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ABSTRACT 

Search Engine queries often have duplicate words in the search string. For 

example user searching for "pizza pizza" a popular brand name for Canadian pizzeria 

chain. An efficient search engine must return the most relevant results for such 

queries. Search queries also have pair of words which always occur together in the 

same sequence, for example “honda accord”, “hopton wafers”, “hp newwave” etc. 

We will hereafter refer to such pair of words as bigrams. A bigram can be treated as a 

single word to increase the speed and relevance of results returned by a search engine 

that is based on inverted index. Terms in a user query have a different degree of 

importance based on whether they occur inside title, description or anchor text of the 

document. Therefore an optimal weighting scheme for these components is required 

for search engines to prioritize relevant documents near the top for user searches. 

The goal of my project is to improve Yioop, an open source search 

engine created by Dr Chris Pollett, to support search for duplicate terms and bigrams 

in a search query. I will also optimize the Yioop search engine by improving its 

document grouping and BM25F weighting scheme. This would allow Yioop to return 

more relevant results quickly and efficiently for users of the search engine. 
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1. Introduction 

Search engine queries frequently have duplicate terms in the search string. 

Several companies use duplicate words to name their brand or website. For example 

pizza pizza is a popular brand name of a very large chain of pizzerias in Canada. 

Another example is the official website “www.thethe.com” of the English musical and 

multimedia group “The The”. Similarly there are many examples where duplicate 

terms have a special meaning when a user is searching for information through a 

search engine. Currently Yioop search engine does not distinguish between duplicate 

terms in a search query. It removes all the duplicate terms from the user search query 

before processing it. This means that a user query “pizza pizza” will be treated as 

“pizza” before processing. Therefore the results returned for such queries by the 

search engine may not be as expected by the user. Yioop scores documents for 

queries based on their relevance scores and proximity scores. The relevance score for 

query is based on OPIC ranking and BM25F weighting of the terms. While proximity 

scoring, which is completely offline, is based on how close the terms are in a given 

document. A good proximity score means that it is more likely that the keywords 

have a combined meaning in the document. Therefore an efficient proximity ranking 

algorithm is highly desirable especially for queries with duplicate terms. Currently 

Yioop has a proximity ranking algorithm which is very ad hoc and does not support 

duplicate terms in the query. 

In this project I have modified the Yioop code so that it does not remove 

duplicate terms in the query and written a new Proximity ranking algorithm that gives 
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the best measure of proximity even with duplicate terms in query. The proximity 

ranking algorithm I have written is based on a modified implementation of the Plane 

sweep algorithm, which is a k-word near proximity search algorithm for k distinct 

terms occurring in document. The modified implementation allows duplicate terms in 

the algorithm and is a k-word near proximity search algorithm for k non-distinct 

terms. 

There are several techniques used by popular search engines to increase the 

speed and accuracy of results retrieved for a user query. One of such techniques is 

combining pair of words which always occur together in the same sequence. We refer 

to such pairs as bigrams. For example “honda accord”, “hopton wafers”, “hp 

newwave”, etc are bigrams. However if these words are not in the same sequence or 

separated by other words between them they act as independent words. Bigrams can 

be treated as single words while creating the inverted index for documents during the 

indexing phase. Similarly when the user query has these pair of words we treat them 

as single words to fetch documents relevant to the search. This technique speeds up 

the retrieval of documents and getting user desired results at the top. I have made 

increments to the Yioop code so that it supports bigrams in the search query. This 

involved identifying a list of all pair of words which could qualify as bigrams. During 

the indexing phase the search engine checks the presence of all the bigrams in a given 

document by comparing each pair of consecutive words against the list of available 

bigrams. Then based on this comparison it creates an inverted index for both the 

bigrams as well as individual words in the posting list. During the query phase we 
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check all consecutive pair of words in query string against the list of available 

bigrams to identify qualifying bigrams. Then these bigrams are used to fetch 

documents from the inverted index. Since we have already filtered documents with 

both the words (bigram pair) in them, we speed up the process of finding documents 

which have all the words in the query string present in them. 

The testing for the changes made to the Yioop search engine was achieved 

by comparing the results obtained from Yioop against the baseline TREC results. 

TREC baseline is a predefined set of ideal results that a search engine must return for 

a given set of user search queries. We search for queries used to create baseline using 

original Yioop version 0.8 at the beginning of the project and record the results. We 

compare these results with the baseline results using the TREC software which gives 

us the relevant results returned by original Yioop search engine. During the course of 

this project new results were retrieved from Yioop after making any changes to its 

source code and recorded. The comparison between recorded results was done 

through TREC software to get a numerical value of improvement in relevance of 

retrieval. 

Title, body and anchor text of a document hold a different degree of 

importance for user queries. Yioop employs the BM25F ranking function to assign 

different integer weights to these parts. In this project we find an optimal distribution 

of weights for these components by varying them and comparing the results retrieved 

using TREC. 

