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ABSTRACT 

 

VISUALIZING LANDSLIDE HAZARDS: METHODS FOR EMPOWERING  

 

COMMUNITIES IN GUATEMALA THROUGH HAZARD MAPPING 

 

by Patrick Burchfiel 

 Landslides occur at a high frequency throughout the mountainous regions of 

Guatemala, posing an elevated risk to communities and their infrastructure.  A crucial 

component of the analysis of landslide hazards incorporates the creation of landslide 

hazard or susceptibility maps.  This paper’s research objective had two distinct 

components.  The first was to identify practical and effective cartographic visualization 

methods to deliver map-based hazard information at the community level in Guatemala.  

Mapping methods were evaluated for their potential effectiveness in visually 

communicating landslide risks to the isolated rural communities of Lake Atitlan and the 

town of Santiago Atitlan.  The research illustrated the importance of the depiction of 

relief, imagery, and landmarks in addition to local knowledge of the construction of 

hazard maps.  

 The second component analyzed the suitability of SRTM 90-meter resolution 

DEMs for landslide susceptibility mapping.  A SRTM 90-meter resolution DEM of the 

Sierra de las Minas, Guatemala and corresponding USGS landslide inventories were 

examined in the ArcMap 10 environment.  Spatial analysis revealed that although lower 

resolution did limit the SRTM DEM’s suitability for comprehensive landslide hazard 

analysis in Guatemala, a potential existed for it to be a useful aid in identifying areas 

susceptible to large debris flow.
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Introduction 

 

Rainfall-induced landslides pose a significant hazard to the people and 

infrastructure of Guatemala.  Poverty, poorly-regulated development, and a topography 

predisposed to natural disasters are sparking a growing need for comprehensive landslide 

hazard analysis throughout Guatemala.  Hazard mapping represents a valuable technique 

for understanding and communicating disaster-related information.  Unfortunately, many 

developing countries do not have the financial means, expertise, or policies in place to 

generate accurate, natural hazard-related data, and to make the information derived from 

them readily available to the stakeholders who need hazard data for disaster risk 

reduction and response planning (Guinau, Pallas, & Vilaplana, 2005).  The critical 

hazard-related information created by these maps rarely acts as an effective 

communication tool at the community level.   Such is the case in Guatemala, where many 

people are still adversely affected by landslides throughout the rainy season due to 

vulnerability, poor planning, communication, and lack of hazard analysis. 

My research objective is to identify practical cartographic visualization methods 

for community hazard mapping and investigate the applicability of remote sensing 

technologies to enhance hazard mapping in developing countries.  To accomplish this 

task, I will examine past visualization approaches and attempt to apply these methods to 

the geographic context of highland communities in Guatemala.  The second half of my 

research analyzes the applicability of one readily accessible remotely-sensed form of 

data, Shuttle Radar Topography Mission (SRTM) 90-meter DEMs, in a rainfall-induced 

landslide hazard analysis.  I propose that despite a loss in resolution, the 90-meter 
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resolution DEM is a practical substitute for the more difficult to acquire 10-meter 

resolution DEMs obtained from topographic maps.  

Guatemala 

Guatemala is a developing country located in Central America (Figure 1).  A 

mountainous interior dominates central Guatemala’s landscape.  The mountainous 

topography gives way to coastal plains along the Pacific Ocean and the Caribbean Sea.  

Guatemala has a population of approximately 13 million people.  Today, the country is 

one of the most densely populated and impoverished countries in Latin America (The 

World Bank, 2011).  Agriculture accounts for a large proportion of Guatemala’s economy 

and the majority of the country’s exports.  Guatemala faces a high illiteracy rate and one 

of the highest malnutrition rates for children under five in the world.  Fifty percent of the 

population lives in rural settings (CIA, 2011).  

A combination of geographic, economic, and social factors in Guatemala creates 

an environment predisposed to high natural disaster vulnerability.  The World Bank has 

designated Guatemala as high-risk to disaster due to the country’s economic 

susceptibility to multiple hazards (The World Bank, 2011).  Natural hazards prevalent in 

Guatemala include earthquakes, volcanic eruptions, floods, storms, landslides, and 

drought.  Of these, over recent years, storms have caused the largest economic damage 

(The World Bank, 2011).  Guatemala is exposed to storms caused by hurricanes making 

landfall on both the Pacific and Caribbean coasts.  Hurricanes Mitch (1998), Stan (2005), 

and Agatha (2010) brought rains that devastated Guatemala.  Guatemala’s topography 

also lends itself to extreme susceptibility to landslides.  Vulnerability to all of these 
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hazards is exacerbated by poverty, rapid urbanization, poor planning, lack of building 

regulations, and informal settlements (The World Bank, 2011).   

 
Figure 1.  Map of Guatemala (Perry-Castaneda Library Map Collection, 2000).  Reprinted with 

the permission of University of Texas Libraries. 
 

While Guatemala experiences an array of natural hazards, this research will focus 

on the visualization of precipitation and volcano-induced landslide susceptibility.  

Landslides in Guatemala typically have a relatively low impact compared to other 

disasters but occur at a higher frequency, killing people and damaging infrastructure (The 

World Bank, 2011).  Some of the most common and devastating types of landslides in 

Guatemala are debris flows and lahars (Figure 2).  Debris flows can be categorized as 

fast-moving water saturated landslides (Haapala et al., 2005).  The consistency of the 

debris flows varies with the amount of moisture, dirt, and debris present.  
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Figure 2.  Volcan Santiaguito.  Lahar paths along a flank of Volcan Santiaguito (2011).  

Photograph taken by Patrick Burchfiel.  

 

Lahars are debris flows that usually originate on the slopes of volcanoes and 

contain volcanic materials.  Lahars, composed of volcanic debris, water, mud, and rock, 

can move quickly down hillsides following extensive rainfall or volcanic activity.  Their 

behavior is characteristic of rain-induced debris flows as they typically flow (and 

possibly converge) into stream channels and can travel great distances (Haapala et al., 

2005; Pallas, 2004).  Debris flows progress downslope at great speeds, increasing both in 

size and destructive power.  Guatemala’s topography, prevalence of volcanic activity, and 

intense rainy seasons create an environment vulnerable to both lahars and debris flows.  

The western highland region of Guatemala has numerous volcanoes and receives large 

amounts of precipitation from storms originating in the Pacific and Caribbean coastal 

regions.  For the purpose of this paper, the terms landslide, debris flow, and lahar will be 

used interchangeably.  



5 

 

Guatemala’s government has recently made numerous efforts to address disaster 

risk and response to natural disasters and has identified disaster risk management as a 

development priority (The World Bank, 2011).  This has led to the creation of 

organizations and programs to deal with the numerous facets of the disaster cycle.  

