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ABSTRACT

Hidden Markov Models for Software Piracy Detection

by Shabana Kazi

The unauthorized copying of software is often referred to as software piracy. Soft-

ware piracy causes billions of dollars of annual losses for companies and governments

worldwide.

In this project, we analyze a method for detecting software piracy. A meta-

morphic generator is used to create morphed copies of a base piece of software. A

hidden Markov Model is trained on the opcode sequences extracted from these mor-

phed copies. The trained model is then used to score suspect software to determine

its similarity to the base software. A high score indicates that the suspect software

may be a modified version of the base software and, therefore, further investigation

is warranted. In contrast, a low score indicates that the suspect software differs sig-

nificantly from the base software. We show that our approach is robust, in the sense

that the base software must be extensively modified before it is not detected.
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CHAPTER 1

Introduction

Software piracy is referred to as the unauthorized use of software [19]. It also

includes the illegal copying of copyrighted software or the installation of copyrighted

software on more computers than permitted under the terms of the software license

agreement [19].

Business Software Alliance (BSA) is a leading advocate for the global software

industry. BSA serves as the worlds premier anti-piracy organization. According to

the 2010 BSA Global Software Piracy Study, the commercial value of software piracy

grew 14 percent globally in 2010 to a record high total of $58.8 billion This amount

has almost doubled since 2003 [14]. These funds could have been used to spur new

jobs or innovation by the software companies. Thus in turn, the software industry

incurs huge losses. For every dollar of PC software sold, around $3 to $4 is lost as

revenues [20].

Users using pirated copies of software are also vulnerable to virus attacks. Secu-

rity threats like Trojans, spyware, worms and viruses are built to exploit the vulner-

abilities in any software products. This forces software developers to release patches

and fixes to counter the emerging malware issues. Consumers using pirated, unli-

censed products are usually unable to benefit from the patches and important up-

dates, which would keep their systems, secure [20]. Eventually, this leads to these

consumers being more predisposed to attacks over long term. There are other dis-

advantages of using software piracy. Consumers do not receive technical support,

documentation or manuals [20]. Through pirated versions, users can get incomplete
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or trial versions of the software [20]. Moreover, a user’s computer could be infected

with viruses for remote-controlled cyber crime [20].

The goal of this project is to develop and test a tool that can be used to detect

pirated software. Our technique can be used if a company suspects that their copy-

righted software has been illegally copied. Using a novel technique based on hidden

Markov models, the original software is scored against the suspected pirated copy. A

high score indicates that further investigation is warranted, while a low score indicates

that the two pieces of software are almost certainly distinct. Scores can be computed

after the original software has been distributed and no special effort is required dur-

ing the software development process. Our scoring technique uses executable files

only, i.e., no source code is required. In addition, our technique relies only on sta-

tistical analysis neither the original nor the suspect code is executed and the scoring

technique is fast and efficient. Extensive experimental results provided in this paper

indicate that our approach is robust, in the sense that the original software must be

extensively modified before we are unable to detect a high degree of similarity to the

original code.

We would like to highlight here that our technique differs from the plagiarism

detection techniques. When a possible plagiarized document is compared against a

registered document, information retrieval techniques are employed until two para-

graphs are found which are related highly semantically. The paragraphs are compared

minutely, on a per-sentence basis, in order to find out if the paragraphs have common

sequences of words [18] [11]. In order to detect plagiarism in short computer pro-

gramming homework, students writing code for the same assignment may have many

common sequences. This is because all the students work on the same homework pro-

gramming problem [3]. Thus, our technique cannot be used for plagiarism detection,

2



since most of the students’ programs will score high in our detection technique even

if they have not copied from each other.

Our technique has been inspired by previous research work done on detection of

metamorphic viruses [26]. It is difficult to detect metamorphic viruses. A signature-

based scanner may not be able to detect viral code even if there are small changes.

Moreover, the signature database needs to be constantly updated to detect newly mor-

phed variations. In this research [26], the Hidden Markov Model (HMM) was trained

using viruses and the trained models were able to classify a particular virus family

from non-viral programs [26]. In further research work that was done, the HMM was

trained to detect a specific copy of software. The experimental results proved that

even after the original software is extensively modified; it could be identified [13].