In Yioop posting list is a set of all documents in archive which contain a 

- 12 ­



CS298 Report 

word in the index. For large crawls this posting list is very large and needs to be 

trimmed to get the most relevant documents for a given query. Hence Yioop chooses 

an arbitrary cutoff point for scanning this posting list to group documents. In this 

project we find an optimal cutoff point for scanning posting list by comparing the 

results retrieved using TREC. 
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2. Technologies Used 

The project was based on improving the Yioop! search engine. Yioop! search 

engine is a GPLv3, open source, PHP search engine. The main technology used 

during the project was PHP. Apache server in the XAMPP bundle was used as the 

web server. XAMPP is an easy to install Apache distribution containing MySQL, 

PHP and Perl. The other technologies used were TREC software and Cygwin. TREC 

software was used to compare the results obtained from search engine before and 

after making the changes to it. Cygwin was used as a host environment to run the 

TREC software. Editor used to modify the source files was Textpad. 

2.1. PHP 

PHP is a widely-used general-purpose server-side scripting language that is 

especially suited for Web development and can be embedded into HTML to produce 

dynamic web pages. PHP code is embedded into the HTML source document and 

interpreted by a web server with a PHP processor module, which generates the web 

page document. Yioop! search engine has been developed using PHP server scripting, 

HTML and Javascript. Most of my work for this project was writing code in PHP. 

PHP also includes a command line interface to run scripts written in PHP. Yioop! 

search engine uses the command line interface to run the fetcher and queue_server 

scripts used to crawl the internet along with its web interface. 
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2.2. TREC Software 

The Text REtrieval Conference (TREC) is an on-going series of workshops 

focusing on a list of different information retrieval (IR) research areas, or tracks. Its 

purpose is to support research within the information retrieval community by 

providing the infrastructure necessary for large-scale evaluation of text retrieval 

methodologies. Trec Eval Software is a standard tool used by the TREC community 

for evaluating ad hoc retrieval runs, given the results file and a standard set of judged 

results. TREC Eval software was used in the project to compare results before and 

after making changes to Yioop search engine. 

2.3. Cygwin 

Cygwin is a Unix-like environment and command-line interface for Microsoft 

Windows. Cygwin provides native integration of Windows-based applications, data, 

and other system resources with applications, software tools, and data of the Unix-

like environment. Cygwin environment was used to compile the source code of 

TREC Eval software using gcc libraries to generate the executable. The executable 

was then used to run the software in Cygwin to compare results generated by search 

engine with a standard set of results. 
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3. Yioop! Search Engine 

Yioop! is an open source, GPLv3, PHP search engine developed by Chris 

Pollett. It was chosen for this project because it is open source and continuously 

evolving with various developers contributing to its code. Yioop was at its release 

version 0.8 at the beginning of this project. Yioop lets users to create their own 

custom crawls of the internet. 

3.1. System Architecture 

Yioop search engine follows a MVC (Model-View-Controller) pattern in its 

architecture. It has been written in PHP, requires a web server with PHP 5.3 or better 

and Curl libraries for downloading web documents. The various directories and files 

in Yioop are shown below. 

Figure 1: Yioop directory Structure 
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Following are the major files and folders in Yioop which were used in the project. 

word_iterator.php 

This iterator file is present in the index_bundle_iterator folder and is used to iterate 

through the documents associated with a word in an Index archive bundle. This file 

contains methods to handle and retrieve summaries of these documents in an easy 

manner. In section 4.2 we create a dictionary for words and corresponding 

word_iterators to support duplicate terms in Yioop. 

intersect_iterator.php 

This iterator file is present in the index_bundle_iterator folder and is used to iterate 

over the documents which occur in all of a set of iterator results. In other words it 

generates an intersection of documents which will have all the words corresponding 

to individual word iterators. This file contains the Proximity ranking function which 

will be modified section 5 to efficiently compute a proximity score of each qualifying 

document based on relative position of words inside them. 

group_iterator.php 

This iterator file is present in the index_bundle_iterator folder and is is used to group 

together documents or document parts which share the same url. This file has a 

parameter MIN_FIND_RESULTS_PER_BLOCK which specifies how far we go in 

the posting list to retrieve the relevant documents. We will run experiments to 

determine an optimal value for this parameter so that Yioop produces efficient search 

results in shortest time. 
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phrase_parser.php 

This file is present in the lib folder and provides library of functions used to 

manipulate words and phrases. It contains functions to extract phases from an input 

string which can be a page visited by crawler or user query string. This file is 

modified to support duplicate query terms in Yioop and implementing bigrams. 

phrase_model.php 

This file is present in the models folder and is used to handle results for a given 

phrase search. Using the files from index_bundle_iterator it generates the required 

iterators to retrieve documents relevant to the query. This file was modified to include 

dictionary for supporting duplicate terms in Yioop discussed in section 4.2. 

bloom_filter_file.php 

This file is present in the lib folder and contains code used to manage a bloom filter 

in-memory and in file. A Bloom filter is used to store a set of objects. It can support 

inserts into the set and it can also be used to check membership in the set. In this 

project we have implemented the bigram functionality in Yioop discussed in section 

7. This involved creating a bloom filter file for a large set of word pairs which qualify 

as bigrams. This bigram filter file is then used to check the presence of bigrams in 

documents visited by crawler and user search queries. The bigrams present in 

document are then indexed as a single words to be used in search results. 
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3.2. Inverted Index 

An inverted index also referred to as postings file or inverted file is an index 

structure which stores a mapping from words to their locations in a document or a set 

of documents allowing full text search. In Yioop “fetcher.php” creates a mini inverted 

index by storing the location of each word in a web document and sends in back to 

“queue_server.php”. “queue_server.php” adds it to the global inverted index. 

