
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2012

Optimizing a Web Search Engine
Ravi Inder Singh Dhillon
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Dhillon, Ravi Inder Singh, "Optimizing a Web Search Engine" (2012). Master's Projects. 223.
DOI: https://doi.org/10.31979/etd.hwkh-5782
https://scholarworks.sjsu.edu/etd_projects/223

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70408206?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/223?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

CS 298 Report

Optimizing a Web Search Engine

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Computer Science

By

Ravi Inder Singh Dhillon

Spring 2012

CS298 Report

©2012

Ravi Inder Singh Dhillon

ALL RIGHTS RESERVED

__

__

CS298 Report

SAN JOSÉ STATE UNIVERSITY

The Undersigned Thesis Committee Approves the Thesis Titled

Optimizing a Web Search Engine

By
Ravi Inder Singh Dhillon

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Chris Pollett, Department of Computer Science 5/11/2012

Dr. Jon Pearce, Department of Computer Science 5/11/2012

Dr. Robert Chun, Department of Computer Science 5/11/2012

- 3 ­

CS298 Report

ABSTRACT

Search Engine queries often have duplicate words in the search string. For

example user searching for "pizza pizza" a popular brand name for Canadian pizzeria

chain. An efficient search engine must return the most relevant results for such

queries. Search queries also have pair of words which always occur together in the

same sequence, for example “honda accord”, “hopton wafers”, “hp newwave” etc.

We will hereafter refer to such pair of words as bigrams. A bigram can be treated as a

single word to increase the speed and relevance of results returned by a search engine

that is based on inverted index. Terms in a user query have a different degree of

importance based on whether they occur inside title, description or anchor text of the

document. Therefore an optimal weighting scheme for these components is required

for search engines to prioritize relevant documents near the top for user searches.

The goal of my project is to improve Yioop, an open source search

engine created by Dr Chris Pollett, to support search for duplicate terms and bigrams

in a search query. I will also optimize the Yioop search engine by improving its

document grouping and BM25F weighting scheme. This would allow Yioop to return

more relevant results quickly and efficiently for users of the search engine.

- 4 ­

CS298 Report

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Chris Pollett for providing his valuable

time, constant guidance and support throughout this project. I appreciate and thank

my committee members Dr. Jon Pearce and Dr. Robert Chun for their time and

suggestions. I would also like to thank my family and friends for their moral support

during the project. A special thanks to my fellow student Sharanpal Sandhu for peer

reviewing the project report.

- 5 ­

CS298 Report

Table of Contents

1. Introduction...10

2. Technologies Used...14

2.1. PHP...14

2.2. TREC Software..15

2.3. Cygwin...15

3. Yioop! Search Engine..16

3.1. System Architecture...16

3.2. Inverted Index..19

4. Supporting duplicate query terms in Yioop...21

4.1. Existing Implementation..21

4.2. Modified Implementation..22

5. Writing an improved Proximity ranking algorithm for Yioop!...............................25

5.1. Problem Statements...25

5.1.1. Distinct K-word proximity search for ranking documents.....................25

5.1.2. Non Distinct K-word proximity search for ranking documents.............26

5.2. Algorithms...26

5.2.1 Plane-sweep algorithm..26

5.2.2. Modified Plane-sweep algorithm...28

5.3. Proximity Ranking...30

5.4. Implementation..31

6. TREC comparison...34

6.1. Installing TREC software..34

6.2. Baseline results..35

6.3. Comparison results for Yioop before code changes..37

6.4. Comparison results for Yioop after code changes...38

7. Implementing bigrams in Yioop!..40

7.1. Finding bigram source...41

- 6 ­

CS298 Report

7.1.1. Downloading English Wikipedia..41

7.1.2. Uncompress Wikipedia dump...42

7.2. Parse XML to generate bigrams..43

7.3. Create bigram filter file...45

7.4. Extract bigrams in Phrases..47

7.5. Bigram builder tool..49

7.6. Speed of retrieval...49

7.6.1. Results for bigram word pairs..50

7.6.2. Results for non-bigram word pairs...51

7.7. TREC comparison...53

7.7.1. Comparison results for Yioop before implementing bigrams.................53

7.7.2. Comparison results for Yioop after implementing bigrams...................53

8. Optimal BM25F weighing in Yioop!..55

9. Optimal document grouping in Yioop!...57

10. Conclusion...59

References………...………….……………………………………………...........…61

- 7 ­

CS298 Report

Table of Figures

Figure 1. Yioop directory Structure...16

Figure 2. Mini inverted index in Yioop..19

Figure 3. Words and corresponding word iterators for distinct terms.........................22

Figure 4. Words and corresponding word iterators for non-distinct terms..................23

Figure 5. Dictionary with key as word number and value as iterator number.............23

Figure 6. Covers vs Non Covers for distinct keywords..27

Figure 7. Covers vs Non Covers for non distinct keywords.......................................28

Figure 8. Formula used to compute proximity score...31

Figure 9. Function used to find covers in document...32

Figure 10. Function used to rank covers and find proximity score.............................33

Figure 11. Checking the installation of trec eval in Cygwin.......................................35

Figure 12. Top ten baseline results for query “sjsu math”...36

Figure 13. Trec comparison results for Yioop before code changes...........................38

Figure 14. Trec comparison results for Yioop after code changes..............................39

Figure 15. Code for function to uncompress the bz2 compressed xml.......................43

Figure 16. Code for function to create bigrams text file from input xml....................44

Figure 17. Code for function used to create the bigram filter.....................................46

Figure 18. Code for function used to extract bigrams in phrases................................48

Figure 19. Sample run of the bigram builder tool...49

Figure 20. Yioop statistics for search query “Cox Enterprises”..................................50

Figure 21. Yioop statistics for search query “Hewlett Packard”.................................50

Figure 22. Yioop statistics for search query “Baker Donelson”..................................51

Figure 23. Yioop statistics for search query “Plante Moran”......................................51

Figure 24. Graphical comparison for speed of retrieval in Yioop...............................52

Figure 25. Trec comparison results for Yioop before implemeting bigrams...............53

Figure 26. Trec comparison results for Yioop after implementing bigrams................54

Figure 27. BM25F weighting options in Yioop...55

Figure 28. Yioop trec results obtained by varying BM25F weighting........................56

- 8 ­

CS298 Report

Figure 29. Document grouping options in Yioop!....…………………….......……....57

Figure 30. Yioop trec results obtained by varying cutoff scanning posting list..........58

- 9 ­

CS298 Report

1. Introduction

Search engine queries frequently have duplicate terms in the search string.