The report is organized as follows. Section 2 discusses background material

on metamorphic software and hidden Markov models. In Section 3, we provide an

overview of the design of our piracy detection technique. Section 4 contains details

on how our approach has been implemented. Experiments are explained in Section

5. Section 6 discusses the results and observations. Finally, Sections 6 and 7 contain

our conclusions and a discussion of future work, respectively.
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CHAPTER 2

Background

2.1 Metamorphic Software

Metamorphism is used for changing a piece of code into copies that functionally

perform the same task, but differ structurally. This method has been used by virus

and malware writers to create viruses that would go undetected by the anti-virus

detection programs [1].

Metamorphism has positive applications as well. It can also be used to increase

the diversity of software [22]. In the paper [23], an analogy has been drawn between

software and a biological system. If a biological system is attacked by a disease, a

large percentage of population survives [23]. This is partly because of the genetic

variety of the population. However, software tends toward a monoculture. Due to

this, an attack which is successful on a piece of software, succeeds on every other

instance of the software [6]. In metamorphic software, the same attack will not be

successful on the different copies of the software [6].

2.1.1 Metamorphic Techniques

This section describes some common techniques of generating metamorphic code.

These techniques are discussed below.

2.1.1.1 Garbage Code Insertion (Dead Code Insertion)

The simplest method of morphing used by a metamorphic engine is to change

the byte sequence of code by inserting dead code [16]. The inserted instructions do

not have any effect on the functionality of the program [9]. Garbage (dead) code is
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equivalent to a null operation. The code inserted is never executed, so there is no

semantic effect on the software [2]. An example of dead code insertion appears in

Table 1.

Table 1: Example of Dead Code Insertion

Original Code Transformed Code

mov eax, 1034h mov eax, 1034h
sub eax jmp loc

push ebp
pop ebp
sub esp, 18h

loc: sub eax,1

2.1.1.2 Permutation Techniques

In this technique, the metamorphosis is carried out by dividing the code into

frames. Then the frames are positioned at random and are connected by branch

instructions. This is done in order to maintain the flow of the process. The branch

instructions can be jump statements [5]. Figure 1 illustrates the Permutation Tech-

nique.

2.1.1.3 Insertion of Jump Instructions

JMP is an assembly language instruction, which carries out an unconditional

jump. It takes a memory address as an argument, which is a label in assembly

language [16]. The JMP instruction is used to change the targeted instruction address.

However, the flow of the program does not change [16]. Figure 2 illustrates the

insertion of Jump instructions.
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Figure 1: Permutation Technique.

Figure 2: Illustration of insertion of JMP statements [25]

2.1.1.4 Instruction Replacement

In this technique, a particular instruction is replaced by an equivalent instruction

or a set of instructions are replaced by an equivalent set of instructions. For example,

the instruction xor eax, eax can be replaced with the instruction sub eax, eax [9].

Table 2 illustrates an example.
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Table 2: Example of Instruction Replacement

Original Code Transformed Code

add eax, 05H add eax, 04H
mov al, bl add eax, 01H

push al
pop bl

2.2 Hidden Markov Model

A statistical model that has states and known probabilities of the state transitions

is called a Markov model [21]. In such a Markov model, the states are visible to the

observer. In contrast, a hidden Markov model (HMM) has states that are not directly

observable [15]. A hidden Markov model consists of state transition probabilities, a

probability distribution for all possible output symbols for each state, and initial state

probabilities [21]. A hidden Markov model is a machine learning technique, which

uses a discrete hill climb technique [21]. HMMs have been successfully used in speech

recognition [17], malware detection [12] and a variety of other problems. It is used

because of its efficient algorithm.

