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Introduction 

 

Recent promoter predictions 

A promoter is a piece of DNA sequence which frequently appears before its 

associated gene in an E. coli sequence. Researchers predict the location of a 

promoter when trying to locate a gene in a given sequence. These researchers use a 

variety of algorithms to predict locations of promoters. These algorithms include 

machine learning, artificial neural network, the Markov model, the weight matrix, etc. 

Abeel et al apply machine learning [10][13] and Bland et al use artificial neural 

networks [8] to classify and output the predicted promoter location of any given 

unknown sequence. Burden et al apply the weight matrix algorithm [5] to identify 

motifs in the promoter region. Burden et al also use Markov model [5] to find the 

shortest path to the promoter location. Most of the researchers use the combination 

of artificial neural network, machine learning, and Markov model to increase the true 

positive prediction results [8]. 

 

Some researchers provide additional information when predict promoter location. 

For example, Gan et al introduced the idea of using non-CpG [6] region information 

as CpG region for prediction. Gan et al found the equal significance of non-CpG 

region in their experiment. Burden et al use the distance between TLS and TSS for 

prompter prediction [5]. The distance between TSS and TLS provide additional clues 

of promoter location which can increase the true positive of prediction. Davuluri et al 

are interested in finding the first exon [4], since it is the most difficult promoter 

location to find. First Exon Finder—FirstEF [4] uses CpG information to find the first 

donor site for first gene exon predict. 

 

Data used for promoter prediction varies. Wang et al use the comparison of human 

and mouse genome for prediction [14] [4]. Laser et al use mammal and plant 

genome for prediction [26]. Most of the data used in promoter prediction is E. coli [8], 

especially E. coli K12 for its promoter richness [30]. In my research, I used E. coli from 

NCBI [30] database and plant data that I retrieved form plantDB [3]. Plant data are 

only used for testing and training purpose. 

 

The researchers discussed above using their algorithms and data were able to 

reliably predict the location of a promoter.  

 

The lack of using TATA-less regions in researches 

TATA box is a piece of DNA sequence that usually appears in promoter region. 

Originally, it has been used to locate promoter locations [2]. However some 

researchers prefer not user TATA box as a signal of the promoter region. Burden et al 

state that the TATA box is not an effective resource for promoter prediction [5]. The 

data sequences they used in their experiment are mixed with TATA-rich, and 
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TATA-less promoters; their analysis shows no strong relation connects TATA-less 

regions with promoter regions. For example, in the paper “Improving promoter 

prediction”, Burden et al said that the characteristic of TATA box is limited and cannot 

be used to recognize when indel happens [5]. Also, the definition of TATA box says 

that less than 20% of human promoters have TATA box, which leads the rest of the 

promoter regions unsearchable by using TATA box as searching factor [21]. Burge et 

al show in their experiment only 70% of core promoter contains TATA box [23]. 

Therefore, most researchers ignored a large amount of available data—TATA-less 

region during promoter prediction process. 

 

Motive of using non-TATA region 

The idea of using non-TATA region for promoter prediction comes from one of the 

research papers—“A pattern-based nearest neighbor search approach for promoter 

prediction using DNA structural profiles”. In their research, Gan et al discovered that 

non-CpG-island region contains similar characteristics with CpG-island region [6]. Gan 

et al researched CpG-island region by compute the gravity of CpG in every promoter 

region in given sequences. Researchers did the same calculation for non-CpG-island 

region. The results show that non-CpG-island region provide equally important 

prediction information. For any given unknown sequence, the promoter can be 

predicted by using both CpG-island and non-CpG island classes to increase prediction 

result. 

 

In my research I will use information on non-TATA regions for promoter prediction. 

TBP (TATA binding protein) is used to bind sequences with TATA box, and I am looking 

for the regions in TATA-less sequences that will be bind with other binding proteins in 

TFIID (transcription factor II D) [22]. Promoter regions usually contain TFIIB 

recognition element (BRE), TATA box, Inr, and downstream promoter element (DPE). 

Most of promoters miss one of these elements, and for promoters that do not have 

TATA box will have a high probability of having DPE [23].    

 

State of theory 

Thus far, no research has focused on using non-TATA regions for promoter prediction. 

TATA box is used for promoter prediction in many papers for sequences contain TATA 

box. For sequences without TATA box information, existing algorithms cannot do 

much analysis in the data mining step of the prediction. Sequences without strong 

TATA box information are basically ignored during data mining step. 

  

In this paper, I studied the characteristic of non-TATA or less-TATA region. I found the 

characteristic in TATA location of non-TATA regions, to get clues as to predict 

promoter region based on both TATA and non-TATA information. The model of this 

project was trained and acts like a polymerase. Polymerase does not use TATA box 

regions, but it was based on the structure or chemical statement of TSS in order to 

open the double helix, and start coping gene. This initial location indicates that a real 

gene is many nucleuses away, and waiting to be copied. Finding the initial location 
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will be used as characteristic of the TATA box in this paper. These characteristics will 

be coded in the model to detect any given E. coli sequence from NCBI.  

 

I hope to show that the predicted gene location will be close to real gene location in 

NCBI database, or get more true positive values than several popular online 

prediction tools. These tools include EasyGene, GenScan, Virtual Footprint, and 

Glimmer (the original prediction that used by NCBI).   

 

Theory Testing (Approach) 

 

Software and algorithms used during theory testing step 

For this research I used a combination of commercial and custom software. The 

commercial software is SAS—a well-known business analytical software. I’ll first try 

to find the significant of non-TATA region information by using SAS. For this research, 

I also created a custom Perl program—called E. coli Gene Finder (EGF), which 

encodes machine learning, data mining, five folds, and the artificial neural network 

algorithm. I used this software combination to find the most important 

characteristics of the non-TATA region in my training data. I also use these algorithms 

to find the threshold which define the decision tree. The EGF is adjusted in the 

theory testing step to filter out a promoter sequence out of any given E. coli 

sequences. The steps of using SAS for sequences are listed in the steps section below. 

During model training step, fivefold method will be used. 

 

Data set used in theory testing step 

The data set I used for training my model purpose is plant promoters that are 

obtained from PlantProm DB [7]. 170 of them are TATA rich plant sequences and 130 

of them are TATA-less plant sequences. Once the significance of non-TATA 

information is discovered by using SAS and my program, I’ll use E. coli data sets for 

both my training and testing data in the machine learning step. The reason to choose 

promoter data set from PlantProm DB are: first, they provide a clear plant data for 

both TATA rich promoter region, and TATA-less promoter region. I choose the plant 

data with the intention that the theory could be applied to other species. 

