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Abstract

Metagenome – Processing and  Analysis

by

Sheetal Gosrani

Metagenome means “multiple genomes” and the study of culture independent genomic content 

in environment is called metagenomics. Because of the advent of powerful and economic next 

generation sequencing technology, sequencing has become cheaper and faster and thus the study of 

genes and phenotypes is transitioning from single organism to that of a community present in the 

natural environmental sample. Once sequence data are obtained from an environmental sample, the 

challenge is to process, assemble and bin the metagenome data in order to get as accurate and complete 

a representation of the populations present in the community or to get high confident draft assembly. 

In this paper we describe the existing bioinformatics workflow to process the metagenomic 

data. Next, we examine one way of parallelizing the sequence similarity program on a High 

Performance Computing (HPC) cluster since sequence similarity is the most common and frequently 

used technique throughout the metagenome data processing and analyzing steps. In order to address the 

challenges involved in analyzing the result file obtained from sequence similarity program, we 

developed a web application tool called Contig Analysis Tool (CAT). Later, we applied the tools and 

techniques to the real world virome metagenomic data i.e., to the genomes of all the viruses present in 

the environmental sample obtained from microbial mats derived from hot springs in Yellowstone 

National Park. There are several challenges associated with the assembly and binning of virome data 

particularly because of the following reasons: 1. Not many viral sequence data in the existing databases 

for sequence similarity. 2. No reference genome 3. No phylogenetic marker genes like the ones present 

in the bacteria and archaea. We will see how we overcame these problems by performing sequence 

similarity using CRISPR data and sequence composition using tetranucleotide analysis.
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1.0 Introduction

In this section, we describe metagenome and metagenomics followed by the reason behind the 

popularity and existence of this relatively new area of study. Sequencing these metagenomes produces 

giga-bases of DNA nucleotides which then needs to be carefully processed and analyzed for building 

whole-genome or to perform gene centric data analysis.

1.1 Metagenomics
Metagenomics is the study of multiple genomes i.e., metagenomes taken directly from the 

environment. While the traditional methods, in which organisms were cultured in predetermined media 

under the laboratory conditions, were able to produce a diversity profile; they missed the vast majority 

of  biodiversity present in the environment. Recently, Kevin Chen and Lior Pachter (researchers at the 

University of California, Berkeley) defined metagenomics as "the application of modern genomics 

techniques to the study of communities of microbial organisms directly in their natural environments, 

bypassing the need for isolation and lab cultivation of individual species." [1] 

Metagenomics is currently the only way to study genetic diversity present in the viral 

communities as they do not contain any universal phylogenetic marker (like 16S RNA for bacteria) 

which are typically used to culture bacterial organisms. Culturing the host and then infecting them with 

specific virsuses or viral DNA obtained from the environment in the laboratory condition is not yet 

streamlined. However, the metagenome sample obtained from the environment directly represent 

communities of population as opposed to isolated populations and thus, metagenomics may help reveal 

information about how the populations co-evolve.

1.2 Advancement in Sequencing Technologies
With the advent of powerful and economic next generation sequencing technologies such as 

Sanger sequencing or massively parallel pyrosequencing, metagenomics has become more popular. 

Sanger sequencing is based on chain termination with dideoxynucleotides whereas pyrosequencing is 

based on sequencing by synthesis method, i.e., the idea is to detect pyrophosphate release when 

nucleotide is incorporated. Sanger sequences are longer ~750 base pairs (bp) than pyrosequencing 

techniques, specifically 454 produces reads of length ~100 to ~200 bp. 454 titanium series produces 

reads of length ~400 to ~500 bp. Advantages of pyrosequencing over Sanger sequencing include a 
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much lower per-base cost and no requirement for cloning. [10] These generate sequence trace files 

from which base calling is done. 

1.3 Bioinformatics Pipeline for metagenome processing
Once the raw reads are obtained, the data need to be processed and analyzed to see what story is 

hidden in it.

1.3.1 Sequence Processing:
Processing of both, the genomic and metagenomic sequence data, follow common steps like 

preprocessing the sequence reads, assembly, Gene Prediction and Annotation. However, the main 

difference between genomes and metagenomes is that the former has a fixed end-point like one or more 

completed chromosomes. However, in the case of metagenomes, we just get draft assemblies and may 

be sometimes almost complete genome of dominant populations. [1][7]

1.3.1.1 Preprocessing the sequence reads

This is a very important step in metagenome processing. It involves base calling of raw data, 

removal of low complexity reads, removal of contaminant sequences, and  removal of outliers, i.e, 

reads with very short length. Base calling involves identifying DNA bases from the DNA sequencing 

trace files. The most commonly used base calling tool is phred. [2] phred assigns a quality value, q,  to 

each called base based on the per-base error probability, p by using the following formula: q = −10 × 

log10 (p).

The other tool which is used in many other researches is Prinseq [15]. Prinseq is a web as well 

as a standalone tool that allows to filter, trim and reformat the metagenome data. It removes low quality 

reads based on quality scores obtained from phred to avoid complications in assemblies and 

downstream analysis. It trims poly-A/T tails, repeats of A's and T's at the end of the sequence because it 

can result in false positives during similarity searches, since they have a good alignment with  low 

complexity regions or sequences with tails. It removes sequences with a lot of ambiguous bases, i.e., 

sequences with high number of Ns. A position in the sequence where a base cannot be identified is 

replaced by the letter N which means it is an ambiguous base. For removing low complexity reads, it 

calculates the sequence complexity using both DUST and Entropy approached. DUST is the heuristic 

used to mask low complexity regions during BLAST search. [11] DUST computes scores  based on 
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how often different triplets occur in the sequences and are scaled from 0 to 100 and higher scores imply 

lower complexity. In case of Entropy approach, entropy values of trinucleotides in the sequence is 

computed and scores are scaled from 0 to 100 where lower entropy would mean low complexity.