Several companies use duplicate words to name their brand or website. For example

pizza pizza is a popular brand name of a very large chain of pizzerias in Canada.

Another example is the official website “www.thethe.com” of the English musical and

multimedia group “The The”. Similarly there are many examples where duplicate

terms have a special meaning when a user is searching for information through a

search engine. Currently Yioop search engine does not distinguish between duplicate

terms in a search query. It removes all the duplicate terms from the user search query

before processing it. This means that a user query “pizza pizza” will be treated as

“pizza” before processing. Therefore the results returned for such queries by the

search engine may not be as expected by the user. Yioop scores documents for

queries based on their relevance scores and proximity scores. The relevance score for

query is based on OPIC ranking and BM25F weighting of the terms. While proximity

scoring, which is completely offline, is based on how close the terms are in a given

document. A good proximity score means that it is more likely that the keywords

have a combined meaning in the document. Therefore an efficient proximity ranking

algorithm is highly desirable especially for queries with duplicate terms. Currently

Yioop has a proximity ranking algorithm which is very ad hoc and does not support

duplicate terms in the query.

In this project I have modified the Yioop code so that it does not remove

duplicate terms in the query and written a new Proximity ranking algorithm that gives

- 10 ­

CS298 Report

the best measure of proximity even with duplicate terms in query. The proximity

ranking algorithm I have written is based on a modified implementation of the Plane

sweep algorithm, which is a k-word near proximity search algorithm for k distinct

terms occurring in document. The modified implementation allows duplicate terms in

the algorithm and is a k-word near proximity search algorithm for k non-distinct

terms.

There are several techniques used by popular search engines to increase the

speed and accuracy of results retrieved for a user query. One of such techniques is

combining pair of words which always occur together in the same sequence. We refer

to such pairs as bigrams. For example “honda accord”, “hopton wafers”, “hp

newwave”, etc are bigrams. However if these words are not in the same sequence or

separated by other words between them they act as independent words. Bigrams can

be treated as single words while creating the inverted index for documents during the

indexing phase. Similarly when the user query has these pair of words we treat them

as single words to fetch documents relevant to the search. This technique speeds up

the retrieval of documents and getting user desired results at the top. I have made

increments to the Yioop code so that it supports bigrams in the search query. This

involved identifying a list of all pair of words which could qualify as bigrams. During

the indexing phase the search engine checks the presence of all the bigrams in a given

document by comparing each pair of consecutive words against the list of available

bigrams. Then based on this comparison it creates an inverted index for both the

bigrams as well as individual words in the posting list. During the query phase we

- 11 ­

CS298 Report

check all consecutive pair of words in query string against the list of available

bigrams to identify qualifying bigrams. Then these bigrams are used to fetch

documents from the inverted index. Since we have already filtered documents with

both the words (bigram pair) in them, we speed up the process of finding documents

which have all the words in the query string present in them.

The testing for the changes made to the Yioop search engine was achieved

by comparing the results obtained from Yioop against the baseline TREC results.

TREC baseline is a predefined set of ideal results that a search engine must return for

a given set of user search queries. We search for queries used to create baseline using

original Yioop version 0.8 at the beginning of the project and record the results. We

compare these results with the baseline results using the TREC software which gives

us the relevant results returned by original Yioop search engine. During the course of

this project new results were retrieved from Yioop after making any changes to its

source code and recorded. The comparison between recorded results was done

through TREC software to get a numerical value of improvement in relevance of

retrieval.

Title, body and anchor text of a document hold a different degree of

importance for user queries. Yioop employs the BM25F ranking function to assign

different integer weights to these parts. In this project we find an optimal distribution

of weights for these components by varying them and comparing the results retrieved

using TREC.

In Yioop posting list is a set of all documents in archive which contain a

- 12 ­

CS298 Report

word in the index. For large crawls this posting list is very large and needs to be

trimmed to get the most relevant documents for a given query. Hence Yioop chooses

an arbitrary cutoff point for scanning this posting list to group documents. In this

project we find an optimal cutoff point for scanning posting list by comparing the

results retrieved using TREC.

- 13 ­

CS298 Report

2. Technologies Used

The project was based on improving the Yioop! search engine. Yioop! search

engine is a GPLv3, open source, PHP search engine. The main technology used

during the project was PHP. Apache server in the XAMPP bundle was used as the

web server. XAMPP is an easy to install Apache distribution containing MySQL,

PHP and Perl. The other technologies used were TREC software and Cygwin. TREC

software was used to compare the results obtained from search engine before and

after making the changes to it. Cygwin was used as a host environment to run the

TREC software. Editor used to modify the source files was Textpad.

2.1. PHP

PHP is a widely-used general-purpose server-side scripting language that is

especially suited for Web development and can be embedded into HTML to produce

dynamic web pages. PHP code is embedded into the HTML source document and

interpreted by a web server with a PHP processor module, which generates the web

page document. Yioop! search engine has been developed using PHP server scripting,

HTML and Javascript. Most of my work for this project was writing code in PHP.

PHP also includes a command line interface to run scripts written in PHP. Yioop!

search engine uses the command line interface to run the fetcher and queue_server

scripts used to crawl the internet along with its web interface.

- 14 ­

CS298 Report

2.2. TREC Software

The Text REtrieval Conference (TREC) is an on-going series of workshops

focusing on a list of different information retrieval (IR) research areas, or tracks. Its

purpose is to support research within the information retrieval community by

providing the infrastructure necessary for large-scale evaluation of text retrieval

methodologies. Trec Eval Software is a standard tool used by the TREC community

for evaluating ad hoc retrieval runs, given the results file and a standard set of judged

results. TREC Eval software was used in the project to compare results before and

after making changes to Yioop search engine.