 

Pretest on TATA region  

The basic characteristic of TATA box is it matches the expression 5’-T A T A (T/A) A 

(T/A) ---3’. Data in TATA rich promoter are input in an online promoter prediction 

service—BDGP [3]. It is a neural network promoter prediction web service that 

developed by Berkeley Drosophila Genome Project. It uses the combination of a 

neural network and weight pruning to search for consensus elements, such as TATA 

box, CpG Island, CAT box, etc. When testing 170 TATA rich sequences, TATA rich 

sequence’s characteristic is clearly displayed in the similar location of each of 
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submitted sequence—25 base pair upstream of transcription start site. None TATA 

rich sequences—130 of them, also have been tested by using the same service, but 

no characteristic are identified. The target of using SAS is to find some valuable 

information around the location where TATA usually appears; since in reality, when 

polymerase is walking along on the DNA double helix, it will find the initial point not 

the letter TATA inside promoter region. 

 

Steps of finding characteristic 

Data of plant promoter are obtained from PlantProm DB [7] to test my hypotheses.  

Steps of finding TATA and non-TATA data: 

1. Get both TATA promoter and TATA-less promoter data from PlantProm DB 

1.1 Base URL: http://mendel.cs.rhul.ac.uk/mendel.php?topic=plantprom 

1.2 175 TATA rich location: http://mendel.cs.rhul.ac.uk/pprom/PLPR_TATA.seq 

1.3 130 TATA less location: 

http://mendel.cs.rhul.ac.uk/pprom/PLPR_TATA-less.seq 

2. Filter out the known promoter parts from both data sets 

2.1 Write EGF (Perl program) to filter the two original data sets 

2.1.1 Change the input and output file names of both data files 

2.1.2 Delete the unwanted original data file 

2.2 Extract the promoter parts 

2.3 Output two generated promoter data sets 

2.3.1 Match all the word character lines in the file 

2.3.2 Go to a new line for a new sequence 

2.3.3 Both TATA rich and TATA less sequences were processed 

3. Generate statistics on both promoter sets 

3.1 Perform a relation test on TATA promoter data set 

3.1.1 Find the average location of TATA box for both “TATA” and “TATAA”  

3.1.1.1 Get TATA location in each sequence 

3.1.1.2 Get average location by using below formula: 

average= ∑locations/total number of sequence 

where locations are cutting off from 160 since less than 160 will be 

out of promoter region. Average = 171. This formula was coded 

and tested inside the main Perl program in data testing section. 

The results are given in Figure 1 and Figure 2. 

http://mendel.cs.rhul.ac.uk/mendel.php?topic=plantprom
http://mendel.cs.rhul.ac.uk/pprom/PLPR_TATA.seq
http://mendel.cs.rhul.ac.uk/pprom/PLPR_TATA-less.seq
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Figure 1. Test result for TATA location for TATA rich promoters in file 

TATApromoter175.txt. First column is the sequence number from 1 

to 175, followed by the TATA location that is detected by the 

program in that sequence. Location number less than 160 is 

ignored since it is out of promoter region. The average of 

remaining sequence that matches promoter region definition is 

calculated as 171.08333. 

 

Figure 2. The graph shows that the TATA location (in green) is 

almost at the same location for each sequence. The capitalized 

sequence is the start of TSS.   

3.1.2 Find average location of TATAAA box  

3.1.2.1 Get TATAAA location in each sequence 
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3.1.2.2 Get average location by using below formula:  

average= ∑locations/total number of sequence  

where locations are cutting off from 160 since less than 160 will 

be out of promoter region. Average = 174. Results are given by 

Figure 3 and Figure 4. 

 

Figure 3. Test result for TATAAA location for TATA rich promoters in 

file TATApromoter175.txt. First column is the sequence number 

from 1 to 175, followed by the starting point of TATA location in 

that sequence. Location number less than 160 is ignored since it is 

out of promoter region as before. The average TATA start point is 

calculated as 173.8556 

. 

Figure 4. The graph—from program notepad, shows that the 

TATAAA location (in green) is almost at the same location for each 

sequence with several nuclides length difference. The capitalized 

sequence is the start of TSS. 

3.1.3 Result: the location of TATA box in these plant sequences is around 

170, since the data starts from -200 of TSS, the relative location of 

TATA to TSS will be around -30 (-30=200-170). This confirms that 

promoters containing TATA box are right before TSS, around -30 
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location [1][2].  

3.2 Perform the same test on TATA-less promoter data set 

(TATAlessPromoter130.txt) 

3.2.1 Theory: Get sub-sequence from -35 (get from -30-5 above) with length 

20 out of each sequence. The idea of getting the information out of 

TATA-less sequences on the same location where TATA box appear in 

TATA-rich sequence is the motivation of polymerases. The polymerase 

has to be initialed before face the real gene; and that initialization 

must happen on the similar location of each sequence, and it doesn’t 

matter whether it contains TATA or not. Therefore, this section will get 

other characteristics in addiction to TATA box out of TATA-less 

sequence. The finding will be used to predict gene in TATA-less 

sequences. 

3.2.2 Find characteristic 

3.2.2.1 It cannot be done by using the same approach since it is TATA less 

sequence. TATA are all over the sequences. It is shown in Figure 5. 

 

Figure 5. In TATA less file, the TATA characteristic cannot be used 

since their location is not fixed, and some sequences don’t have 

any TATA sequences.  

3.2.2.2 Get the promoter region (-35, -1) with TSS region (+1, 40), and find 

characteristics from the same data by using SAS, where all 

characters are converted to numbers, 

[a,c,t,g,A,C,T,G]/[1,2,3,4,5,6,7,8]. SAS is the data analysis software, 

it can tell information out of given data. Next section will try to get 

characteristic by using SAS. 

3.2.3 Relational test by using SAS to get characteristics 

3.2.3.1 Pearson correlation coefficient is tested between promoter region 

(X1-X35) and TSS region (X36-X86). Pearson tests are done 

between every pair of column. Some of the columns are related 

with correlation value bigger than 0.9, such as the correlation 

between X17 and X37 is 0.9783.  
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3.2.3.2 Given X17, what is the value for X37? In other words, how to 

predict X37 of TSS region by using X17 of promoter region? We 

need to find a line that best fits the regression, so that the 

regression testing is done by using dependent variable X37 and 

independent variable X17 to minimize the sum of squared vertical 

distance from each data point to the line (residual). The formula 

we used is: 

X37 = a + b* X17 

where “a” is intercept and b is slope. The dependent variable—b is 

not significant enough to predict the independent variable X37. 