Despite recent advancements in Guatemala’s disaster risk reduction and response 

(DRR&R) policies and procedures, natural disasters still cause significant loss of life, 

damage to infrastructure, and economic woes.  Recent disaster events have underscored 

the government’s inability to respond to disasters effectively (The World Bank, 2011).   

Many challenges are faced in aiding DRR&R at the local level in Guatemala, 

especially pertaining to the communication of hazard information to locals.  A high 

percentage of the people still live in rural environments.  As mentioned earlier, a high 

rate of poverty and illiteracy prevails throughout Guatemala.   

 

Figure 3.  House in Panabaj.  Indigenous family in front of their home located near the sight of 

the Panabaj landslide (2011).  Photograph taken by Patrick Burchfiel.  

 

A large proportion of indigenous Maya populations live throughout the highlands of  

Guatemala, with unique cultures that need to be taken into consideration during the  

hazard mapping process.  Finally, in addition to the official Spanish language,  
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approximately 23 different Amerindian languages are recognized (and spoken) 

throughout Guatemala (CIA, 2011). 

Hazard Mapping and Local Communities 

 Hazard maps provide an effective medium for visualizing risk information and 

bridging communication barriers among varying stakeholders.  These maps aid in the 

assessment, analysis, and mitigation of risks (Dransch, Etter, & Walz, 2005).  When 

fabricating a hazard map, one must keep in mind the purpose of the map, the intended 

audience, how data will be displayed, and where it will be used (Friedmannova, 

Konecny, & Stanek, 2007).  The creation of effective hazard maps takes into 

consideration community knowledge through the utilization of participatory mapping 

methods.  These methods aim to involve locals in the mapping process, to reflect local 

views in governmental policy, and to develop a mutual understanding of surrounding 

risks (Institute for Ocean Management, 2007).  

If constructed appropriately, community-based hazard maps can help bridge the 

knowledge gap between community members, local governments, non-governmental 

organizations, and members of the international disaster response and risk reduction 

community.  Mutual collaboration is especially important in Guatemala as there is 

typically a general mistrust of the government, rooted in the oppressive Guatemalan Civil 

War (1960-1996) which left more than 100,000 dead and created a large refugee  

population (CIA, 2011).    

Previous research has already indicated the importance of involving local  

communities in the process of hazard mapping.  Cronin et al. (2004) utilized a  
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Participatory Rural Appraisal (PRA) methodology to bridge the gap between scientific 

and local knowledge on the highly volcanic island of Vanuatu.  A portion of this 

methodology included the creation of community hazard maps.  One major 

accomplishment of the research was the ability to increase the effectiveness of an island-

wide hazard map (Cronin et al., 2004).   

Haynes, Barclay, and Pidgeon (2007) were also able to demonstrate the increased 

effectiveness of hazard maps through the involvement of community knowledge on the 

island of Montserrat. In July of 1995 the Soufriere Hills volcano began erupting.  Cycles 

of intensified activity led agencies to create numerous hazard maps.  A breakdown in the 

maps’ ability to relay risk information was apparent following the deaths of 19 villagers 

in 1997.  In their study, researchers used the results of a survey to determine the most 

ideal base map visualization for presenting hazard information on the island during a time 

of increased volcanic activity (Haynes et al., 2007).  Although both of the studies 

mentioned above deal primarily with purely volcanic hazards, the information they 

provide is very useful when creating debris flow-related hazard maps.   

The importance of community-based hazard mapping has already been realized in 

Central America.  Many international and local efforts are already underway to promote 

related methodologies throughout the region.  The United Nations Educational, Scientific 

and Cultural Organization’s (UNESCO) Capacity Building for Natural Disasters 

Reduction - Regional Action Programme Central America (CBNDR-RAPCA) was 

created in 1999 to increase local stakeholder’s capacity to utilize Geographic Information 

Science technologies for hazard analysis.  The project, which ended in 2004, resulted in 
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the training of numerous disaster management professionals and the creation of a training 

packet based on case studies in the region (UNESCO, 2004).    

Efforts continue to educate local communities in the utilization of hazard maps to 

identify vulnerabilities and increase communication among stakeholders.  In July 2008, 

approximately 28 community leaders from Guatemala, Honduras, and Nicaragua 

participated in community hazard map training in Honduras.  The training, sponsored by 

Grassroots Organizations Operating Together in Sisterhood (GROOTS) International, 

aided the participants in identifying ways to reduce damage caused by disasters through 

the use of community hazard mapping (Disaster Watch, 2008).   

Although an abundance of research regarding community-based hazard mapping 

is present, a rather limited inquiry regarding effective cartographic visualization 

techniques to enhance the communication capabilities of these maps persists.  Haynes et 

al. (2007) identified a lack of studies which evaluated how hazard maps are 

comprehended at the local level.  The objective of Haynes et al. (2007) research in 

Montserrat was to evaluate the effectiveness of hazard maps for conveying risk to local 

communities and to identify ways in which the maps might be improved.  Through 

community surveys, the researchers were able to determine that the general public in 

Montserrat had an easier time interpreting aerial photographs and 3-Dimensional (3D) 

relief maps than contoured topographic maps (which had been previously used as a 

community outreach hazard map).  Locals did not have the geographic knowledge to 

understand contour lines, thus they were not an effective manner in which to 

communicate relief.    
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Photographic-based maps enabled people to utilize their own “mental maps” to 

help orient themselves and distinguish features on the map (Haynes et al., 2007).  Their 

research provides vital groundwork for understanding the importance of selecting an 

appropriate base map for presenting hazard data.  Furthermore, one can interpret a 

necessity to incorporate visual landscape cues, such as local landmarks or images, to help 

residents apply their mental maps.  Along with imagery, the representation of relief plays 

an integral role in helping people correlate mapped data to their perceived surroundings.  

Vivid relief, such as mountains, provides map users with another tool to access their 

mental maps (Collier, Forrest, & Pearson, 2003).  The depiction of relief takes on added 

importance in terms of visualizing risk because landslides are heavily terrain dependent.  

The research of Cronin et al. (2004) also revealed some crucial information in 

regards to hazard map visualization techniques.  Through their PRA on the island of 

Ambae, Vanuatu, the researchers identified numerous ways to improve the past hazard 

mapping methodologies of the island.  Geological details were completely removed as 

villagers had difficulty comprehending them and the role they played in the disaster risk.  