Figure 2: mini inverted index in Yioop 

When a user submits a query to the Yioop search engine there are many qualifying 

documents with all the terms in the query present in them. However each document 

contains all the keywords in totally different context. Therefore Yioop has to find the 

relevant documents and prioritize them. Yioop uses Page rank and Hub & Authority, 

both based on links between documents, to compute relevance of documents. Besides 

this Yioop also computes the proximity score of documents based on the textual 

information i.e. how close the keywords appear together in a document (Proximity). 

If the proximity is good, it is more likely that query terms have a combined meaning 
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in the document. The location information of words in a document (mini inverted 

index) is used by Yioop to generate the proximity score for each qualifying 

document. The resultant documents given back to the user are ordered by total score 

of each document. We will use this location information of the mini inverted index to 

write an efficient Proximity ranking algorithm in section 5. This algorithm is a 

modified implementation of Plane sweep algorithm and supports duplicate terms in 

the query string i.e. even though duplicate words have the same position list they are 

treated distinct by the algorithm. 
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4. Supporting duplicate query terms in Yioop! 

The following section describes the changes that were made to support 

duplicate query terms in Yioop user search query. 

4.1. Existing Implementation (For Yioop version 0.8 till Oct 2011) 

Yioop currently does not distinguish between duplicate terms in a user search 

query. It removes all the duplicate terms while processing the request. To support 

duplicate terms in Yioop the flow of code was studied to make modifications that 

would help distinguish between identical query terms. “phrase_model.php” file in 

Yioop interprets the user query and removes all the duplicate terms from it. For each 

distinct word in the search query it creates a word iterator which is used to fetch 

documents which contain that word. It then takes this collection of word iterators and 

makes a call to the file “intersect_iterator.php”. This file takes an intersection of these 

word iterators to find the documents which contain all the distinct words in the search 

query. Whenever it finds a document that contains all the distinct words in the search 

query, it computes a proximity score of terms by calling the function 

computeProximity. This proximity score is used while ranking the documents for 

relevance. One of the arguments passed to the function computeProximity is the 

position list of each of the distinct terms in the given document. The position list of a 

term in the qualified document is obtained through the inverted index information in 

the word iterator corresponding to the term. 
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“does sweet tomatoes serve sweet tomatoes” 

“phrase_model.php” removes duplicates and converts the above user query into 

“does sweet tomatoes serve” 

Following table shows the word iterators created after removing duplicates. 

does sweet tomatoes serve 

W1 W2 W3 W4 

Figure 3: Words and corresponding word iterators for distinct terms 

It then sends the list (W1, W2, W3, W4) to “intersect_iterator.php” and loses all the 

information about duplicate terms. If (L1, L2, L3, L4) is a list of position lists of all 

the four distinct terms in a given document then computeProximity is called with the 

argument list (L1, L2, L3, L4). Thus there is no information available about duplicate 

terms while computing proximity. 

4.2. Modified Implementation 

In the modified implementation code changes were made in 

“phrase_model.php” so that duplicate terms are not removed from the array of query 

terms. However the word iterators have to be created only for the distinct terms since 

duplicate terms would also have the same word iterator. Therefore we generate an 

array of distinct terms and create word iterators for each of these terms. Additionally 

we generate a dictionary which stores the query term number and the corresponding 

word iterator number. 

- 22 ­




CS298 Report 

“does sweet tomatoes serve sweet tomatoes” 

For the query above we will have the word iterators and the dictionary as below 

0 1 2 3 4 5 

does sweet tomatoes serve sweet tomatoes 

W1 W2 W3 W4 W2 W3 

Figure 4: Words and corresponding word iterators for non-distinct terms 

0 1 2 3 4 5 

1 2 3 4 2 3 

Figure 5: Dictionary with key as word number and value as iterator number 

Note that the order of terms in the user query is maintained in the Dictionary. 

Therefore we do not lose information about the duplicate terms. We now pass the list 

of word_iterators (W1, W2, W3, W4) along with the dictionary of mapping to the 

“intersect_iterator.php” file. In this file we again generate the documents containing 

all the terms in the user query by taking an intersection of the word iterators as done 

before. However, when we find a qualified document containing all the terms in user 

query we generate the position list of all the terms including the duplicate terms 

before making a call to the computeProximity function. Assume that for a given 

document (L1, L2, L3, L4) is a list of position lists obtained from the word iterators 

(W1, W2, W3, W4) of the distinct terms in the query shown above. Then using the 

dictionary of mapping between query terms and corresponding word iterators we call 
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the computeProximity function with the argument list (L1, L2, L3, L4, L2, L3). In 

this call we retain the order of terms in the user query and also include the location 

information of the duplicate terms. Even though the location information of duplicate 

terms is redundant, the new modified computeProximity function will use this 

information to calculate the proximity of query terms efficiently. Since we are 

preserving the order of query terms and including the redundant terms we will get a 

more optimal relevance of query terms to the given document. 
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5. Writing an improved Proximity ranking algorithm for Yioop! 

The current proximity ranking algorithm in Yioop is very ad hoc and does not 

support duplicate terms. Hence we have implemented a new proximity ranking 

algorithm which is an extension of plane sweep algorithm and supports duplicate 

terms. Plane sweep algorithm is a distinct k-word proximity search algorithm. We 

will discuss both the distinct k-word proximity algorithm and the modified non 

distinct k-word proximity algorithm. 