3.2.3.3 Similar test for codon—3 nucleotides a pair, instead of single 

nucleotide are also finished. No significant results are found 

between codons.  

3.2.3.4 Similar test for first TSS codon of each single nucleotide contains a 

percentage of the promoter regions which means testing a 

nucleotide in the first TSS codon that appears in the promoter 

region. Half of the total length of the promoter region (33/2=17) is 

used to prune noisy data. Noisy data is defined as outstanding 

data—the first 3 nucleotides of TSS is less than half of the total 

promoter nucleotide. Steps to calculate first 3 TSS single 

nucleotides are list as below. 

a) Get number of each of the first 3 nucleotides of TSS in 

promoter region. Such as $aa = number of first nucleotide 

used in promoter region. 

b) Sum them for each sequence. $dd = sum of all three 

nucleotides usage.  

c) Get percentage of above sum = $dd / promoter region 

length 

d) Sum the percentage for all sequences with total usage 

bigger or equal to half of the promoter length. $total = 

$total + $dd for every $dd >= 17. 

e) Take the average = $total / number of sequences with 

$dd >= 17. 

3.2.3.5 Test Result.  

3.2.3.5.1 The result shows that most of the promoter region 

contains more nucleotides that belong to the first 3 TSS. In 

this case 130 TATA-less sequences are tested, 97 of them 

contains high usage of the first 3 TSS with average usage 

equal to 0.7085. 
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Figure 6. Test result for TATA less promoters 

3.2.4 Conclusion: From this experiment we can see that even though the 

sequences don’t have TATA box as characteristic to signal promoter 

region, the nucleotide usage in promoter region can be used as a clue 

of TSS region. From Figure 6, sequence 128, it clearly shows that the 

‘tga’ usage is 31 out of 33, there is only one ‘c’ used before TSS. This 

finding can be used as a secondary characteristic to indicate a real 

gene in TATA-rich sequence. And for the same reason, it can be used 

as the main characteristic to predict real gene from TATA-less 

sequence.   

4. Analyze the results and get characteristic for both data set 

4.1 For TATA rich sequences, use TATA as consensus sequence to identify the 

promoter region. 

4.2 For TATA less sequences, use first 3 TSS nucleotides to signal the TSS position. 

Since the finding depends on individual nucleotides, it is not very significant, 

therefore it cannot be used as a characteristic to locate promoter region in 

general.   

5. Working with the data on protein level 

5.1 Translate both TATA rich and TATA-less sequences into amino acids 

equivalents and see if any significance appears up in the next attempt. The 

idea behind this transition is when polymerase bind to the TATA boxes, it is 

not attracted by the nucleotides of TATA or TATAAA, and instead it is attracted 

by the product of the nucleotides. Therefore, if polymerase can bind to the 

promoter region without TATA box as common notation, then it needs to find 

similar protein to bind. The TATA-less region needs to have such a protein to 

attract polymerase for initiation of TSS. 

5.2 Test the TATA rich sequences without using TATA as characteristic 

5.2.1 Translate each sequence to its amino acid equivalent by using hash 

table [1]. In order to find the relationship between the first amino acid 

with a promoter region, use the number to represent amino acids 

instead of the real protein name[15][16]. 

5.2.2 Clean the data by filtering all sequences containing at least a quarter 
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of the first amino acids of the TSS region; and the resulting data after 

this step looks like Figure 7 below. Only 142 out of 175 met the 

requirement. 

 

Figure 7. TATA rich file numerical protein product representation  

5.2.3 Find the location that is most closely associated with the first amino 

acid in TSS by using the sliding window algorithm [1]. For each 10 

amino acid (because the length of TATA box) in each sequence, the 

maximum appearance of the last number in this sequence will be 

counted; and the middle location of that maximum number will be 

calculated by using below formula: 

Peak of the first aa in TSS in promoter region = Max (appearance in 

each 10 amino acid) 

Location of the max = the peak location + 5; 5 means set the location 

to the middle of the window, since the sliding window size is 10. 

5.2.4 Thresholds: data will be cut if it does not meet the thresholds in two 

conditions. If the maximum total appearance is less than 6 (half of the 

sliding window) and the location is not close to TSS region. In this case 

the threshold for location is 33, which is 32 amino acids long to TSS; 

otherwise, the location of such peak cannot be characterized. Below is 

the running result with above thresholds.
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Figure 8: Test result of the max appearance and the average location 

in TATA rich file. The average peak in one sequence contains about 72% 

of the first amino acid of TSS. The peak appears around the 50th amino 

acid, which is very close to the TATA box location exams before.  

 

5.3 Search for similar characteristic in TATA-less file, so this can be used to detect 

promoter region for any given unknown sequence. 

5.3.1 Translate the TATA-less file into its protein equivalent [15] [16].  

5.3.2 Clean the data by filtering all sequences containing at least a quarter 

of the first amino acid of TSS region; and the result data after this step 

is represented in Figure 9 below. Only 107 out of 130 meet the 

requirement. 

 
Figure 9. TATA-less file numerical protein product representation  

5.3.3 Find the location that is most associated with the first amino acid in 
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TSS by using the same algorithm and formula as in 5.2.3. Test result on 

TATA-less file is showed in figure 10 below. 

 

Figure 10. Test result of max appearance and average location in TATA 

-less file. The average peak in one sequence contains about 73% of the 

first amino acid of TSS. The peak appears around the 51th amino acid, 

which is very close to the results in TATA rich file. 

5.4 Discussion 

Further testing needs to be done by using the five folds method [2]. We 

randomly select 20% of sequences from TATA-less file, and test if the finding 

will give the right TSS position.  

5.4.1 Test TATA rich sequence by using five folds 

5.4.1.1 Five Fold run results 

 

Figure 11. Randomly choose 80% of data out of 175 TATA rich 

sequences, and run the same program. The maximum of first aa is 

about 7.15, and average location is around 50.  
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Figure 12. Random choose 80% data out of TATA rich sequences 

again, and run it again. The maximum of first aa is about 7.22, and 

average location is around 51. 

5.4.1.2 Discussion 

Based on the above two observations by using the five fold 

method, we can see that the results are similar to what we get by 

testing all 175 sequences. It tells that the maximum of first aa is 

about 7, and the peak location is around 50 in TATA rich 

sequences. 