Multiple hazard processes were confined into three hazard zones.  A simplified color 

scheme was used to label these hazard zones where red was associated with high relative 

hazard, yellow with medium relative hazard, and green represented with a low hazard 

area.  To display the risk related to lahars, the single highest hazard risk, the drainage 

networks leading from the volcano were emphasized with red lines.  Finally, the amount 

of text on the map was very limited and was in the local dialect (Cronin et al. 2004). 
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Cartographic Visualization 

The focus of this research is to identify effective visualization techniques for 

communicating risk associated with volcano and precipitation-induced debris flows at the 

local level.  My research goal was accomplished through an examination of past 

community-based mapping research and approaches.  The methodology will be 

predominately grounded in a detailed literature review and a comparative study.  

Common techniques for community mapping will be considered, both in their static and 

interactive forms (Table 1).  For the purpose of this study, interactive, will be defined as 

the local user’s ability to manipulate and view data in a GIS environment.  Utilizing past 

research, mapping methods will be evaluated for their potential effectiveness in visually 

communicating landslide risks to two types of rural communities in Guatemala.  Results 

from the research are intended to assist in the detection of suitable community-level 

hazard mapping practices for disaster prone communities throughout Guatemala.  

Past methods will be compared and applied to rural communities of varying sizes  

in the Lake Atitlan region.  Lake Atitlan, at a surface area of approximately 128 square 

kilometers, occupies an extinct volcanic caldera (Lake Atitlan, 2011).  Rugged 

topography surrounds the shores of the lake.  Three looming stratovolcanoes, San Pedro, 

Toliman, and Atitlan, are present along the southwestern shores of the lake.  

Communities along the lake rely on a mixture of agriculture and tourism.  This region is 

especially prone to rainfall-induced landslides due to geographic location, steep terrain, 

and unregulated development (Figures 4 & 5).  Problems have intensified as wealthy 

outsiders have purchased land, once inhabited by indigenous communities, to cater to  
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tourists or build vacation homes (Little, 2004).  

Table 1.  Hazard mapping methods.  

Method Description 

Flat Maps 

Dimensional scaled maps in which community members can input local knowledge 

directly on the map, through superimposed transparencies, or employing a GIS 

(Rambaldi, Kyem, McCall, & Weiner, 2006).  Typically utilizes topographic maps 

or a GIS to create the base map. 

3-Dimensional 

Modeling 

Employs elevation data to create geo-referenced relief models.  Solid models 

comprising terrain data can be provided to communities or created by the 

stakeholders.  Local knowledge is added to model using various techniques. DEMs 

can be used to create 3-Dimensional Model in a GIS.  The finalized map can be 

either interactive or reproduced on a static flat map.   

Photo-Maps 

Utilizes remotely sensed data to create base maps.  Orthophotos provide accurate, 

scalable imagery that has been positioned in map coordinates.  Community data 

from transparencies can either be placed directly on the map or digitized (Rambaldi 

et al., 2006).  Imagery can be used in flat maps and 3-Dimensional Modeling to 

enhance visualization. 

Note.  Three common mapping methods and their general description.  

 

Figure 4.  Lake Atitlan.  3D model created from SRTM data illustrating the topography of the 

Lake Atitlan area (Asybaris01, 2011).  
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Figure 5.  Lake Atitlan debris flows.  Debris flows can be seen along the steep cliffs above San 

Juan La Laguna (2011).  Photograph taken by Patrick Burchfiel.  

 

The cartographic visualization analysis is centered on factors such as map 

production, distribution, versatility, accuracy, and comprehension.  Methods for 

displaying map data are examined to ascertain techniques that facilitate communication 

among all stakeholders.  Examples of these map features include base map selection, 

scale, representation of relief, use of imagery, symbology, color, and use of text.  A 

hazards map’s strategic functionality is to convey details pertaining to areas of risk, 

location of shelters, gathering points, and evacuation routes.  Cartographic visualization 

is the medium used to communicate these fundamental objectives and should be 

comprised of both outside specialist data and local community knowledge (Cronin et al., 

2004; Haynes, 2007; Rambaldi et al., 2006).  The amount of expert and local knowledge 

will inevitably vary depending on the cartographic visualization techniques employed.  

Map data will be characterized accordingly during the comparative study.  
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Comparative Analysis One: Lake Atitlan’s Isolated Rural Villages 

 The first analysis looks at the application of effective hazard mapping methods in 

the many small, isolated communities in the Lake Atitlan region.  Isolated rural 

communities typically have only a few hundred people, rely heavily on agriculture, and 

have rudimentary infrastructure.  In the Lake Atitlan region, isolated communities can be 

found along the lakeshore, such as Jaibalito, among the numerous fincas (large farms) 

that occupy the fertile volcanic slopes, or in other areas with access to agricultural land.  

These communities tend to be comprised of indigenous Maya who rely mainly on 

agriculture and tourism activities.  A high rate of illiteracy and poverty are found among 

the isolated rural communities.  Implementing interactive GIS hazard mapping solutions 

in this environment is problematic due to a lack of technological resources and expert 

knowledge.  The analysis will focus on static flat map, photomap, and 3D modeling 

methods (Figures 6-8).  

 

Figure 6.  Sketch map. Kenya (Muchemi, n.d.).  Photograph taken by Julius Muchemi.  Reprinted 

in accordance with the CTA and IFAD copyright agreement.  
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Figure 7.  Photo-map applications.  Women use aerial photos to map their environment, Beqa 

Island, Fiji Islands (Rambaldi, 2005).  Photograph taken by Giacomo Rambaldi. Reprinted with 

permission from Giacomo Rambaldi.  

 

 

Figure 8.  Participatory 3-Dimensional model (Rambaldi, n.d.).  Photograph taken by 

Giacomo Rambaldi.  Reprinted with permission from Giacomo Rambaldi.  
 

The use of basic static flat hazard maps is the least resource intensive 

methodology.  Previous research has indicated that comprehension of static flat maps 

tends to increase with simplification of map features.  Expert knowledge can be provided 
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in the form of a geo-referenced, large scale base map.  While the depiction of relief is 

important, contours should be avoided.  Use of a DEM visualized with hillshading is a 

good option, but the cost of acquiring a high enough resolution for a large scale map 

would most likely prove to be cost prohibitive.  Relief can be depicted with a select few 

elevation points displayed (hilltops, volcanoes, other notable landmarks, etc.).  Debris 

flows tend to follow drainage channels so relevant hydrology should be provided by the 

expert.  