The following notation can be used to describe an HMM [21]:

T → Length of the observation sequence

N → Number of states in the model

M → Number of observation symbols

Q = {q0, q1, . . . , qN−1} → Number of observation symbols

V = {0, 1, . . . ,M − 1} → Set of possible observations

A→ state transition probabilities

B → observation probability matrix

π → initial state distribution

O = (O0, O1, . . . , OT−1)→ observation sequence
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Figure 3: A Hidden Markov Model

A hidden Markov model is defined by the matrices A, B and π. Therefore, we

denote an HMM as λ = (A,B, π). Figure 3 represents a hidden Markov model. The

following three problems can be solved using the efficient algorithms of HMM:

Problem 1: Given a model λ = (A,B, π) and an observation sequence O, we

need to find P (O|λ). That is, an observation sequence that can be scored to see how

well it fits a given model [21].

Problem 2: Given λ = (A,B, π) and O, we can determine an optimal state

sequence for the Markov model. That is, the most likely hidden state sequence can

be uncovered [21].

Problem 3: Given O, N , and M , we can find a model λ that maximizes proba-

bility of O. This is the training of a model in order to best fit an observation sequence

[21].

In this project, the algorithms for Problems 1 and 3 are used. First, we train a

model based on a given base piece of software (Problem 3). Then the model obtained

can be used to score any other piece of code against the model (Problem 1). A high

score would indicate a high degree of similarity with the base code. The next section

discusses the overall design overview.
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CHAPTER 3

Design Overview

The aim of our project is to design and build a robust software piracy detecting

method. We consider a scenario where we suspect that our software has been stolen

and modified to avoid being detected. Our goal is to be able to detect that the

suspected piece of software has been copied from our software.

Our design has been inspired by research done in previous studies [13]. The

system mainly comprises of two main phases. They are the training and detection

phases. In the training phase, a hidden Markov model is trained using morphed

copies of the base software. In the detection phase, we test the closeness of a piece of

software to the original base software.

3.1 Training

In this phase, slightly morphed copies of the base software are created. The

opcode sequences from these morphed copies are extracted and appended. A hidden

Markov model is trained using the extracted sequence. Morphed copies of the base

software is used to avoid having the HMM overfit the training data [24]. The training

phase is represented in Figure 4.

3.2 Detection

In this phase, the opcode sequence from a given piece of suspected software is

extracted. The sequence is scored against the trained HMM, which was generated in

the previous phase. A high score would signify that the suspected software is similar

to the original software. A low score would signify that the suspected software is not

9



Figure 4: Training Phase [13]

similar to the original software [24]. Figure 5 illustrates the detection phase.

Figure 5: Detection Phase

3.3 Design of Metamorphic Generator

The design of the metamorphic generator was inspired by the research done

in [13]. Our metamorphic generator produces morphed copies from a given piece of

software. As discussed in Section 2.1.1, there are a number of metamorphic techniques

that can be used to generate metamorphic software. In this project, we have used
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only dead code insertion. We take the disassembled code of the original base software

and apply morphing to it. IDA Pro DisAssembler 5.0 [7] was used to generate the

disassembled file.

In our experiments, we have considered percentage of morphing/tampering. The

tampering percentage indicates the number of assembly code instructions that is

inserted from some other program into the base program. The tampering percentage

is a metric in our experiment, by which we can measure the success of our detection

rate. We try to simulate how an attacker would attack a piece of software by using the

tampering percentage. The best way we could increase the size of our base program,

and measure the detection rate against the tampering percentage, is by using dead

code insertion. Moreover, with dead code insertion, the control and data flow of the

software is not affected.

There are four parameters that are used for the functioning of our metamorphic

generator. The parameters are the file that needs to be morphed; the percentage of

morphing that is to be done, the number of blocks that need to be inserted into the

assembly code and finally the number of morphed copies of the file that need to be

generated. The total number of assembly code instructions that need to be inserted

into base software are divided into blocks.

For example, let us consider a file xyz.asm to be morphed. Suppose the file

has 100 assembly code instruction lines. We consider all the parameters as amount

of morphing to be done as 20%, the number of blocks to be inserted as 4 and the

number of morphed copies to be generated as 100. Therefore, each morphed copy

will comprise of 120 lines. The 20 lines that will be inserted into the xyz.asm are

divided into 4 blocks and each block comprises of 5 lines. The 4 blocks are equally

distributed into xyz.asm. So, in this case, each block is inserted after every 25 lines

11



of the file xyz.asm. Finally, 100 morphed copies of xyz.asm are generated. Figure 6

is a representation of a metamorphic generator. The pictographic representation of

the morphing of xyz.asm is given in Figure 7.