1.3.1.2 Assembly

Assembly is the process of combining reads based on similarity to obtain contiguous DNA 

segments called contigs. There are challenges in assembling metagenomes as there could be problems 

like coassembly of reads coming from different species because of non uniform species distribution. 

This can happen if there is high sequence similarity between reads coming from closely related species. 

There are many publicly available assembly programs like Phrap, Celera Assembler, Newbler but these 

were all designed for assembling genomes from isolates and not for metagenomes which comprise of 

multiple species with read coverage that is non uniform. Therefore, their performances vary 

significantly. To mitigate these problems for de novo assembly, we need to pass our data through more 

than one assembler so that it helps solving misassembly of the largest contigs. To further strengthen our 

assembly, we can perform multiple assemblies by tweaking parameters for a particular assembler. To be 

absolutely sure of our assembly so that problems do not percolate to further downstream analysis, we 

can perform manual inspection using scaffolding programs like ScaffViz or visualization programs like 

Consed. [3]

Comparative assemblies are easier to work with; where a reference genome or fully sequenced 

genome is passed to assembler along with the metagenome. AMOS is an assembler that performs 

comparative assembly.

1.3.1.3 Gene Prediction and Annotation

The process of identifying protein coding genes and RNA sequences is known as gene 

prediction. There are two ways of performing gene calling: one is evidenced-based and the other is ab 

initio gene prediction. The evidenced-based method is based on BLAST similarity search to find 

homologs against a database of previously found genes. The ab initio gene prediction method allows 

gene identification based on intrinsic features of the DNA sequence to differentiate between coding 

regions of a sequence from non-coding regions. This method is useful to identify those genes that do 

not have homologs to existing database sequences, and to find novel genes. For the ab initio method, 

there are many gene-prediction tools, some of which requires training data set (fgenes) while some are 
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self-trained on the target sequence (MetaGene, Glimmer, Genemark). MetaGene is the prokaryotic 

gene prediction tool developed specifically for metagenomes. The program does not require training 

data set and it estimates di-codon frequency from the GC content of a given sequence. [12]  

In case of complete genomes, both the ways of gene prediction are employed and the hits to 

genes in the database act as training sets. In case of unassembled pyrosequencing reads and high 

complexity metagenomes, evidence-based gene prediction is the only method used because of the 

fragmented nature and short read lengths of these data sets; as pointed out by Mavromatis [7]. Even in 

case of less complex communities, it is better to perform gene prediction on both reads and contigs 

because reads from less abundant organism remains unassembled and these reads may contain 

important functionality.

The most commonly used tool to predict RNA genes like tRNA and rRNA is tRNAscan. [9]

Finally, to assign protein function to metagenome data, protein sequences are compared to the 

database of protein families sequences like TIGRFAM, Pfam, and COGs. [7]

1.3.2 Data Analysis
Depending on the metagenome, there are different data analysis methods. The most common 

analysis methods are composition analysis on contigs, reclassification of reads after preprocessing, and 

binning. Next, we cover the topic of binning.

1.3.2.1 Binning

The process of associating sequence data to the contributing species is known as binning. The 

highly reliable binning is assembly, as reads coming from same species are assembled together. This is 

not the case in metagenome data sets as there are chances of coassembly.  The two most common ways 

to bin are based on sequence similarity and sequence composition. In case of sequence similarity, we 

compare our metagenome data using tools such as BLAST and MEGAN (Huson et al 2007), a 

metagenome analyzer to separate metagenome fragments based on phylogenetic groups. If the suitable 

marker genes are present, then assignment of fragments based on taxonomic group is feasible. 

However, in case of absence of marker genes for your metagenome, the other approach is to use (G+C) 

content along with phylogenetic information to separate fragments. The other binning method, based 

on sequence composition is entirely different as it makes use of oligonucleotide frequencies which 
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supposedly are distinct and help separate different genomes. The word length can range from 1 to 8, 

with longer words giving better resolution but are expensive computationally. Therefore, typical word 

length range from 3 to 6 bases long. This method is so far the best method. As pointed out by Teeling 

[19], in their experiment on 9054 genomic fragments generated from 118 complete bacterial genomes 

the scores and results obtained using tetranucleotide analysis were far superior compared to GC content 

binning method. The standalone tool available online for tetranucleotide analysis is called TETRA 

(Teeling et al 2004). TETRA computes z-scores from the divergence between observed versus expected 

tetranucleotide frequencies. To compute observed values, it counts frequencies of all 44 = 256 possible 

tetranucleotides for DNA sequences (both forward and reverse strand). To compute expected values, it 

counts expected frequencies for each tetranucleotide “by means of a maximal-order Markov model 

from the sequences' di- and trinucleotide composition.” [20]

1.4 Types of BLAST programs and existing methods to perform 
batch BLAST, need for parallelizing

The Basic Local Alignment Search Tool (BLAST®, Altschul et al 1990) is the most popular and 

widely used web based and standalone tool. It performs local pairwise alignment to find similarity 

between an input sequence, called a query sequence and  every sequence in the database. There are 4 

basic types of sequence similarity versions in BLAST. They are BLASTN, BLASTP, BLASTX, and 

TBLASTX programs. They differ in terms of what type the query sequence is i.e., nucleotide or protein 

sequence and what type of database sequences it is compared to. The BLASTN program compares 

nucleotide query against nucleotide database, BLASTP compares protein query against protein 

database. Both BLASTX and TBLASTX has query sequence as nucleotide sequence but the 

comparison happens to protein and nucleotide database, respectively. BLASTX translates the query 

sequence in all six frames and compares each such translation to sequences in the protein database. 

