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ABSTRACT

SCALING CUDA FOR DISTRIBUTED HETEROGENEOUS PROCESSORS

by Siu Kwan Lam

The mainstream acceptance of heterogeneous computing and cloud computing is

prompting a future of distributed heterogeneous systems. With current software

development tools, programming such complex systems is difficult and requires an

extensive knowledge of network and processor architectures. Providing an abstraction of

the underlying network, message-passing interface (MPI) has been the standard tool for

developing distributed applications in the high performance community. The problem of

MPI lies with its message-passing model, which is less expressive than the

shared-memory model. Development of heterogeneous programming tools, such as

OpenCL, has only begun recently. This thesis presents Phalanx, a framework that extends

the virtual architecture of CUDA for distributed heterogeneous systems. Using MPI,

Phalanx transparently handles intercommunication among distributed nodes. By using the

shared-memory model, Phalanx simplifies the development of distributed applications

without sacrificing the advantages of MPI. In one of the case studies, Phalanx achieves

28× speedup compared with serial execution on a Core-i7 processor.
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Chapter 1

Introduction

This thesis presents a new approach to programming a distributed heterogeneous system.

Traditionally, high performance distributed applications use message-passing interface

(MPI) for intercommunication among nodes. The difficulty to program MPI applications

lies with its use of the message-passing model, which is less expressive than the

shared-memory model. The new approach does not aim to replace MPI, but to hide all

MPI specifics from the programmers. Therefore, programmers can program efficiently

using the shared-memory model with the advantages of MPI.

This thesis focuses on the development of the Phalanx framework, which compiles

compute unified device architecture (CUDA) kernels for parallel execution on multicore

processors and distributed heterogeneous systems. Phalanx extends the virtual

architecture of CUDA for MPI-based distributed applications. Together with the

on-demand and dynamic allocation of compute resources provided by cloud computing,

Phalanx allows CUDA kernels to scale from a manycore GPU to a massive distributed

system consisting of hundreds of processors.

This chapter provides a general background for the discussion of Phalanx. In the rest

of this chapter, Sections 1.1 and 1.2 provide a brief discussion of different levels of

parallelism and parallel architectures, respectively. Section 1.3 discusses the challenges

faced by distributed application programmers. Section 1.4 presents several related

projects that are leading the research in heterogeneous computing. Finally, Section 1.5

states the goals of this project and explains the organization of this thesis.
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1.1 Levels of Parallelism

Traditionally, software developers have relied on the advances in hardware for higher

performance. For years, the processor industry merely pushed for a higher clock rate to

increase computational performance until the power wall was reached. The power wall

represents a physical limitation of the CMOS technology. Power consumption increases

exponentially with an increment in clock rate [1]. Since power is dissipated as heat, the

temperature of a processor would rise to an unbearable level. To further improve the

performance without increasing clock rate, processor designers began to exploit various

forms of parallelism in computer programs.

The following subsections describe three levels of parallelism. The order of

presentation indicates a growing reliance on programmer effort. The first level of

parallelism can be automatically discovered by compilers and processors. The last level

of parallelism requires explicit control by the programmer.

1.1.1 Instruction-Level Parallelism

With instruction-level parallelism (ILP), a processor executes data-independent

instructions in a concurrent fashion. Patterson and Hennessy [2] described the following

techniques. Pipelining allows data-independent instructions to overlap in different stages

of a processor datapath. Superscalar implements multiple datapaths for data-independent

instructions to execute in parallel. A more complex implementation uses out-of-order

execution, which reorders the sequence of instructions to reduce data dependency among

consecutive instructions.

ILP is limited and further exploitation requires overly complicated logic in the

processor. With an exponential growth of transistor count in processors predicted by

Moore’s Law, a more efficient use of transistors is needed [2].
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1.1.2 Data-Level Parallelism

With data-level parallelism (DLP), a processor exploits the scenario where the same

instruction operates on a wide data set [3]. Such a scenario occurs frequently in loops

where the same operation repeats for every element in an array. Processors usually

implement vector instructions for DLP. Some compilers can automatically generate vector

instructions from high-level source code, but explicit vectorization by a programmer will

typically yield higher performance.

1.1.3 Task-Level Parallelism

Task-level parallelism (TLP) is a coarsened version of ILP. Independent computing tasks

can be executed in parallel. A task is usually represented by a thread. Each thread has an

independent instruction stream. A multicore processor executes multiple threads in

different processor cores. Multithreaded processors, such as Oracle UltraSparc and Intel

Hyperthread processors, overlap instructions from multiple threads within a single

processor by sharing processor resources [2]. When a thread engages in a long memory

operation using the load-store units, other threads can execute in parallel using the

arithmetic units.

1.2 Parallel Architectures

Consisting of a combination of ILP, DLP and TLP, a modern parallel architecture is both

massive and complex. As noted by Gebali [3], it is difficult to precisely categorize

parallel architectures using Flynn’s Taxonomy, which divides computer systems according

to the organization of instruction and data streams. Some parallel architectures exist on a

single silicon die. Some exist as a group of networked machines. The following

categorization is based on that of Gebali [3].

3



1.2.1 SIMD Processor

single-instruction multiple-data (SIMD) processors are common in commodity computers

because adding support for SIMD instructions to scalar processors is relatively easy [4, 3].

Almost all modern Intel processors contain the MMX and SSE multimedia extensions,

supporting up to 128-bits of vector data. Intel recently released the SandyBridge

architecture with advanced vector execution (AVX), extending the vector width to

256-bits.

Pattern and Hennessy [4] explained how SIMD instructions can reduce the time to

fetch, decode, and execute. A SIMD instruction performs multiple parallel operations in

one cycle, replacing 2-8 scalar instructions. With 256-bit vectors, a single SIMD

instruction can execute 8 parallel single precision floating-point operations.

1.2.2 Multicore

Multicore processors execute multiple threads in different execution cores. Explicit task

division is required to use the capability of multicore processors. Determining the

granularity of tasks is not easy. If a program has a fine-grain TLP, the overhead due to

communication and synchronization could affect the performance of the program

significantly. Some on-going projects aim to perform automatic scheduling of tasks. For

instance, StreamIT [5] is a domain-specific language that allows programmers to describe

the data-flow of a program. Its compiler converts data-flow descriptions into parallel

tasks. However, the difference in the programming model creates a steep learning curve

for programmers.

1.2.3 Manycore

Manycore architectures, such as NVIDIA CUDA, combine DLP and TLP in a massive

manner. Using thousands of parallel threads, a NVIDIA CUDA-enabled graphical

processing unit (GPU) acts as an accelerator for the CPU. In the past, the design of GPUs

4



exploited the high degree of DLP in computer vision applications. With the introduction

of CUDA, GPUs can now support general-purpose applications. More applications can

benefit from the high computation and memory throughput of these general-purpose

GPUs (GPGPUs).

GPUs execute specially compiled programs called kernels. To invoke a CUDA

kernel, the CPU transfers the kernel and all depending data to the GPU. During the kernel

execution, the CPU is free to compute other tasks. When the kernel computation has been

completed, the CPU retrieves the results from the memory on the GPU.

1.2.4 Distributed Systems

Gebali [3] described two kinds of distributed systems. A cluster system consists of

interconnected computers over a local-area network (LAN). These computers are often

identical. A compute grid consists of interconnected computers over a wide-area network

(WAN). Computers in a grid are often heterogeneous, consisting of different processor

architectures, operating systems, and data models. Distributed systems are suitable for

coarse grain parallelism because the communication overhead can be significant.

Communication among nodes in a distributed system usually uses message-passing

interface (MPI). MPI [6] is a standardized application programming interface (API) that

provides a high performance messaging facility for high level languages. It is scalable. It

supports parallel computing in shared-memory multiprocessors, clusters and massive

compute grids. It is also portable. OpenMPI [7, 8] is a notable open-source effort that

combines technologies from multiple MPI implementations and strongly support for

heterogeneous processors, operating systems (OSs), and networks.

Cloud computing is a form of grid computing [3]. Amazon Elastic Compute Cloud

(EC2)1 supports both CPU and GPU instances. Users can instantly deploy a

heterogeneous compute grid with no installation cost. Cloud services supply compute

1http://aws.amazon.com/ec2/
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resources as utilities, so that users pay only for their usage. Cloud computing provides a

new possibility for affordable supercomputing.

1.3 Challenges in Developing Distributed Applications

Computing resources are available for building distributed heterogeneous systems at low

costs, but challenges remain in the software development for such systems. A major

problem lies in the programming model. Programmers are familiar with the

shared-memory model, which is used by most of the popular programming languages,

including C/C++, JAVA, and FORTRAN. MPI uses the message-passing model, which

expresses data movements in messaging events, such as send and receive. The following

presents a comparison between the shared-memory model and the message-passing

model.

1.3.1 Shared-Memory Model Versus Message-Passing Model

The shared-memory model and the message-passing model each have advantages for

different parallel programming patterns. For complex and dynamic data movements, the

shared-memory model is more expressive, whereas the message-passing model requires

custom message composition to describe each data movement. For synchronization, the

shared-memory model requires explicit control through the use of barriers and memory

fences, whereas synchronization in the message-passing model is implicitly defined by

simple send and receive events.

Listing 1.1: A C-like pseudocode demonstrating a parallel counter increment using the
shared-memory model.

1i n t s h a r e d C o u n t e r =0 ; / / sh are d by a l l t h r e a d s
2i n t l o c a l V a r ; / / l o c a l t o t h r e a d
3/ / o b t a i n mutex l o c k on s h a r e d C o u n t e r
4l o c k ( s h a r e d C o u n t e r ) ;
5l o c a l V a r = s h a r e d C o u n t e r ; / / read s h a r e d C o u n t e r
6l o c a l V a r += 1 ; / / i n c r e m e n t l o c a l da ta
7s h a r e d C o u n t e r = l o c a l V a r ; / / mo d i f y sh ar ed da ta
8/ / r e l e a s e mutex l o c k on s h a r e d C o u n t e r

6



9un lo ck ( s h a r e d C o u n t e r ) ;
10/ / e n s u r e a l l t h r e a d s s e e t h e new v a l u e
11memoryfence ( ) ;

Listing 1.2: A C-like pseudocode demonstrating a parallel counter increment using the
message-passing model.

1/ / assume a 10 nodes r i n g
2/ / t h e h o s t node i s node−0
3/ / t h e l a s t node i s node−9
4i n t c o u n t e r ;
5i f ( nodeID ==0) { / / t h e h o s t node
6c o u n t e r =1;
7send ( c o u n t e r , 1 ) ; / / s e n d s t o node−1
8r e c v ( c o u n t e r , 9 ) ; / / r e c e i v e from node−9
9} e l s e { / / o t h e r worker nodes
10r e c v ( c o u n t e r , ( nodeID−1)%10) ; / / r e c e i v e from p r e v i o u s node
11c o u n t +=1;
12send ( count , ( nodeID +1) %10) ; / / send t o t h e n e x t node
13}

Listing 1.1 shows a pseudocode for performing counter increments in parallel fashion

using the shared-memory model. Explicit use of locks and memory fences is necessary to

ensure data consistency. Listing 1.2 shows a similar pseudocode using the

memory-passing model. Unlike the shared-memory model, each node has a separate

address-space. The nodes form a ring topology. Each node adds to the counter variable

and passes the variable to the next node.