2.3. Cygwin

Cygwin is a Unix-like environment and command-line interface for Microsoft

Windows. Cygwin provides native integration of Windows-based applications, data,

and other system resources with applications, software tools, and data of the Unix-

like environment. Cygwin environment was used to compile the source code of

TREC Eval software using gcc libraries to generate the executable. The executable

was then used to run the software in Cygwin to compare results generated by search

engine with a standard set of results.

- 15 ­

CS298 Report

3. Yioop! Search Engine

Yioop! is an open source, GPLv3, PHP search engine developed by Chris

Pollett. It was chosen for this project because it is open source and continuously

evolving with various developers contributing to its code. Yioop was at its release

version 0.8 at the beginning of this project. Yioop lets users to create their own

custom crawls of the internet.

3.1. System Architecture

Yioop search engine follows a MVC (Model-View-Controller) pattern in its

architecture. It has been written in PHP, requires a web server with PHP 5.3 or better

and Curl libraries for downloading web documents. The various directories and files

in Yioop are shown below.

Figure 1: Yioop directory Structure

- 16 ­

CS298 Report

Following are the major files and folders in Yioop which were used in the project.

word_iterator.php

This iterator file is present in the index_bundle_iterator folder and is used to iterate

through the documents associated with a word in an Index archive bundle. This file

contains methods to handle and retrieve summaries of these documents in an easy

manner. In section 4.2 we create a dictionary for words and corresponding

word_iterators to support duplicate terms in Yioop.

intersect_iterator.php

This iterator file is present in the index_bundle_iterator folder and is used to iterate

over the documents which occur in all of a set of iterator results. In other words it

generates an intersection of documents which will have all the words corresponding

to individual word iterators. This file contains the Proximity ranking function which

will be modified section 5 to efficiently compute a proximity score of each qualifying

document based on relative position of words inside them.

group_iterator.php

This iterator file is present in the index_bundle_iterator folder and is is used to group

together documents or document parts which share the same url. This file has a

parameter MIN_FIND_RESULTS_PER_BLOCK which specifies how far we go in

the posting list to retrieve the relevant documents. We will run experiments to

determine an optimal value for this parameter so that Yioop produces efficient search

results in shortest time.

- 17 ­

CS298 Report

phrase_parser.php

This file is present in the lib folder and provides library of functions used to

manipulate words and phrases. It contains functions to extract phases from an input

string which can be a page visited by crawler or user query string. This file is

modified to support duplicate query terms in Yioop and implementing bigrams.

phrase_model.php

This file is present in the models folder and is used to handle results for a given

phrase search. Using the files from index_bundle_iterator it generates the required

iterators to retrieve documents relevant to the query. This file was modified to include

dictionary for supporting duplicate terms in Yioop discussed in section 4.2.

bloom_filter_file.php

This file is present in the lib folder and contains code used to manage a bloom filter

in-memory and in file. A Bloom filter is used to store a set of objects. It can support

inserts into the set and it can also be used to check membership in the set. In this

project we have implemented the bigram functionality in Yioop discussed in section

7. This involved creating a bloom filter file for a large set of word pairs which qualify

as bigrams. This bigram filter file is then used to check the presence of bigrams in

documents visited by crawler and user search queries. The bigrams present in

document are then indexed as a single words to be used in search results.

- 18 ­

CS298 Report

3.2. Inverted Index

An inverted index also referred to as postings file or inverted file is an index

structure which stores a mapping from words to their locations in a document or a set

of documents allowing full text search. In Yioop “fetcher.php” creates a mini inverted

index by storing the location of each word in a web document and sends in back to

“queue_server.php”. “queue_server.php” adds it to the global inverted index.

Figure 2: mini inverted index in Yioop

When a user submits a query to the Yioop search engine there are many qualifying

documents with all the terms in the query present in them. However each document

contains all the keywords in totally different context. Therefore Yioop has to find the

relevant documents and prioritize them. Yioop uses Page rank and Hub & Authority,

both based on links between documents, to compute relevance of documents. Besides

this Yioop also computes the proximity score of documents based on the textual

information i.e. how close the keywords appear together in a document (Proximity).

If the proximity is good, it is more likely that query terms have a combined meaning

- 19 ­

CS298 Report

in the document. The location information of words in a document (mini inverted

index) is used by Yioop to generate the proximity score for each qualifying

document. The resultant documents given back to the user are ordered by total score

of each document. We will use this location information of the mini inverted index to

write an efficient Proximity ranking algorithm in section 5. This algorithm is a

modified implementation of Plane sweep algorithm and supports duplicate terms in

the query string i.e. even though duplicate words have the same position list they are

treated distinct by the algorithm.

- 20 ­

CS298 Report

4. Supporting duplicate query terms in Yioop!

The following section describes the changes that were made to support

duplicate query terms in Yioop user search query.

4.1. Existing Implementation (For Yioop version 0.8 till Oct 2011)

Yioop currently does not distinguish between duplicate terms in a user search

query. It removes all the duplicate terms while processing the request. To support

duplicate terms in Yioop the flow of code was studied to make modifications that

would help distinguish between identical query terms. “phrase_model.php” file in

Yioop interprets the user query and removes all the duplicate terms from it. For each

distinct word in the search query it creates a word iterator which is used to fetch

documents which contain that word. It then takes this collection of word iterators and

makes a call to the file “intersect_iterator.php”. This file takes an intersection of these

word iterators to find the documents which contain all the distinct words in the search

query. Whenever it finds a document that contains all the distinct words in the search

query, it computes a proximity score of terms by calling the function

computeProximity. This proximity score is used while ranking the documents for

relevance. One of the arguments passed to the function computeProximity is the

position list of each of the distinct terms in the given document. The position list of a

term in the qualified document is obtained through the inverted index information in

the word iterator corresponding to the term.

- 21 ­

CS298 Report

“does sweet tomatoes serve sweet tomatoes”

“phrase_model.php” removes duplicates and converts the above user query into

“does sweet tomatoes serve”

Following table shows the word iterators created after removing duplicates.

does sweet tomatoes serve

W1 W2 W3 W4

Figure 3: Words and corresponding word iterators for distinct terms

It then sends the list (W1, W2, W3, W4) to “intersect_iterator.php” and loses all the

information about duplicate terms. If (L1, L2, L3, L4) is a list of position lists of all

the four distinct terms in a given document then computeProximity is called with the

argument list (L1, L2, L3, L4). Thus there is no information available about duplicate

terms while computing proximity.