5.1. Problem Statements 

5.1.1. Distinct K-word proximity search for ranking documents 

��T = T[1..N ] : a text collection of length N 

��P1,......Pk : given distinct keywords 

��pij : the position of the jth occurrence of a keyword Pi in the text T 

��Given a text collection T = T[1..N ] of length N and k keywords P1,......Pk, we 

define a cover for this collection to be an interval [l, r] in the collection that 

contains all the k keywords, such that no smaller interval [l', r'] contained in 

[l, r] has a match to all the keywords in the collection. The order of keywords 

in the interval is arbitrary. 

��The goal is to find all the covers in the collection. Covers are allowed to 

overlap. 
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5.1.2. Non Distinct K-word proximity search for raking documents 

��T = T[1..N ] : a text collection of length N 

��P1,......Pk : given non distinct keywords 

��pij : the position of the jth occurrence of a keyword Pi in the text T 

��Given a text collection T = T[1..N ] of length N and k non distinct keywords 

P1,......Pk, we define a cover for this collection to be an interval [l, r] in the 

collection that contains all the k keywords, such that no smaller interval [l', r'] 

contained in [l, r] has a match to all the keywords in the collection. The order 

of keywords in the interval is arbitrary. 

��The goal is to find all the covers in the collection. Covers are allowed to 

overlap. 

5.2. Algorithms 

5.2.1. Plane-sweep algorithm 

The plane-sweep algorithm is a distinct k-word proximity search algorithm described 

in [1]. It scans the document from left to right and finds all the covers in the text. The 

figure on next page shows the covers for three distinct keywords (A, B, C) in a text 

collection. 
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Figure 6: Covers vs Non Covers for distinct keywords 

The scanning is actually not directly on the text but on the lists of positions of k 

keywords. The lists of positions of k keywords are merged while scanning. The steps 

followed are 

1. For each keyword Pk (i = 1, . . . , k) sort lists of positions pij ( j = 1, . . . , ni) in an 

ascending order. 

2. Pop beginning elements pi1 (i = 1, . . . , k) of each position list, sort the k elements 

retrieved by their positions. Among these k elements find the leftmost and 

rightmost keyword and their corresponding positions l1 and r1. The interval 

[l1, r1] is a candidate for cover, let i = 1. 

3. If the current position list of leftmost keyword P (with position li in the interval) 

is empty, then the interval [li, ri] is a cover. Insert it into heap and go to step 7. 

4. Read the position 	p of next element in the current position list of leftmost 

keyword P. Let q be the element next to li in the interval. 

5. If p > ri, then the interval [li, ri] is minimal and a cover. Insert it into the heap. 

Remove the leftmost element li from the interval. Pop p from the position list of P 
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and add it to the interval. In the new interval li+1 = q and ri+1 = p. Update the 

interval and order of keywords, let i = i + 1, go to 3. 

6. If p < ri, then the interval [li, ri] is not minimal and not a cover. Remove the 

leftmost element li from the interval. Pop p from the position list of P and add it 

to the interval. In the new interval li+1 = min{p, q} and ri+1 = ri. Update the 

interval and order of keywords, let i = i + 1, go to 3. 

7. Sort and output the covers stored in heap. 

5.2.2. Modified Plane-sweep algorithm 

The modified plane-sweep algorithm is a non distinct k-word proximity search 

algorithm. This algorithm is a slight modification of the plane-sweep algorithm 

described in the previous section. The position lists supplied to this algorithm can be 

duplicate based on duplicate keywords in the input. Therefore one or more position 

lists will have identical elements in them. This algorithm would treat the duplicate 

keywords distinct in a given interval of k keywords. The figure below shows the 

covers for 3 non distinct keywords (A, A, B) in a text collection. 

Figure 7: Covers vs Non Covers for non distinct keywords 
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The steps in the modified algorithm are 

1. For each keyword Pk (i = 1, . . . , k) sort lists of positions pij ( j = 1, . . . , ni) in an 

ascending order. 

2. Pop beginning element	 p1 from position list of keyword P1 and add it to the 

interval. Search and pop p1 from position lists of all the remaining keywords. 

Similarly pop p2, p3,...., pk from position lists of keywords Pk (i = 2, . . . , k) one 

by one and add them to the interval. If any of the position list becomes empty 

before popping then go to step 8. 

3. Sort the k elements retrieved in the interval by their positions. Among these k 

elements find the leftmost and rightmost keyword and their corresponding 

positions l1 and r1. The interval [l1, r1] is a candidate for cover, let i = 1. 

4. If the current position list of leftmost keyword P (with position li in the interval) 

is empty, then the interval [li, ri] is a cover. Insert it into heap and go to step 8. 

5. Read the position 	p of next element in the current position list of leftmost 

keyword P. Let q be the element next to li in the interval. 

6. If p > ri, then the interval [li, ri] is minimal and a cover. Insert it into the heap. 

Remove the leftmost element li from the interval. Pop p from the position list of P 

and add it to the interval. Search and pop p from position lists of all the remaining 

keywords, if found. In the new interval li+1 = q and ri+1 = p. Update the 
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interval and order of keywords, let i = i + 1, go to 3. 