The next section discusses the implementation of the metamorphic generator and

training of the HMM.

Figure 6: Metamorphic Generator
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Figure 7: Inserting Blocks
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CHAPTER 4

Implementation

In this section, we discuss how the metamorphic generator has been implemented

and how the training of the HMM has been conducted. The training of HMM has

been inspired by the work done in [26]. The metamorphic generator is used to produce

morphed and “tampered” copies of the original software. The HMM is trained using

these morphed copies.

4.1 Metamorphic Generator

The metamorphic generator was implemented using Java. The program is named

morph.java. In this generator, dead code insertion technique was used. This was done,

so that the control and data flow of the software is not changed. The parameters that

are given to the program are the morphing percentage, the number of blocks that

will be inserted into the base file and the number of morphed files that need to be

generated. The final output obtained is morphed files. In all the experiments, 10%

of morphing is used. The program inserts dead code into the specified base file from

other files. The number of assembly line instructions that need to be inserted into the

base file from other files is calculated using the percentage of morphing. The starting

points of the lines that are selected from the other file for insertion are selected

randomly. Let us consider an example.

Let the disassembled file that needs to be morphed be base.asm. We consider

another disassembled file called deadcode.asm. Lines from deadcode.asm will be

inserted into base.asm for morphing. Let the number of lines in base.asm be 1000

lines. We consider 10% of morphing and 4 blocks of insertion. Therefore, totally 100

14



lines will be inserted into base.asm. Also the 100 lines from deadcode.asm will be

divided into 4 blocks of 25 lines each. The four blocks will be distributed evenly in the

file base.asm. For the first block, a random line is selected in deadcode.asm. Then, the

next consecutive 25 lines from deadcode.asm are selected for inserting into base.asm.

The first block is inserted after 250 lines of base.asm. The similar process takes place

for the second and third block insertion. Finally, the fourth block is inserted at the

end of base.asm file. The pseudo code for morph.java is in Appendix B.

We have also implemented another metamorphic generator using Java. This

program is called tamper.java. This program was used to test the robustness of our

approach. We use the term “tampering” instead of morphing for the detection phase.

We tamper the base file by inserting dead code from other files. The amount of dead

code to be inserted is determined by the percentage of tampering. This program uses

the similar logic as morph.java. It generates tampered (morphed) files by inserting 1

block, 2 blocks, 4 blocks, 8 blocks, 16 blocks, and 32 blocks into the base file. For each

block insertion, tampering percentage of 10% to 100% is considered. A hundred files

are generated for each tampering percentage. The process of selection and insertion

of lines from other files is similar to the process followed in morph.java.

Let us consider an example for tampering. We consider a disassembled file called

deadcode2.asm. Suppose the file base.asm has 1000 assembly code instruction lines.

We consider 60% of tampering and 4 blocks of insertion. Therefore, totally 600

lines will be inserted into base.asm. Also the 600 lines from deadcode2.asm will be

divided into 4 blocks of 150 lines each. The four blocks will be distributed evenly

in the file base.asm. For the first block, a random line is selected in deadcode2.asm.

Then, the next consecutive 150 lines from deadcode2.asm are selected for inserting

into base.asm. The first block is inserted after 250 lines of base.asm. The similar

15



process takes place for the second and third block insertion. Finally, the fourth block

is inserted at the end of base.asm file.

4.2 Training the HMM

The morphed copies that are generated using the metamorphic generator are

used as dataset for training the HMM [26]. The opcode sequences are extracted from

each morphed copy and concatenated to obtain a long observation sequence [13] [26].

The cross-validation technique was used for the process of training [8].

A five-fold cross-validation was used in the experiments for this project. In order

to train a model, one of the subsets is selected as test data. The remaining four

subsets are selected as training data for HMM [13]. The test data along with the

other normal files are used for scoring. This process is done over five iterations. In

each iteration, the test data subset and training data subset is altered [13] [26].