4.2. Modified Implementation

In the modified implementation code changes were made in

“phrase_model.php” so that duplicate terms are not removed from the array of query

terms. However the word iterators have to be created only for the distinct terms since

duplicate terms would also have the same word iterator. Therefore we generate an

array of distinct terms and create word iterators for each of these terms. Additionally

we generate a dictionary which stores the query term number and the corresponding

word iterator number.

- 22 ­

CS298 Report

“does sweet tomatoes serve sweet tomatoes”

For the query above we will have the word iterators and the dictionary as below

0 1 2 3 4 5

does sweet tomatoes serve sweet tomatoes

W1 W2 W3 W4 W2 W3

Figure 4: Words and corresponding word iterators for non-distinct terms

0 1 2 3 4 5

1 2 3 4 2 3

Figure 5: Dictionary with key as word number and value as iterator number

Note that the order of terms in the user query is maintained in the Dictionary.

Therefore we do not lose information about the duplicate terms. We now pass the list

of word_iterators (W1, W2, W3, W4) along with the dictionary of mapping to the

“intersect_iterator.php” file. In this file we again generate the documents containing

all the terms in the user query by taking an intersection of the word iterators as done

before. However, when we find a qualified document containing all the terms in user

query we generate the position list of all the terms including the duplicate terms

before making a call to the computeProximity function. Assume that for a given

document (L1, L2, L3, L4) is a list of position lists obtained from the word iterators

(W1, W2, W3, W4) of the distinct terms in the query shown above. Then using the

dictionary of mapping between query terms and corresponding word iterators we call

- 23 ­

CS298 Report

the computeProximity function with the argument list (L1, L2, L3, L4, L2, L3). In

this call we retain the order of terms in the user query and also include the location

information of the duplicate terms. Even though the location information of duplicate

terms is redundant, the new modified computeProximity function will use this

information to calculate the proximity of query terms efficiently. Since we are

preserving the order of query terms and including the redundant terms we will get a

more optimal relevance of query terms to the given document.

- 24 ­

CS298 Report

5. Writing an improved Proximity ranking algorithm for Yioop!

The current proximity ranking algorithm in Yioop is very ad hoc and does not

support duplicate terms. Hence we have implemented a new proximity ranking

algorithm which is an extension of plane sweep algorithm and supports duplicate

terms. Plane sweep algorithm is a distinct k-word proximity search algorithm. We

will discuss both the distinct k-word proximity algorithm and the modified non

distinct k-word proximity algorithm.

5.1. Problem Statements

5.1.1. Distinct K-word proximity search for ranking documents

��T = T[1..N] : a text collection of length N

��P1,......Pk : given distinct keywords

��pij : the position of the jth occurrence of a keyword Pi in the text T

��Given a text collection T = T[1..N] of length N and k keywords P1,......Pk, we

define a cover for this collection to be an interval [l, r] in the collection that

contains all the k keywords, such that no smaller interval [l', r'] contained in

[l, r] has a match to all the keywords in the collection. The order of keywords

in the interval is arbitrary.

��The goal is to find all the covers in the collection. Covers are allowed to

overlap.

- 25 ­

CS298 Report

5.1.2. Non Distinct K-word proximity search for raking documents

��T = T[1..N] : a text collection of length N

��P1,......Pk : given non distinct keywords

��pij : the position of the jth occurrence of a keyword Pi in the text T

��Given a text collection T = T[1..N] of length N and k non distinct keywords

P1,......Pk, we define a cover for this collection to be an interval [l, r] in the

collection that contains all the k keywords, such that no smaller interval [l', r']

contained in [l, r] has a match to all the keywords in the collection. The order

of keywords in the interval is arbitrary.

��The goal is to find all the covers in the collection. Covers are allowed to

overlap.

5.2. Algorithms

5.2.1. Plane-sweep algorithm

The plane-sweep algorithm is a distinct k-word proximity search algorithm described

in [1]. It scans the document from left to right and finds all the covers in the text. The

figure on next page shows the covers for three distinct keywords (A, B, C) in a text

collection.

- 26 ­

CS298 Report

Figure 6: Covers vs Non Covers for distinct keywords

The scanning is actually not directly on the text but on the lists of positions of k

keywords. The lists of positions of k keywords are merged while scanning. The steps

followed are

1. For each keyword Pk (i = 1, . . . , k) sort lists of positions pij (j = 1, . . . , ni) in an

ascending order.

2. Pop beginning elements pi1 (i = 1, . . . , k) of each position list, sort the k elements

retrieved by their positions. Among these k elements find the leftmost and

rightmost keyword and their corresponding positions l1 and r1. The interval

[l1, r1] is a candidate for cover, let i = 1.

3. If the current position list of leftmost keyword P (with position li in the interval)

is empty, then the interval [li, ri] is a cover. Insert it into heap and go to step 7.

4. Read the position 	p of next element in the current position list of leftmost

keyword P. Let q be the element next to li in the interval.

5. If p > ri, then the interval [li, ri] is minimal and a cover. Insert it into the heap.

Remove the leftmost element li from the interval. Pop p from the position list of P

- 27 ­

CS298 Report

and add it to the interval. In the new interval li+1 = q and ri+1 = p. Update the

interval and order of keywords, let i = i + 1, go to 3.

6. If p < ri, then the interval [li, ri] is not minimal and not a cover. Remove the

leftmost element li from the interval. Pop p from the position list of P and add it

to the interval. In the new interval li+1 = min{p, q} and ri+1 = ri. Update the

interval and order of keywords, let i = i + 1, go to 3.