7. If p < ri, then the interval [li, ri] is not minimal and not a cover. Remove the 

leftmost element li from the interval. Pop p from the position list of P and add it 

to the interval. Search and pop p from position lists of all the remaining 

keywords, if found. In the new interval li+1 = min{p, q} and ri+1 = ri. Update the 

interval and order of keywords, let i = i + 1, go to 3. 

8. Sort and output the covers stored in heap. 

5.3. Proximity ranking 

The proximity score of the document is computed by ranking the covers obtained 

from modified proximity search algorithm discussed in the previous section. The 

ranking of the covers is based on the following criteria 

� Smaller covers are worth more than the larger covers in the document 

� More covers in a document count more than fewer covers in a document. 

� Covers in the title of the document count more than the covers in the body of the 

document. 

Let weight assigned to covers in title text is wt and weight assigned to covers in 

body text is wb. Suppose that a document d has covers [u1, v1], [u2, v2],…...., [uk, vk] 

inside the title of the document and covers [uk+1, vk+1], [uk+2, vk+2],…...., [un, vn] 

inside the body of the document. Then the proximity score of the document is 

computed as 
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Figure 8: Formula used to compute proximity score 

5.4. Implementation 

The modified proximity search algorithm along with the ranking technique was 

implemented for Yioop in PHP. This was done by rewriting the computeProximity 

function inside “intersect_iterator.php” file. The implementation of 

computeProximity function have two main parts. The first part finds all the covers in 

the document. The second part then computes the proximity score by ranking the 

covers using formula discussed in previous section. Following function finds covers: 

continued on next page..........................................................................
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Figure 9: Function used to find covers in document 
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The function used to rank covers and finding proximity score in a document is: 

Figure 10: Function used to rank covers and find proximity score 
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6. TREC comparison 

This section describes the installation of TREC software and its use for 

comparing results obtained by Yioop search engine before and after making the 

changes to its source code. 

6.1. Installing TREC software 

The prerequisite for installing the TREC software on a Windows machine is Cygwin 

with “make” and “gcc” utilities. Cygwin will be used to compile the source code to 

generate the executable. Follow the steps below to complete the installation 

1. Download “trec_eval.8.1.tar.gz” from the TREC website using the url


http://trec.nist.gov/trec_eval/


2. Uncompress the file to generate the source code directory. 

3. Open the Cygwin command prompt and change the directory to the root of 

source code. 

4. Compile source code by typing “Make” at the command prompt. 

5. This will generate the “trec_eval.exe” in the source directory. 

6. The installation can be checked by displaying the help 	 menu by typing the 

following command at the prompt 

./trec_eval.exe 
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Figure 11: Checking the installation of trec eval in Cygwin 

The executable can be used to make comparisons by using the following command: 

trec_eval <trec_rel_file> <trec_top_file> 

where “trec_rel_file” is the relevance judgments file and “trec_top_file” is the file 

containing the results that need to be evaluated. The exact format of these files can be 

obtained from the help menu. The relevance judgments file “trec_rel_file” contains 

the expected results for the queries that are used to make the comparison. The 

“trec_top_file” contains the results obtained by Yioop search engine for the same 

queries. The results listed in both the files are in decreasing order of their ranks. 

6.2. Baseline results 

The baseline results are the expected results which must be returned by the search 

engine for input queries. These are stored in the “trec_rel_file” and used for 

comparison against results obtained from the Yioop search engine. To compute 

baseline results for a query it was searched using three popular search engines 
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“Google”, “Bing” and “Ask”. The top 10 results obtained from each search engine 

were combined to generate the top ten results that would qualify as the baseline 

results. Below is the list of top ten results that were included in baseline for the 

query “sjsu math” 

Query Result Rank 

sjsu math http://www.sjsu.edu/math/ 1 

http://www.sjsu.edu/math/courses/ 2 

http://info.sjsu.edu/web-dbgen/catalog/departments/MATH.html 3 

http://www.sjsu.edu/math/people/ 4 

http://www.math.sjsu.edu/~calculus/ 5 

http://www.math.sjsu.edu/~hsu/colloq/ 6 

https://sites.google.com/site/developmentalstudiesatsjsu/ 7 

http://www.math.sjsu.edu/~mathclub/ 8 

http://www.sjsu.edu/math/people/faculty/ 9 

http://www.sjsu.edu/math/programs/ 10 

Figure 12: Top ten baseline results for query “sjsu math” 

Similarly we compute the baseline results for each of the following queries and add them to 

the “trec_rel_file” to create the baseline for comparison 

� morgan stanley � altec lansing 

� boing boing � american express 

� the the � beckman coulter 

� pizza pizza � warner brothers 

� adobe systems � capital one 

� agilent technologies � dollar tree 
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� emc corporation � sjsu engineering 

� general electric � sjsu science 

� goldman sachs � sjsu student union 

� hewlett packard � sjsu library 

� barack obama � sjsu research foundation 

� nbc universal � sjsu computer science 

� office depot � san jose state university 

� pizza hut � harvard university 

� united airlines � sjsu business 

� sjsu math 

The resultant “trec_rel_file” now contains the baseline results. This file will be now used 

for comparing results obtained from Yioop search engine before and after making changes 

to its source code. 

