bm)); // wait for RX complete

return USARTF0.DATA;

};

// write out a simple ’\0’ terminated string

void UsartWriteString(char *string) {

while(*string != 0) UsartWriteChar(*string++);

};

void Config32MHzClock(void) {

CCP = CCP_IOREG_gc; //Security Signature to modify clock

// initialize clock source to be 32MHz internal oscillator (no PLL)

OSC.CTRL = OSC_RC32MEN_bm; // enable internal 32MHz oscillator

while(!(OSC.STATUS & OSC_RC32MRDY_bm)); // wait for oscillator ready

CCP = CCP_IOREG_gc; //Security Signature to modify clock

CLK.CTRL = CLK_SCLKSEL_RC32M_gc; //select sysclock 32MHz osc

// update baud rate control to match new clk
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USARTF0.BAUDCTRLA = 207; // 9600b (BSCALE=207,BSEL=0)

};
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