However, TBLASTX is computationally more expensive because it translates both the query sequence 

and nucleotide sequences in the database in all six frames and compares each translation of query 

sequence against each translation of every sequence in the database.

There are many different output file formats for BLAST program. For web based program 

HTML output format is the default one, however one can download plain text, XML, and tab delimited 

output formats. For batch BLAST, tab delimited is the most commonly used format.

BLAST comes as a web service, network service or as standalone distribution. The web service 
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is useful if one wants to compare a couple of query sequences. On the other hand, the network service 

is helpful for performing batch BLAST remotely on BLAST server. This is very helpful if you don't 

have resources to perform batch BLAST locally. However, since many jobs are queued up, the results 

may get delayed. They also track if the same user if sending multiple remote BLAST requests and if 

such requests take more CPU time, then the priority for that user is reduced which can delay your 

results further more. Thus, to perform similarity of many query sequences against large database the 

standalone BLAST distribution allows you to run batch programs locally. The advantage here is that 

you can run the program as many times as you want and compare query sequences to any database of 

your choice, even custom databases created by you. The  main problem with batch BLAST locally is it 

takes days together for computationally expensive program like TBLASTX. Hence, there is a need to 

parallelize and run the task on several machines connected together. In section 2.0 we will see how we 

can parallelize the batch program on a cluster containing 8 nodes. 

1.5 Tools to analyze the batch report
Performing batch BLAST is the first step and then extracting meaningful information out of it is 

another challenge. Traditionally, batch BLAST reports are analyzed using Spreadsheet program, where 

different columns are either filtered for some criteria like show all query sequences having hit to a 

specific subject sequence and so on, or sorted on some fields like sort on evalue showing hits from low 

evalue to high evalue. An alternative is to write Perl scripts to extract keywords and filter on fields. [16] 

However, this is not feasible for batch programs with 1000s of query sequences compared against 

massive database like Genbank's 'nt' database as it produces a very large output file. Thus, to solve this 

problem and simplify analysis of the batch BLAST reports, we developed a web application as 

explained in section 3.0.
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2.0 Batch BLAST on Cluster

As mentioned earlier, to perform batch BLAST, especially TBLASTX which is computationally 

very expensive, there was a need for parallelization. We wrote a program which can run the BLAST 

program in parallel on a High Performance Computing (HPC) cluster. 

2.1 Ways to perform batch BLAST
There are three ways in which parallelism can be achieved, namely by Job, Query and Database 

parallelism. [14] We will see below what each of them means and what are advantages and/or 

disadvantages of each. Later we will see which approach did we follow and how we achieved 

parallelism on the cluster.

2.1.1 Job parallelism
This is the simplest way to achieve parallelism in a machine which is shared by multiple users. 

In this case we run each user's job on a different processor. However, scheduling jobs is complex in this 

approach as we need to make sure that each user receives a fair share of the available resources and that 

no single processor is overloaded i.e., distribute jobs equally on all the processors. To solve this 

problem, one can add another layer of software which can manage job or batch scheduling like for e.g., 

Sun Grid Engine. The main disadvantage with Job parallelism approach is that no single job can take 

the benefit of multiple available processors in the cluster. Say for example, if there is a large job that 

takes days together to finish its processing, it will overload a single processor while other processors 

remain unused.

2.1.2 Query parallelism
In Query parallelism approach for batch BLAST, we distribute multiple query sequences on 

different processors / nodes. The main advantage with this approach is that there is no dependency in 

terms of search of different query sequences. With a lot of query sequences to be searched against an 

average sized database this approach gives high performance and is scalable for the fact that all the 

processors of each node are given work, no single processor is throttled. However, the problem with 

this approach is that if a scheduler is not used then it can result in overloading of a single node. We will 

see below how we extended this approach for BLAST parallelism by leveraging NCBI BLAST 
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software and writing a wrapper script.

2.1.3 Database parallelism
In Database parallelism, different processors perform BLAST search on separate pieces of the 

database simultaneously, like for example, for a large query sequence search against 'nt' database which 

is divided into 11 smaller parts, we can allocate each processor the query sequence and a part of the 'nt' 

database. This approach is the only way for single query searches. The main advantage is that this 

approach gives good performance benefits in case when the databases are large. However, the 

disadvantage is that it is more difficult to implement because the results of sub-searches are inter-

dependent.

2.1.4 Technique applied on HPC cluster
In order to parallelize on HPC cluster at Stanford, we followed query parallelism approach and 

wrote a wrapper bash script to leverage the power of GNU Parallel (Tange et al 2011) tool and NCBI 

BLAST stand-alone program. Parallel is a shell tool to run jobs in parallel on one or more nodes in the 

cluster. A job can be a command or a script to be run for each line of the input. [18] We will see in 

detail the concrete example and parts of the wrapper script written to parallelize BLAST below in 

section 2.2.

2.2 Cluster Information
The High Performance Computing cluster at Carnegie Institute, Stanford is a Linux cluster of 8 

nodes with each node having 12 CPU's, so a total of 96 CPU's. It has a shared file system, so that 

would mean, all the nodes read and write data from and to the same shared file system. However, to 

talk to all other nodes from the node where your program is running, we need to set up multiplex 

master ssh session.

2.3 Setup of BLAST
For the cluster, we downloaded Blast+ applications tar ball executable. After which we need to 

untar the executable and set paths in the .bashrc file as shown in Figure 1 and 2 respectively. 

Figure 1: Installing Blast+ on Cluster

17

 >$ untar -xvzf ncbi-blast-2.2.25+-x64-linux.tar.gz



The paths shown in Figure 2, need to be set for the binaries to be visible and to run the BLAST 

command from any folder without always giving the absolute path of BLAST programs residing in bin 

directory.