6.3. Comparison results for Yioop before code changes 

All the queries used for creating the baseline are searched using the original Yioop 

search engine one by one in the same order. We collect the top ten results for each 

query and add them to the “trec_top_before”. Now we have the same number of 

results in both the “trec_rel_file” and “trec_top_before”. The TREC utility installed 

in the previous section is invoked using these two files. The results obtained are as 

below. 
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Figure 13: Trec comparison results for Yioop before code changes 

6.4. Comparison results for Yioop after code changes 

After supporting duplicate terms and rewriting the proximity algorithm in Yioop we 

search all the queries used for creating the baseline one by one in the same order. We 

collect the top ten results for each query and add them to the “trec_top_after”. Now 

we have the same number of results in both the “trec_rel_file” and “trec_top_after”. 

The TREC utility is invoked using these two files. The results obtained are as below. 
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Figure 14: Trec comparison results for Yioop after code changes 

As seen from the results Yioop after supporting duplicate terms and with new 

proximity algorithm returns 66 relevant results as compared to 18 results returned 

before changes. 
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7. Implementing bigrams in Yioop! 

This section describes the implementation of bigrams in Yioop. Bigrams are 

pair of words which always occur together in the same sequence in a document and a 

user query, ex: "honda accord". Words in the reverse sequence or separated by other 

words are not bigrams. A bigram can be treated as a single word during the indexing 

and query phase. This increases the speed and efficiency of retrieval due to reduced 

overhead of searching and combining documents containing individual words of the 

bigram. To implement bigrams in Yioop we generate a list of all word pairs which 

can qualify as bigrams by mining Wikipedia dumps. Then we generate a compressed 

bloom filter file using this list which can be easily tested to check the presence of 

bigram in it. During the indexing phase Yioop finds all the bigrams in a given 

document by searching each of its consecutive pair of words in the bigram filter file. 

For all the bigrams found we create an inverted index in the posting list for the 

bigram as well as individual words in it. During the query phase we again find all the 

bigrams in query string by searching query word pairs in bigram filter. The 

documents containing the bigrams are then directly fetched using the index. These 

documents contain both the words of bigram pair in them. 

To implement the functionality we added a new file 'bigrams.php” to the lib 

directory of Yioop. This file has the bigrams PHP class containing functions for 

creating bigrams filter and extracting bigrams from phrases. Following sections 

describe the step by step process of implementing the functionality and functions 

- 40 ­




CS298 Report 

inside bigram class. 

7.1. Finding bigram Source 

The first step to implement bigrams in Yioop was to find a large set of word 

pairs which could qualify as bigrams. There are many resources over the internet 

which can be mined to find such pairs. Wikipedia dumps are one such resource which 

has a sufficiently large collection of bigrams which can be easily extracted using 

suitable pattern matching scripts. Wikipedia regularly creates a backup of all its pages 

along with the revision history and makes them available to download as Wikipedia 

dumps. There are dumps available for entire Wikipedia pages as well as pages 

specific to a particular language ex: English. The user can download these dumps free 

of cost from Wikipedia using the links provided for them. Wikipedia dumps are large 

compressed XML files composed of Wikipedia pages. Users can extract pages from 

these XML files and store them for offline access. We will parse this XML file to 

extract bigrams from it. 

7.1.1. Downloading English Wikipedia 

The filter file we create to implement bigrams is language specific. There is different 

filter file for each language that we want to support. We refer to a specific filter file 

for bigram check based on the language of the document that we index. The user's of 

the search engine can create different filters by specifying a different input XML and 

a different language. Let us assume that the user wants to create a bigrams filter for 
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English language. Go to link http://dumps.wikimedia.org/enwiki/ which is source of 

dumps for English Wikipedia. This page lists all the dumps according to date they 

were taken. Choose any suitable date or the latest. Say we chose 20120104/, dumps 

taken on 01/04/2012. This would take you to the page which has many links based on 

type of content you are looking for. We are interested in content titled "Recobine all 

pages, current versions only" with the link "enwiki-20120104-pages-meta-

current.xml.bz2" This is a bz2 compressed XML file containing all the English pages 

of Wikipedia. Download the file to the "search_filters" folder of Yioop work 

directory associated with user's profile. (Note: User should have sufficient hard disk 

space in the order of 100GB to store the compressed dump and script extracted XML. 

The filter file generated is a few megabytes.) 

7.1.2. Uncompress Wikipedia dump 

The bz2 compressed XML file obtained above is extracted to get the source XML file 

which is parsed to get the English bigrams. The code on next page is the function 

inside the bigrams PHP class used to generate the input XML from compressed 

dump. 
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Figure 15: Code for function to uncompress the bz2 compressed xml 

This creates a XML file in the "search_filters" folder of the Yioop work directory 

associated with the users's profile. 