Kumar et al. [9] claimed that the divide-and-conqueur pattern is easier to map onto

the shared-memory model. The message-passing model offers a better task isolation and

easier validation. Despite the shared-memory model being more expressive, the

error-prone nature of explicit synchronization and unclear task isolation can cause

difficulty in software verification and maintenance. The message-passing model is more

suitable for the following reasons. First, tasks are naturally isolated in different processes.

Second, race conditions are impossible with the separation of address-space.

However, the message-passing model adds additional complexity in
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performance-critical situations. How long a synchronous receive event must wait for its

corresponding send event is unclear. The processor remains idle when waiting for

message events. In MPI, asynchronous messaging can reduce idle time by overlapping

computations, but it requires explicit synchronization and management. Asynchronous

messaging increases the overall complexity of a program.

While caching in the shared-memory model is often automatic, the message-passing

model requires programmers to adjust program design and message composition to

account for data locality. Due to the overhead of each message, coalescing data transfer

can reduce the number of messages, thereby improving network utilization. The network

bandwidth is often lower than the computing throughput. Without efficient use of network

resources, a message-passing application can easily become I/O bounded.

1.4 Related Works

This section briefly introduces three related projects that are leading the research in

heterogeneous computing.

1.4.1 MCUDA

Stratton et al. [10] described a source-to-source compilation framework called MCUDA

for translating CUDA-C source code into multithreaded ANSI-C programs. MCUDA

decomposes CUDA kernels at synchronization points and encloses the resulting

subkernels with a loop that iterates over all threads. Each subkernel loop can be compiled

into a SIMD loop for efficient execution on CPUs.

In contrast, Phalanx compiles at the PTX-level. Any high level language that can be

lowered to PTX can be used in Phalanx.
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1.4.2 Ocelot

Ocelot2 is a large research project from the School of Electrical and Computer

Engineering, Georgia Institute of Technology. Diamos et al. [11] described Ocelot as a

dynamic compilation framework for CUDA and an opensource CUDA runtime. It can

just-in-time recompile CUDA kernels for execution on NVIDIA GPUs, AMD GPUs and

x86 CPUs. Ocelot uses a series of complex analysis to transform PTX for CPU execution.

Ocelot facilitates the research of GPU computing by providing debugging, analysis and

monitoring frameworks for CUDA kernels. A recently added feature allows remote

machines to emulate GPUs. Comparing with Ocelot, Phalanx distributes the computation

of a kernel across multiple machines. Ocelot offloads a kernel execution to a remote

machine.

1.4.3 OpenCL

OpenCL (open computing language)3 is a parallel programming language that focuses in

portability across heterogeneous devices. With OpenCL, programmers can write portable

parallel programs. OpenCL programs execute on handheld devices, personal computers,

and servers. Khronos Group maintains an open standard for OpenCL. Hardware support

relies on individual vendors to provide implementations for specific devices.

Phalanx can execute program written in OpenCL by lowering OpenCL to PTX.

NVIDIA officially supports the compilation of OpenCL to PTX4.

1.5 Project Goals and Thesis Organization

Heterogeneous computing is an on-going research. Phalanx introduces a new approach by

combining CUDA and MPI. Phalanx aims to simplify the application development for

distributed heterogeneous systems, so that individuals and businesses can easily leverage

2http://gpuocelot.gatech.edu
3http://www.khronos.org/opencl/
4http://developer.nvidia.com/opencl
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the highly available and affordable compute resources provided by cloud services.

Phalanx compiles CUDA kernels for executing on distributed systems. Heterogeneous

support is currently limited to different CPU architectures. GPU support is possible, but it

is left for future works. Phalanx achieves its goal by implementing:

• a shared-memory model for programming distributed systems;

• a unified virtual architecture that scales across heterogeneous systems; and,

• a runtime system that implements the unified virtual architecture on distributed

systems.

The rest of this thesis discusses the Phalanx framework in details. Providing an overall

description of Phalanx, Chapter 2 introduces its functions, major components and the

development tasks. Chapters 3, 4 and 5 explain the details of the PTX-to-LLVM

compiler, the runtime system and the memory system, respectively. Chapters 6 and 7

present two application case studies. Finally, Chapter 8 concludes the thesis.
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Chapter 2

Phalanx Overview

The Phalanx framework uses CUDA as a unified virtual architecture. It consists of the

following components:

1. a compiler for translating CUDA kernel definitions for CPU backends;

2. a runtime system that emulates CUDA for distributed systems; and,

3. a memory system that handles intercommunication among nodes in the distributed

systems.

These components are discussed in details in the following chapters. Chapter 3 discusses

the PTX-to-LLVM compiler. Chapter 4 discusses the runtime system. The memory

system, which is part of the runtime system, is discussed separately in Chapter 5.

2.1 CUDA as a Unified Virtual Architecture

Phalanx extends CUDA for distributed heterogeneous systems. CUDA is a proprietary

virtual architecture and programming model for NVIDIA GPGPUs (general-purpose

graphical processing units). CUDA combines the expressiveness of the shared-memory

model and the clear isolation of the message-passing model through its thread and

memory hierarchies.

2.1.1 Thread Hierarchy

CUDA has a thread hierarchy that facilitates the decomposition of an application into a set

of parallel tasks. Figure 2.1.2 illustrates the thread hierarchy. When a CUDA kernel

launches, a grid is allocated in the GPU context. The relation between a kernel and a grid

is similar to the relation between a program and a process. A grid is an executing instance

11



Thread
Block

2D grid of blocks

3D block of threads

Grid

Figure 2.1.1: CUDA thread hierarchy [12].

Block Grid 0Thread

Local Memory Shared Memory Global Memory

per thread per block per GPU

Grid 1

Figure 2.1.2: CUDA memory hierarchy and its relation with the thread hierarchy [12].

of a kernel. A grid consists a set of blocks, also known as Cooperative Threads Arrays

(CTAs). Each block defines an independent task that executes in TLP fashion.

Intercommunication among blocks is not possible because the execution order for blocks

is not strictly defined. Threads in a block can cooperate in DLP fashion.

Each thread executes the kernel once. Two new keywords, blockIdx and threadIdx,

uniquely identify each block in a grid and each thread in a block. These identifications are

generally used for task division, allowing the kernel to assign different tasks for different

threads.

2.1.2 Memory Hierarchy

The CUDA memory hierarchy corresponds to the thread hierarchy as depicted in Figure

2.1.2. Each thread has access to a private local memory for storing large data that does not

12



core core core core

core core core core

Shared Memory

Streaming Multiprocessor

Figure 2.1.3: Logical structure of NVIDIA streaming multiprocessors of compute capabil-
ity 1.x [13].

fit into its registers. All threads in a block have access to a shared memory, which is

private to the block, to cooperate on a computation. Global memory is visible to all

threads. The CPU host can only access the global memory. Therefore, parameters and

data used by a kernel are initially located in the global memory.

2.1.3 Streaming Multiprocessors

The thread and memory hierarchies are mapped onto streaming multiprocessors (SMs) on

a GPU. A SM basically contains a set of processor cores and a shared memory (see Figure

2.1.3). Each SM can concurrently execute multiple blocks if registers and shared memory

are sufficient. Logically, all threads are executed in parallel. Physically, threads are

executed in warps, which are groups of 32 threads. A warp scheduler on the SM selects

and executes a warp at every issuing cycle. Multiple cores execute the same instruction

for different threads in a warp. This execution model is called single-instruction

multiple-threads (SIMT). Whenever a warp engages in a high latency operation, the warp

scheduler can switch to another warp for efficient use of issuing cycles [13].

2.1.4 Mapping CUDA to Distributed Systems

The thread and memory hierarchy can be easily mapped onto a distributed system. Figure

2.1.4 compares the system diagram of a GPU to a distributed system to show the

similarities between them. The host in the distributed system represents a machine that
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Network
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Figure 2.1.4: Comparison of a GPU (left) and a distributed system (right).

initiates a kernel execution. Each compute unit (CU) can represent a machine or a

processor. The network can be the interconnection on a motherboard or an Ethernet

network.

In Phalanx, each CU performs the work of a SM in a smaller scale. A CU computes a

block at a time. Messaging between the CUs and the host uses MPI. The support for

different types of network depends on the installed MPI implementation. For instance,

OpenMPI supports shared memory multiprocessors, Ethernet, InfiniBand, and Myrinet

[7].

2.2 Compiling CUDA Kernels for Distributed Systems

To execute CUDA kernels in a distributed system, a PTX-to-LLVM compiler translates

CUDA kernels at the PTX level. PTX (parallel thread execution) is a virtual instruction

set for CUDA. PTX is portable across current and future generations of GPU [12].

Compiling at the PTX level allows programmers to select any high-level programming

languages that can be reduced to PTX. NVIDIA officially supports C/C++, FORTRAN,

and OpenCL. Chapter 3 discusses the PTX-to-LLVM compiler in detail.

2.3 Emulation of CUDA

The virtual architecture of CUDA cannot be directly mapped onto a distributed system.

Also, not all PTX instructions can be mapped to CPU instructions. The Phalanx runtime
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system emulates the scheduling of blocks onto CUs and the operation of some PTX

instructions. Chapter 4 discusses the runtime system. Although the memory system is

part of the runtime system, it is discussed separately in Chapter 5 due to its complexity.

2.4 Design for Heterogeneity

Phalanx has a portable design to ensure support for heterogeneity. Phalanx supports

heterogeneity for different CPU architectures, operating systems and data-models. The

PTX-to-LLVM compiler and the runtime system are written using Python and C++,

respectively.

MPI provides messaging functionality in an abstract API. Different MPI

implementations support a different set of system configuration. For instance, OpenMPI

support nodes of mix architectures. The case studies in Chapters 6 and 7 use a cluster of

x86-32 and x86-64 machines.

Phalanx relies on LLVM (low-level virtual machine)1 for heterogeneous code

generation. First described by Lattner [14], LLVM is a compiler infrastructure that uses

multi-stage optimization. LLVM accepts a low-level intermediate representation

(LLVM-IR) that uses a virtual instruction set in static single assignment (SSA) form.

Now, LLVM is an umbrella project consisting of many advanced optimization algorithms,

language frontends and code generation backends. The code generation backends can

transform LLVM-IR into the corresponding instruction set for a wide range of CPU

architectures, including x86, ARM, MIPS, Sparc, and PowerPC. An experimental PTX

backend has been added recently. In the future, Phalanx can use this new feature to

implement CPU and GPU heterogeneity.