Figure 2: Set up for Blast+ on cluster

Get required databases from Genbank and untar all of them. To untar all parts of 'nt'  database in 

parallel, execute the command as shown in Figure 3.

Figure 3: Unzip all 'nt' database parts in parallel

To update databases, run the update_database Perl script present in the bin directory. It needs the 

database name as the parameter.

2.4 Setup to run 'parallel' command on all nodes of cluster
For the setup we need to create master ssh session, create a parallel.sshloginfile and create 

config file in ./ssh directory in your home folder.

In order to create multiplex master ssh connection, run the command as shown in Figure 4:

Figure 4: Create master ssh connection

The ssh command of Figure 4 is one of the many ways to create a master. The above commands, run a 

null command and tell ssh to fork into the background. The -N option is useful for port forwarding and 

the -f option backgrounds ssh. The idea is to set up a master ssh connection before you can use the 

slave connections without providing password. Setting up the master connection will require a 

password, and as long as the master ssh process is running and can connect to the socket "~/.ssh/CP.

18

 >$ cat .bashrc

 export BLAST_HOME=path_to_folder/ncbi-blast-2.2.25+/bin

 export PATH=$PATH:$BLAST_HOME

 BLASTDB=path_to_folder/ncbi-blast-2.2.25+/db

 >$ parallel “tar -xvzf {}” ::: nt.*.ttar.gz 

>$ ssh -Nf remotehostname1

>$ ssh -Nf remotehostname2



%r@%h.%p", and the slaves can connect to the socket also, the slaves shouldn't need the password 

supplied again. The master connection is the master between node A and node B, not node A and many 

nodes.

Running the following 'ps' command gives the output as shown in Figure 5.

Figure 5: Confirm the creation of master ssh connection

As one can see from Figure 5, since the parent process (PPID) of the ssh is 1, the process is properly 

backgrounded and will continue to run even after you log out of the remote system, so other processes 

(e.g., cron jobs) can use the master connection to invoke commands on other nodes. 

To kill these connections simply run command as shown in Figure 6.

Figure 6: Kill the master ssh connection

2.4.1 Create parallel.sshloginfile:
In the file parallel.sshloginfile we just provide ssh command to all the remote hosts that you 

would want to connect to, as shown in Figure 7. Thus, the file contains ssh remotehostname1, ssh 

remotehostname2 and so on. 

Figure 7: Contents of parallel.sshloginfile

We will see later in a parallel command example that to run the script passed to parallel command in 

parallel on all the remote hosts we need to provide a sshloginfile.
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 >$ ps -flu <your id>

F S UID PID PPID C PRI NI ADDR SZ WCHAN STIME TTY TIME CMD

1 S <yourid> 30885  1 0 75  0 - 41564 -  2012 ? 00:01:38 ssh -Nf remotehostename1

 >$ ssh -O exit remotehostname

 >$ cat parallel.sshloginfile

 ssh remotehostname1

 ssh remotehostname2



2.4.2 Create config file in ./ssh directory

Figure 8: ssh configuration

The contents in Figure 8 configures ssh for any host, with controlmaster ('auto' value) allowing for 

opportunistic multiplexing i.e., it tries using existing master connection but in case if it does not find 

one it will create a new connection. The controlpath parameter specifies the location to the control 

socket required for sharing the connection. 

2.5 Example of parallel command
Now to test whether all the setup is correct and our parallel command is able to run on all the 

nodes, we write a simple parallel command which takes parallel.sshloginfile as parameter and executes 

the command on all hosts as shown in Figure 9.

Figure 9: Example parallel command to test the setup

The above parallel command runs the command "hostname -s" on all the hosts in your sshloginfile. The 

"--nonall" option is new, and specifies to run the command on all hosts, but not read stdin for data. The 

--tag allows you to see which host produced what output. Also this command should run successfully 

without prompting for password for all hosts. So far everything that's been done above is only possible 

because of the contents of our .ssh/config file. Parallel's only involvement is that it uses the master ssh 

connection without "knowing" about it, and can run things to remote systems without having to supply 

a password. [17]
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 >$ parallel --tag --nonall --sshloginfile parallel.sshloginfile hostname -s

 >$ cat ~/.ssh/config

 host *

 controlmaster auto

 forwardx11 no

 controlpath ~/.ssh/CP.%r@%h:%p



2.6 Command to run batch BLAST in parallel
Now that we have a working example using Parallel command, we will see how to perform 

query parallelism. Lets understand the steps by the help of snippets of the bash wrapper script.

Step 1: Chop your query sequence fasta file to multiple files each having atleast one query sequence.

Figure 10: Command to split the fasta file to multiple files in parallel

In the command shown in Figure 10, we write the fasta on standard output and pipe it as input to the 

'parallel' command. The options –recstart, --blocksize and –pipe tells the 'parallel' comand to read 

blocksize amount of bytes from standard input and split the input based on recstart and if there is a 

partial record  then remove it from here and prepend it to next block. The –files option tells that print 

the output to a file instead of standard output (stdout) and –tmpdir tells where the files should be stored. 

Here parallel does not execute any meaningful command/job, all we do is print nothing on stdout. The 

idea is to split the file in parallel to multiple files. Note that here we are executing the command on a 

single node only.

Step 2: We now want to pass each file created by the above step to a script, blastScript which basically 

has a few variables set and TBLASTX command with all the parameters.