7. Sort and output the covers stored in heap.

5.2.2. Modified Plane-sweep algorithm

The modified plane-sweep algorithm is a non distinct k-word proximity search

algorithm. This algorithm is a slight modification of the plane-sweep algorithm

described in the previous section. The position lists supplied to this algorithm can be

duplicate based on duplicate keywords in the input. Therefore one or more position

lists will have identical elements in them. This algorithm would treat the duplicate

keywords distinct in a given interval of k keywords. The figure below shows the

covers for 3 non distinct keywords (A, A, B) in a text collection.

Figure 7: Covers vs Non Covers for non distinct keywords

- 28 ­

CS298 Report

The steps in the modified algorithm are

1. For each keyword Pk (i = 1, . . . , k) sort lists of positions pij (j = 1, . . . , ni) in an

ascending order.

2. Pop beginning element	 p1 from position list of keyword P1 and add it to the

interval. Search and pop p1 from position lists of all the remaining keywords.

Similarly pop p2, p3,...., pk from position lists of keywords Pk (i = 2, . . . , k) one

by one and add them to the interval. If any of the position list becomes empty

before popping then go to step 8.

3. Sort the k elements retrieved in the interval by their positions. Among these k

elements find the leftmost and rightmost keyword and their corresponding

positions l1 and r1. The interval [l1, r1] is a candidate for cover, let i = 1.

4. If the current position list of leftmost keyword P (with position li in the interval)

is empty, then the interval [li, ri] is a cover. Insert it into heap and go to step 8.

5. Read the position 	p of next element in the current position list of leftmost

keyword P. Let q be the element next to li in the interval.

6. If p > ri, then the interval [li, ri] is minimal and a cover. Insert it into the heap.

Remove the leftmost element li from the interval. Pop p from the position list of P

and add it to the interval. Search and pop p from position lists of all the remaining

keywords, if found. In the new interval li+1 = q and ri+1 = p. Update the

- 29 ­

CS298 Report

interval and order of keywords, let i = i + 1, go to 3.

7. If p < ri, then the interval [li, ri] is not minimal and not a cover. Remove the

leftmost element li from the interval. Pop p from the position list of P and add it

to the interval. Search and pop p from position lists of all the remaining

keywords, if found. In the new interval li+1 = min{p, q} and ri+1 = ri. Update the

interval and order of keywords, let i = i + 1, go to 3.

8. Sort and output the covers stored in heap.

5.3. Proximity ranking

The proximity score of the document is computed by ranking the covers obtained

from modified proximity search algorithm discussed in the previous section. The

ranking of the covers is based on the following criteria

� Smaller covers are worth more than the larger covers in the document

� More covers in a document count more than fewer covers in a document.

� Covers in the title of the document count more than the covers in the body of the

document.

Let weight assigned to covers in title text is wt and weight assigned to covers in

body text is wb. Suppose that a document d has covers [u1, v1], [u2, v2],…...., [uk, vk]

inside the title of the document and covers [uk+1, vk+1], [uk+2, vk+2],…...., [un, vn]

inside the body of the document. Then the proximity score of the document is

computed as

- 30 ­

CS298 Report

Figure 8: Formula used to compute proximity score

5.4. Implementation

The modified proximity search algorithm along with the ranking technique was

implemented for Yioop in PHP. This was done by rewriting the computeProximity

function inside “intersect_iterator.php” file. The implementation of

computeProximity function have two main parts. The first part finds all the covers in

the document. The second part then computes the proximity score by ranking the

covers using formula discussed in previous section. Following function finds covers:

continued on next page..

- 31 ­

CS298 Report

Figure 9: Function used to find covers in document

- 32 ­

CS298 Report

The function used to rank covers and finding proximity score in a document is:

Figure 10: Function used to rank covers and find proximity score

- 33 ­

CS298 Report

6. TREC comparison

This section describes the installation of TREC software and its use for

comparing results obtained by Yioop search engine before and after making the

changes to its source code.

6.1. Installing TREC software

The prerequisite for installing the TREC software on a Windows machine is Cygwin

with “make” and “gcc” utilities. Cygwin will be used to compile the source code to

generate the executable. Follow the steps below to complete the installation

1. Download “trec_eval.8.1.tar.gz” from the TREC website using the url

http://trec.nist.gov/trec_eval/

2. Uncompress the file to generate the source code directory.

3. Open the Cygwin command prompt and change the directory to the root of

source code.

4. Compile source code by typing “Make” at the command prompt.

5. This will generate the “trec_eval.exe” in the source directory.

6. The installation can be checked by displaying the help 	 menu by typing the

following command at the prompt

./trec_eval.exe

- 34 ­

CS298 Report

Figure 11: Checking the installation of trec eval in Cygwin

The executable can be used to make comparisons by using the following command:

trec_eval <trec_rel_file> <trec_top_file>

where “trec_rel_file” is the relevance judgments file and “trec_top_file” is the file

containing the results that need to be evaluated. The exact format of these files can be

obtained from the help menu. The relevance judgments file “trec_rel_file” contains

the expected results for the queries that are used to make the comparison. The

“trec_top_file” contains the results obtained by Yioop search engine for the same

queries. The results listed in both the files are in decreasing order of their ranks.

6.2. Baseline results

The baseline results are the expected results which must be returned by the search

engine for input queries. These are stored in the “trec_rel_file” and used for

comparison against results obtained from the Yioop search engine. To compute

baseline results for a query it was searched using three popular search engines

- 35 ­

CS298 Report

“Google”, “Bing” and “Ask”. The top 10 results obtained from each search engine

were combined to generate the top ten results that would qualify as the baseline

results. Below is the list of top ten results that were included in baseline for the

query “sjsu math”

Query Result Rank

sjsu math http://www.sjsu.edu/math/ 1

http://www.sjsu.edu/math/courses/ 2

http://info.sjsu.edu/web-dbgen/catalog/departments/MATH.html 3

http://www.sjsu.edu/math/people/ 4

http://www.math.sjsu.edu/~calculus/ 5

http://www.math.sjsu.edu/~hsu/colloq/ 6

https://sites.google.com/site/developmentalstudiesatsjsu/ 7

http://www.math.sjsu.edu/~mathclub/ 8

http://www.sjsu.edu/math/people/faculty/ 9

http://www.sjsu.edu/math/programs/ 10

Figure 12: Top ten baseline results for query “sjsu math”

Similarly we compute the baseline results for each of the following queries and add them to

the “trec_rel_file” to create the baseline for comparison

� morgan stanley � altec lansing

� boing boing � american express

� the the � beckman coulter

� pizza pizza � warner brothers

� adobe systems � capital one

� agilent technologies � dollar tree

- 36 ­

CS298 Report

� emc corporation � sjsu engineering

� general electric � sjsu science

� goldman sachs � sjsu student union

� hewlett packard � sjsu library

� barack obama � sjsu research foundation

� nbc universal � sjsu computer science

� office depot � san jose state university

� pizza hut � harvard university

� united airlines � sjsu business

� sjsu math

The resultant “trec_rel_file” now contains the baseline results. This file will be now used

for comparing results obtained from Yioop search engine before and after making changes

to its source code.