7.2. Parse XML to generate bigrams 

The next step is to extract the bigrams from the input XML file by parsing. The 

patterns “#REDIRECT [[Word1 Word2]]” or “#REDIRECT [[Word1_Word2]]” 

inside the XML contain the bigram pair Word1 and Word2. We read the XML file 

line by line and try to search for these patterns in the text. If a match is found we add 

the word pair to the array of bigrams. When the complete file is parsed we remove 

the duplicate entries from the array. The resulting array is written to a text file which 

contains the bigrams separated by newlines. 
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Figure 16: Code for function to create bigrams text file from input xml 
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7.3. Create bigram Filter file 

Once we create the bigrams text file containing newline separated bigrams, next step 

is to create a compressed bloom filter file which can be easily queried to check if a 

pair of words is a bigram. The utility functions in “BloomFilterFile” class of Yioop 

are used to create the bigram filter file and query it. The size of filter file depends on 

the number of bigrams to be stored in it. This value is obtained from the return value 

of the function used to create the bigrams text file. The bigrams are stemmed prior to 

storing in filter file. The stemming is based on the language of the filter file and done 

using utility functions of “Stemmer” class for the language. The users of the Yioop 

search engine have to create a separate filter file for each language they want to use 

the bigram functionality. The code for function used to create the bigram filter file is 

shown on the next page. 
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Figure 17: Code for function used to create the bigram filter 
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7.4. Extract bigrams in Phrases 

The bigrams filter file is used to extract bigrams from a input set of Phrases. The 

Phrases can be in a document during the indexing phase or in a query string during 

the Query phase. The input phrases are of length one and are passed as an array for 

extracting bigrams. All consecutive pair of phrases in the input array are searched in 

the filter file for a match. If a match is not found we add the first phrase in the pair to 

the output list of phrases and proceed further with the second phrase in the pair. If a 

match is found we add the space separated pair to the output list of phrases as a single 

phrase and proceed to next sequential pair. At the end output list of phrases is 

returned. The function of bigram class that is used to extract bigrams is shown on the 

next page. 
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Figure 18: Code for function used to extract bigrams in phrases 
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7.5. Bigram builder tool 

The bigram builder is an easy to use command line tool which can be used by User to 

create a bigram filter file for any language. This script is present in the Yioop config 

folder. The user is responsible for placing the input bz2 compressed XML file inside 

the “search_filters” folder of his work directory. The tool is run from the php 

command-line by specifying the compressed XML file name and language tag. 

> php bigram_builder.php <XML file name> <language> 

Figure 19: Sample run of the bigram builder tool 

7.6. Speed of retrieval 

This section describes the improvement in speed and accuracy of results retrieved by 

Yioop after the implementation of the bigram functionality. We will test this by 

searching for 10-15 words pairs in Yioop which are bigrams, and then search for 

same number of word pairs which are non bigrams. 
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7.6.1. Results for bigram word pairs. 

The get the following results when we search for following bigrams in Yioop. 

“Cox Enterprises” Results = 176 Time taken = 0.56 sec 

Figure 20: Yioop statistics for search query “Cox Enterprises” 

“Hewlett Packard” Results = 820983 Time taken = 1.09 sec 

Figure 21: Yioop statistics for search query “Hewlett Packard” 
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7.6.2. Results for non-bigram word pairs 

The get the following results when we search for following non-bigrams in Yioop. 

“Baker Donelson” Results = 64 Time taken = 2.80 sec 

Figure 22: Yioop statistics for search query “Baker Donelson” 

“Plante Moran” Results = 510399 Time taken = 7.05 sec 

Figure 23: Yioop statistics for search query “Plante Moran” 

- 51 ­



CS298 Report 

Similarly we search for 12 more word pairs in Yioop that are bigrams and non­

bigrams and plot the results in a graph. 

Figure 24: Graphical comparison for speed of retrieval in Yioop 

This shows that bigram search results are retrieved more quickly as compared to their 

non-bigram counterparts. 
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7.7. TREC comparison 

In this section we make a TREC comparison similar to section 6 to check the 

efficiency of retrieval after implementing the bigram functionality. We chose 10 word 

pairs which are bigrams from the baseline created in section 6 and add them to the 

“trec_rel_file”. Now we search for all these word pairs in Yioop before and after 

implementing bigram functionality. 

7.7.1. Comparison results for Yioop before implementing bigrams 

All the 10 word pairs used for creating the “trec_rel_file” are searched using the 

Yioop search engine without bigram functionality. We collect the top ten results for 

each word pair and add them to the “trec_top_before”. Now we have the same 

number of results in both the “trec_rel_file” and “trec_top_before”. The TREC 

utility is invoked using these two files. The results obtained is as below. 

Figure 25: Trec comparison results for Yioop before implemeting bigrams 

7.7.2. Comparison results for Yioop after implementing bigrams 

Now with bigrams implemented in Yioop we search all the 10 word pairs used for 
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creating the “trec_rel_file” one by one in the same order. We collect the top ten 

results for each bigram and add them to the “trec_top_after”. Now we have the same 

number of results in both the “trec_rel_file” and “trec_top_after”. The TREC utility 

is invoked using these two files. The results obtained is as below. 

Figure 26: Trec comparison results for Yioop after implementing bigrams 

As seen from the results Yioop after implementing bigrams returns 22 relevant 

results as compared to 16 results returned before implementing bigrams. 

- 54 ­




CS298 Report 

8. Optimal BM25F weighing in Yioop! 

This section describes the experiments performed to determine the optimal 

BM25F weighing scheme in Yioop. BM25 is a ranking function used by search 

engines to rank matching documents according to their relevance to a given search 

query. It is based on the probabilistic retrieval framework developed in the 1970s and 

1980s by Stephen E. Robertson, Karen Sparck Jones, and others. BM25F is a 

modification of BM25 in which the document is considered to be composed from 

several fields (such as title, body or description, and anchor text) with possibly 

different degrees of importance. Thus the page relevance is based on weights 

assigned to these fields. The title and body of a document are termed as document 

fields. The anchor field of a document refers to all the anchor text in the collection 

pointing to a particular document. In Yioop we can assign integer weights to these 

three fields through its front end. The page options tab allows us to manipulate the 

weights assigned to these fields as shown below. 