1http://llvm.org
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2.5 The Workflow of Phalanx

The following proposes a flow for CUDA-based programming for distributed

heterogeneous systems. Given a CUDA kernel source file written in CUDA-C, NVCC,

from the NVIDIA CUDA Toolkit2, is used to compile the kernel source file to a PTX

assembly file. The PTX-to-LLVM compiler, a component of the Phalanx framework,

translates the PTX assembly file to LLVM-IR. LLVM generates assembly code for the

target architecture from the LLVM-IR. At this point, the assembly code is usually

transferred to the target machine. To generate the worker executable, the assembly code is

linked against the Phalanx runtime system, which is in the form of a shared library on the

target machine. On the host machine, a host executable remotely executes worker

executables. It is a simple C++ program that uses the Phalanx API for scheduling tasks

onto the worker executables and does not perform the actual computation of the kernel.

Figure 2.5.1 illustrates the proposed workflow for preparing a CUDA kernel for

Phalanx-based distributed computing.

2http://developer.nvidia.com/cuda-downloads
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Figure 2.5.1: The flow of CUDA-based programming for distributed heterogeneous system
enabled by Phalanx.
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Chapter 3

The PTX-to-LLVM Compiler

The PTX-to-LLVM compiler transforms PTX into LLVM-IR for heterogeneous code

generation. The compiler restructures PTX instructions into code that suits the execution

model of CPUs. The manycore architecture of a SM and the multicore architecture of a

CPU is very different. The PTX execution model cannot be directly mapped to the

execution model of the CPU. Section 3.1 discusses the characteristics of the PTX

execution model. Section 3.2 discusses a refined execution model to allow CPU execution

of CUDA kernels. Section 3.3 discusses the handling of register and memory states.

3.1 Execution Model of PTX

The PTX defines an execution model for running a massive number of parallel threads. At

each issuing cycle, a warp of 32-threads is scheduled for execution. Figure 3.1.1

illustrates the logical execution of a warp. In the figure, a warp is executing a kernel of 30

instructions. Initially, all threads in the warp execute the first ten instructions in

basic-block A. Each basic-block has only one execution path. Branching instructions can

occur only at the last instruction of a basic-block. Logically, all threads execute in

parallel. Instruction 10 is a branch that splits the warp into two halves. The first

half-warp executes basic-block B. The second half-warp executes basic-block C. The

diverged execution path forces serial execution of half-warps instead of parallel execution

of all threads. Finally, a branch instruction at the end of basic-block B and C reconverges

the execution path to basic-block D.
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Figure 3.1.1: Execution of a warp.

3.1.1 Branching and Warp Divergence

When threads in a warp are at different execution path due to branching, the warp is

divergent. At each issuing cycle, the warp scheduler can execute only a subset of threads

that have the same instruction pointer. Threads that have a different instruction pointer are

disabled. The warp scheduler iterates over each execution path sequentially, using

multiple issuing cycles to complete the execution for a diverged warp. Since each path

uses one issuing cycle, the worst case, in which all 32-threads have distinct instruction

pointers, requires 32 issuing cycles for executing one warp. Therefore, warp divergence

imposes a significant penalty for performance [12].

3.1.2 Thread Barrier

In PTX, barriers allow threads in a block to synchronize and cooperate. Threads reaching

the barrier must wait until all threads in the block have reached the same barrier before

resuming the execution. The barrier also guarantees all previous memory modifications

are visible by all threads.
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3.2 Refined Execution Model

Straiten et al.[10] discovered a simple transformation of CUDA kernels that allows

efficient execution on CPUs. Their method converts CUDA kernels at source level by

wrapping code segments between synchronization points–entry, exit and barriers–with a

loop that iterates over every threads of the block. Deimos et al.[11] use a similar method,

but the transformation is applied at PTX level and uses complex control-flow analysis for

optimization.

.entry _Z21matrixMultipliyKernelPfS_S_i (
    .param .u32 __cudaparm__Z21matrixMultipliyKernelPfS_S_i_A,
    .param .u32 __cudaparm__Z21matrixMultipliyKernelPfS_S_i_B,
    .param .u32 __cudaparm__Z21matrixMultipliyKernelPfS_S_i_C,
    .param .s32 __cudaparm__Z21matrixMultipliyKernelPfS_S_i_N)
{
    .reg .u16 %rh<6>;
    .reg .u32 %r<33>;
    .reg .f32 %f<5>;
    .reg .pred %p<5>;
$LBB1__Z21matrixMultipliyKernelPfS_S_i:
    mov.u16     %rh1, %ctaid.x;
    ...
    ld.param.s32    %r7, [__cudaparm__Z21matrixMultipliyKernelPfS_S_i_N];
    set.le.u32.s32  %r8, %r7, %r6;
    ...
    @%p1 bra    $Lt_0_2306;
    bra.uni     $LBB10__Z21matrixMultipliyKernelPfS_S_i;
$Lt_0_2306:
    mov.u32     %r14, 0;
    ...
    @%p2 bra    $Lt_0_3842;
    mov.s32     %r15, %r7;
    ...
    ld.param.u32    %r20, [__cudaparm__Z21matrixMultipliyKernelPfS_S_i_B];
    add.u32     %r21, %r20, %r17;
    ...
    ld.param.u32    %r24, [__cudaparm__Z21matrixMultipliyKernelPfS_S_i_A];
    add.u32     %r25, %r22, %r24;
    ...
$Lt_0_3330:   
    ld.global.f32   %f2, [%r25+0];
    ld.global.f32   %f3, [%r21+0];
    mad.f32     %f1, %f2, %f3, %f1;
    ...
    @%p3 bra    $Lt_0_3330;
    bra.uni     $Lt_0_2818;
$Lt_0_3842:
    mul.lo.s32  %r16, %r7, %r6;
$Lt_0_2818:
    ld.param.u32    %r28, [__cudaparm__Z21matrixMultipliyKernelPfS_S_i_C];
    add.s32     %r29, %r16, %r4;
    ...
    st.global.f32   [%r31+0], %f1;
$LBB10__Z21matrixMultipliyKernelPfS_S_i:
    exit;
$LDWend__Z21matrixMultipliyKernelPfS_S_i:
}

Figure 3.2.1: Sample separation of PTX kernel entry into subkernels.

Comparing with the method of Deimos et al., Phalanx uses a relatively naive method.

First, the compiler decomposes a kernel into basic-blocks by separating at each label.
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Then, the compiler further decomposes these basic-blocks at every branch, memory, and

control instructions. Control instructions include exit and barrier instructions. At this

point, a kernel is partitioned into a sequence of subkernels. Subkernels are basic-blocks

that can have only branch, memory, and control instructions as the last instruction. Figure

3.2.1 shows the PTX corresponding to the kernel defined in Listing 3.1. In the figure, the

dotted lines denote the boundary of subkernels. The boldfaced lines highlight the

memory, branch, and other control instructions.

Unlike the method of Deimos et al., Phalanx does not join the partitioned subkernels.

Instead, each subkernel is generated as an individual function in the LLVM-IR. Each PTX

instruction in the subkernels is translated into a vector instruction that represents the

execution of a warp. Thus, the vectors are 32-elements wide. Phalanx relies on LLVM to

split or join vectors to match the supported vector size of the target architecture. Two

loops are inserted for the vectorized subkernels. The first loop encloses all arithmetic

instructions. Only the last instruction in a subkernel is non-arithmetic. The second loop

encloses the last instruction. The loops iterate over a range of warps. The range is

supplied as parameters to the subkernel function, indicating the start and the end of the

range. Figure 3.2.2 is a control-flow graph of a sample subkernel function. In the figure,

the first shaded box represents the body of the first loop. The second shaded box

represents the body of the second loop.

The resulting subkernel function does not account for warp divergence. Each vector

instruction consists of the operations of 32 threads. PTX uses single-instruction multiple

threads (SIMT) execution. The SM automatically handles warp divergence. The CPU

uses SIMD execution. The programmer must explicitly control divergence in vector

operations. To handle warp divergence, the PTX-to-LLVM compiler generates two

special functions for saving register contents and restoring the saved contents to the

registers. The compiler does not generate code for scheduling subkernel functions or for
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applying the register saving and restoring functions. The runtime system is responsible

for these features. The discussion of the scheduler is in Chapter 4.

Listing 3.1: Sample matrix multiplication CUDA-C code.
1_ _ g l o b a l _ _
2void m a t r i x M u l t i p l i y K e r n e l ( f l o a t A[ ] , f l o a t B [ ] , f l o a t C [ ] ,

i n t N) {
3c o n s t i n t i = t h r e a d I d x . x + b l o c k I d x . x * blockDim . x ;
4c o n s t i n t j = t h r e a d I d x . y + b l o c k I d x . y * blockDim . y ;
5
6i f ( i >=N | | j >=N ) re turn ;
7
8f l o a t r e s u l t = 0 ;
9f o r ( i n t k =0; k<N; ++k ) {
10r e s u l t += A[ k+ j *N] * B[ i +k*N ] ;
11}
12C[ i + j *N] = r e s u l t ;
13}

3.3 Handling Register and Memory States

The definitions of register and memory in PTX is different from those of CPU

architectures. The compiler must adjust for the difference to allocate register and memory

accordingly.

3.3.1 Registers

The PTX does not define the upper limit of register use. Its instruction set uses a loose

SSA form, in which register can be assigned multiple times as long as each assignment is

located at a different basic-block. The Phalanx PTX-to-LLVM compiler must perform

register allocation for each kernel to determine the minimum register count. The

algorithm for register allocation is simple. Since registers are typed in PTX, the following

steps are repeated for each type. First, the compiler scans for registers that are used by

multiple subkernels. These registers are added to the final set without further processing.

Second, it searches for the live ranges of the remaining registers. A live range contains

the first and the last occurrences of a register. Then, it continues with the algorithm in
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Figure 3.2.2: Control-flow graph of a sample subkernel function in LLVM-IR.
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Listing 3.2 to fill the final set. Finally, the final set contains the minimum set of registers.

Listing 3.2: Pseudocode for register allocation.
1f o r e a c h i n s t r u c t i o n {
2f o r e a c h r e g i s t e r i n a c t i v e s e t {
3i f r e g i s t e r l e a v e s i t s l i v e r a n g e {
4remove r e g i s t e r from a c t i v e s e t
5add r e g i s t e r t o unused s e t
6}
7}
8f o r e a c h ope rand used i n t h e c u r r e n t i n s t r u c t i o n {
9i f unused s e t i s n o t empty {
10remove a r e g i s t e r from unused s e t and add i t t o

a c t i v e s e t
11} e l s e {
12a l l o c a t e a new r e g i s t e r and add i t t o a c t i v e s e t
13}
14a s s i g n t h e r e g i s t e r f o r t h e ope rand
15}
16}
17f o r e a c h r e g i s t e r i n unused s e t {
18add t o f i n a l s e t
19}

Registers are statically allocated in the data segment of the worker executable. Each

register is allocated as an array of 1024 elements, which is the maximum number of

threads per block. Threads belonging to a warp have registers located consecutively in the

array, allowing efficient SIMD load/store operations.