Figure 11: Command to run BLAST program in parallel on all nodes

In the command shown in Figure 11, we are listing all the files in the temporary directory on stdout and 

piping that to parallel which reads each file from stdin and passes them to the script, so now we will 

have the script i.e., TBLASTX command running in parallel on all the nodes and on all the processors 

of each node. The options –j +0 tells 'parallel' to run as many jobs are there are cpus and –sshloginfile 

tells that it needs to ssh to all the remote hosts mentioned in the file. As we saw earlier, our 

parallel.sshloginfile just contains the command 'ssh hostname' and no other information like user name, 

port number or password. This ssh works because the ssh client before creating a new session, sees if 

there is a master session which it can make use of and thats the reason we need to create all the master 

sessions before running these commands, otherwise we will be prompted for password for each job that 

'parallel' is running in parallel. At this point we can log which files were run on which node and how 
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cat input.fasta | parallel --progress --tmpdir TMPDIR --pipe --recstart '>' --blocksize 1k --files 'cat'

ls $TMPDIR | parallel -j +0 – sshloginfile parallel.sshloginfile "blastScript {} $DB" 2>$ERRFILE



much time it took for the script to run. We can confirm by running the 'ps' command all the jobs 

running on that node.

Step 3: Include the output file directory, error directory and TBLASTX command in the blastScript. Do 

not forget to set the right permissions on the bash script. (chmod 755 blastScript). The TBLASTX 

command is as shown in Figure 12.

Figure 12: TBLASTX command
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tblastx -db $DB -query $INFILE -outfmt "7 qseqid sseqid pident length mismatch gapopen qstart

qend sstart send evalue bitscore slen" -evalue 0.01 -out $OUTFILE 2> $ERRFILE



3.0 Contig Analysis Tool (CAT)

In this section we cover the web application that we developed for visualizing and analyzing 

batch BLAST files. As mentioned in the previous sections, BLAST is the most extensively used tool 

for any kind of analysis and hence there was a need to parallelize it as well as develop a rather simple 

visualization tool that can help see the information for each contig. The idea is to see the file level 

statistics as well as each contig level statistics. In order to annotate the contig, it helps to see a bird's 

eye view of all the sequences that matched the contig and the position on the contig sequence where 

there was similarity. Since, the user is having full control of adding and deleting tags for each contig, 

the tool helps generate highly confident annotated data. We will see the design of database and the web 

application in detail below.

3.1 Application Platform

Figure 13: Java Web Application Request Handling (Source: Oracle JavaEE tutorial [4])

In order to develop this application, we selected the Java platform. The JavaEE API has many 

components, and for our application which is presentation oriented web application i.e. application that 

generates  dynamic web pages in response to the requests we utilize Java Servlets and Java Server 

Pages (JSP) technology. The basic flow of client and server interaction is shown in Figure 13. The goal 

behind a N tier web application is separation of presentation, logic and data. For this application, we 

have build a 3 tier web application. The client starts by sending an HTTP request to the web server. The 

server which can understand both HTTP and Java i.e., the tomcat server converts these requests into 
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HTTP Servlet Request objects and passes it on to the web components. The web components interacts 

with either backend Java code or the database to generate the dynamic content. At this point, the web 

component can either send back the HTTP Servlet Response object or forward the request to another 

component. Eventually when the HTTP Response object is send, the web server again converts this 

back to HTTP response and sends it back to the client.

The web components in our application are Java Servlets and JSP pages. Java Servlets are Java 

classes that operate on requests and send back responses. JSP pages are muck like HTML pages, but in 

addition to static content it also includes a set of JSP directives or tags or scripting elements. Scripting 

elements are blocks of Java code embedded directly in JSP page to deliver dynamic content.

3.2 Design of our Application - MVC architecture
We have designed our application as per the Model View Controller (MVC) design architecture 

as shown in Figure 14. MVC design pattern for a web application separates presentation, logic and data 

from each other. A Model represents the state of a particular aspect of the application. The model 

notifies views of any changes to its state. A view accepts necessary information from the controller and 

renders a user interface to display. The view contains specification on how the data that it accessed 

from model should be represented. A controller sits between model and view and defines the behavior 

of an application. It handles user interactions and translates them into steps that the model needs to 

perform in order to reflect a change in state of the application. The controller then passes information to 

the view. 

Figure 14: MVC Architecture (Source: Designing Enterprise Applications [6] )
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In our application, the model represents the data stored in RDBMS and the Java classes which talk to 

the database to access and modify the data. The HTML/JSP pages acts as views and the Java Servlets 

acts as controller. 

3.3 Sample Input BLAST File

Figure 15: Sample BLAST file, tabular format

Figure 15 shows a screen shot of a sample BLAST file, the tabular format file. The lines starting 

with '#' are comment lines and all the fields description is given in the '# Fields' comment line. The 

lines without comments gives details of all the similar sequences or hits to our input sequence or 

contig. The evalue field is one important field, lower the evalue better is the similarity between our 

contig and the sequence in the database. Our application is modular as it can be extended to understand 

additional fields than the standard ones present in the file.

3.4 Database Design

Our application is storing data in relational database namely MySql database. Figure 16 shows 

our application's database schema diagram. The table name is at the top followed by field names, 

primary keys for each table are denoted by bold field names and foreign keys are denoted by the 

connections to the reference table field. Fields with same data types are color coded, like for example, 

yellow color is for Integer data type, pink for varchar data type. The user table stores information about 
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the user like id which is email address, name and password. The file table stores the BLAST files 

information that users' upload to our application. The file id is auto generated key which allows a user 

to store files with same names as well. The query table stores query id which in our case is the contig 

name. The query accession and gi number are for future use.