We observe that the test data files score high. On the other hand, normal files

score low. The threshold is set by considering the highest scores of the low scoring

files (normal files) [13]. The reason why this happens is because the test data is

similar to the training files that have been used to train the hidden Markov model.

Since the normal files, that have been selected to set the threshold, are different from

the training set files, therefore they score low.

During the detection phase, a given piece of software is scored against the trained

model. If the score is above the set threshold, then the piece of software is similar to

the original software. If the score is lower than the threshold, then this means that

the piece of software is not similar to the base software [24]. Figure 8 illustrates the

training phase.
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The next section discusses the experiments conducted.

Figure 8: Training of HMM
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CHAPTER 5

Experiments

We carried out a number of experiments to test the robustness of our approach.

In each experiment, we considered 10 Cygwin utility files as base files. The sizes of the

files were within the range of 80 to 110 KB. IDA Pro DisAssembler 5.0 [7] was used

to generate the disassembled file. We will describe below how the first experiment

was conducted.

5.1 Experiment 1

We considered a Cygwin utility file as the base file. We used the metamorphic

generator to generate 100 morphed copies of the base file. Morphing was done by

considering slight morphing percent of 10% and by inserting 1 block of dead code.

The morphing and block insertion was done as explained in Section 3.3. The hidden

Markov model was trained using the 100 morphed copies. A five-fold cross validation

technique was applied. Eighty files from the morphed copies were used to train the

model and the 20 files were used to test. The normal files that were used as the test

data to set the threshold for the experiment consisted of 15 executables from Cygwin

version 1.5.19 [26]; see Figure 8. Morphed copies of the base software are used to

avoid having the HMM overfit the training data [24].

In order to determine the robustness of the approach, the base software was

tampered for detection phase. The insertion of code from other files was done in

order to make the tampered files look more like other files. The reason for doing this

is if someone steals and copies the base software, they will tend to make the original

software look more like some other program rather than the original program.
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There were a number of parameters considered for tampering. First was the

number of blocks of dead code that were inserted into the base file. For each block

insertion, 10% to 100% of tampering was carried out. For each tampering percentage,

100 tampered files were generated. Blocks of 1, 2, 4, 8, 16 and 32 were inserted into

the base file. In total, there were 6000 tampered files that were generated for the

first Cygwin base file. These tampered files were scored against the trained model as

described in Section 3.3. The HMM based similarity scores were generated and we

developed a script to print the number of files that scored above the threshold for

each of the 100 files. Figure 9 illustrates the representation of the generation of the

tampered files and scoring against the trained model.

This experiment was repeated nine more times by considering nine more different

base files. Totally 60,000 tampered files were generated for the ten different base files.

The number of files that score above the threshold were averaged for corresponding

block and percentage of tampering. For example, for all 10 Cygwin files for 1 block of

10% tampering, the number of files that scored above the threshold is averaged. This

gives the detection rate. Figure 10 illustrates how the average is calculated. This

process was carried out for all the percentage of tampering for each corresponding

block of tampering.

In experiments 2, 3, 4, 5 and 6, the HMM was trained by inserting 2, 4, 8, 16,

32 blocks respectively. For each experiment, tampering was carried out by inserting

1, 2, 4, 8, 16 and 32 blocks of code and for each block tampering, 10% to 100% of

tampering was considered. The approach followed in the experiments was similar to

the experiment procedure carried out in Experiment 1. Figure 11 represents all the

experiments carried out.
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Figure 9: Tampered files generation for Experiment 1
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Figure 10: Detection rate average calculation
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Figure 11: Representation of all experiments
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CHAPTER 6

Results and Observations

This section describes the results obtained and observations made in each ex-

periment. Since the results are almost the same for the different trained models,

we have described the results obtained in Experiments 1 and 6. For the rest of the

experiments, the results are in the Appendix C.