Figure 27: BM25F weighting options in Yioop 
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We will use the TREC utility to compare results obtained from Yioop search engine 

by varying the weights assigned to the BM25F parameters in Yioop. The baseline 

results generated in section 6.2 will be used as reference for this comparison. The 

baseline results are recorded in the “trec_rel_file”. Now we set the BM25F weights of 

our choice in Yioop front end and search for all the queries used to create the 

baseline. We collect the top ten results for each query and add them to the 

“trec_top_file”. The TREC utility is invoked using the “trec_rel_file” and 

“trec_top_file”. This procedure is repeated by varying the weights assigned to 

BM25F fields and results of TREC utility are recoded each time. Following are the 

results obtained 

BM25 Weights Relevant results 

retrieved 
Title Description Link 

2 1 1 67 

5 1 1 67 

7 1 1 67 

2 5 1 62 

2 7 1 60 

2 1 3 67 

2 1 5 67 

5 1 5 67 

4 1 2 68 

5 2 3 68 

7 2 3 68 

7 2 5 68 

7 3 5 69 

Figure 28: Yioop trec results obtained by varying BM25F weighting 
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From the results we can conclude that for current version of Yioop and corresponding 

crawl, the optimal weighing scheme for BM25F fields is 

Title: 7 Description: 3 Link: 5 

9. Optimal document grouping in Yioop! 

This section describes the experiments performed to determine the optimal 

document grouping scheme in Yioop. For the documents crawled in Yioop, a posting 

list is a set of all documents that contain a word in the index. This posting list is very 

large and needs to be trimmed to get the most relevant documents for a given query. 

Therefore Yioop chooses an arbitrary cutoff point for scanning this posting list for 

grouping. If the group size is too small Yioop will not get the relevant documents 

which may occur farther in the posting list. However if the group size is too large the 

query time becomes very large. We would run experiments on how far we should go 

in the posting list and decide on an optimum cutoff point for scanning posting list. In 

Yioop we can set this cutoff point through its front end. The page options tab allows 

us to manipulate this cutoff point through the “Minimum Results to Group” field. 

Figure 29: Document grouping options in Yioop! 
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We will use the TREC utility to compare results obtained from Yioop search engine 

by changing the cutoff point for scanning the posting list to group documents. The 

baseline results generated in section 6.2 will be used as reference for this comparison. 

The baseline results are recorded in the “trec_rel_file”. Now we set the cutoff point of 

our choice in Yioop front end and search for all the queries used to create the 

baseline. We collect the top ten results for each query and add them to the 

“trec_top_file”. The TREC utility is invoked using the “trec_rel_file” and 

“trec_top_file”. This procedure is repeated by varying the integer cutoff point and 

results of TREC utility are recoded each time. Following are the results obtained 

Cutoff value 

Server alpha=1 

Average 

query time 

(sec) 

Relevant result 

retrieved 

10 3.37 67 

100 3.46 67 

200 3.59 68 

300 3.83 69 

500 4.17 68 

1000 6.23 67 

5000 9.34 67 

10000 11.97 67 

Figure 30: Yioop trec results obtained by varying cutoff scanning posting list 

From the results we conclude that for current version of Yioop and corresponding 

crawl, the optimal cutoff point for scanning posting list is 300. 

- 58 ­




CS298 Report 

10. Conclusion 

The goal of optimizing a web search engine is achieved in this project. The search 

engine optimized through this project is the open source PHP search engine Yioop!. 

Yioop is being used by users to search the internet and create custom crawls of the 

web. The Yioop optimization will help the users to search and retrieve relevant results 

in a more efficient and effective manner. This would enhance the productivity and 

precision for the users of the search engine. With support for duplicate terms in 

Yioop, users will now get more relevant results for queries with duplicate terms. 

Our optimization suggested and implemented a new proximity algorithm for 

Yioop which is modification of the plane-sweep algorithm. The new proximity 

algorithm gives a better estimate of proximity score for given terms in a document 

even with duplicates. This proximity algorithm devised would also be helpful for 

other open source projects looking to implement proximity scoring techniques with 

duplicates. The report described how to setup and use the TREC utility to compare 

improvements in results obtained from a search engine. The utility was used to 

compare improvements in Yioop search engine after support for duplicate terms and 

implementation of modified proximity ranking. 

The report also described how bigram functionality was implemented in Yioop, that 

would increase the speed and efficiency of retrieval for some special word pairs, 

which we call bigrams. The report described how to search for such word pairs and 

how to setup the Yioop search engine to start using them for retrieving results more 
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quickly and efficiently. Bigrams can be setup for multiple languages by users of the 

Yioop search engine, by using the easy to use bigram builder tool. Bigrams 

functionality can be extended on same lines to create n-grams for Yioop. The bigrams 

functionality was also evaluated using the trec utility. 

The report at the end described how experiments were performed to decide 

upon an optimal weighting scheme for BM25F in Yioop and optimal grouping 

scheme for documents. All the optimizations done for the project have been 

incorporated in the current version of Yioop available at www.seekquarry.com. Thus all 

the additions suggested through this project will be present in all the future versions 

of Yioop search engine for a better user experience. 
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