Figure 16: Schema Diagram (Generated using sqlDesigner tool)

The query id is unique for a particular file, so both query id and file id act as primary key. The query 

table allows to quickly compute file level statistics like total number of contigs, maximum and 

minimum length of a contig for a file. The hit table consists of fields like accession no and gi no 

(unique id given to each sequence present in the Genbank's database), hit sequence length, and hit 

definition. This table only consists of all unique hits for each contig. The hsp table contains all the 

fields that are present in the tabular BLAST file, the standard format which contains basic 12 fields.

3.5 Workflow of the CAT application
When the application starts, it shows the Login page, where the user is asked to enter their email 

address, shown in Figure 17. 

Figure 17: Login Page of CAT
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For now, the application does not have user registration and profile creation functionality. The database 

design and application design is modular enough for inclusion of any extra features. Upon entering the 

email address and clicking on Login, the user is taken to the next page which is the main page of the 

application. On click of the Login button, the HTTP Request is send to the server. As mentioned earlier, 

the server converts this request to HTTP Request Servlet and passes it on to the Login.java Servlet. The 

application server's web container decides based on the URL in the HTTP request and the web 

application's deployment descriptor file (web.xml), to which web component should it pass the request. 

Login.java servlet stores the user information i.e., the email address in the session object, checks if the 

user exists in the database and if not then makes an entry of that user to the database. After this, it sends 

a response redirect to the Main.java servlet. Since the response is redirected by the servlet, the web 

application instructs the browser that it needs to fetch the new URL and hence it is a two step process. 

The Main.java servlet forwards the request to main.jsp which calls a model to fetch all the files 

uploaded by that user and for the default selected file to fetch all the contigs in that file and then puts 

that information in HTML drop down list and passes on the response back to the user as shown in the 

Figure 18. At any point if the session expires, then the user is redirected back to the login page.

Figure 18: Main page of CAT

3.5.1 File Actions
Once on the main page, the user can perform different actions to do file level analysis, to upload 

a new file, or to do contig level analysis for a particular file. We will see each action in detail below.
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3.5.1.1 File upload action

The file upload box when clicked will open up the browse menu of the filesystem from where 

the user can enter the BLAST file. As of now the application, only supports tabular BLAST output file. 

Onclick of upload button, the client browser send an HTTP Post request to the server, server determines 

based on the URL and sends the request to the servlet Main.java. The servlet creates an object that is 

responsible to read the file, convert it to sql statements and to call model to execute those statement to 

store the file data in the database. The servlet fires off a new thread and calls run method of the object it 

created on the new thread. 

3.5.1.2 File Select Action

The user can select different uploaded files for analysis from the dropdown list. On change of 

the file, an asynchronous call is made to get the contigs belonging to that file and the contigs view is 

refreshed without loading the complete page.

3.5.1.3 View File Information Action

When the user clicks on “View File Information” button, an asynchronous (AJAX) call is made 

to the server and based on the URL in the request, the corresponding view is called for. In this case, the 

files.jsp page is called to get all the file related statistics as shown in Figure 19 below.

Figure 19: Result of View File Information Action
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3.5.2 Contig Actions
The user can take following actions to analyze a contig for the selected file:

3.5.2.1 View Contig Information

Similar, to the file statistics, we would want to see contig level information like the selected 

contigs length, the maximum no of hits and hsps to that contig, the evalue range of all the hits, and so 

on. Similar to the file action, this is also an ajax action, so the contigs.jsp page sends back the content 

which gets written in the inner HTML of the div block.

3.5.2.2 View Contig-Hit Image

In order to get a bird's eye view of the BLAST hits to the selected contig, we generate an image 

map.  The image map is generated by calling a Perl script from the program. The Perl script extends the 

Bioperl's Graphics library [8] to generate the image map. As shown in Figure 20 below, the horizontal 

graded line represents the contig length and all the yellow bars at the bottom represents hits to the 

contig aligned according to the start and end positions on the contig. All the High Scoring Segment 

Pairs (HSP) for a hit are denoted by a dotted line connector. In case if the HSP's start and end overlap 

then it is denoted by a dark black vertical line in the yellow bar. All the hits name are clickable and they 

hyperlink to the NCBI's page for that hit accession number which allows for detailed analysis on the 

hit. 

Figure 20: Result of Contig-Hit Image Action
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3.5.2.3 View and Edit Contig Tags

This feature is the most useful feature to tag what you analyzed from the previously mentioned 

functionalities. As shown in Figure 21 below, all the tags for that contig are displayed as a list, the user 

can enter a tag in the text box and then click on add button to add a new tag or enter the existing tag in 

the text box and click on delete button to delete a tag. The add and delete button's action invokes client 

side JavaScript function which makes an asynchronous call to the server to add or delete the tag and 

refresh the list.

Figure 21: Result of View and Edit Contig Tags

3.5.2.4 Refresh Contigs

As previously mentioned under the File Upload section, when the user uploads a BLAST file, a 

new thread is spawned to store the file in the database. The thread starts loading data as soon as it is 

done reading information for each contig in the file. So when the response is send back for the upload 

action, the new file uploaded gets listed in the file list and all the contigs which are loaded in the 

database also gets listed for run-time analysis in the contigs list. The refresh button gives the user a 

functionality to  list other contigs which got loaded after the response was send back.
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4.0 Real World Virome Data Analysis

The virome data is obtained from the sample taken from thermophilic mircrobial mats from 

Octopus in Yellowstone National Park. The mat sample was centrifuged and filtered to extract viral 

cells and then the viral DNA was amplified using Multiple displacement amplification (MDA) reaction. 

MDA is a DNA amplification technique which multiplies DNA samples rapidly from very little amount 

of sample. The amplification reaction starts with random hexamer primers, high fidelity DNA 

polymerase and the template DNA. This amplified material was then sequenced using 454 titanium 

pyrosequencing technique. A virome database of 180,141,543bp was generated and it consisted of a 

total of 501,370 reads.