Community meetings enable the locals to input their knowledge into creating the 

hazard map.  This should include known hazards, shelters, meeting locations, paths, 

drinking water sources, schools, medical clinics, and evacuation routes.  Symbology can 

be created and agreed upon by the community.  High illiteracy dictates that text 

descriptions are kept to a minimum.  When text is used, it should be in both the local 

indigenous language and Spanish.  Once the local knowledge input is complete, outside 

experts can input landslide hazard information (risk zones, safe zones, shelters, and 

evacuation routes).  One can directly place this information on the map, at a sacrifice of 

accuracy, or in a GIS after the information has been digitized. 

 3D modeling provides another valuable visualization technique.  The base map 

can be provided either in the format of a foam terrain map based on elevation data or 

created by the community itself using elevation contour lines.  Again, for a large scale 

mapping project, acquiring high resolution data is cost prohibitive.  However, 

participatory 3D modeling allows the community to construct a terrain model based on 

locally available topographic maps.  The map and map features can be created with 



16 

 

locally available resources, which include cardboard, paper, paints, markers, yarn, and 

pushpins (Gaillard & Maceda, 2009).  These 3D modeling methods require slightly more 

resources than the flat mapping described above but provide a very detailed depiction of 

relief and enhance community participation.  Results from the 3D modeling projects can 

potentially be digitized for use within a GIS.  While 3D models can be very detailed and 

versatile, they face constraints in terms of permanency.  The models themselves can be 

difficult to update in a timely fashion (especially in terms natural hazard risk factors), are 

cumbersome to move, and will require general maintenance to increase their lifespan 

(Muller, Wode, & Wehr, 2003).   

 The use of scalable photomaps at the small isolated rural community level is 

restrictive due to the lack of availability of high resolution geo-reference imagery. 

1:10000 scale orthophotos can be purchased from the National Geographic Institute of 

Guatemala (IGN) for approximately 75 US dollars (IGN, 2010).  If pertinent data is 

available, small scale hazard mapping encompassing multiple isolated rural communities 

can take place using this data.  A more important role of imagery is in the use of ground-

based photographs to visually enhance the static flat maps discussed earlier. 

A local church or community leader’s house is a good manner in which to 

distribute landslide risk information.  This eliminates the need to create individual map 

materials which might be difficult for isolated rural populations to comprehend.  

Information can be diffused through community meetings utilizing the visualization tools 

which have been created.  Smaller scale mapping projects enable a more regional context, 

connecting rural communities to the larger infrastructure and addressing land use issues.  
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Comparative Analysis Two: Santiago Atitlan 

The second analysis looks at the potential implications of different hazard 

mapping methods in the community of Santiago Atitlan.  Santiago Atitlan is a town of 

over 33,000 people located on the southern shores of Lake Atitlan.  The town inhabits the 

flat land at the base of Volcan Toliman and Volcan Atitlan.  While the town is larger (and 

more urbanized) than the other lakeside settlements, the indigenous Maya culture is still 

relatively intact.  Despite the presence of a small middle-income class, the population is 

predominately poor.  

As typical with other regions in Guatemala, the poorest people occupy the areas 

of land most pre-disposed to debris flow risk; on steep slopes and/or near drainage areas.  

Agriculture is the main economic activity, and tourism provides a smaller source of 

income for the community when compared to other lakeside destinations (Santi, Hewitt, 

VanDine, & Cruz, 2010).  Numerous smaller rural villages can be found on the outskirts 

of Santiago Atitlan, occupying the slopes of the volcanoes.  This includes Panabaj 

(Figures 9 & 10), where an estimated 500 residents were killed from a debris flow that 

occurred during the torrential rains of Hurricane Stan in 2005 (Norwegian Church Aid, 

2006).  Recent research has already highlighted the need for debris flow education, 

awareness, and mitigation in this area (Santi et al., 2010).   

Despite the more urban characteristics of Santiago Atitlan, poverty and illiteracy 

limit the functionality of interactive hazard mapping and visualization techniques.  The 

size of the settlement’s population poses challenges to the types of participatory mapping 

methods that could be implemented.  



18 

 

 

Figure 9.  Panabaj debris flow.  One channel of the 2005 landslide can be seen here.  Tree tops 

help illustrate the height of the debris.  A part of the village lays buried in the foreground 

(Ordeman, 2006).  Photograph taken by Sharon L. Ordeman.  Reprinted with permission from 

Sharon L. Ordeman. 

  

 

 

Figure 10.  Panabaj 2011.  Volcan Toliman can be seen looming above vacant homes which were 

destroyed in the 2005 landslide.  These homes were built by charity less than a year before the 

landslide (2011).  Photograph taken by Patrick Burchfiel. 
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Conversely, the size of Santiago Atitlan means there is potential for more mapping 

resources, including access to GIS data and remotely sensed imagery.  A town of this size 

would greatly benefit from multiple forms of hazard mapping, in which community 

members could participate at varying capacities.  

A large scale hazard mapping project should be aimed towards the residents of the 

township proper.  This includes the more densely populated urban center and the less 

densely populated incorporated land at the very base of the volcanoes.  A static flat 

hazard map is one effective method for developing a landslide hazard map at large scale.  

The use of 3D modeling is plausible, but faces numerous constraints due to the high 

population of the community (with varying interests), and the lack of relief variation at a 

large scale.  Remote sensing at a high enough resolution to be visually effective for a 

large scale hazard map is cost prohibitive and difficult to obtain.  As the town proper of 

Santiago Atitlan occupies a relatively flat portion of land near the lake, the depiction of 

relief in improving cartographic visualization becomes less pronounced.  Map readers are 

able to rely more on buildings, roads, watersheds, and land boundaries to orient 

themselves.  

Community members can be provided a geo-rectified base map with street, 

landmark buildings, and drainage layers already displayed.  Through community 

meetings or the implementation of a committee representing the community, map 

features are checked for accuracy, local knowledge map features inputted, and a 

symbology agreed upon.  Information is digitized into a GIS and expert risk  
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information depicted.  The incorporation of a DEM and landmark photographs have the 

potential to then enhance the visualization of map features.  

 A smaller scale hazard mapping project that identifies landslide vulnerability may 

also be extremely beneficial to Santiago Atitlan and the surrounding small rural 

communities.  A smaller scale sacrifices some map details (such as all individual houses, 

footpaths, etc.) but incorporates landslide hazard mapping for multiple communities and 

topologies.  At a smaller scale, the use of 3D modeling and photo-maps becomes more 

effective and practical.  An expert-generated 3D model from a DEM provides an optimal  

platform for community representatives from numerous villages to input their local 

knowledge.  Expert creation of the physical model has the potential to be more costly 

(anywhere from a couple of thousand dollars to over ten thousand dollars) but alleviates 

complications that might be encountered with having multiple communities constructing 

a model.  Expert-designed 3D models would also allow for a more accurate input of 

landslide hazards.  