6.3. Comparison results for Yioop before code changes

All the queries used for creating the baseline are searched using the original Yioop

search engine one by one in the same order. We collect the top ten results for each

query and add them to the “trec_top_before”. Now we have the same number of

results in both the “trec_rel_file” and “trec_top_before”. The TREC utility installed

in the previous section is invoked using these two files. The results obtained are as

below.

- 37 ­

CS298 Report

Figure 13: Trec comparison results for Yioop before code changes

6.4. Comparison results for Yioop after code changes

After supporting duplicate terms and rewriting the proximity algorithm in Yioop we

search all the queries used for creating the baseline one by one in the same order. We

collect the top ten results for each query and add them to the “trec_top_after”. Now

we have the same number of results in both the “trec_rel_file” and “trec_top_after”.

The TREC utility is invoked using these two files. The results obtained are as below.

- 38 ­

CS298 Report

Figure 14: Trec comparison results for Yioop after code changes

As seen from the results Yioop after supporting duplicate terms and with new

proximity algorithm returns 66 relevant results as compared to 18 results returned

before changes.

- 39 ­

CS298 Report

7. Implementing bigrams in Yioop!

This section describes the implementation of bigrams in Yioop. Bigrams are

pair of words which always occur together in the same sequence in a document and a

user query, ex: "honda accord". Words in the reverse sequence or separated by other

words are not bigrams. A bigram can be treated as a single word during the indexing

and query phase. This increases the speed and efficiency of retrieval due to reduced

overhead of searching and combining documents containing individual words of the

bigram. To implement bigrams in Yioop we generate a list of all word pairs which

can qualify as bigrams by mining Wikipedia dumps. Then we generate a compressed

bloom filter file using this list which can be easily tested to check the presence of

bigram in it. During the indexing phase Yioop finds all the bigrams in a given

document by searching each of its consecutive pair of words in the bigram filter file.

For all the bigrams found we create an inverted index in the posting list for the

bigram as well as individual words in it. During the query phase we again find all the

bigrams in query string by searching query word pairs in bigram filter. The

documents containing the bigrams are then directly fetched using the index. These

documents contain both the words of bigram pair in them.

To implement the functionality we added a new file 'bigrams.php” to the lib

directory of Yioop. This file has the bigrams PHP class containing functions for

creating bigrams filter and extracting bigrams from phrases. Following sections

describe the step by step process of implementing the functionality and functions

- 40 ­

CS298 Report

inside bigram class.

7.1. Finding bigram Source

The first step to implement bigrams in Yioop was to find a large set of word

pairs which could qualify as bigrams. There are many resources over the internet

which can be mined to find such pairs. Wikipedia dumps are one such resource which

has a sufficiently large collection of bigrams which can be easily extracted using

suitable pattern matching scripts. Wikipedia regularly creates a backup of all its pages

along with the revision history and makes them available to download as Wikipedia

dumps. There are dumps available for entire Wikipedia pages as well as pages

specific to a particular language ex: English. The user can download these dumps free

of cost from Wikipedia using the links provided for them. Wikipedia dumps are large

compressed XML files composed of Wikipedia pages. Users can extract pages from

these XML files and store them for offline access. We will parse this XML file to

extract bigrams from it.

7.1.1. Downloading English Wikipedia

The filter file we create to implement bigrams is language specific. There is different

filter file for each language that we want to support. We refer to a specific filter file

for bigram check based on the language of the document that we index. The user's of

the search engine can create different filters by specifying a different input XML and

a different language. Let us assume that the user wants to create a bigrams filter for

- 41 ­

CS298 Report

English language. Go to link http://dumps.wikimedia.org/enwiki/ which is source of

dumps for English Wikipedia. This page lists all the dumps according to date they

were taken. Choose any suitable date or the latest. Say we chose 20120104/, dumps

taken on 01/04/2012. This would take you to the page which has many links based on

type of content you are looking for. We are interested in content titled "Recobine all

pages, current versions only" with the link "enwiki-20120104-pages-meta-

current.xml.bz2" This is a bz2 compressed XML file containing all the English pages

of Wikipedia. Download the file to the "search_filters" folder of Yioop work

directory associated with user's profile. (Note: User should have sufficient hard disk

space in the order of 100GB to store the compressed dump and script extracted XML.

The filter file generated is a few megabytes.)

7.1.2. Uncompress Wikipedia dump

The bz2 compressed XML file obtained above is extracted to get the source XML file

which is parsed to get the English bigrams. The code on next page is the function

inside the bigrams PHP class used to generate the input XML from compressed

dump.

- 42 ­

CS298 Report

Figure 15: Code for function to uncompress the bz2 compressed xml

This creates a XML file in the "search_filters" folder of the Yioop work directory

associated with the users's profile.

7.2. Parse XML to generate bigrams

The next step is to extract the bigrams from the input XML file by parsing. The

patterns “#REDIRECT [[Word1 Word2]]” or “#REDIRECT [[Word1_Word2]]”

inside the XML contain the bigram pair Word1 and Word2. We read the XML file

line by line and try to search for these patterns in the text. If a match is found we add

the word pair to the array of bigrams. When the complete file is parsed we remove

the duplicate entries from the array. The resulting array is written to a text file which

contains the bigrams separated by newlines.