3.3.2 Memory

Shared memory is also statically allocated in the data segment. Since the worker

executable computes one CUDA block at a time, there is only one copy of shared memory.

Unlike CUDA, the capacity of the shared memory is not fixed. A kernel can allocate as

much shared memory as permitted by the amount of primary memory on the running

machine.
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3.4 Future Works

The PTX-to-LLVM compiler is still at an early stage, supporting only a subset of

instructions of CUDA compute capability 1.x. It also lacks support for local and constant

memory. Aside from completing the support for the full PTX specification, future works

should also add various optimization passes for better register allocation and performance.

A control-flow analysis that predicts warp divergence and re-convergence would improve

execution efficiency.
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Chapter 4

The Runtime System

The Phalanx runtime system performs different functions in a host process and in a

worker process. Figure 4.0.1 illustrates different components of the runtime system. A

host process uses the remote kernel manager in the runtime system for scheduling remote

kernel execution on a distributed system. By doing so, worker processes are spawned on

each compute unit (CU) in the distributed system. CUs can be cores in a multicore CPU

or remote machines connected to an Ethernet network. In a worker process, a warp

scheduler in the runtime system schedules executions of subkernel functions. Subkernel

functions depend on the PTX emulator for the implementations of memory, branch, exit

and barrier instructions. Memory instructions are redirected to the memory system.

Global memory requests are translated to MPI messages. Detail discussion of the

memory system is in Chapter 5. Other components of the runtime system are discussed in

the following sections.

Subkernel Functions

Warp

Scheduler

Memory

System
PTX 

Emulator

Runtime System (Worker)

Memory

System

Remote

Kernel

Manager

Runtime System (Host)

emulation requests

remote global memory requests

remote task assignment

Figure 4.0.1: System diagram of the runtime system.
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4.1 Remote Kernel Manager

A host process executes kernel remotely on CUs in the distributed system. For

comparison, Listing 4.1 and Listing 4.2 show sample codes of kernel invocations in

Phalanx and in CUDA runtime API, respectively. Listing 4.3 shows the declaration of the

corresponding kernel being invoked.

Listing 4.1: A kernel invocation example in Phalanx.
1i n t main ( i n t argc , char ** a rgv ) {
2/ / i n i t i a l i z e pha lanx r u n t i m e s y s t e m
3p h a l a n x : : communica tor . i n i t ( a rgc , a rgv ) ;
4/ / s e t a v a i l a b l e h o s t s i n t h e d i s t r i b u t e d s y s t e m
5p h a l a n x : : communica tor . s e t _ h o s t s ( " 1 6 9 . 2 5 4 . 8 . 5 8 , 1 6 9 . 2 5 4 . 8 . 9 5

" ) ;
6/ / CUDA s p e c i f i c s : s e t u p b l o c k d i m e n s i o n
7dim3 blockDim ( 3 , 4 , 5 ) ;
8/ / CUDA s p e c i f i c s : s e t u p g r i d d i m e n s i o n
9dim3 gridDim ( 6 , 7 ) ;
10/ / a l l o c a t e da ta a r r a y s
11i n t N = 1024 ;
12i n t * A = new i n t [N ] ;
13i n t * B = new i n t [N ] ;
14/ / p o p u l a t e t h e da ta a r r a y s
15p o p u l a t e I n p u t (A, B , N) ;
16/ / a l l o c a t e an a r r a y f o r p a s s i n g p a r a m e t e r s
17void * p a r a m e t e r [ ] = {&A, &B , &N} ;
18/ / l a unc h k e r n e l on remote nodes
19p h a l a n x : : l a u n c h K e r n e l (
20p a t h _ t o _ w o r k e r _ p r o c e s s , / / l o c a t i o n o f worker

e x e c u t a b l e
21gridDim , / / g r i d d i m e n s i o n o f t h e k e r n e l
22blockDim , / / b l o c k d i m e n s i o n o f t h e k e r n e l
23p a r a m e t e r s , / / l i s t o f p a r a m e t e r s
24s i z e o f ( p a r a m e t e r s ) / s i z e o f ( void *) , / / number o f

p a r a m e t e r s
25n u m b e r _ o f _ p r o c e s s / / t o t a l number o f remote p r o c e s s e s
26) ;
27/ / c l e a n up
28d e l e t e [ ] A;
29d e l e t e [ ] B ;
30/ / shutdown pha lanx r u n t i m e s y s t e m
31p h a l a n x : : communica tor . f i n a l i z e ( ) ;

27



32}

Listing 4.2: A kernel invocation example in CUDA runtime API.
1i n t main ( i n t argc , char ** a rgv ) {
2/ / CUDA s p e c i f i c s : s e t u p b l o c k d i m e n s i o n
3dim3 blockDim ( 3 , 4 , 5 ) ;
4/ / CUDA s p e c i f i c s : s e t u p g r i d d i m e n s i o n
5dim3 gridDim ( 6 , 7 ) ;
6/ / a l l o c a t e da ta a r r a y s
7i n t N=1024;
8i n t * A = new i n t [N ] ;
9i n t * B = new i n t [N ] ;
10/ / p o p u l a t e t h e da ta a r r a y s
11p o p u l a t e I n p u t (A, N) ;
12/ / make space i n GPU g l o b a l memory
13i n t * dA ;
14i n t * dB ;
15cudaMal loc (&dA , s i z e o f ( i n t ) *N) ;
16cudaMal loc (&dB , s i z e o f ( i n t ) *N) ;
17/ / t r a n s f e r CPU da ta t o GPU g l o b a l memory
18cudaMemcpy ( dA , A, s i z e o f ( i n t ) *N, cudaMemcpyHostToDevice ) ;
19/ / i n v o k e k e r n e l f o r e x e c u t i o n i n GPU
20c u d a K e r n e l F u n c t i o n <<<gridDim , blockDim >>>(A, B , N) ;
21/ / t r a n s f e r GPU da ta back t o CPU
22cudaMemcpy (B , dB , s i z e o f ( i n t ) *N, cudaMemcpyDeviceToHost ) ;
23/ / c l e a n up GPU memory
24c u d a F r e e ( dA ) ;
25c u d a F r e e ( dB ) ;
26/ / c l e a n up CPU memory
27d e l e t e [ ] A;
28d e l e t e [ ] B ;
29}

Listing 4.3: An example of CUDA Kernel declaration.
1_ _ g l o b a l _ _
2void c u d a K e r n e l F u n c t i o n ( c o n s t i n t A[ ] , i n t B [ ] , i n t N) ;

In CUDA runtime API, programmers explicitly state the allocation of global memory

on the GPU. The API provides a set of memory transfer functions to copy data between

CPU and GPU. Lines 10-12 in Listing 4.2 show the code for allocating global memory in
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the GPU and copying array A to the GPU. Line 13 launches the kernel in a similar fashion

to a regular function call in C/C++, but with a special kernel configuration before the

parameter list. Line 14 copies the output data array B back to the host. Lines 15-16

release the global memory allocated in the GPU.

In Phalanx, the global memory resides in the host process. Unlike CUDA runtime

API, Phalanx does not require any additional transfer from CPU memory to global

memory. Worker processes can access any memory in the host process through remote

global memory requests. However, the current implementation does not protect against

out-of-bound memory access for remote global memory requests. So, worker processes

may access to any memory location, causing security concerns.

The Phalanx runtime system requires explicit initialization and termination. These

procedures correspond to lines 2 and 9, respectively, in Listing 4.1. They are required to

properly initialize and terminate the underlying MPI system. Line 3 provides a list of

machines on which worker processes are spawned. Here, the machines are specified by IP

addresses. A machine may contain multiple CUs. If no machine are provided, worker

processes are spawned on the same machine on which the host process is running. MPI

assigns worker processes to process slots. Specification of the number of available

process slots differs among MPI implementations. For OpenMPI, a hostfile is supplied

using the MPI launch script (mpirun or mpiexec) to list the number of slots on each host.

User should avoid over-commiting–assigning more than one process to a logical processor

core. Over-committing may degrade performance. The best practice is to assign one

process slot per logical processor core.

The call to launchKernel at lines 11-16 signals the Phalanx runtime to spawn worker

processes on the given machines. The first parameter is a path string that tells MPI the

location of the worker executable. This path must be the same across all remote

machines. The second and third parameters configure the grid and block dimension of the
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kernel, respectively. The fourth parameter supplies a list of pointers to serve as kernel

parameters. The fifth parameter declares the number of kernel parameters. The last

parameter specifies the total number of worker processes to spawn.

Kernel invocation in Phalanx is synchronous, unlike the asynchronous kernel

invocation in CUDA runtime API. The remote kernel manager takes over until the kernel

finishes and all worker processes have terminated. This is necessary to handle incoming

task requests from the worker processes. Section 4.4 further discusses the task requests

from worker processes.

4.2 Warp Scheduler

A worker process begins execution by sending a task request to the host process. The task

request asks the host process to assign a pending CUDA block for the worker process.

Each block is computed by a worker process. When the block has been completed, the

worker process sends another task request. This procedure repeats until all blocks in the

grid have been completed.

Once the worker process have received a block, it starts to schedule warps for

subkernel executions. The warp scheduler maintains a set of state variables for every

thread in the block.

live A Boolean value that, if True, indicates the thread has not completed its execution.

diverged A Boolean value that, if True, indicates that the thread is disabled and has a

different subkernel ID than the non-diverged threads of the warp.

subkernel ID The identifier of the next subkernel to execute.

restore context A pointer to a structure containing all saved register values of a

diverged thread. It has a null pointer if the thread is not diverged.

Diverged thread maintains a restore context for preserving register values. Subkernels
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execute every thread in the warp without checking their divergence state. As a result,

threads that have been disabled due to divergence will also execute in the subkernels.

Their registers could be corrupted in the process. When diverged threads re-enable, their

registers are restored by the content of their restore contexts.

Listing 4.4 shows the pseudocode of the scheduler algorithm. First, the scheduler

executes all warps for the first subkernel. As long as there are live threads, the scheduler

finds ranges of warps that have the same subkernel ID and execute the subkernel for these

ranges of warps. After each subkernel execution, the scheduler commits any pending

memory transactions and increments the subkernel ID for each executed thread.

Listing 4.4: Algorithm of the runtime scheduler.
1e x e c u t e c u r r e n t s u b k e r n e l o f a l l warps
2commit memory t r a n s a c t i o n
3i n c r e m e n t s u b k e r n e l i d f o r a l l warps
4whi le l i v e t h r e a d s c o u n t i s not 0 {
5b e g i n := 0
6end := 0
7whi le b e g i n < warp c o u n t {
8f i r s t W a r p := warp wi th i d == b e g i n
9i f f i r s t W a r p i s not a l i v e {
10b e g i n := b e g i n + 1
11}
12c u r r e n t S u b k e r n e l := s u b k e r n e l o f f i r s t W a r p
13end := b e g i n + 1
14whi le end < warp c o u n t and c u r r e n t S u b k e r n e l ==

s u b k e r n e l o f l a s t W a r p {
15end := end + 1
16}
17e x e c u t e c u r r e n t s u b k e r n e l o f warp r a n g e [ f i r s t W a r p ,

l a s t W a r p ]
18commit memory t r a n s a c t i o n
19i n c r e m e n t s u b k e r n e l i d f o r warp r a n g e [ f i r s t W a r p ,

l a s t W a r p ]
20}
21}
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4.3 PTX Emulator

Some PTX instructions have no direct translation into assembly of the target architecture.