A smaller scale landslide hazard mapping project also suggests that stakeholders 

have access to a wider selection of remote sensing data.  Previous research has suggested 

that 1:5,000 scale imagery is optimal for community photo-mapping projects (Mather, 

Boer, Gurung, & Roche, 1998).  While obtaining this scale of imagery might be difficult 

throughout Guatemala, 1:10,000 scale orthophotos are more readily available (IGN, 

2010).  Incorporating this imagery into either a photo-map or as a background layer to a 

static flat map aids visualization of relief, networks, and landmarks.  Distribution of 

landslide hazard maps created for the Santiago Atitlan vicinity would include displays at 
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central community meeting areas (public buildings, schools, churches, etc.).  

Furthermore, areas found to be particularly vulnerable to landslide hazards could be the 

focus of distribution of basic hazard flat maps and other educational resources.  
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Employing Practical Remote Sensing Solutions 

Geographic Information Science Applications  

Geographic information science technologies play a vital role in landslide hazard 

analysis and the creation of hazard maps.  Technological advancements are allowing for 

more accurate quantitative analysis, enhancing hazard visualization abilities, and 

increasing accessibility to data.  To aid in mitigating the effect of rainfall-induced 

landslides, it is necessary to perform a landslide hazard analysis.  A crucial part of this 

analysis is the creation of a landslide susceptibility map.  Numerous applications and 

methodologies have been utilized in the past, taking advantage of remote sensing 

applications and topographic parameters, to accomplish this task.  Data from these 

geographic analyses are combined in a Geographic Information System (GIS) to create a 

landslide susceptibility map.  Data obtained from digital elevation models (DEMs) and 

landslide inventory maps are the most valuable in the creation of an accurate landslide 

susceptibility map (Coe, Godt, Baum, Bucknam, & Michael, 2004; Fabbri, Chung, 

Cendrero, & Remondo, 2003).  As past landslides are the best predictors of future 

landslides, it is crucial to acquire or produce accurate landslide inventory maps in order 

to create a landslide susceptibility map (Pine, 2009).   

This portion of the thesis consists of multiple components.  First, I briefly discuss 

the establishment of the criteria defining “practicability” in terms of this project.  

Secondly, I review the methodology utilized by the USGS in their landslide hazard 

analysis following Hurricane Mitch.  Third, the methods of this study to analyze the 
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suitability of 90-m SRTM DEMs for landslide hazard analysis are presented.  Finally, 

results from the study are presented along with conclusions and areas for future research.  

To guide this research, one must determine the criteria for “practicability,” 

pertaining both to the scope of this research project and to non-governmental 

organization (NGO) stakeholders toward which the research is oriented.  Multiple factors 

are taken into consideration for establishing the standards for a practical methodology.  In 

regards to this project, the criteria focus predominately on data availability, accuracy, 

resolution, and cost.  The nature of disaster response in developing countries dictates that 

data are easily accessible, relatively inexpensive, and current.  Stakeholders, including 

disaster specialists, emergency services, private businesses, community members, NGOs 

(development, emergency aid, etc.), and the government, rely on information such as 

landslide susceptibility maps to make informed decisions regarding disaster risk 

reduction and response.   

Hazard-related data are oftentimes very difficult to acquire in a developing 

country with high levels of poverty because funding for hazard analysis is limited 

(Guinau et al., 2005).  Furthermore, NGOs can have difficulty accessing relevant spatial 

data from the government, which means they are left to procure it from private businesses 

where price becomes a much larger factor.  For this reason, the methodology was 

evaluated on its ability to utilize accessible, inexpensive, and accurate data to produce 

results in a timely manner.  These requirements have led to the selection of SRTM 90-m 

DEM data for the purposes of this study.  
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Previous Research and Study Area 

Prompted by the widespread damage caused by Hurricane Mitch in October and 

November 1998, the USGS completed an extensive analysis of landslide hazards in the 

Sierra de las Minas region of Guatemala.  A thorough landslide inventory was created, 

along with a few landslide susceptibility maps.  Two important documents were produced 

from this study.  The first is Landslides Triggered by Hurricane Mitch in Guatemala-

Inventory and Discussion (Bucknam et al, 2001).  The second is “Landslide susceptibility 

from topography in Guatemala” (Coe et al., 2004).   

Hurricane Mitch caused large amounts of rainfall throughout Guatemala from 

October 27 to November 6, 1998.  This event occurred at the end of the rainy season in 

Guatemala when the soil was already heavily saturated.  The study area selected by the 

USGS is the region between the Polochic River and the Motague River in eastern 

Guatemala.  The majority of this area is comprised of the mountainous region of the 

Sierra de las Minas which is geographically diverse in terms of geology, geomorphology, 

microclimate, and vegetation.  The area experienced thousands of landslides brought on 

by the torrential rains of Hurricane Mitch (Bucknam et al., 2001).  

The USGS gathered an extensive landslide inventory through the identification of 

landslides from 1:40,000-scale black and white aerial photographs taken between January 

14 and March 6, 2000.  Landslides greater than approximately 15 m in width were 

identified.  Photographic interpretation of the landslide scars allowed for the 

differentiation of Hurricane Mitch landslides from those that had occurred previous to 

Hurricane Mitch.  Exposed earth which appeared bright white in the aerial photographs 
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was indicative of a Hurricane Mitch landslide scar.  Older landslide scars that had some 

vegetation re-growth appeared darker on the photographs.  Landslides were registered to 

1:50,000-scale topographic maps of Guatemala.  In total, more than 11,500 landslides 

were mapped.  These inventory maps displayed more than 95 percent of all landslides 

larger than 15 meters within the study area (Bucknam et al., 2001).  

After compiling a detailed landslide inventory, USGS researchers constructed 

landslide susceptibility maps for two Guatemalan topographic quadrangles.  Due to a lack 

of available data for the study area, USGS researchers relied on topographic data 

gathered from a 10-m resolution DEM.  The 10-m DEM was generated from the 20-m 

contours on two 1:50,000-scale quadrangles with elevation values assigned to cells based 

on their proximity to contour lines (Bucknam et al., 2001).  The two data layers identified 

as the most important components of landslide susceptibility mapping were slope and 

elevation.  Elevation and rainfall were correlated in the study area, as revealed by an 

analysis of two rain stations in the Sierra de las Minas region.   USGS researchers 

believed reasonable susceptibility mapping accuracy could be accomplished using the 

above parameters following the landslide mapping research of A. G. Fabbri (Coe et al., 

2004).  Fabbri et al. (2003) concluded that the most accurate determination of landslide 

locations is slope, elevation, and aspect.  For the purpose of the susceptibility mapping in 

Guatemala, the topographic feature of aspect was removed from the equation as its 

influence on landslides in the study area probably had more to do with the direction of 

Hurricane Mitch (Bucknam et al., 2001).  