- 43 ­

CS298 Report

Figure 16: Code for function to create bigrams text file from input xml

- 44 ­

CS298 Report

7.3. Create bigram Filter file

Once we create the bigrams text file containing newline separated bigrams, next step

is to create a compressed bloom filter file which can be easily queried to check if a

pair of words is a bigram. The utility functions in “BloomFilterFile” class of Yioop

are used to create the bigram filter file and query it. The size of filter file depends on

the number of bigrams to be stored in it. This value is obtained from the return value

of the function used to create the bigrams text file. The bigrams are stemmed prior to

storing in filter file. The stemming is based on the language of the filter file and done

using utility functions of “Stemmer” class for the language. The users of the Yioop

search engine have to create a separate filter file for each language they want to use

the bigram functionality. The code for function used to create the bigram filter file is

shown on the next page.

- 45 ­

CS298 Report

Figure 17: Code for function used to create the bigram filter

- 46 ­

CS298 Report

7.4. Extract bigrams in Phrases

The bigrams filter file is used to extract bigrams from a input set of Phrases. The

Phrases can be in a document during the indexing phase or in a query string during

the Query phase. The input phrases are of length one and are passed as an array for

extracting bigrams. All consecutive pair of phrases in the input array are searched in

the filter file for a match. If a match is not found we add the first phrase in the pair to

the output list of phrases and proceed further with the second phrase in the pair. If a

match is found we add the space separated pair to the output list of phrases as a single

phrase and proceed to next sequential pair. At the end output list of phrases is

returned. The function of bigram class that is used to extract bigrams is shown on the

next page.

- 47 ­

CS298 Report

Figure 18: Code for function used to extract bigrams in phrases

- 48 ­

CS298 Report

7.5. Bigram builder tool

The bigram builder is an easy to use command line tool which can be used by User to

create a bigram filter file for any language. This script is present in the Yioop config

folder. The user is responsible for placing the input bz2 compressed XML file inside

the “search_filters” folder of his work directory. The tool is run from the php

command-line by specifying the compressed XML file name and language tag.

> php bigram_builder.php <XML file name> <language>

Figure 19: Sample run of the bigram builder tool

7.6. Speed of retrieval

This section describes the improvement in speed and accuracy of results retrieved by

Yioop after the implementation of the bigram functionality. We will test this by

searching for 10-15 words pairs in Yioop which are bigrams, and then search for

same number of word pairs which are non bigrams.

- 49 ­

CS298 Report

7.6.1. Results for bigram word pairs.

The get the following results when we search for following bigrams in Yioop.

“Cox Enterprises” Results = 176 Time taken = 0.56 sec

Figure 20: Yioop statistics for search query “Cox Enterprises”

“Hewlett Packard” Results = 820983 Time taken = 1.09 sec

Figure 21: Yioop statistics for search query “Hewlett Packard”

- 50 ­

CS298 Report

7.6.2. Results for non-bigram word pairs

The get the following results when we search for following non-bigrams in Yioop.

“Baker Donelson” Results = 64 Time taken = 2.80 sec

Figure 22: Yioop statistics for search query “Baker Donelson”

“Plante Moran” Results = 510399 Time taken = 7.05 sec

Figure 23: Yioop statistics for search query “Plante Moran”

- 51 ­

CS298 Report

Similarly we search for 12 more word pairs in Yioop that are bigrams and non­

bigrams and plot the results in a graph.

Figure 24: Graphical comparison for speed of retrieval in Yioop

This shows that bigram search results are retrieved more quickly as compared to their

non-bigram counterparts.

- 52 ­

CS298 Report

7.7. TREC comparison

In this section we make a TREC comparison similar to section 6 to check the

efficiency of retrieval after implementing the bigram functionality. We chose 10 word

pairs which are bigrams from the baseline created in section 6 and add them to the

“trec_rel_file”. Now we search for all these word pairs in Yioop before and after

implementing bigram functionality.

7.7.1. Comparison results for Yioop before implementing bigrams

All the 10 word pairs used for creating the “trec_rel_file” are searched using the

Yioop search engine without bigram functionality. We collect the top ten results for

each word pair and add them to the “trec_top_before”. Now we have the same

number of results in both the “trec_rel_file” and “trec_top_before”. The TREC

utility is invoked using these two files. The results obtained is as below.

Figure 25: Trec comparison results for Yioop before implemeting bigrams

7.7.2. Comparison results for Yioop after implementing bigrams

Now with bigrams implemented in Yioop we search all the 10 word pairs used for

- 53 ­

CS298 Report

creating the “trec_rel_file” one by one in the same order. We collect the top ten

results for each bigram and add them to the “trec_top_after”. Now we have the same

number of results in both the “trec_rel_file” and “trec_top_after”. The TREC utility

is invoked using these two files. The results obtained is as below.

Figure 26: Trec comparison results for Yioop after implementing bigrams

As seen from the results Yioop after implementing bigrams returns 22 relevant

results as compared to 16 results returned before implementing bigrams.

- 54 ­

CS298 Report

8. Optimal BM25F weighing in Yioop!

This section describes the experiments performed to determine the optimal

BM25F weighing scheme in Yioop. BM25 is a ranking function used by search

engines to rank matching documents according to their relevance to a given search

query. It is based on the probabilistic retrieval framework developed in the 1970s and

1980s by Stephen E. Robertson, Karen Sparck Jones, and others. BM25F is a

modification of BM25 in which the document is considered to be composed from

several fields (such as title, body or description, and anchor text) with possibly

different degrees of importance. Thus the page relevance is based on weights

assigned to these fields. The title and body of a document are termed as document

fields. The anchor field of a document refers to all the anchor text in the collection

pointing to a particular document. In Yioop we can assign integer weights to these

three fields through its front end. The page options tab allows us to manipulate the

weights assigned to these fields as shown below.