4.1 Virome Reads
In order to understand what the data set contains, we extracted reads length statistics, reads 

species distribution and read GC content distribution.

4.1.1 Read Length Distribution
In order to generate reads length distribution, we first extracted length information for each 

reads and then passed on the length data to R software for plotting the distribution. The read fasta file is 

a file of all read sequences with sequence always followed by a definition line starting with '>' (i.e., 

fasta format). 

Figure 22: Bash commands to extract data for read length distribution
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>$ ls reads.fasta | xargs grep ">" >> allreads.txt

>$ head -1 allreads.txt

>F2HZBTK02IV99S rank=0000076 x=3531.0 y=366.0 length=59

>$ ls allreads.txt | xargs cut -d' ' -f5>> readsLen.txt (extract reads name from all the deflines)

>$ head -1 readsLen.txt

Length=59

>$ ls readsLen.txt | xargs cut -d'=' -f2>> readsLength.txt
>$ head -1 readsLength.txt
59



Example defline of the read fasta file looks as below:

>F2HZBTK02IV99S rank=0000076 x=3531.0 y=366.0 length=59 (>ReadName rank x y length)

Now to extract the read name and length, we ran the following commands as shown in Figure 22.

From the deflines in the reads fasta file, we first extract all the length=x column for all the reads 

and put them in a file. Later, we split on '=' such that we only have the numeric length information in 

the file. This is an alternative approach to writing a Perl script to extract length from the fasta file. Now 

to plot the reads length distribution, we load the dataset in R and plot the histogram using the following 

commands as shown in Figure 23.

Figure 23: R commands to generate Read Length Distribution plot

Figure 24: Read Length Distribution (Generated using R)

Figure 24 shows the distribution of reads length, we see that we have maximum reads of length 475 

which conforms with the fact that 454 titanium generates reads of length ~400 to ~500 base pairs. 

There is a second peak at the tail because sometimes 454 preferentially amplifies smaller fragments 

within the input data, before amplifying larger fragments.
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>$ R (start R, assuming we already have R installed)

> dat2 ← read.table("path_to_file/readsLength.txt", header=TRUE)

> attach(dat)

> hist(ReadLen, main="Read Length Distribution", xlab="Reads Length");



Table 1 shows the read length statistics like min, max, mean, median and mode of and the commands 

we ran in R to get them.

Reads Length Statistics Values R command

Minimum Read Length 40 min(ReadLength)

Maximum Read Length 1385 max(ReadLength)

Mean Read Length 359.39 mean(ReadLength)

Median Read Length 425 median(ReadLength)

Mode Read Length 475 names(sort(-table (ReadLength)))[1]
Table 1: Read Length Statistics

In order to compute mode of read length, we create another table in R and copy only the read 

lengths into it. Then we multiply each value by 1 and sort the values so that the topmost element gives 

us the most frequently occurring value ie., mode of read length.

4.1.2 Read Species Distribution

Figure 25: Read Species Classification (Using FCP [13 ] by Michelle and Todd)

FCP is a software package that provides classification to metagenomic fragments using composition 

and homology. As one can see from Figure 25, our dataset has very little bacterial and archaeal 

sequences whereas there were a lot of unclassified sequences, possibly representing viral sequences.
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4.1.3 Reads GC- content Distribution

Figure 26: GC distribution of Reads

Figure 26 above shows the GC content distribution of the virome reads. The GC content of 

Synechococcus OS' A and Synechococcus OS' B, Roseiflexus sp. and Choloroflexus sp. are plotted on 

the graph as well. The GC content of our virome data is similar to that present in the above mentioned 

hosts.

4.2 Clustered Regularly Interspaced Short Palindromic Repeat  
(CRISPR) Analysis

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) are multiple short direct 

repeats found in the DNA of many bacteria and archaea.[5] The repeats are of size from about 23 to 47 

base pairs. The spacers which are generally unique in a genome separate the repeats. Some spacers 

match to regions in phage genomes, which would mean that the host was once infected with this phage 

and to resist itself from further attacks it keeps a “memory” of them by inserting a spacer sequence 

between the repeats as shown in Figure 27.
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Figure 27: CRISPR-Cas adaptive mechanism (Source: CRISPR-Case Systems, Bhaya D. et al. 2011)

Steps performed by Michelle for CRISPR analysis

1. Extract CRISPR Repeat sequences from fully sequenced OSA, OSB’, RS-1 and Chloroflexus 

She went to CRISPR finder website, inserted the above mentioned bacterial genomes and the 

program outputs potential repeat sequences as shown in Figure 28. We also did this for our 2008 

metagenome, anchor genome. Potential repeats were manually inspected and only spacers were 

only extracted from reads containing more than three repeats. For all those filtered repeats, we 

pulled up its corresponding spacer sequences as shown in Figure 29.

Figure 28: Sample picture for Roseiflexus Repeat sequences (Obtained from CRISPRfinder)
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Figure 29: Sample picture for Roseiflexus Spacer sequences for a CRIRPR Id (Obtained from 

CRISPRfinder)

2. Then we compared the spacer sequences to our virome dataset using BLASTN. Only those 

reads were tagged who had 85% identity spanning 70% of the spacer length. 

3. This exercise gave us a total of

 1534 Cyano spacers and 2828  Roseiflexus spacers

4.3 Read Preprocessing
Todd passed our dataset through Prinqseq (Schmieder et al 2011) for preprocessing before 

assembly. We removed a total of 6.5% of reads leaving 32,568 total reads. We filtered all reads which 

were smaller than 50 bp and reads with low complexity regions to account for MDA amplification 

artifacts.