26 

 

Landslide susceptibility was estimated using a ratio method of the slope and 

elevation parameters.  This involved the comparison of these parameters present at 

landslide initiation cells to those present at a random sampling of DEM cells (Coe et al., 

2004).  A moving count-circle approach was used to combine the parameters of slope and 

elevation (Savage, Coe, & Sweeney, 2001, Coe et al., 2004).  Coe et al. (2001) provides a 

more detailed description of the moving count-circle approach.  This enabled the creation 

of a susceptibility threshold which indicated that as elevation increased, the minimum 

slope angle for slope failure decreased.  Software was created to convert the ratio grid 

into a susceptibility map (Coe et al., 2004).  The resulting map was deemed accurate 

because 80 percent of landslide locations fell within the susceptibility zone while 

maximizing the area that had no susceptibility (Coe et al., 2004).  Two important 

characteristics of the landslides should be noted.  First, 96 percent of the landslides 

occurred between the elevations of 500 meters and 2,500 meters.  Second, 96 percent of 

the mapped landslide initiation points were located on slopes between 16 degrees and 44 

degrees (Coe et al., 2004).  

 To further their landslide hazard investigation, USGS researchers employed a 

GIS-based simulation of a landslide dam failure.  The landslide dam in question is 

located on the Rio La Lima and was caused by the severe rains of Hurricane Mitch.  

LAHARZ software was used to run the simulation of varying debris flow volumes 

(Bucknam et al., 2001).  This software was originally developed to estimate debris flow 

extents from volcanoes (referred to as lahars).  LAHARZ is a menu-driven software 

written in the ArcInfo Macro Language (AML).  LAHARZ is capable of calculating 
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probable debris flows given a DEM and multiple debris flow volumes (Schilling, 1998).  

As a catastrophic landslide dam failure would produce conditions similar to that of lahars, 

the software was used to reveal hazard zones based on varying debris flow volumes 

(Bucknam et al., 2001).  

Data Acquisition 

 The SRTM 90-meter resolution DEM was selected for this study due to its global 

coverage, easy accessibility, and low cost of acquisition.  Lower resolution DEMs such as 

the USGS Global 30 arc-second Elevation Dataset (GTOPO30) have proved to be of 

insufficient resolution for landslide hazard analysis in Guatemala (Chisolm, 2008).  The 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) produces 

30-meter resolution DEMs.  A study has indicated that errors in the ASTER DEM can 

cause complications when used by the LAHARZ software for debris flow analysis 

because there is the potential for more vertical error (Huggel, Schneider, Miranda, 

Granados, & Kaab, 2008).  While ASTER DEMs were not selected for this research 

project, their potential value to landslide hazard mapping should not be ignored and 

provide an opportunity for future research.    

Higher resolution DEMs are available from remote sensors, such as IKONOS (1-

meter resolution) but at a cost that is typically too expensive for many NGOs operating in 

developing countries.  The process of converting topographic maps to DEMs is another 

method by which to acquire the essential topographic details for a landslide hazard 

analysis, but it is very time consuming and requires technical expertise.  As mentioned 

above, these agencies and other stakeholders dealing with humanitarian issues do not 
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necessarily have the capacity or expertise to carry out this type of detailed geographic 

analyses.  For this reason, they rely on resources that are readily available or easy to 

produce because speed is of great importance during disaster risk reduction and response 

operations.   

The basis for this study was the SRTM 90-meter DEM panel 3N15W090 

downloaded through the USGS’s EarthExplorer website at no cost.  Adjoining panels 

were downloaded for the purpose of aiding in geo-referencing of the USGS’s landslide 

inventory.  Data for Hurricane Mitch landslide locations were available in the form of 

ArcInfo Export files in the USGS’s publication warehouse.  This includes initiation 

points and landslide location polygons formulated from the interpretation of 1:40,000-

scale aerial photographs.   

Landslide inventory data was added to the DEM layer within ArcMap 10.  After a 

visual inspection of the data, two panels of landslide initiation points and their 

corresponding landslide polygons were selected (identifiers 22611 and 22612) for further 

analysis.  These panels were selected due to the extensive number of landslides, their 

varying extent, and the presence of large debris flows.  Neither the landslide 

susceptibility maps created by the USGS following Hurricane Mitch, nor the software 

that was used to create them was available for the purpose of this study. 

Analysis 

 Given the available data, the exact methodology for creating landslide 

susceptibility maps could not be replicated using the SRTM 90-meter resolution DEM.  

One solution to this problem was to use the LAHARZ software to predict debris flow 
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paths on the SRTM 90-meter DEM. Results were to be compared to the landslide 

polygons obtained from the USGS.  I hypothesized that this method would be similar in 

accuracy in identifying large scale debris flows to the 10-meter resolution DEM.  Copies 

of the “aml” and menu files for the LAHARZ software were downloaded from the 

Internet along with a description of how to run the program.  Despite successfully loading 

ArcInfo Workstation, the LAHARZ software did not function properly.  No menus were 

displayed and no opportunity to load the DEM data was provided.  LAHARZ is menu 

driven, and without the menus displaying, the software could not be run on the ArcInfo 

Workstation.  The problem is potentially with the “aml” and menu files because their 

Internet source page is dated 1998, which could indicate outdated, missing, or corrupted 

data.   

Taking into consideration available data and software for this study, the ArcMap 

10 environment was selected as the best method for analyzing the SRTM 90-meter DEM.  

After importing the DEM data, the appropriate landslide polygons and initiation point 

data were overlaid.  From here, ArcMap 10 Spatial Analysis tools were utilized to 

examine the data and identify any possible relationships.  In particular the Flow 

Accumulation, Watershed, and Slope tools were employed to aid in the analysis.  USGS 

landslide polygons from the Hurricane Mitch Landslide Inventory would be layered with 

the results to assist in a comparative examination.  These methods were founded on the 

importance of slope, elevation, and drainage networks in landslide hazard analysis 

studies.  The selection was also based on the author’s familiarity with the Spatial 

Analysis tools in the ArcMap environment.  
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 The landslide vector data obtained from the USGS utilized the North American  

Datum 1983 Universal Transverse Mercator 15N coordinate system.  However, the 

SRTM 90-m DEM was projected in the World Geodetic System 1984 coordinate system.  