Figure 27: BM25F weighting options in Yioop

- 55 ­

CS298 Report

We will use the TREC utility to compare results obtained from Yioop search engine

by varying the weights assigned to the BM25F parameters in Yioop. The baseline

results generated in section 6.2 will be used as reference for this comparison. The

baseline results are recorded in the “trec_rel_file”. Now we set the BM25F weights of

our choice in Yioop front end and search for all the queries used to create the

baseline. We collect the top ten results for each query and add them to the

“trec_top_file”. The TREC utility is invoked using the “trec_rel_file” and

“trec_top_file”. This procedure is repeated by varying the weights assigned to

BM25F fields and results of TREC utility are recoded each time. Following are the

results obtained

BM25 Weights Relevant results

retrieved
Title Description Link

2 1 1 67

5 1 1 67

7 1 1 67

2 5 1 62

2 7 1 60

2 1 3 67

2 1 5 67

5 1 5 67

4 1 2 68

5 2 3 68

7 2 3 68

7 2 5 68

7 3 5 69

Figure 28: Yioop trec results obtained by varying BM25F weighting

- 56 ­

CS298 Report

From the results we can conclude that for current version of Yioop and corresponding

crawl, the optimal weighing scheme for BM25F fields is

Title: 7 Description: 3 Link: 5

9. Optimal document grouping in Yioop!

This section describes the experiments performed to determine the optimal

document grouping scheme in Yioop. For the documents crawled in Yioop, a posting

list is a set of all documents that contain a word in the index. This posting list is very

large and needs to be trimmed to get the most relevant documents for a given query.

Therefore Yioop chooses an arbitrary cutoff point for scanning this posting list for

grouping. If the group size is too small Yioop will not get the relevant documents

which may occur farther in the posting list. However if the group size is too large the

query time becomes very large. We would run experiments on how far we should go

in the posting list and decide on an optimum cutoff point for scanning posting list. In

Yioop we can set this cutoff point through its front end. The page options tab allows

us to manipulate this cutoff point through the “Minimum Results to Group” field.

Figure 29: Document grouping options in Yioop!

- 57 ­

CS298 Report

We will use the TREC utility to compare results obtained from Yioop search engine

by changing the cutoff point for scanning the posting list to group documents. The

baseline results generated in section 6.2 will be used as reference for this comparison.

The baseline results are recorded in the “trec_rel_file”. Now we set the cutoff point of

our choice in Yioop front end and search for all the queries used to create the

baseline. We collect the top ten results for each query and add them to the

“trec_top_file”. The TREC utility is invoked using the “trec_rel_file” and

“trec_top_file”. This procedure is repeated by varying the integer cutoff point and

results of TREC utility are recoded each time. Following are the results obtained

Cutoff value

Server alpha=1

Average

query time

(sec)

Relevant result

retrieved

10 3.37 67

100 3.46 67

200 3.59 68

300 3.83 69

500 4.17 68

1000 6.23 67

5000 9.34 67

10000 11.97 67

Figure 30: Yioop trec results obtained by varying cutoff scanning posting list

From the results we conclude that for current version of Yioop and corresponding

crawl, the optimal cutoff point for scanning posting list is 300.

- 58 ­

CS298 Report

10. Conclusion

The goal of optimizing a web search engine is achieved in this project. The search

engine optimized through this project is the open source PHP search engine Yioop!.

Yioop is being used by users to search the internet and create custom crawls of the

web. The Yioop optimization will help the users to search and retrieve relevant results

in a more efficient and effective manner. This would enhance the productivity and

precision for the users of the search engine. With support for duplicate terms in

Yioop, users will now get more relevant results for queries with duplicate terms.

Our optimization suggested and implemented a new proximity algorithm for

Yioop which is modification of the plane-sweep algorithm. The new proximity

algorithm gives a better estimate of proximity score for given terms in a document

even with duplicates. This proximity algorithm devised would also be helpful for

other open source projects looking to implement proximity scoring techniques with

duplicates. The report described how to setup and use the TREC utility to compare

improvements in results obtained from a search engine. The utility was used to

compare improvements in Yioop search engine after support for duplicate terms and

implementation of modified proximity ranking.

The report also described how bigram functionality was implemented in Yioop, that

would increase the speed and efficiency of retrieval for some special word pairs,

which we call bigrams. The report described how to search for such word pairs and

how to setup the Yioop search engine to start using them for retrieving results more

- 59 ­

CS298 Report

quickly and efficiently. Bigrams can be setup for multiple languages by users of the

Yioop search engine, by using the easy to use bigram builder tool. Bigrams

functionality can be extended on same lines to create n-grams for Yioop. The bigrams

functionality was also evaluated using the trec utility.

The report at the end described how experiments were performed to decide

upon an optimal weighting scheme for BM25F in Yioop and optimal grouping

scheme for documents. All the optimizations done for the project have been

incorporated in the current version of Yioop available at www.seekquarry.com. Thus all

the additions suggested through this project will be present in all the future versions

of Yioop search engine for a better user experience.

- 60 ­

CS298 Report

References

[1] Kunihiko Sadakane and Hiroshi Imai(2001). Fast Algorithms for k-word

Proximity Search, TIEICE.

[2] Hugo Zaragoza, Nick Craswell, Michael Taylor, Suchi Saria, and Stephen

Robertson. Microsoft Cambridge at TREC-13 (2004): Web and HARD tracks. In

Proceedings of 3th Annual Text Retrieval Conference.

[3] Paolo Boldi and Massimo Santini and Sebastiano Vigna (2004). Do Your Worst to

Make the Best: Paradoxical Effects in PageRank Incremental Computations.

Algorithms and Models for the Web-Graph. pp. 168-180.

[4] Amy N. Langville and Carl D. Meyer (2006). Google's PageRank and Beyond:

The Science of Search Engine Rankings. Princeton University Press.

[5] Wikimedia Downloads. Wikipedia, the free encyclopedia.

- 61 ­

	San Jose State University
	SJSU ScholarWorks
	Spring 2012

	Optimizing a Web Search Engine
	Ravi Inder Singh Dhillon
	Recommended Citation

	Title
	Abstract
	Acknowledgement
	Table of Contents
	1. Introduction
	2. Technologies Used
	3. Yioop! Search Engine
	4. Supporting duplicate query terms in Yioop
	5. Writing an improved Proximity ranking algorithm for Yioop!
	6. TREC comparison
	7. Implementing bigrams in Yioop!
	8. Optimal BM25F weighing in Yioop!
	9. Optimal document grouping in Yioop!
	10. Conclusion
	References