6.1 Experiment 1: Training by morphing with 1 block

There were a number of observations that were made in this experiment. Firstly,

for 1 block of tampering with up to 40% of tampering, more than 50% of files are

classified as the original base file. Beyond, 60% and 1 block of tampering, no files are

classified as the original base file. This happens because as more and more dead code

is inserted at the end of the base program, it looks less similar to the original base

file. Secondly, for 2, 4, 8 and 16 blocks of tampering, with up to 50% of tampering

more than 50% of files are classified as base file. For 32 blocks of tampering, with up

to 30% of tampering, more than 50% of files are classified as base file. The detection

rate for 32 blocks of tampering is lower than the other blocks of tampering. This

happens because with 32 blocks of tampering, a high number of segments of dead

code are inserted into the base file. Due to this, the tampered files looks more like

some other file rather than the original file. Figure 12 gives the detection results.

The detection results for experiments 2, 3, 4 and 5 are given in Appendix C.
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Figure 12: Experiment 1 Detection Results

6.2 Experiment 6: Training by morphing with 32 blocks

In this experiment, the hidden Markov model was generated by training with

morphed files which had 32 blocks of insertion. Firstly, for 1 and 16 blocks of tam-

pering, with up to 40% of tampering, more than 50% of files are classified as the

original base file. Beyond, 60% and 1 block of tampering, no files are classified as the

original base file. This happens because as more and more dead code is inserted at

the end of the base program, it looks less similar to the original base file. Secondly,

for 2 and 8 blocks of tampering, with up to 50% of tampering more than 50% of files

are classified as base file. For 4 blocks of tampering, with up to 60% of tampering

more than 50% of files are classified as base file. For 32 blocks of tampering, with

up to 30% of tampering, more than 50% of files are classified as base file. Figure 13

represents the detection results.

Figure 14 is a 3-dimensional representation of the detection rate, tampering rate
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Figure 13: Experiment 6 Detection Results

and number of blocks inserted for tampering. From the figure, we can observe that as

the tampering rate increases, the detection rate reduces. The detection rate is higher

at lower tampering rates. The graph indicates that if an attacker tampers the original

software by more than 60%, then the chances that the tampered software would go

undetected is higher. From Figure 12 and Figure 13, we can conclude the best way

an attacker can tamper the code. If an attacker inserts a block of code at the end

of the program and uses a tampering percentage of 60% or more, the tampered file

would go undetected.
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Figure 14: Results Summary
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CHAPTER 7

Conclusion

The experimental results show that the scheme is robust.As the tampering rates

increase, the detection rate of base files decreases.

We observed that models that were generated by inserting different blocks of

code in the base file performed almost the same. For one block of insertion, no

tampered files were classified as base file beyond 60% of tampering. This happens

because as the percentage of tampering increases, more and more lines of code from

some other file is inserted at the end of the base file. Detection rates of 4 blocks, 8

blocks and 16 blocks of tampering showed the best results compared to other blocks

of insertion. Overall, on an average more than 50% of files were detected with up to

50% of tampering. In other words, if an attacker tampers a piece of software by up

to 50% of dead code insertion, our approach would have a high chance of detecting

the tampered software.
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CHAPTER 8

Future work

The future work would be to try metamorphism in different ways. Other methods

of morphing such as code substitution should be experimented with. More experi-

ments on other types of files should also be carried out to test this approach. Since

inserting large blocks of data at the end of base file goes undetected, ways to han-

dle this form of tampering is worth researching. More research on the way to train

HMM should be done in order to be able to detect files that have been tampered by

inserting code at the end of the base program. Also, for more than 50% of tamper-

ing, the success rate of classification of base file decreases. Therefore, more research

needs to be done in order to detect software that was tampered by more than 50%.

Moreover, models with different percentage of morphing can also be generated and

scored against to test the results.