To keep all of the results consistent, the DEM raster was projected to the landslide vector 

data coordinate system, North American Datum 1983 Universal Transverse Mercator 

15N, using the Project Raster option under the Data Management tools.   

To further prepare the DEM for analysis, minor flaws in the elevation model were 

cleaned up using the Fill tool application.  This created a new output raster that was used 

as the input for creating raster layers depicting elevation, slope, flow direction, 

watershed, and flow accumulation.  Elevation data determined from the DEM were 

displayed with a typical elevation color ramp set at 500 meter manual breaks.  Slope was 

determined from the 90-meter DEM using a Surface Analysis tool.  Manual slope breaks 

were established to best illustrate slope areas that were prone to failure according to the 

previous USGS research in Guatemala, which demonstrated that slopes greater than 15 

degrees were particularly prone to landslides (Bucknam et al., 2001).  Also, landslide 

susceptibility would increase within these slope zones with an increase in elevation.   

A watershed analysis would allow one to ascertain if there was any correlation 

between the watershed and the location of landslides in the study area.  This tool required 

both a flow direction raster and pour points as inputs.  The Flow Direction tool ascertains 

the downward slope direction for each grid cell in the DEM, indicating the direction 

water will flow.  The watershed analysis was completed using landslide initiation  

locations as pour points and the flow direction raster.  
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Flow accumulation was calculated utilizing the flow direction raster.  This 

computation takes into consideration the number of cells that flow “downstream” into a 

particular cell.  Manipulating the data output classes allows for stream-like patterns to 

appear.  Performing a flow accumulation analysis makes it possible for one to identify the 

drainage patterns of the terrain.  This is of great importance, as large rainfall-induced 

landslides and debris flows have a propensity to travel significant distances and merge 

with drainage networks (Pallas et al., 2004). 

 Once the layers of elevation, slope, watershed, and flow accumulation were 

created, a process of visual interpretation and random sampling was used to test the 

suitability of the SRTM 90-meter DEM resolution for a landslide hazard analysis.  The 

data obtained from the size of the landslides, and the relation of landslide polygons to 

flow accumulation, provide the best environment for this analysis.  One would expect to 

find strong correlations between flow accumulation, representing drainage networks, and 

the locations of medium to large debris flows.  Further observations could be made by 

analyzing landslide locations in relation to elevation, slope, and watershed.    

Results from SRTM Analysis 

 Figure 1 depicts the SRTM 90-meter resolution DEM with elevation breaks set at 

500-meter intervals and provides a generalized topographic overview of the study area.  

The landslide polygons are shown in blue.  Of particular interest is the identification of 

the portion of the DEM affected by cloud cover, as indicated by the white pixels in 

Figure 11 (see page 33).  These locations will provide inaccurate data readings in the 

other data layers and must be avoided in further analysis.  An abundance of landslides 
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can be located between the 1,500 and 2,500 meters in the elevation map, which conforms 

to the findings of Bucknam et al. (2001).    

 The slope map produced from the SRTM 90-meter DEM can be seen in Figure 12 

(see page 34).  These results show positive association between landslide initiation points 

and slopes of 15 degrees or more.  These generalized results are similar to those obtained 

from the USGS’s landslide hazard analysis (Bucknam et al. 2001).  One can also see the 

larger landslide polygons track areas of low slope, which can be an indicator of the 

drainage network.  This aids in demonstrating the accuracy of the 90-meter resolution 

DEM in identifying larger drainage channels where debris flow hazards would exist.  

One area of inconsistency stood out in the south-central portion of the study area, 

characterized by relatively low slope and a high occurrence of landslides (center of 

Figure 12).  As this posed a possible indication of inadequacy of the DEM’s resolution, 

the area was more closely inspected for terrain smoothing.  Terrain smoothing could be 

ruled out, however, as it appeared elevation and aspect were the largest contributors to 

the increased frequency of landslides.  The landslide initiation points that were located in 

slopes less than 15 degrees tended to conform to elevations between 1,500 meters and 

2,500 meters which encountered higher rainfalls, as concluded by Bucknam et al. (2001).  

Lower slopes caused the majority of these landslide initiation points to have relatively 

small associated landslide paths (polygons).  Furthermore, a generalized higher 

occurrence of landslides on the south and east facing slopes could be credited to the route 

of the hurricane (Bucknam et al., 2001).  A final analysis to rule out terrain smoothing 

was completed through the referencing of the Rio Hondo 1:50,000 scale topographic 
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quadrangle which showed the same area of low slope.  With additional research, these 

results may suggest the importance of land cover as a landslide mapping parameter.  

 

Figure 11. Landslides and elevation.  Above is a map depicting the elevation data from the 

SRTM 90-meter resolution DEM encompassing the study area of the Sierra de las Minas, 

Guatemala.  Hurricane Mitch landslide location polygons acquired from the USGS is shown in 

blue.  White areas on the map indicate portions of the DEM affected by cloud  
cover.  
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Figure 12.  Landslides and slope.  Map displaying slope values acquired from the SRTM 90-

meter resolution DEM of the Sierra de las Minas.  Locations of landslides are identified in red 

while point symbols represent landslide initiation points.  Slope values less than 15 degrees have 

been set to no color, and their associated elevation data can be viewed.  
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Figure 13. Watershed analysis.  Map displaying watershed data utilizing landslide initiation 

points as pour points.  Landslide locations have been over-laid in blue.  

 

The watershed analysis, Figure 13, did not produce any conclusive results that 

would aid in the evaluation of the SRTM 90-meter DEM resolution’s suitability for 

landslide hazard analysis.  Initiation points were used as pour points, and the resulting 

watershed was displayed, as seen in Figure 13.  While the watershed analysis does give 

one a good representation of the drainage basin, and encompasses areas of high landslide 

frequency, it does not provide a precise gauge of resolution suitability.  Landslide 

initiation points that are not clustered, such as those in the southern portion of the map 

(Figure 13), do not necessarily show a positive correlation between initiation point and 

the associated watershed.  This could be seen as an indicator that the 90-meter DEM’s 

resolution is not sufficient, but this would require the use of a 10-meter DEM for 
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comparison.  The analysis does, however, provide an additional indicator that terrain 

smoothing was not occurring in the south-central portion of the study area, for the 

watershed analysis shows the area as a rather condensed portion of the drainage basin.  

Watershed irregularities on the north-facing slopes in the eastern portion of the map 

could possibly be explained by the cloud cover data corruption in that region.  