These PTX instructions are converted into function calls that reference handling routines

in the runtime system.

4.3.1 Branch Instructions

Branch instructions are handled once per warp. For conditional branch, the runtime

checks the predicates of all threads in the warp. If the predicates are the same–all True or

all False, the warp is not diverging and the branch is treated as a uniform branch. If,

however, the predicates are different for some threads, the warp diverges. The branching

threads are disabled by marking the diverged flag and creating a restore context.

PTX allows a branch instruction to be marked as uniform. A uniform branch

guarantees that all threads in the warp participate the branch. Therefore, it hints the

runtime to create a convergence point. When executing a uniform branch in a diverged

warp, the runtime swaps the running threads and the diverged threads. This allows the

diverged threads to reach the same subkernel so that the warp converges, improving the

efficiency of warp execution. For non-diverged warps, simply changing the current

subkernel ID to the destination subkernel ID is sufficient.

4.3.2 Memory Instructions

Instead of servicing each global memory requests immediately, they are serviced after the

subkernel execution. This allows the runtime system to coalesce the requests from

multiple warps and optimizes them to reduce network usage. Detail discussion of the

optimization is in Chapter 5.

Shared memory store requests must be handled by the runtime system because the

subkernel execute every thread in the warp, including the disabled threads. Failing to

discard store requests from non-live or diverged threads could corrupt shared memory
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content.

4.3.3 Exit Instruction

Exit instructions are handled once per warp. The runtime system clears the live flag of all

running threads in the warp and restores diverged threads, if any.

4.3.4 Barrier Instruction

In PTX, a barrier instruction guarantees that all previous memory transactions have been

completed and all threads reaches the same instruction. The runtime system disables all

threads reaching that barrier and restores any diverged threads that have not reached the

barrier. When all threads have reached the barrier, the runtime restores all threads for

execution.

4.4 Remote Requests

Worker processes send three types of remote request.

Task request A worker process actively asks for new task from the host process

whenever it is idle.

Parameter request A worker process asks for parameter values from the host process.

Global memory request A worker process loads from or stores to global memory,

which resides in the host process.

Figure 4.4.1 demonstrates a sample sequence of remote requests. The host process

spawns a new worker process and sends the kernel configuration (block and grid

dimensions). Then, the host process switches to passive mode, handling any incoming

requests until all blocks of the grid have been completed. After receiving the kernel

configuration, the worker process sends a task request. In reply, the host process assigns a

block index (blockIdx) to the worker process, which begins to compute the kernel block

indicated by the received block index. During the lifetime of the kernel block, the worker
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process asks for parameter values using parameter requests and it asks for global memory

using global memory requests. Upon completion of the kernel block, the worker process

sends another task request. If all blocks have been completed, the host process signals the

worker process to terminate.

Since parameters in a CUDA kernel are copied-by-value, they are unchanged

throughout the lifetime of a kernel grid. A worker process can safely cache a parameter

value after the first request. This reduces the number of parameter requests and

consumption of network bandwidth.

Due to the complexity and importance of the global memory requests, they are

discussed separately in Chapter 5.
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Figure 4.4.1: A sequence diagram illustrating the message-passing of remote requests be-
tween a host process and a worker process.
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Chapter 5

The Memory System

The memory system is part of the runtime system. It handles all memory requests from

the subkernels. The performance of memory requests governs the maximum performance

of a Phalanx application. Network bandwidth limits the maximum memory throughput

for a Phalanx application. Comparing to the maximum throughput of PCI-express

available to a GPU, a typical Ethernet network is significantly slower. With the limited

network throughput, the memory system must optimize for maximum network utilization.

The rest of the chapter discusses the implementation of memory system.

5.1 Memory Operations

Listing 5.1 shows a simple parallel-prefix-sum kernel. This sample code shows all four

types of memory operations. The right-hand-side (RHS) of line 5 is converted to a global

memory load. The assignment of the same line translates to a shared memory store. At

line 10, the assignment translates to a global memory store. The runtime system handles

these three types of memory operations. The shared memory load at the RHS of line 8 is

handled in the generated assembly using a simple load instruction of the target

architecture.

Listing 5.1: A simple parallel prefix sum kernel
1_ _ g l o b a l _ _
2void p r e f i x S u m K e r n e l ( c o n s t i n t A[ ] , i n t B [ ] ) {
3_ _ s h a r e d _ _ i n t smem [ 1 0 2 4 ] ;
4i n t r e s u l t =0 ;
5/ / sh ar ed memory p r e l o a d i n g
6smem [ t h r e a d I d x . x ] = A[ t h r e a d I d x . x ] ;
7/ / b a r r i e r
8_ _ s y n c t h r e a d s ( ) ;
9f o r ( i n t i =0 ; i < t h r e a d I d x . x ; ++ i ) {
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10r e s u l t += smem [ i ] ; / / l oad from sh ar ed memory
11}
12/ / s t o r e t o g l o b a l memmory
13B[ t h r e a d I d x . x ] = r e s u l t ;
14}

5.1.1 Global Memory

Global memory requests are not serviced immediately but after the execution of the

subkernel. This allows all memory requests to be coalesced and optimized as described in

Section 5.4.

Since a subkernel does not isolate disabled threads, which have exited or have

diverged to another subkernel, disabled threads also generate memory requests. The

runtime system is responsible to filter out these invalid requests.

A worker process forwards any global memory request to the host process through

MPI messages. The request contains the data type of the requesting elements, the starting

address of the elements and the number of elements to load or to store. For a load request,

the host process loads the data at the starting address. The addresses of subsequent

elements are computed by incrementing the starting address by the byte length of the data

type. The host process replies with a MPI message filled with the loaded data. For a store

request, the host process continues to listen for the next message from the worker process.

The next message contains the data to be stored. The host process directly stores the

received data to the starting address.

5.1.2 Shared Memory

Shared memory requests are serviced immediately. Shared memory loads do not depend

on the runtime system. They are converted directly into simple load instructions for the

target architecture. The runtime system only handles shared memory stores. Similar to

global memory requests, the runtime must filter out invalid shared memory store requests

generated by disabled threads. Invalid shared memory loads are not removed. Since
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diverged threads have kept a copy of the register values, these invalid loads cannot corrupt

the registers of these threads.

5.2 Handling Heterogeneous Data Model

Phalanx supports heterogeneous data model in the distributed system. The CUDA and

LLVM virtual architectures share the same data types. All integers are in 2’s complement

representation. CUDA supports only 8, 16, 32 and 64-bit integers. LLVM supports any

integer of bit length 1 to 223−1. For floating-point numbers, both use IEEE754

compliant types. For memory address, Phalanx forces all addresses to be 64-bit wide. On

a 32-bit host machine, 64-bit addresses are simply truncated. Any architecture that

implements 2’s complement integer representations and IEEE754 single and double

precision floating-point representations can be used in Phalanx.

Not all MPI implementations support data model heterogeneity. OpenMPI provides

automatic conversion between big and little endians. However, heterogeneity support

appears to be incomplete for some features. The remote-memory access (RMA) defined in

the new MPI standard [6] breaks in OpenMPI when working in a 32/64-bit heterogeneous

cluster. Phalanx does not use the RMA feature. Phalanx uses only point-to-point

communication of MPI. RMA allows one-sided communication, removing the need to

have a passive handler in the host process. The RMA feature can be useful in the future.

5.3 Memory Consistency

The massively parallel execution requires CUDA to adopt a weak memory consistency

model [15]. This means modifications in memory are guaranteed to be visible only at

barriers. It allows Phalanx to use aggressive optimizations for memory operations and

thread scheduling.
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5.4 Optimizing Global Memory Requests

Global memory throughput limits the performance of a Phalanx application. Section 5.4.1

discusses the performance impact of memory throughput for any system in general.

Sections 5.4.2 and 5.4.3 explain the optimizations used by Phalanx for maximizing global

memory throughput.

5.4.1 Principle of Balance

The performance of a system is limited by both computation and I/O throughput. The

classical principle of balance states that the best performing system should balance the two

throughputs. Given the number of processors is p, their peak compute throughputs are C

operations per second and they are connected through a network with bandwidth B bytes

per second, the following equation [16, 17] characterizes the balance of such a system:

Ioptimal =
p ·C

B
. (5.4.1)

Ioptimal is the peak arithmetic intensity of a computation. It has units of operations per

byte. When a computation has an intensity that matches Ioptimal , the system computes as

fast as I/O transfer. At this point, the system is the most efficient. Any computation that

has an intensity higher than Ioptimal is compute bounded. If the intensity is lower than

Ioptimal , the computation is I/O bounded. A compute bounded computation is preferable

because the system is not wasting processor time to wait for I/O.

For distributed systems, the network bandwidth is often significantly slower than the

total compute throughput of all processors. This suggests that a suitable computation for

distributed systems must have a high arithmetic intensity and the required intensity

increases as the number of processors increases. As a result, most computations become

I/O bounded.
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5.4.2 Caching

Caching can raise the effective I/O bandwidth Be f f , thereby reduces Ioptimal . Given a

cache with bandwidth Bcache, a network with bandwidth Bnet and the percentage of I/O

served from the cache is α , the effective bandwidth Be f f is characterized by the following

equation:

Be f f = (1−α)Bnet +αBcache. (5.4.2)

When Bcache > Bnet and α > 0, Be f f is greater than Bnet .

Caching exploits data locality and temporarily stores fetched global memory in a

worker process. The Phalanx runtime system implements a direct-mapped cache for each

worker process. Based on the transfer pattern of the computation and available memory,

the cache can be resized accordingly for each machine to optimize α .

The cache is local to each worker process. It could be beneficial for future versions to

allow a shared cache for all worker processes on the same machine. It could further

reduce the network traffic.

Shared memory is not cached and it is not beneficial to do so. Shared memory is

implemented as a static data segment in a worker process. Access to shared memory is

direct, whereas access to cache goes through a hash table lookup. Therefore, the cache is

slower than the shared memory.

5.4.3 Transaction Size

For any global memory transaction, a worker process sends a request message that

contains the data type, address and element count. Whenever the total size of transferring

data is not much greater than the size of the request message, memory transaction

becomes very expensive. The request message has a constant size of 20-bytes (or

160-bits), without including additional overheads from the MPI implementation or from

the network protocol.
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When the transaction size is very large comparing to the overheads, network

utilization improves. For loading global memory, Phalanx uses a minimum fetch size. By

default, each load transaction always fetches at least 4-kB of consecutive data. This

over-fetching is beneficial most of the time. The coalesced memory access pattern, which

is recommended for CUDA programming [13], guarantees that CUDA kernel loads

batches of consecutive data. Moreover, the spatial locality of algorithms increases the

chance of consumption of nearby data for each load. Since the cache stores all fetched

data, any subsequent load transaction can be reduced into a fast cache load if it refers to

cached data.