5.4.2 Test TATA less sequence by using five folds 

5.4.2.1 Five Fold run results 

 

Figure 13. First run against TATA less sequences by using five fold 

methods. The maximum number of first aa is about 7.3, and the 

average location is about 50.6. 
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Figure 14. Second run against TATA less sequences by using five 

fold methods. The maximum number of first aa is about 7.3, and 

the average location is about 51.2. 

5.4.2.2 Discussion 

Based on above two tests against TATA lass sequences by using 

Five Fold method, we can see that it shows the similar maximum 

number of first aa and average location with the results getting 

from all 130 sequences.  

5.4.3 Conclusion 

If we use these findings to detect the promoter region in either TATA 

rich or TATA-less sequences, then the first step is to partition the data 

in two classis[2] [17]. Sequences with the clear TATA box characteristic 

will go to the TATA rich class. And sequences without such 

characteristics will go to the TATA less class. In TATA rich class, use TATA 

box to find the location for promoter and TSS. In TATA less class, use 

the finding to detect the promoter region. 

  

Since the finding in both TATA rich and TATA-less file is very close, then 

no classification will be needed, which means use the finding directly.  

 

Which method will provide the most accurate result? Compare the 

two results; also compare the results with online tools. For E. coli data 

that needs to be used later, ORF needs to be found first. 

 

6. Use the finding in section 5 to test the prediction accuracy on both TATA rich and 

TATA-less files by using five-fold method [2]. Using 4/5 as training data, and the 

rest 1/5 as test data to test the prediction accuracy. 

6.1 Test the finding in TATA rich file 

6.1.1 Random select 1/5 to be testing data, and 4/5 as training data among 
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TATA rich file. 

6.1.2 Input 4/5 data to get the location of the peak value of the first TSS 

codon. This was covered in section 5.4.1. 

6.1.3 Use the location to predict the 1/5 data’s TSS and compare it to the 

real TSS of each and get the accuracy. See the test result below by 

using 20% of given TATA rich data. 

 

Figure 15. Test result of 1/5 of 175 TATA rich data. It is similar with 4/5 

and all TATA rich data. Therefore the maximum number and the 

average location can be decided as 7 and 50. 

6.2 Test the finding in TATA-less file 

6.2.1 Random select 4/5 of TATA less sequences as training data. Please see 

the results 5.4.2. 

6.2.2 Test 1/5 out of 130 TATA less data. 

 

6.2.3 Discussion 
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The results are close to what we expected, which means we can use 

the characteristic in real E. coli data from NCBI. 

6.3 Conclusion 

The characteristic found in both TATA-rich and TATA-less sequence provide 

similar results as show in this section. The results indicate that gene can be 

predicted by using first “aa” to detect the start of a gene in about 50 nuclides 

away from the peak. The algorithm will be discussed in the Algorithm section.  

7. Signals or characteristics that can be used for promoter detection.   

7.1 Ideas that been using in this project 

7.1.1 Inr: finding Inr without DPE will provide the same result with finding 

Inr with DPE, since TBP will bind Inr with DPE for the lack of TATA box. 

The consensus sequence of Inr is PyPyAN(T/A)PyPy, where Py is 

pyrimidine (C or T), N is any base (A, C, G, T), the underline A is TSS 

[23]. 

7.1.2 DPE: downstream promoter elements located about 30bp 

downstream of TSS with consensus sequence G(A/T)CG in Drosophila 

when there are no TATA box. 

7.1.3 Start Codon: in 5-10% of cases, the initiator will pass the first start 

codon, and use the next one [23 page 539]. A hair-pin before AUG will 

make this AUG a start codon. This information can be used to justify 

the start codon location in the late of the process. When AUG at the 

beginning of mRNA, it is start codon; if AUG in the middle of mRNA, it 

codes for methionine. 

7.1.4 T here are only 15 TFIIBs, each will bind to different sequence in 

promoter region. If I can find what they bind in TATA less region, then 

I’ll be able to locate promoter region. The chemical reaction of TBP 

with TATA box is explained in [25]. 

7.1.5 C C box: upstream of TATA box are GC box with GGGCGG and CCGCCC 

in -47 to -61 and -80 to -105 region[23]. 

7.2 Ideas that can be used in for other researchers 

7.2.1 Use RNA secondary structure to find correlations in sequences, need 

more test to support this idea 

7.2.2 TBP (TATA binding protein) binds to the minor groove of TATA box, and 

then other element of TFIID may bind to region without TATA box [23]. 

Compares to other steps like A-U, or G-C, T-A is much easier to distort 

to initial the transcription. TBP works on both TATA rich and TATA less 

promoters; TBP is not TATA sensitive, but temperature sensitive [23]. 

Substituting C for T and I for A in the sequence will get the same result 

since the minor groove of C and I is the same as with T and A. “What 

about the promoter that lack a TATA box?” [23]. TBP will bind to 

initiators, DPEs, or GC box to secure TFIID’s functionality with the help 

from TAF (TBP associated factors) 150 and TAF 250. According to figure 

11.13[23], TBP will find either TATA box, Inr with DPE, or GC box to 

bind on the sequence; therefore, there will be three clusters with 
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each.  

7.2.3 Polymerase melting DNA based on Figure 11.5 can also be used to 

detect promoter region. Polymerase trying to find the weak 

connection to melt, for any T-A pair it passed, it will provide 25% 

damage (from TATA, and ATAT it hits four same base pair, and it melts 

the double strand). Without TATA box, in any location, if the damage 

adds up to 1, then it will melt the DNA. For example, in Inr, if the 

sequence is TTAGTT, then the pairs for Inr will be AATCAA, so the 

calculation will be 25%+25%+25%-25%+25%+25% = 1; then the Inr is 

melt by polymerase. AT rich region that located before TSS in the 

promoter region is important as CG contents; it acts as enhancer [26]. 

So AT-rich can be used to locate the promoter without TATA box; or 

TATA box is just part of AT-rich. In progress, program is partially done. 

7.2.4 Shine-Dalgarno sequence AGGAGGU [23]: after TSS and before start 

codon, it will attract ribosomes to the nearby AUG to start translation. 

Eukaryotes do not have a SD sequence, but use a cap called eIF4E at 

the 5’ end, that help attract ribosomes [23].  

7.2.5 Testing E. albertii: genes are overlapping, for example ealbertii1.txt 

with gi number 169405087 contains many genes with end location 

mixed with the start location of next gene. 687-2534, 2518-2724, 

2721-4313, etc. And genes predicted are in different reading frames. 

Try to use start codon + 3n+ end codon, and the next start codon is 

not +3 but any.  