28



LIST OF REFERENCES

[1] Birrer B. D., Raines R. A., Baldwin R. O., Mullins B. E. & Bennington R.W.
(2007). Program Fragmentation as a Metamorphic Software Protection. In Pro-
ceedings of the Third International Symposium on Information Assurance and
Security (pp. 369–374). Washington DC, USA: IEEE Computer Society

[2] Cesare, S. (2010, May). Fast Automated Unpacking and Classification of
Malware. Masters Thesis, Central Queensland University. Retrieved on April 1,
2012 from
http://www.scribd.com/doc/43697483/Fast-Automated-Unpacking-and-

-Classification-of-Malware/

[3] Costello F., Bleakley C.& Aliefendic S.(n.d).Using whitespace patterns to detect
plagiarism in program code. Retrieved on April 1, 2012 from
http://www.csi.ucd.ie/content/using-whitespace-patterns

-detect-plagiarism-program-code

[4] Cronin G.(2002). A Taxonomy of Methods for Software Piracy Prevention. Tech-
nical Report, University of Auckland, New Zealand. Retrieved on March 25, 2012
from
http://www.croninsolutions.com/writing/piracytaxonomy.pdf

[5] Finones R.G. and Fernandez R.T(2006, March). Solving the metamorphic puzzle.
Virus Bulletin, pp. 14–19.

[6] Gao X. & Stamp M. (2005). Metamorphic Software for Buffer Overflow Mit-
igation. In Proceedings of the 2005 Conference on Computer Science and its
Applications. Retrieved on March 27, 2012, from
http://www.cs.sjsu.edu/faculty/stamp/papers/BufferOverflow.doc

[7] IDA Pro DisAssembler
http://www.hex-rays.com/index.shtml/

[8] Kohavi R. (1995). A study of cross-validation and bootstrap for accuracy es-
timation and model selection. In Proceedings of the 14th International Joint
Conference on Artificial Intelligence (pp. 1137–1143).

[9] Konstantinou E. (2008, January). Metamorphic Virus: Analysis and Detection.
Technical Report, Royal Holloway, University of London. Retrieved on March
15, 2012, from
http://www.ma.rhul.ac.uk/static/techrep/2008/RHUL-MA-2008-02.pdf/

29



[10] Lin D. & Stamp M. (2011). Hunting for undetectable metamorphic virus. Journal
in Computer Virology, 7(3), pp. 201–214.

[11] Lukashenko R., Graudina V. & Grundspenkis J. (2007). Computer-Based Pla-
giarism Detection Methods and Tools: An Overview. In Proceedings of the 2007
international conference on Computer systems and technologies (pp. 1–6). New
York, NY, USA: ACM.

[12] Muhaya F. B., Khan M. K. & Y. Xiang (2011). Polymorphic Malware Detec-
tion Using Hierarchical Hidden Markov Model. In Proceedings of the 2011 IEEE
Ninth International Conference on Dependable, Autonomic and Secure Comput-
ing (pp. 151–155). Washington DC, USA: IEEE Computer Society

[13] Mungale M. (2011, May). Robust watermarking using hidden Markov models.
Masters Thesis, Department of Computer Science, San Jose State University.
Retrieved on September 1, 2011, from
http://www.cs.sjsu.edu/faculty/stamp/students/mungale_mausami.pdf/

[14] 2010 Piracy Study. Retrieved on March 1, 2011, from
http://portal.bsa.org/globalpiracy2010/downloads/study_pdf/

2010_BSA_Piracy_Study-Standard.pdf/

[15] Rabiner L.R. (1989). A tutorial on hidden Markov models and selected applica-
tions in speech recognition. In Proceedings of the IEEE (pp. 257–286).

[16] Rad B.B. & Masrom M. Metamorphic virus variants classification using op-
code frequency histogram (2010). In Proceedings of the 14th WSEAS interna-
tional conference on Computers (pp. 147–155). Stevens Point, Wisconsin, USA:
WSEAS.

[17] Rigoll G. (1994). Maximum Mutual Information Neural Networks for Hybrid
Connectionist-HMM Speech Recognition Systems. IEEE Transactions on Speech
and Audio processing, 2(1), pp. 175–184.

[18] Si A., Leong H. V. & Lau R. W. H. (1997). CHECK: A Document Plagiarism
Detection System. In Proceedings of the 1997 ACM Symposium on Applied Com-
puting (pp. 70–77). New York, NY, USA: ACM.