The runtime system sorts all load requests according to their addresses. It searches

for the longest consecutive list of the sorted requests and services them in one transaction.

If the transaction size is too small, it will append dummy requests to the list. It repeats

until all requests are serviced.

For storing global memory, Phalanx does not mandate a fix transaction size. It only

tries to coalesce memory requests to use fewer MPI messages. The runtime system sorts

all memory requests according to their addresses. It searches for the longest consecutive

list of the sorted requests and services them in one transaction. It repeats until all requests

are serviced.
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Chapter 6

Case Study: Matrix Multiplication

To demonstrate the feasibility of the Phalanx framework, this chapter and the following

chapter present two case studies. In each case study, an application is written for serial

and parallel execution. The parallel execution version uses Phalanx. Benchmarks are

done to measure the performance gain by parallel execution.

A Core 2 Duo machine and two Core-i7 machines are used in the benchmarks. One

of the Core-i7 machines are running in 64-bit mode. Other machines are running in 32-bit

mode. All machines are running Ubuntu 10.04 OS.

For the parallel execution benchmark, all three machines are connected to a Gigabit

Ethernet switch to form a small distributed system. The setup has a heterogeneous data

model that mixes 32-bit and 64-bit processors. The Phalanx host process runs on the Core

2 Duo machine and it schedules worker processes onto the two Core-i7 machines. Each

Core-i7 machine has four HyperThread execution cores. Together, the two Core-i7

machines provide 16 logical cores to serve as compute units in the Phalanx setup. The

parallel executions are configured to use all 16 compute units with one worker process per

unit. The MPI implementation used is OpenMPI 1.4 with TCP/IP based messaging. The

serial execution benchmarks are performed on the 32-bit Core 2 Duo machine and the

32-bit Core-i7 machine.

6.1 Application Background

A matrix multiplication application is written using Phalanx. For simplicity, only square

matrices are considered. The product P of the multiplication between two N×N

matrices, A and B, is defined as follows:
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Figure 6.1.1: Illustrating matrix multiplication.

pi j =
N

∑
k=0

aik ·bk j. (6.1.1)

Each element pi j in the product matrix P at row i and column j is the sum of all products

of element-wise multiplication in row i of A and column j of B. Figure 6.1.1 depicts the

matrix multiplication algorithm.

6.2 Using Shared Memory

Each output element pi j requires to load 2N inputs. The inputs for other elements in the

same row or same column overlaps. Reuse of overlapped elements can reduce network

traffic for global memory loads. Kirk and Hwu [18] presented a tiled matrix multiplication

algorithm. Their algorithm splits the product matrix into tiles and assigns the computation

of one tile to each CUDA block. Splitting the product matrix into tiles allows the inputs

of each tile to fit into the limited shared memory. For Phalanx, the limitation of shared

memory is much higher than for CUDA GPUs. The maximum capacity of shared
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memory depends on the available size of primary memory for the machine.

6.3 Implementation

The Phalanx implementation of the matrix multiplication supports block size up to 1024

threads, allowing the tile size T to be 32×32. With this configuration, each thread in a

block produces a single element in the product matrix. Listing A.2 shows the source code

of the matrix multiplication kernel using shared memory for single-precision floats. The

kernel fills the shared memory for computing the product of the tile. For each source

matrix, the kernel loads N×
√

T elements into the shared memory. Afterwards, a barrier

ensures all threads of the block have completed the shared memory loading. Each thread

of the kernel block computes an element in the corresponding tile.

6.4 Benchmark

Figure 6.4.1 shows the speedups of 16-cores parallel execution using the Phalanx setup

with serial execution baselines using the Core 2 Duo and the Core-i7 machines,

respectively. It is important to note that the baseline implementation uses a naïve

(non-tiled) matrix multiplication algorithm (see Listing A.3), which heavily relies on the

processor cache. The x-axis indicates the varying N. The y-axis shows the speedup

factors of parallel execution time with respect to the baseline serial execution time.

6.5 Performance Analysis

For single-precision, the speedups saturate at N = 2048 because the intensity of the

computation is higher than the optimal intensity Ioptimal (see Section 5.4 for detail

discussion of this value). When N < 2048, the computation is I/O bounded. When

N > 2048, the computation is compute bounded. Therefore, the maximum speedups are

approximately 12× and 5× comparing to Core 2 Duo and Core-i7 baselines, respectively.

For double-precision, the speedups also begin to saturate at N = 2048. The maximum

speedups are around 9× and 7× comparing to Core 2 Duo and Core-i7 baselines,
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Figure 6.4.1: A benchmark of matrix multiplication showing speedup factor versus matrix
size. Speedups are normalized parallel execution time of the Phalanx setup
with respect to serial execution baselines using the Core 2 Duo and Core i7
machines.

respectively.

Plotting the performance with estimated compute throughputs shows an interesting

perspective. Figure 6.5.1 shows the throughputs for serial execution on Core 2 Duo and

Core i7, and for parallel execution on the Phalanx-based distributed system. The

following equation estimates the number of floating-point operations for the computation:

(2 ·N) ·N2 = 2 ·N3. (6.5.1)

The 2 ·N term estimates the number of multiplication and addition operations per

element in the product matrix. There are N multiplications and N−1 additions. For big

N, the number of additions is very close to N. The remaining N2 term denotes the number

of elements in the product matrix, which is a square matrix with N rows and N columns.

Dividing the estimated number of floating-point operations by the execution time
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(a) Achieved single precision compute throughput

(b) Achieved double precision compute throughput

Figure 6.5.1: Achieved compute throughput versus matrix size for single and double preci-
sion arithmetic.
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yields an estimation of compute throughputs. The unit of the compute throughput is flops

(floating point operations per second). Figure 6.5.1 shows the compute throughputs with

respect to the size of the matrices for single precision and double precision computations.

An interesting observation is the drop in compute throughputs for both CPUs. A

possible reason is the increased rate of cache miss as the matrix size grows exponentially.

As the data no longer fit in the processor cache, the effective memory bandwidth reduces

significantly. Adapting Equation 5.4.2 for the processor memory hierarchy:

Be f f = (1−α)BRAM +αBcache. (6.5.2)

In the equation, BRAM denotes the bandwidth of the system primary memory. As α tends

to zero, the effective bandwidth Be f f is dominated by the slow BRAM. As a result, the

optimal intensity Ioptimal increases and the computation becomes I/O bounded.
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Chapter 7

Case Study: NBody

This chapter presents a case study for a NBody simulation application. The same setup as

in the case study in Chapter 6 is used.

7.1 Application Background

For physics applications, a NBody simulation predicts the motion of particles or celestial

bodies due to the interacting forces between them [19]. By assuming all particles have

zero volume, the need to account for collisions is removed. This simplifies the problem

for the demonstration in this case study.

The particles are constantly attracted by gravitational forces due to their masses. The

force fi j acting on a particle i by another particle j is governed by the following equation

[19]:

fi j = G
mim j(v j− vi)

||v j− vi||3
. (7.1.1)

In the equation, vi and v j denote the 3D position vectors of particle i and particle j,

respectively. The symbols mi and m j denote the masses for particle i and particle j,

respectively. The term ||v j− vi|| denote the distance between the two particles. The

constant G denotes the gravitational constant.

To compute the total force acting on a particle, all distinct pairs of forces fik are

computed for all k except when k equals i. That is:

Fi = ∑ fik, f or k 6= i. (7.1.2)

If there are N particles, the total force acting on each particle is the sum of N−1 forces
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between all distinct pairs of particles. Therefore, the computation for all particles has N2

complexity.

7.2 Implementation

The kernel source code of the NBody simulation that uses double precision is shown in

Listing A.5. In this implementation, each CUDA thread computes the next position of a

particle. The work is broken down so that each CUDA block loads a small number of

particles into shared memory and uses the pre-loaded data for the computations. Next, it

loads the next batch of particles and performs the computation. These steps repeat until

all particles have been considered. From the total force acting on a particle, the new

position is computed using verlet integration.

The implementation for serial execution is shown in Listing A.6. Comparing the

serial version with the parallel version, there are little differences between the two. The

parallel version is achieved simply by distributing the computation for each particle to a

CUDA threads and adding a shared memory loading phase.

7.3 Benchmark

Figures 7.3.1, 7.3.2 and 7.3.3 show the execution time, speedup and throughput

benchmarks of the NBody simulation. Only four measurements were obtained for the

serial execution because the execution time becomes too long for large numbers of

particles. As the number of particles increases, execution time grows exponentially. In

Figure 7.3.2, the speedups compare the parallel execution using the Phalanx setup with the

serial execution baselines using Core 2 Duo and Core-i7, respectively. In Figure 7.3.3, an

operation represents a computation using Equation 7.1.1. The total number of operations

is approximately N2.

49



Figure 7.3.1: A benchmark of NBody simulation showing the execution time versus parti-
cle count.

Figure 7.3.2: A benchmark of NBody simulation showing the speedup factor versus particle
count. Speedups are normalized parallel execution time of the Phalanx setup
with respect to serial execution baselines using the Core 2 Duo and Core i7
machines.
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Figure 7.3.3: A benchmark of NBody simulation showing the throughput versus particle
count.

7.4 Performance Analysis

Due to the higher intensity of NBody simulation, a higher performance gain is observed in

the NBody simulation application than in the matrix multiplication application. The

speedups reach 40× and 20× for Core 2 Duo and Core-i7 baselines, respectively, in

Figure 7.3.2. Figure 7.3.3 shows that both CPUs have a constant throughput for the

measured range. When particle count is 131×103, the throughput of the Phalanx setup

approaches its saturation point. By projecting the trend of constant CPU throughput to

this point, the maximum speedups are 57× and 28× for Core 2 Duo and Core i7

baselines, respectively.

The parallel version is embarrassingly parallel. Parallelism is achieved by merely

separating the computation of each particle into different CUDA threads. Considering the

amount of work to program this embarrassingly parallel version of the NBody simulation

kernel, the amount of speedup is promising.
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Chapter 8

Conclusion and Future Works

This thesis demonstrated that CUDA is well-suited for massive parallel computations in

distributed systems. This thesis showed that the virtual architecture of CUDA can easily

expand to the architecture of distributed systems. Streaming multiprocessors in a GPU

becomes machine nodes in a distributed system. By scaling CUDA for distributed

systems, programmers no longer need to use the less expressive the message-passing

model when using MPI as the underlying messaging infrastructure. As a result,

programmers can write CUDA applications that scale from a manycore GPU to a

distributed system of hundreds of multicore processors. Together with cloud computing,

Phalanx aims to simplify the development of distributed applications. Applications

developed using Phalanx allow individuals or businesses to easily offload computation to

compute instances in cloud services.