The results from the flow accumulation analysis can be seen in Figure 14 (see 

page 37).  Areas of water accumulation are shown in black and help identify the terrain’s 

drainage system.  The flow accumulation layer’s class break was established at 1.5 

because it gave the viewer a well-defined overview of the drainage pattern.  Landslide 

polygons were over-laid in light blue to illustrate the relationship between the landslides 

and flow accumulation.  Through visual interpretation, a clear relationship between flow 

accumulation and the landslides could be ascertained.  This was especially evident with 

the larger debris flows that aligned distinctly with the flow accumulation pixels.  

As previous research has already established a correlation between drainage 

systems and debris flows, a positive correlation between flow accumulation and landslide 

polygons is to be expected (Pallas et al., 2004).  This relationship can be seen in Figure 

14.  Utilizing the Select by Attributes tool, one can determine that the most accurate 

positive correlation between landslides and flow accumulation pixels, through visual 

interpretation, occurs with landslide polygons equal to or greater than 1,000 meters in 

perimeter.  This represents only approximately seven percent of the total landslide 

polygons which could suggest a possible resolution limitation for adequate landslide 

hazard analysis.  Even among the larger debris flows, there appears to be some 
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generalized offset between landslide polygons and the drainage channels.  Another 

indication of a possible resolution constraint with the SRTM 90-meter DEM is the 

numerous smaller landslide polygons that do not align with flow accumulation pixels.  

 

 

Figure 14.  Flow accumulation.  Flow accumulation data for the Sierra de las Minas displayed in 

black and white.  The black pixels show areas of water accumulation aiding in the identification 

of the area’s drainage network.  Landslide locations are outlined in blue.  

 

To help determine if the flow accumulation results indicate a possible 

insufficiency with the resolution, analyzing the characteristics of the landslides that do 

not intersect flow accumulation pixels is necessary.  Two separate sets of random 
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samplings of landslide polygons not intersecting flow accumulation pixels were taken. 

Each set consisted of 50 landslide polygons.  Both sets of samples revealed that 84 

percent of the landslides that did not intersect flow accumulation pixels were less than 90 

meters in total length and less than 45 meters in total width.  The remaining landslides 

tended to have total lengths between 90 meters and 180 meters with total widths between 

30 meters and 90 meters.  
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Conclusion 

Evident from the beginning of the research was the importance of incorporating 

local knowledge into the hazard mapping process.  Community involvement aids in the 

communication from expert to local, which ensures maps are accepted among local 

stakeholders and empowers community members in the DRR&R process.  Utilizing the 

depiction of relief, imagery, and landmarks in addition to local knowledge not only helps 

with map comprehension, but supports resident map building processes.  

 Table 2 generalizes some of the findings from the research and analysis of three 

common hazard mapping approaches.  The socio-economic situation of Guatemala in 

many ways constrains hazard mapping methods at the community level to static forms. 

There is no single method or set of methods for enabling practical and efficient 

cartographic visualization at the local level.  Instead, the techniques identified in this 

thesis provide insight into some of the mapping components necessary to allow sound 

communication of landslide hazards to local communities.  

Remotely-sensed data have the potential to increase accessibility and 

practicability of landslide hazard analysis.  From my research, I concluded that the 

SRTM 90-m resolution DEM was not a suitable substitute for a 10-m resolution DEM for 

a comprehensive landslide hazard analysis of the mountainous regions of Guatemala.  

Resolution was seen as a contributing factor here, because 84 % of the landslides that do 

not align with flow accumulation pixels are less than 90 m at their longest point.  General 

offsetting between landslide polygons and their associated drainage channels can also be 

visually interpreted from the mapping results indicating resolution limitations.  Further 



40 

 

validation of these results might be gathered through the comparative analysis of slope 

and flow accumulation maps at varying resolutions.  Ideally, this would be completed 

with the original 10-m resolution DEM created by the USGS for its landslide hazard 

analysis in Guatemala following Hurricane Mitch.  At the time of this writing, the DEM 

utilized by the USGS was not available to the general public, so a test location would 

have to be selected where one could create slope and flow accumulation maps based on 

10-m, 30-m, and finally 90-m resolution DEMs to identify resolution degradation.  

 Despite the conclusion that the SRTM 90-meter resolution DEM is not an 

adequate substitute for 10-meter resolution DEM, the results indicate that the SRTM 90-

meter resolution DEM may be sufficient for identifying areas susceptible to large debris 

flows.  In general, larger landslide polygons align with the drainage patterns identified by 

the slope and flow accumulation maps.  The initiation point locations tend to support the 

slope and elevation characteristics established by Bucknam et al. (2001).  While larger 

debris flows may represent only a small portion of the total landslide events that occur 

following hurricanes, they pose a high risk to settlements and infrastructure due to their 

destructive force and ability to travel long distances.  Although not suitable as a 

replacement for higher resolution DEMs, the SRTM 90-meter resolution DEM can aid in 

providing insight into some of the landslide hazards that exist in the mountainous regions 

of Guatemala until high resolution DEMs of the area are made more readily available to 

all stakeholders.  

Debris flows are an ever-present risk to the people of Guatemala.  Hazard 

mapping is just one of many useful tools in coping with landslide threats.  Properly 
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combining community mapping strategies with accessible remotely sensed data stands to 

increase the resilience of highland communities throughout Guatemala.  Stakeholders 

must realize the limitations of technology, take into account local knowledge, and present 

data in creative ways to maximize the communicative power of the hazard maps they 

create.    

Table 2.  Conclusions.  

Method Isolated Rural Communities Santiago Atitlan 

Flat Maps 

Pros – Rapid production; minimal 

resources required; efficient distribution.  

Pros – Rapid production; minimal 

resources required; ideal for more 

urbanized areas lacking relief. 

Cons – Can be difficult to accurately 

depict relief; challenge for locals to 

access “mental maps”; user 

comprehension of map possibly reduced. 

Cons – Same constraints as listed 

adjacent; cons are exacerbated at smaller 

map scales.   

3-D Modeling 

Pros – Community involvement; local 

knowledge maximized; representation of 

relief. 

Pros – Effective at smaller scale; 

community involvement; depiction of 

hazards as related to relief. 

Cons – Field work intensive; 
potentially resource demanding; 

permanency. 

Cons – Distribution constraints; pros 

are reduced at a larger scale surface; 

permanency.    

Photo-Maps 

Pros – Accuracy; efficient distribution, 

rapid production; depiction of relief and 

landmarks. 

Pros – Efficient distribution; rapid 

production; accuracy (esp. smaller 

scale); depiction of relief and landmarks. 

Cons – Cost prohibitive; limited access 

to imagery of appropriate resolution.  

Cons – Constraints are exacerbated at a 

larger scale; can limit amount of local 

knowledge input. 

Note.  Hazard mapping methods as they apply to Lake Atitlan communities.  
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