7.2.6 Use AT rich as melting point, and CG as looking location. For example, 

for any given sequence, first search for the melting point by using 

sliding window algorithm find rich AT region; and then combine the 

result with CpG island profile in the same sequence to decide if the 

region is most likely to be the promoter region before TSS. 

 

The D2K Algorithm  

Software and algorithms used 

I use EGF (E. coli Gene Finder, Perl program) as detection tool in this step. The 

purpose of this research is to explore the use of TATA-less regions for promoter 

prediction and based on existing algorithms and methods to find an algorithm which 

performs as well as or better than the existing approaches. As a result of my research 

and testing of existing algorithms and methods, I discovered an algorithm D2K 

(double k-mean with k=2) which performs better than most of online promoter 

predictors. 

 

D2K Algorithm depends on the findings of TATA-less regions in Theory Testing section, 

and implemented in clustering step in this section. Improved promoter prediction 
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will use the characteristic from both TATA-rich regions and TATA-less regions to 

increase true positive prediction result. During data mining step, k-mean with k=2 

will be used since in this case there are only two classes during data classification. 

K-mean is a well known clustering algorithm, it partitioning all observation into r 

clusters where each observation belongs to the nearest mean. D2K indicates that 

k-mean will be use twice as explained below. 

1. First clustering will partition the given sequences into 2 clusters, based on the 

characteristic of TATA box. Sequences with clear TATA box information are 

grouped as resolved sequence. It will be discussed in detail in section 3 below. 

2. Second clustering process the reminder unresolved sequence in order to detect 

more promoter regions that do not contain TATA box. By combine both results, 

EGF use k-mean one more time to get the probabilities of six reading frames. The 

probability of the highest reading frame will be recorded as detected promoter 

region. It will be discussed in detail in section 5 below. 

 

Data set used in algorithm step 

For Eukaryotes, since promoter contains core promoter (TATA -35, TFIIB—upstream 

of TATA, Inr, and downstream promoter element—DPE) and upstream promoter 

element [23], all four elements will be considered. For TATA less promoters, GC box 

or DPE will appear. Combine both CG content and TATA box information to locate the 

promoter region in Eukaryotes is the next step of this project. 

 

Based on the clustering algorithm introduced in chapter 16 [2], a sub solution—E. 

coli Gene Finder (EGF) of promoter prediction is finished on E. coli sequences. For E. 

coli uses E. coli Gene Finder from cs123b, where -10 (TATAAT) and -35(TTGAC) can be 

easily found. For any short E. coli sequence from NCBI, the program will predict the 

location of possible genes.  

 

Steps of detecting promoter region 

1. Data preparation. One method that can make the DNA data independent in the 

prepare data level is PCA (principal component analysis). There are dependencies 

in DNA analysis, such as the properties of some data may not be truly 

independent. Another example is some genes are co-expressed. Samples of such 

data are against the principle of data mining, in which each pieces of data must 

be independent [17]. One way to minimize the dependency effect is to use 

PCA—principal component analysis. PCA will transform those data into 

components, which are independent of each other. New variables will become 

linear combination of its raw data [18]. PCA usually reduces the raw data 

principle to two or three components, which contain the most of the variations 

and ignore others, so those components can be used to classify sample 

experiments. For example, M sequences with N genes in each will create a matrix 

X = N * M. After passing through PCA, the formula will be changed to  

X = UεVT 

Where U is the expression level of every gene,εis the Ath eigengene that is 
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expressed in the Ath eigensample, and VT is the expression level in each sample. 

Then the data can be plot for each gene/protein pair. The PCA step used in this 

project will test only one sequence on six frames each run, so M = 6 each time a 

new sequence entered in the program. N is the number of genes that will be 

predicted in each frame, and N varies in each frame. The matrix will become X = 

6N. A group of results will be chosen out of six in the clustering step. 

2. Distance definitions. There are three distances calculated in our program: the 

length of gene, the distance between TATA box and TSS, and the distance 

between -35 element and TSS. In this step we do not use any of Euclidean, 

Pearson, or Mahalanobis; instead we use the direct distance by finding the 

difference between two locations. 

3. Clustering. Since there are only TATA rich and TATA less two classes in the data set, 

I am using k-means to classify our data with K=2. We partition the data set into 

two clusters with the number of TATA boxes as classifier. K is the number of 

clusters and it is fixed when use k-means clustering method. The centroids of 

clusters are random assigned and then relocated during each cycle, and then 

finalized when the centroids stop change. To make k-means more accurate, it 

must be run several times. A similar way to cluster TATA rich and TATA less data 

will use SVM (supervised clustering with support vector machines). SVM can be 

used to classify data in one of two classes [17]. After SVM has all the training data, 

the unknown data will be classified into one group among the training data. 

Therefore, that unknown data will have the characteristic of the group to which it 

was assigned. In our program we treat k-mean and SVM in the same way since 

there are only two final classes.  

4. Significance of differential expression. We use this step to evaluate our test 

results. I compare my test results with several online gene predictors, and 

provide statistic comparison between the findings. Statistical testing measures to 

measure true positive (TP) [18], and false discovery rate (FDR) [18]. It will be 

explained in detail in the discussion section. 

5. Improvement after getting first result—the second K-mean clustering process 

5.1 The original design can only get less than 80% of gene compare to real gene 

in NCBI data base. In order to detect more genes from given sequence, the 

cluster algorithm is refreshed with a second K-mean clustering process to 

classify the remaining TATA-less group.  

5.2 The original cluster decision was made by using 175 TATA-rich plan 

sequences, and 135 TATA-less plan sequences as training data.  

5.3 Both k-mean and DBSCAN [17] are used to predict more location of gene 

during this step, since only testing can tell which algorithm will give a better 

result. However, they both do not predict more gene in this step since the 

number of object is too small for cluster. 

5.4 There are six reading frames need to be tested for each given sequence. 

Using k-mean will get the probability of each reading frame. The reading 

frame with the highest probability is recorded as final predict result. 
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Implementation  

Steps to research non-TATA:  

1. Get E. coli sequences from NCBI 

2. Design: Structuring the data requires translating data to its RNA form. This gene 

predictor follows the tradition gene finding process with additional clustering and 

statistical methods from chapter 16 [1]. It first gets the RNA forms of a given data, finds 

all orfs from six reading frames by using PCA, then EGF decides which orfs are real genes, 

depending on some of the consensus sequence characters. The last step is to choose one 

frame out of six frames by using the cluster algorithm to pick one with the highest 

probability. To show how accurate the result is, we compare the detected genes with 

NCBI, EasyGene, and GenScan in two categories: true positive and false discovery rate. 