Large computation tasks cannot run efficiently on traditional CPUs. As seen in the

matrix multiplication case study, large data set affect data locality drastically. On the

other hand, Phalanx can adjust for the intensity of different types of computation by

expanding the distributed system. For the NBody case study, Phalanx achieved 28×

speedup over serial execution on Core-i7. With today’s cloud computing, a distributed

system can grow dynamically as computation becomes larger.

Network performance is the main concern for any distributed system. The principle

of balance presented in Section 5.4.1 can serve as a general guide to configure distributed

systems. The optimal setup depends on the computation. With cloud services, it is

possible to allocate compute resources to fit the intensity of a computation. Although this
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thesis lacks explorations in large distributed systems and in cloud services due to limited

resources, future works will include performance studies on large systems.

Future systems will combine different processor architectures for different types of

computation. Funded by DARPA, NVIDIA’s Echelon project aims at providing a

heterogeneous architecture that delivers 16-Tflops at high energy efficiency [15].

Although Phalanx does not support CPU-GPU heterogeneity, future works will implement

this feature so that programmers can rely on a single programming framework for

heterogeneous parallel computing. Current version of Phalanx have been lightly tested for

x86-ARM heterogeneity. Code generation for other architectures, such as Sparc and

PowerPC, is also possible. In fact, Phalanx should work on any architecture that LLVM

supports. However, MPI implementation may not support every processor architecture.

For instance, OpenMPI has only started its ARM support, which is not available in the

stable release.

Finally, this thesis explored a new approach to distributed heterogeneous

programming. The exploration is still incomplete with various limitations and pending

features. In the future, the development of Phalanx will continue. Hopefully, this new

approach would be integrated to the standard developement tools for programming

distributed heterogeneous systems.
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Appendix A

Source Listing for Case Studies

A.1 Matrix Multiplication Case Study

Listing A.1: Phalanx driver for matrix multiplication kernel using shared memory.
1# i n c l u d e < i o s t r e a m >
2# i n c l u d e < c s t d l i b >
3# i n c l u d e <ct ime >
4# i n c l u d e < p h a l a n x _ h o s t . hpp >
5# i n c l u d e < p h a l a n x _ u t i l . hpp >
6# i n c l u d e " k e r n e l c o n f i g . hpp "
7f l o a t MA[COUNT] ;
8f l o a t MB[COUNT] ;
9f l o a t MC[COUNT] ;
10f l o a t GOLD[COUNT] ;
11f l o a t *pA = MA;
12f l o a t *pB = MB;
13f l o a t *pC = MC;
14i n t 3 2 _ t pW = MATRIX_SIZE ;
15void * p a r a m e t e r s [ ] = { &pA , &pB , &pC , &pW } ;
16
17i n t main ( i n t argc , char ** a rgv ) {
18us ing p h a l a n x : : communica tor ;
19communica tor . i n i t ( a rgc , a rgv ) ;
20c o n s t i n t NUM_OF_PROC = 1 6 ;
21communica tor . s e t _ h o s t s ( " 1 6 9 . 2 5 4 . 8 . 5 8 , 1 6 9 . 2 5 4 . 8 . 9 5 " ) ;
22communica tor . s e t _ w d i r ( " / home / m i c h a e l / b i n / mpiapp " ) ;
23us ing namespace s t d ;
24s r a n d ( t ime ( 0 ) ) ;
25
26c o u t << BLOCK_COUNT*BLOCK_SIZE << e n d l ;
27
28/ / i n i t
29f o r ( unsigned i n t i =0 ; i <COUNT; ++ i ) {
30MA[ i ]= i ;
31MB[ i ]= i ;
32}
33
34/ / i n v o k e
35dim3 blockDim ( BLOCK_SIZE , BLOCK_SIZE ) ;
36dim3 gridDim (BLOCK_COUNT, BLOCK_COUNT) ;
37p h a l a n x : : Timer t i m e r ;
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38t i m e r . s t a r t ( ) ;
39p h a l a n x : : l a u n c h K e r n e l ( " worker " , gridDim , blockDim ,

p a r a m e t e r s , s i z e o f ( p a r a m e t e r s ) / s i z e o f ( void *) ,
NUM_OF_PROC) ;

40t i m e r . end ( ) ;
41s t d : : c e r r << " Pha lanx t ime : " << t i m e r . d u r a t i o n ( ) << ’ \ n ’ ;
42
43i f ( f a l s e ) {
44t i m e r . s t a r t ( ) ;
45/ / go ld en v a l u e s
46unsigned i n t N = MATRIX_SIZE ;
47f o r ( unsigned i n t y =0; y<N; ++y ) {
48f o r ( unsigned i n t x =0; x<N; ++x ) {
49GOLD[ x+y*N] = 0 ;
50f o r ( unsigned i n t k =0; k<N; ++k ) {
51GOLD[ x+y*N] += MA[ k+y*N] * MB[ x+k*N ] ;
52}
53}
54}
55t i m e r . end ( ) ;
56s t d : : c e r r << "CPU t ime : " << t i m e r . d u r a t i o n ( ) << ’ \ n ’ ;
57/ / e r r o r c h e c k i n g
58f o r ( unsigned i n t y =0; y<N; ++y ) {
59f o r ( unsigned i n t x =0; x<N; ++x ) {
60f l o a t e x p e c t = GOLD[ x+y*N ] ;
61f l o a t e r r o r = f a b s ( expec t−MC[ x+y*N] ) / e x p e c t ;
62i f ( e r r o r >1e−8){
63c e r r << " E r r o r a t x , y : " << x << " , " <<

y << ’ \ n ’ ;
64c e r r << e r r o r << ’ \ n ’ ;
65c e r r << MC[ x+y*N] << ’ \ n ’ ;
66re turn 1 ;
67}
68}
69}
70}
71c o u t << " \ nAl l i s w e l l ! \ n " ;
72communica tor . f i n a l i z e ( ) ;
73re turn 0 ;
74}

Listing A.2: Matrix multiplication kernel using shared memory.
1enum {
2BLOCK_SIZE = 32 ,
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3MATRIX_SIZE = BLOCK_SIZE*BLOCK_COUNT,
4} ;
5_ _ g l o b a l _ _
6void m a t r i x M u l t i p l i y K e r n e l ( f l o a t A[ ] , f l o a t B [ ] , f l o a t P [ ] ,

i n t N) {
7
8c o n s t i n t t x = t h r e a d I d x . x ;
9c o n s t i n t t y = t h r e a d I d x . y ;
10c o n s t i n t bx = b l o c k I d x . x ;
11c o n s t i n t by = b l o c k I d x . y ;
12
13c o n s t i n t i = t x + bx * blockDim . x ;
14c o n s t i n t j = t y + by * blockDim . y ;
15
16_ _ s h a r e d _ _ f l o a t Acache [ MATRIX_SIZE*BLOCK_SIZE ] ;
17_ _ s h a r e d _ _ f l o a t Bcache [ BLOCK_SIZE*MATRIX_SIZE ] ;
18
19f o r ( unsigned i n t t =0 ; t <MATRIX_SIZE / BLOCK_SIZE ; ++ t ) {
20unsigned i n t o f f s e t = t *BLOCK_SIZE ;
21Acache [ ( o f f s e t + t x ) + t y *MATRIX_SIZE ] = A[ ( o f f s e t +

t x ) + j *MATRIX_SIZE ] ;
22Bcache [ t x + ( t y + o f f s e t ) *BLOCK_SIZE ] = B[ i + ( t y + o f f s e t

) *MATRIX_SIZE ] ;
23}
24_ _ s y n c t h r e a d s ( ) ;
25
26i f ( i >=N | | j >=N ) re turn ;
27
28f l o a t r e s u l t = 0 ;
29f o r ( i n t k =0; k<N; ++k ) {
30r e s u l t += Acache [ k+ t y *MATRIX_SIZE ] * Bcache [ t x +k*

BLOCK_SIZE ] ;
31
32}
33
34P [ i + j *N] = r e s u l t ;
35
36}

Listing A.3: Serial matrix multiplication.
1void m a t r i x M u l t i p l i y S e r i a l ( f l o a t A[ ] , f l o a t B [ ] , f l o a t C [ ] ,

i n t N) {
2f o r ( unsigned i n t y =0; y<N; ++y ) {
3f o r ( unsigned i n t x =0; x<N; ++x ) {
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4C[ x+y*N] = 0 ;
5f o r ( unsigned i n t k =0; k<N; ++k ) {
6C[ x+y*N] += A[ k+y*N] * B[ x+k*N ] ;
7}
8}
9}
10}

A.2 NBody Case Study

Listing A.4: Phalanx driver for NBody simulation kernel using shared memory.
1# i n c l u d e < c s t d l i b >
2# i n c l u d e <ct ime >
3# i n c l u d e <cmath >
4# i n c l u d e < c a s s e r t >
5
6# i n c l u d e < p h a l a n x _ h o s t . hpp >
7# i n c l u d e < p h a l a n x _ u t i l . hpp >
8# i n c l u d e " nbody . h "
9
10s t a t i c c o n s t bool VERIFY = f a l s e ;
11s t a t i c c o n s t bool BENCHMARK = t rue ;
12s t a t i c double p h a l a n x _ t i m e _ a v e r a g e = 0 ;
13s t a t i c double h o s t _ t i m e _ a v e r a g e = 0 ;
14enum {
15BLOCK_SIZE = 1024 ,
16PARTICLE_COUNT = BLOCK_SIZE * 128 ,
17NUMBER_OF_PROCESSOR = 16 ,
18NUMBER_OF_FRAME = 2 ,
19} ;
20
21void d e v i c e _ n b o d y _ s i m u l a t i o n ( V e c t o r 3 f NewPos [ ] , V e c t o r 3 f