[19] Software Piracy. Retrieved on March 1, 2011, from
http://www.bsa.org/country/Anti-Piracy/What-is-Software-Piracy.aspx/

[20] Software Piracy on the Internet: A threat to the security. Retrieved on March
1, 2011, from
http://portal.bsa.org/internetreport2009/2009internetpiracyreport.pdf/

30



[21] Stamp M (2004). A Revealing Introduction to Hidden Markov Models. Retrieved
on November 1, 2011, from
http://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf/

[22] Stamp M. (2010). Information Security: Principles and Practice, (2nd edition).
Hoboken: Wiley.

[23] Stamp M.(2004, March). Risks of Monoculture. Communications of the ACM —
Homeland Security, 47(3), p. 120.

[24] Stamp M. & Mungale M. (2011). Software Similarity and Metamorphic Detec-
tion. In Proceedings of 2012 International Conference on Security & Management
(SAM ’12).

[25] Ször P. & Ferrie P. (2001, September). Hunting for metamorphic.Virus Bulletin
Conference.

[26] Wong W. & Stamp M. (2006) Hunting for metamorphic engines. Journal in
Computer Virology, 2(3), pp. 211–229.

31



APPENDIX A

Programs used

Table A.3: Programs used

Program Name Functionality

morph.java This program is used to generate 100 mor-
phed copies with 10% of morphing.

tamper.java This program is used to generate tampered
copies by inserting 1 block, 2 blocks, 4 blocks,
8 blocks, 16 blocks , 32 blocks and tampering
percentage from 10% to 100%

scoring.sh This script is used to score all the tampered
files against the corresponding model and
count the number of files that score above
the threshold.

average scoring.sh This script is used to average the count of
files that are above the threshold for 10 Cyg-
win files

cross-validate.rb [5] Performs k-fold cross validation
compareAsm.rb [5] Reads and compares two assembly programs

specified by filename1 and filename2
hmm score.rb [5] Used by read-train-test to find the log Like-

lihood per opcode of a file
read-train-test.rb [5] Perform one round of K-fold cross validation.

Read virus assembly files from DataSet, ex-
cluding viruses in the selected test set. Write
data file (.in) and alphabet file (.alphabet)
for HMM training to directory ’TrainFile’.
Train a HMM with files in training set and
write model to file (.model)in directory

score.rb [5] Score input ASM file using the model stored
in model file
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APPENDIX B

Pseudocode for morph.java

numoflines_base = countlines(basefile) //The number of lines of base file is

//calculated by calling the countlines

//function

numoflines_normal = countlines(normalfile) //The number of lines of normal file

//is calculated by calling the

//countlines function

linestoinsert = morphingpercent/100 * numoflines_base //The lines to insert for

// morphing is calculated

partition = (numoflines_base / block); //This determines after how many lines

//in the base file the blocks need to

//be inserted

blockinsert = linestoinsert / block; // This determines the number of lines in

// each block

for int i = 0 to 100

begin for

for int j=0 to block

begin for

/* In this function the source file to copy from, the starting line of source

file,ending line of source file and the destination file are given as parameters*/

copylines(basefile, startpoint, startpoint+partition-1, IDANi)

if(blockinsert> numoflines_normal)

print Error: There are more lines to print that present in normal file

else begin

randomrange = numoflines_normal blockinsert

randomnumber = rand(randomrange)

copylines(normalfile, randomnumber, randomnumber+blockinsert, IDANi)

startpoint = startpoint + partition

end else

end for

end for

end for
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APPENDIX C

Experiment Results

C.0.1 Experiment 2: Training by morphing with 2 blocks

Figure C.15 represents the detection results.

Figure C.15: Experiment 2 Detection Results

C.0.2 Experiment 3: Training by morphing with 4 blocks

Figure C.16 represents the detection results.

C.0.3 Experiment 4: Training by morphing with 8 blocks

Figure C.17 represents the detection results.
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Figure C.16: Experiment 3 Detection Results

Figure C.17: Experiment 4 Detection Results

C.0.4 Experiment 5: Training by morphing with 16 blocks

Figure C.18 represents the detection results.

35



Figure C.18: Experiment 5 Detection Results
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