Result and discussion depends on the genes find by all four packages.  

3. Bioinformatics Analysis: To choose the best frame out of six is a statistic process based 

on the characteristic of a real gene. For example, one way to say the finding is a real gene 

is to find a TATA box in its promoter region. The sum of the number of resulting genes 

with TATA box before TSS will be calculated to decide the probability of this frame is the 

best among others. 

 

Produce for testing D2K 

1. Construct the table of findings with the probability on the same data promoter 

prediction data. 

2. Choose several findings with the highest value to build a profile. 

3. Put the findings in step 2 in the program. 

4. Test the same data in EGF and some online popular tools, such as EasyGene, 

Genscan, etc. 

5. Compare the results with discussion. 

 

Integrating D2K into a web application 

1. Choose the right platform 

As recommended by Dr. Tseng, this project will use LAMP (Linux, Apache, MySQL, 

PHP) platform to perform the result of detection. In addition, the Zend 

framework will be used to minimize the amount of code need to be implemented. 

I will process data using EGF and excel then extract the data using PHP to get real 

data from EGF, and partial data from excel. 

2. Design UI: user can select several available accession numbers from left menu to 

see what has been predicted, and also have the chance to see the prediction 

from other online prediction, such as Virtual footprint, EasyGen, etc. It will show 

each gene’s start and stop location in NCBI, Glimmer and other above online tool. 

It also displays the start and stop gene location that predicted by using EGF. User 

can easily compare the predicted results. TP and FDR will show the standing of 

EGF among other promoter predictors. 

3. Coding: PHP, Perl, HTML, XHTML, JavaScript, JQuery, YahooSiteBuilder, etc. 
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3.1 Combine LAMP with YahooSiteBuilder 

The original design is to try to get result from other online web gene finder 

and put the result on one web page for any given E. coli sequence. However, I 

have spent some time on each of the online gene predictor; I recognized that 

it is hard to accomplish this goal (within one semester). For example, Virtual 

footprint is PHP based software suite, it does not support automatic 

promoter analysis. The user has to go through several steps to get the result 

of a given sequence. For EasyGen, the predicted result may come from email 

instead of instance result. Therefore, it is not effective to implement an 

automatic web result compare tool. To fully support the main origin of this 

paper, it is redesigned as a web representation tool, to support the main goal 

of this research. 

3.2 YahooSiteBuilder with Excel 

Since most result were processed by using excel, displaying data from excel to 

a web browser made it more user friendly. To achieve this display, I insert an 

iframe inside YahooSiteBuilder page. This iframe can upload an excel and 

display it on a web browser.  

4. Testing: using accession number from section “Result and Conclusion” 

5. Improving:  

5.1 Adding more data from NCBI to test 

5.2 Choose a nice layout for each sequence 

5.3 Make an index page with 

5.3.1 Links to each sequence result page 

5.3.2 Short summary of this paper 

5.3.3 Purpose of this web implementation 

5.3.4 How to use, etc. 

 

Result 

Twenty different E. coli Data are tested, and genes locations are listed. Start and Stop is the 

result of E. coli Gene Finder. The last row is the number of genes found in each. Please see 

appendix 4 for detail running result of each promoter predictor.  

Result 

1. Accession number 300901746 

NCBI 

start 

NCBI 

stop 

Glim

mer 

Start 

Glim

mer 

Stop Start Stop 
EasyGe

ne start 

EasyGene 

stop 

Genscan 

start 

Genscan 

stop 

Virtual 

Footprint 

Start 

Virtu

al 

Foot

print 

Stop 

  38 4363         

4383 5129 4383 5129   86 4363 89 6890   
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5188 6048 5188 6048 5188 6048 5614 6048   5470 5483 

6151 6711 6151 6711 6151 6711 6151 6711     

6840 7052 7176 6922 6856 7098       

7285 7758 7222 7758 7222 7758   7271 8893 7439 7452 

7804 8013 7804 8013 7783 8013     7592 7605 

8051 8641 8051 8641 8212 8409 8153 8641     

8881 9141 8881 9141 8881 9141   8903 8942   

9429 10298 9429 10298 9574 9804       

  10450 10310         

  23 10717         

9  9  8  4  3  3  

Table 1: Result of gene search for 300901746 

2. Accession number 403342 

NCBI 

start 

NC

BI 

stop 

Glim

mer 

Start 

Glim

mer 

Stop Start Stop 
EasyGene 

start 

EasyGen

e stop 

Genscan 

start 

Genscan 

stop 

Virtual 

Footprint 

Start 

Virtu

al 

Footp

rint 

Stop 

278 1372 278 1372 278 1372 431 1372 309 5512 66 79 

1396 1785 1396 1785   1396 1785   975 988 

1904 4777 1904 4777 1904 4777 1988 4777   4202 4215 

3  3  2  3  1  3  

Table 2: Result of gene search for 403342 

 

3. Accession number 325965637 

NCBI 

start 

NCB

I stop 

Glim

mer 

Start 

Glim

mer 

Stop 

Start Stop 
EasyGe

ne start 

EasyGen

e stop 

Genscan 

start 

Genscan 

stop 

Virtual 

Footprin

t Start 

Virtual 

Footprin

t Stop 

138 1580 138 1580     254 2669 1197 1210 

1592 2515 1592 2515 1592 2515     1600 1613 

2564 3646 2624 3646 2564 3646   2672 4851   

3661 4644 3661 4644   3730 4644     

4823 5935 4751 5935 4751 5935   4868 6091 5390 5403 

5  5  3  1  3  3  

Table 3: Result of gene search for 325965637 

4. Accession number 346421495 

NCBI 

start 

NC

BI 

stop 

Glim

mer 

Start 

Glim

mer 

Stop Start Stop 
EasyGene 

start 

EasyGen

e stop 

Genscan 

start 

Genscan 

stop 

Virtual 

Footprint 

Start 

Virtu

al 

Footp

rint 

Stop 

1 546 88 210 81 323   69 516   

1  1  1  0        1  0  
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Table 4: Result of gene search for 346421495 