CurPos [ ] ,
22V e c t o r 3 f OldPos [ ] , double Mass [ ] , unsigned i n t count ,

double d t ) {
23us ing namespace p h a l a n x ;
24dim3 blockDim ( BLOCK_SIZE ) ;
25dim3 gridDim ( c o u n t / BLOCK_SIZE ) ;
26
27void * p a r a m e t e r s [ ] = {
28&NewPos , &CurPos , &OldPos , &Mass , &count , &d t
29} ;
30
31s t d : : c e r r << " P a r t i c l e Count = " << c o u n t << ’ \ n ’ ;
32
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33/ / CUDA code s t a r t s here
34p h a l a n x : : Timer t i m e r ;
35t i m e r . s t a r t ( ) ;
36
37p h a l a n x : : l a u n c h K e r n e l ( " worker " , gridDim , blockDim ,
38p a r a m e t e r s , s i z e o f ( p a r a m e t e r s ) /

s i z e o f ( void *) ,
39NUMBER_OF_PROCESSOR) ;
40
41t i m e r . end ( ) ;
42i f (BENCHMARK)
43s t d : : c e r r << " p h a l a n x : " << t i m e r . d u r a t i o n ( ) << ’ \ n ’ ;
44p h a l a n x _ t i m e _ a v e r a g e += t i m e r . d u r a t i o n ( ) ;
45}
46
47double mass [PARTICLE_COUNT ] ;
48V e c t o r 3 f P1 [PARTICLE_COUNT ] ;
49V e c t o r 3 f P2 [PARTICLE_COUNT ] ;
50V e c t o r 3 f P3 [PARTICLE_COUNT ] ;
51V e c t o r 3 f Gold [PARTICLE_COUNT ] ;
52
53i n t main ( i n t argc , char ** a rgv ) {
54us ing p h a l a n x : : communica tor ;
55communica tor . i n i t ( a rgc , a rgv ) ;
56communica tor . s e t _ h o s t s ( " 1 6 9 . 2 5 4 . 8 . 5 8 , 1 6 9 . 2 5 4 . 8 . 9 5 " ) ;
57communica tor . s e t _ w d i r ( " / home / m i c h a e l / b i n / mpiapp " ) ;
58s r a n d ( t ime (NULL) ) ;
59
60V e c t o r 3 f * newpos = P1 ;
61V e c t o r 3 f * o l d p o s = P2 ;
62V e c t o r 3 f * c u r p o s = P3 ;
63
64f o r ( unsigned i n t i = 0 ; i < PARTICLE_COUNT ; ++ i ) {
65c o n s t unsigned i n t P o s i t i o n F a c t o r = 8 0 ;
66
67o l d p o s [ i ] . x = c u r p o s [ i ] . x = ( double ) ( r and ( ) %

P o s i t i o n F a c t o r )
68− ( double ) P o s i t i o n F a c t o r / 2 ;
69o l d p o s [ i ] . y = c u r p o s [ i ] . y = ( double ) ( r and ( ) %

P o s i t i o n F a c t o r )
70− ( double ) P o s i t i o n F a c t o r / 2 ;
71o l d p o s [ i ] . z = c u r p o s [ i ] . z = ( double ) ( r and ( ) %

P o s i t i o n F a c t o r )
72− ( double ) P o s i t i o n F a c t o r / 2 ;
73
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74mass [ i ] = ( r and ( ) % 20) / 1 0 . 0 f ;
75
76V e c t o r 3 f c o l o r = { 1 . 0 f / PARTICLE_COUNT * i , 1 . 0 f ,

1 . 0 f } ;
77}
78f o r ( unsigned i n t T = 0 ; T < NUMBER_OF_FRAME; ++T ) {
79f p r i n t f ( s t d e r r , " Frame %d \ n " , T ) ;
80
81c o n s t double d t = 1 0 . 0 f / 3 0 ;
82
83i f ( VERIFY )
84h o s t _ n b o d y _ s i m u l a t i o n ( Gold , curpos , o ldpos , mass ,

PARTICLE_COUNT ,
85d t ) ;
86d e v i c e _ n b o d y _ s i m u l a t i o n ( newpos , curpos , o ldpos , mass ,

PARTICLE_COUNT ,
87d t ) ;
88
89f o r ( unsigned i n t i = 0 ; i < PARTICLE_COUNT ; ++ i ) {
90i f ( VERIFY ) {
91s t d : : c e r r << " c h e c k i n g i = " << i << ’ \ n ’ ;
92check ( Gold [ i ] . x , newpos [ i ] . x ) ;
93check ( Gold [ i ] . y , newpos [ i ] . y ) ;
94check ( Gold [ i ] . z , newpos [ i ] . z ) ;
95}
96
97i f ( newpos [ i ] . x != newpos [ i ] . x )
98newpos [ i ] . x = 0 ;
99i f ( newpos [ i ] . y != newpos [ i ] . y )
100newpos [ i ] . y = 0 ;
101i f ( newpos [ i ] . z != newpos [ i ] . z )
102newpos [ i ] . z = 0 ;
103}
104
105/ / r o t a t e p o i n t e r s
106V e c t o r 3 f * temp = o l d p o s ;
107o l d p o s = c u r p o s ;
108c u r p o s = newpos ;
109newpos = temp ;
110}
111s t d : : c e r r << " Average Time p e r Frame \ n " ;
112s t d : : c e r r << " \ t P h a l a n x = " << p h a l a n x _ t i m e _ a v e r a g e /

NUMBER_OF_FRAME << " \ n " ;
113s t d : : c e r r << " \ t Host = " << h o s t _ t i m e _ a v e r a g e /

NUMBER_OF_FRAME << " \ n " ;
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114
115communica tor . f i n a l i z e ( ) ;
116re turn 0 ;
117}

Listing A.5: NBody simulation kernel using shared memory.
1# d e f i n e BIG_G ( 8 0 . 0 f * 6 . 6 7 e−4) / / m o d i f i e d g r a v i t a t i o n

c o n s t a n t
2
3t y p e d e f s t r u c t {
4double x , y , z ;
5} V e c t o r 3 f ;
6
7enum {SHARED_CHUNK=1024};
8
9_ _ g l o b a l _ _
10void n b o d y S i m u l a t i o n K e r n e l ( V e c t o r 3 f NewPos [ ] , c o n s t V e c t o r 3 f

CurPos [ ] , c o n s t V e c t o r 3 f OldPos [ ] , c o n s t double Mass [ ] ,
c o n s t unsigned i n t count , c o n s t double d t ) {

11c o n s t unsigned i n t p idx = t h r e a d I d x . x + b l o c k I d x . x *
blockDim . x ;

12V e c t o r 3 f f o r c e ={0 , 0 , 0 } ;
13_ _ s h a r e d _ _ V e c t o r 3 f shCurPos [SHARED_CHUNK ] ;
14_ _ s h a r e d _ _ double shMass [SHARED_CHUNK ] ;
15c o n s t V e c t o r 3 f pos = CurPos [ p idx ] ;
16c o n s t V e c t o r 3 f o l d p o s = OldPos [ p idx ] ;
17c o n s t double mass = Mass [ p idx ] ;
18V e c t o r 3 f newpos = NewPos [ p idx ] ;
19/ / N body p h y s i c s
20f o r ( unsigned i n t h =0; h< c o u n t /SHARED_CHUNK; ++h ) {
21/ / Pre load
22_ _ s y n c t h r e a d s ( ) ;
23shCurPos [ t h r e a d I d x . x ] = CurPos [ h*SHARED_CHUNK+

t h r e a d I d x . x ] ;
24shMass [ t h r e a d I d x . x ] = Mass [ h*SHARED_CHUNK+ t h r e a d I d x . x

] ;
25_ _ s y n c t h r e a d s ( ) ;
26/ / N body p h y s i c s
27f o r ( unsigned i n t k =0; k<SHARED_CHUNK; ++k ) {
28i f ( ( k+SHARED_CHUNK*h ) != p idx ) {
29c o n s t V e c t o r 3 f o t h e r _ p o s = shCurPos [ k ] ;
30c o n s t double o t h e r _ m a s s = shMass [ k ] ;
31
32double mass2 = o t h e r _ m a s s ;
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33V e c t o r 3 f d i f f p o s = {
34o t h e r _ p o s . x − pos . x ,
35o t h e r _ p o s . y − pos . y ,
36o t h e r _ p o s . z − pos . z ,
37} ;
38double d i s t _ s q u a r e = d i f f p o s . x* d i f f p o s . x +

d i f f p o s . y* d i f f p o s . y + d i f f p o s . z * d i f f p o s . z ;
39double d i s t _ i n v _ c u b e = r s q r t ( d i s t _ s q u a r e *

d i s t _ s q u a r e * d i s t _ s q u a r e ) ;
40f o r c e . x += BIG_G * mass2 * d i f f p o s . x *

d i s t _ i n v _ c u b e ;
41f o r c e . y += BIG_G * mass2 * d i f f p o s . y *

d i s t _ i n v _ c u b e ;
42f o r c e . z += BIG_G * mass2 * d i f f p o s . z *

d i s t _ i n v _ c u b e ;
43}
44}
45}
46/ / V e r l e t i n t e g r a t i o n
47V e c t o r 3 f a c c e l = { f o r c e . x , f o r c e . y , f o r c e . z } ;
48newpos . x = 2* pos . x − o l d p o s . x + a c c e l . x* d t * d t ;
49newpos . y = 2* pos . y − o l d p o s . y + a c c e l . y* d t * d t ;
50newpos . z = 2* pos . z − o l d p o s . z + a c c e l . z * d t * d t ;
51NewPos [ p idx ] = newpos ;
52}

Listing A.6: Serial NBody simulation function.
1void n b o d y S i m u l a t i o n S e r i a l ( V e c t o r 3 f NewPos [ ] , c o n s t V e c t o r 3 f

CurPos [ ] , c o n s t V e c t o r 3 f OldPos [ ] , c o n s t double Mass [ ] ,
c o n s t unsigned i n t count , c o n s t double d t ) {

2f o r ( unsigned i n t p idx = 0 ; p idx < c o u n t ; ++ p idx ) { / / f o r
e v e r y p a r t i c l e

3V e c t o r 3 f f o r c e = { 0 , 0 , 0 } ;
4c o n s t V e c t o r 3 f & pos = CurPos [ p idx ] ;
5c o n s t V e c t o r 3 f & o l d p o s = OldPos [ p idx ] ;
6c o n s t double & mass = Mass [ p idx ] ;
7V e c t o r 3 f & newpos = NewPos [ p idx ] ;
8/ / N body p h y s i c s
9f o r ( unsigned i n t k = 0 ; k < c o u n t ; ++k ) {
10i f ( k != p idx ) {
11c o n s t V e c t o r 3 f & o t h e r _ p o s = CurPos [ k ] ;
12c o n s t double & o t h e r _ m a s s = Mass [ k ] ;
13double mass2 = mass * o t h e r _ m a s s ;
14V e c t o r 3 f d i f f p o s = { o t h e r _ p o s . x − pos . x ,
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o t h e r _ p o s . y − pos . y ,
15o t h e r _ p o s . z − pos . z , } ;
16double d i s t _ s q r t = d i f f p o s . x * d i f f p o s . x +

d i f f p o s . y * d i f f p o s . y
17+ d i f f p o s . z * d i f f p o s . z ;
18double d i s t _ c u b e = s q r t ( d i s t _ s q r t * d i s t _ s q r t *

d i s t _ s q r t ) ;
19f o r c e . x += BIG_G * mass2 * d i f f p o s . x /

d i s t _ c u b e ;
20f o r c e . y += BIG_G * mass2 * d i f f p o s . y /

d i s t _ c u b e ;
21f o r c e . z += BIG_G * mass2 * d i f f p o s . z /

d i s t _ c u b e ;
22}
23}
24V e c t o r 3 f a c c e l = { f o r c e . x / mass , f o r c e . y / mass ,

f o r c e . z / mass } ;
25/ / v e r l e t i n t e g r a t i o n
26newpos . x = 2 * pos . x − o l d p o s . x + a c c e l . x * d t * d t ;
27newpos . y = 2 * pos . y − o l d p o s . y + a c c e l . y * d t * d t ;
28newpos . z = 2 * pos . z − o l d p o s . z + a c c e l . z * d t * d t ;
29}
30}
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