4.4 Assembly
Todd performed 3 different assemblies using different filtration strategies to compare contigs 

generated from each of them. All 3 assemblies were performed using Newbler, an assembly software 

developed by 454 Life Sciences, a Roche Diagnostics Company, for de novo DNA sequence assembly 

of data generated by 454 technologies. The first two assembly strategies filtered reads classified as 

bacterial based on conservative, aggressive (strict threshold), and the last one was assembly of binned 

reads. In conservative approach, we removed all the reads that were classified by NUCmer (threshold, 
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maxmatch =30) as bacterial (37K), leaving a total of 430K reads for assembly. Later, we removed 

additional reads that were reclassified by BLASTN as bacterial (removed 214 contigs, 1244 reads). In 

the aggressive approach, we removed any read classified by FCP as bacterial (threshold, evalue=10-5) 

which left 150k putative viral reads. The assembly resulted in 1652 total  contigs (230 > 1000bp, 

1446bp avg contig size). As a final strategy, we binned groups of related reads to reference phage 

genomes using NUCmer, and then assembled the set of recruited reads individually. This resulted in 

much greater specificity of the assembled target, however, the main disadvantage is significantly 

reduced sensitivity. We also validated our assembly by recruiting mate-pair reads from similar 

environments.

Finally, we now have 4371 contigs with a contig of maximum length 8459. Figure 30, shows the 

distribution of contig length. 

Figure 30: Contig Length Distribution (Generated using R)

4.5 Binning
We have applied both the binning methods described above in the Introduction section. Since 

there are no marker genes for our virome dataset, we had to rely on sequence similarity to CRISPR 

spacers which we discussed in the earlier section. Here we will see the results of the second approach, 

i.e., tetranucleotide analysis. 
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Figure 31: Tetranucleotide analysis plot (Generated by Todd)

Todd performed tetranucleotide analysis on contigs and we now have a total of 5 clusters as shown in 

Figure 31. The tetramer clustering was performed on the large contigs (>1000bp) shown on the left. 

The top part shows the clustering of 256 possible tetramers. The dark red/orange color indicates very 

low freq of a given tetramer while yellow/white indicates high freq. The plotted rate is simply the 

coverage of each tetramer in each contig (total sum/contig length). Reads containing CRISPR hits were 

also used to further classify tetranucleotide clustering. Cluster 1, 2 and 3 contains Cyanobacteria (both 

OS' A and OS' B types) CRISPR spacers and Roseiflexus cluster contains solely Roseiflexus CRISPR 

spacers whose counts are given in Table 2.

Cluster Unique Spacer Hits Total number of reads with spacer hits

Cluster 1 2 50

Cluster 2 No significant spacer hits No significant spacer hits

Cluster 3 7 408

Roseiflexus Cluster 33 1170

Table 2: Tetranucleotide cluster classification using CRISPR hits

4.6 Gene Prediction
We have performed both gene prediction methods, evidence-based by performing TBLASTX 

similarity search against genbanks 'nt' database. We are yet to analyze the results. We have passed our 
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contigs through de novo gene prediction program, MetaGeneMark (Zhu et al 2010). 

4.8 Contig Similarity
To get an insight into how similar the contigs are to each other, we performed TBLASTX and 

BLASTN of contigs against itself. Both the BLAST's were performed with default evalue, 10. To 

visualize what the BLAST results had to say, we created a 3D scatterplot of each contig against other 

with the 3rd axis showing total number of hits. The contigs are ranked in the sorted order of contig 

length and are placed on both x and y -axis as shown in Figure 32 and 33. 

Figure 32: 3D Scatterplot of Contig vs. Contig TBLASTX (Generated using R)

Figure 33: 3D Scatterplot of Contig vs. Contig BLASTN (Generated using R)
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Figure 34: Hexagon plot of Contig vs. Contig TBLASTX results (Generated using R)

In order to view the plots more clearly i.e., to view bivariate plots with datasets of large n, we 

created another plot applying hexagon binning.  In hexagon binning, the xy plane is tessellated by a 

regular grid of hexagons and then the count of number of points falling in each hexagon is stored in the 

dataset. The hexagons with count > 0 are plotted with varying the size of hexagon with respect to the 

count. 

Figure 35: Hexagon plot of Contig vs. Contig BLASTN results

From the plots in Figure 33 and 35 for BLASTN results we can see that only contigs of larger 

size tend to recruit other large contigs. The diagonal line shows that each contig has complete similarity 

to itself. However, for TBLASTX from Figure 32 and 34, we see a more dense region for the larger 
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contigs. That would suggest some conserved domains or proteins that are present in large contigs are 

also seen in other large contigs. There is another less dense region at the top, kind of a dense line going 

from top left to right. That would mean that all our little contigs have amino acid level similarity to the 

larger contigs, again indicative of some similar domain or proteins present in them.
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5.0 Conclusion and Future Work

In this project, we applied bioinformatics workflow to process viral DNA sequence data 

obtained from Yellowstone National Park. We performed sequence similarity binning on virome reads 

by CRISPR analysis and sequence composition binning on virome contigs by tetranucleotide analysis. 

In order to speed up sequence similarity using BLAST, we developed a wrapper script to run the 

BLAST  program in parallel on a High Performance Computing Cluster. We also developed a web 

application called Contig Analysis Tool for the analysis of BLAST generated output file. The tool can 

be extended further to include the following functionalities:

1. Support for different output file formats.

2. Include an export facility - to export and save the results in a file.

3. Include export facility for each contig – to store all the raw data stored in the database in a file

4. Support for extracting functions for all the high scoring segment pairs from NCBI and then 

upload the information in our application to be able to view the function of each hsp in the 

Contig-Hit Image.

5. Login authentication functionality
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