5. Accession number 260765442 

NCBI 

start 

NC

BI 

stop 

Glim

mer 

Start 

Glim

mer 

Stop Start Stop 
EasyGene 

start 

EasyGen

e stop 

Genscan 

start 

Genscan 

stop 

Virtual 

Footprint 

Start 

Virtu

al 

Footp

rint 

Stop 

1 1026 0 0 1 1026 232 1026 66 1079   

1  0  1  1  1  0  

Table 5: Result of gene search for 260765442 

6. Accession number 167509193 

NCBI 

start 

NC

BI 

stop 

Glim

mer 

Start 

Glim

mer 

Stop Start Stop 
EasyGene 

start 

EasyGen

e stop 

Genscan 

start 

Genscan 

stop 

Virtual 

Footprint 

Start 

Virtu

al 

Footp

rint 

Stop 

1 519 128 498 174 392   50 1557 272 285 

1  1  1  0        1  1  

Table 6: Result of gene search for 167509193 

7. Accession number 354515243 

NCBI 

start 

NC

BI 

stop 

Glim

mer 

Start 

Glim

mer 

Stop Start Stop 
EasyGene 

start 

EasyGen

e stop 

Genscan 

start 

Genscan 

stop 

Virtual 

Footprint 

Start 

Virtu

al 

Footp

rint 

Stop 

1 253       214 92 17 26 

1  0  0  0  1  1  

Table 7: Result of gene search for 354515243 

8. Accession number 354515242 

NCBI 

start 

NC

BI 

stop 

Glim

mer 

Start 

Glim

mer 

Stop Start Stop 
EasyGene 

start 

EasyGen

e stop 

Genscan 

start 

Genscan 

stop 

Virtual 

Footprint 

Start 

Virtu

al 

Footp

rint 

Stop 

225 796   141 788 225 788 332 855 679 692 

1  0  1  1  1  1  

Table 8: Result of gene search for 354515242 

9. Accession number 354515240 

NCBI 

start 

NC

BI 

stop 

Glim

mer 

Start 

Glim

mer 

Stop Start Stop 
EasyGene 

start 

EasyGen

e stop 

Genscan 

start 

Genscan 

stop 

Virtual 

Footprint 

Start 

Virtu

al 

Footp

rint 

Stop 

104 808   35 277   204 874 257 266 
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    542 736     381 390 

          418 427 

1  0  2  0  1  3  

Table 9: Result of gene search for 354515240 

10. Accession number 354515237 

NCBI 

start 

NC

BI 

stop 

Glim

mer 

Start 

Glim

mer 

Stop Start Stop 
EasyGene 

start 

EasyGen

e stop 

Genscan 

start 

Genscan 

stop 

Virtual 

Footprint 

Start 

Virtu

al 

Footp

rint 

Stop 

1 458   67 264 9 458 705 920 251 260 

589 818 589 34 322 573     397 406 

          451 460 

2  1  2  1  1  3  

Table 10: Result of gene search for 354515237 

11. Accession number 145467 

NCBI 

start 

NC

BI 

stop 

Glim

mer 

Start 

Glim

mer 

Stop Start Stop 
EasyGene 

start 

EasyGen

e stop 

Genscan 

start 

Genscan 

stop 

Virtual 

Footprint 

Start 

Virtu

al 

Footp

rint 

Stop 

    9 386   123 395 267 280 

450 1688 489 1688 450 1688   564 1714 406 419 

        2024 2191 1682 1695 

1  1  2  0  3  3  

Table 11: Result of gene search for 145467 

12. Accession number 342315677 

NCBI 

start 

NC

BI 

stop 

Glim

mer 

Start 

Glim

mer 

Stop Start Stop 
EasyGene 

start 

EasyGen

e stop 

Genscan 

start 

Genscan 

stop 

Virtual 

Footprint 

Start 

Virtu

al 

Footp

rint 

Stop 

          145 154 

          224 233 

1 674   322 621   400 685 351 360 

1  0  1  0  1  3  

Table 12: Result of gene search for 342315677 

13. Accession number 341941295 

NCBI 

start 

NC

BI 

stop 

Glim

mer 

Start 

Glim

mer 

Stop Start Stop 
EasyGene 

start 

EasyGen

e stop 

Genscan 

start 

Genscan 

stop 

Virtual 

Footprint 

Start 

Virtu

al 

Footp

rint 

Stop 
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1 1299   1 1299   132 1361 572 585 

1  0  1  0  1  1  

Table 13: Result of gene search for 341941295 

14. Accession number 41745 

NCBI 

start 

NC

BI 

stop 

Glim

mer 

Start 

Glim

mer 

Stop Start Stop 
EasyGene 

start 

EasyGen

e stop 

Genscan 

start 

Genscan 

stop 

Virtual 

Footprint 

Start 

Virtu

al 

Footp

rint 

Stop 

227 1621 227 1621 227 1621   280 1645 900 909 

1  1  1  0  1  1  

Table 14: Result of gene search for 41745 

15. Accession number 41727 

NCBI 

start 

NC

BI 

stop 

Glim

mer 

Start 

Glim

mer 

Stop Start Stop 
EasyGene 

start 

EasyGen

e stop 

Genscan 

start 

Genscan 

stop 

Virtual 

Footprint 

Start 

Virtu

al 

Footp

rint 

Stop 

1971 2459 1971 2459 1971 2459 2064 2459 1998 2037 1908 1971 

1  1  1  1  1  1  

Table 15: Result of gene search for 41727 

16. Accession number 41592 

NCBI 

start 

NC

BI 

stop 

Glim

mer 

Start 

Glim

mer 

Stop Start Stop 
EasyGene 

start 

EasyGen

e stop 

Genscan 

start 

Genscan 

stop 

Virtual 

Footprint 

Start 

Virtu

al 

Footp

rint 

Stop 

300 1505 300 1505 300 1505 432 1505 319 1524 1575 1588 

1  1  1  1  1  1  

Table 16: Result of gene search for 41592 

17. Accession number 41580 

NCBI 

start 

NC

BI 

stop 

Glim

mer 

Start 

Glim

mer 

Stop Start Stop 
EasyGene 

start 

EasyGen

e stop 

Genscan 

start 

Genscan 

stop 

Virtual 

Footprint 

Start 

Virtu

al 

Footp

rint 

Stop 

31 1107   31 1107 31 1107 132 1181 959 972 

1  0  1  1  1  1  

Table 17: Result of gene search for 41580 

18. Accession number 414745 

NCBI 

start 

NC

BI 

stop 

Glim

mer 

Start 

Glim

mer 

Stop 
Start Stop 

EasyGene 

start 

EasyGen

e stop 

Genscan 

start 

Genscan 

stop 

Virtual 

Footprint 

Start 

Virtu

al 

Footp

rint 
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Stop 

334 561   334 561   605 2881 632 641 

578 2899 821 2899 2890 3135 821 2899 2944 3146 2992 3001 

2  1  2  1  2  2  

Table 18: Result of gene search for 414745 

19. Accession number 312761 

NCBI 

start 

NC

BI 

stop 

Glim

mer 

Start 

Glim

mer 

Stop Start Stop 
EasyGene 

start 

EasyGen

e stop 

Genscan 

start 

Genscan 

stop 

Virtual 

Footprint 

Start 

Virtu

al 

Footp

rint 

Stop 

31 474   31 474 31 474   178 187 

502 1884   502 1884 742 1884 502 1911 1354 1363 

        1958 1963 2067 2076 

2  0  2  2  2  3  

Table 19: Result of gene search for 312761 

20. Accession number 297393 

NCBI 

start 

NC

BI 

stop 

Glim

mer 

Start 

Glim

mer 

Stop Start Stop 
EasyGene 

start 

EasyGen

e stop 

Genscan 

start 

Genscan 

stop 

Virtual 

Footprint 

Start 

Virtu

al 

Footp

rint 

Stop 

          27 36 

721 1905 492 728 721 1905 721 1905 759 1997 984 993 

          1120 1129 

1  1  1  1  1  3  

Table 20: Result of gene search for 297393 

 

Discussion:  

TP is true positive which means the gene is predicted when there is a gene, the bigger value 

the better result. And the formula is 

TP = number of genes predicted / total genes in NCBI of this sequence 

FDR is false discovery rate which provides the rate of false location in prediction, the smaller 

the value the better. And the formula is 

FDR = total location shift predicted / number of genes predicted 

Accession

Number 

Glimmer 

TP 

Glimmer 

FDR 

EGF 

TP 

EGF 

FDR 

EasyGen

e TP 

EasyGene 

FDR 

Genscan

 TP 

Genscan

 FDR 

VFP 

TP 

VFP 

FDR 

300901746 1 58.77778 

0.8

888

89 

147

.25 

0.44444

4 
1397.75 

0.33333

3 

2785.66

7 

0.3333

33 

642.33

33 

403342 1 0 

0.6

666

67 

0 1 79 
0.33333

3 
4171 1 

1580.3

33 

325965637 1 0 0.6 24 0.2 69 0.6 906.333 0.6 1146 
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3 

346421495 1 136 1 
110

3 
0 1103 1 38 0 1103 

260765442 0 1027 1 0 1 231 1 118 0 1027 

167509193 1 106 1 46 0 520 1 1087 1 37 

354515243 0 254 0 254 1 254 1 52 1 211 

354515242 0 1021 1 92 0 8 1 166 1 350 

354515240 0 912 2 678 0 912 1 166 3 1227 

354515237 0.5 1243 1 640 0.5 1399 0.5 241 1.5 359 

145467 1 909 2 
126

5 
0 1268 3 5743 3 3481 

342315677 0 675 1 268 0 675 1 410 3 792 

341941295 0 1300 1 0 0 1300 1 193 1 143 

41745 1 0 1 0 0 1848 1 77 1 39 

41727 1 0 1 0 1 93 1 395 1 551 

41592 1 0 1 0 1 132 1 38 1 1358 

41580 0 1138 1 0 1 0 1 175 1 793 

414745 1 5652 2 
245

2 
1 5652 2 204 2 2106 

312761 0 2891 1 0 1 240 1 3443 1.5 4334 

297393 1 1406 1 0 1 0 1 130 3 1663 

Table 21: Result for TP and FDR comparison 

 

From the above table we can see that EGF predicts most of the real genes with a lower false 

discovery rate among the other predictors. 

 

Charts of above data 

 

 
Figure 1: TP result. X axis is the 20 different genes, and y axis is the number of genes 

predicted/ gene in NCBI database. NCBI results are all 1s, since they are the number of genes 

in the database. For other predictors, some predicted more than expected, and some are 

less. 
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Figure 2: TP result average. TP Average = TP result /number of experiments (20). To see the 

performance of each predictor, it is better to use an averaged data for comparison. Series 1 is 

the default genes existed in NCBI database, Series 2 is the percentage of genes found by 

Glimmer, Series 3 is the percentage of genes found by using E. coli Gene Finder, Series 4 is 

the percentage of genes found by EasyGene, and Series 5 is the percentage of genes found 

by GenScan, Series 6 is the percentage of genes found by Vertual Foot Print. In this case, the 

closer the better; therefore EGF and GenScan are more closer to NCBI database. 

 

 
Figure 3: FDR Result. FDR = sum of number of position shift / number of gene predicted. X 

axis is the 20 genes used in this project; Y axis is the number of false gene locations. The data 

represent the difference between the predicted gene location with the gene location in the 

database, therefore the smaller the better. 
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Figure 4. FDR average. FDR Average = sum of FDR/ total number of predicted gene (20). 

Series 1 is the default false gene location in NCBI which is 0, Series 2 is the miss calculated 

gene location by Glimmer, Series 3 is the false predicted gene location by EGF, Series 4 is the 

false gene location that was predicted by EasyGene, Series 5 shows the wrong gene locations 

as predicted by Genscan, and Series 6 is the false prediction by Virtual Foot Print. EGF 

predictes the less FDR among other predictors.  

 

Final results can be improved by checking the start codon condition. For example, if 

there is a hairpin structure before AUG; then this AUG will be most likely the start of 

a gene. Or, if there is another AUG just few codon after a start codon; then the start 

codon will be passed and this AUG will become the start of a gene [24]. This step can 

be done to either locate promoter phase or improve the result phase. 

 

Related topics:  

Cancer: the cancer is caused not only by a single mutation, but several mutations on 

the chromosome. It can be explained by the exponential growth of some cancer 

cause death growth with age. One example is the colon cancer death raise in “One 

Renegade Cell” page 47 [27]. If colon cancer is caused by 3 mutations, then the 

formula will be 23. If it takes about 2 years for one mutation to happen, then after 16 

(23*2) years, someone who has all the mutations will develop colon cancer. If it 

caused by 4 mutations, then the time needed are 32. Off cause, mutations that 

happened not related to colon cancer will result in no colon cancer even when more 

than 4 mutations are detected in one sequence. To prevent colon cancer or any other 

cancer, couples of analysis need to be done. First, all mutations required by colon 

cancer need to be defined. Second, use examples (someone who has colon cancer 

family history, does not have colon cancer yet), and find out the difference. Third, 

prevent the last (one or more) mutation from happening by providing some 

treatment or medicine. 
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Conclusion 

The prediction made by this program works only for some E. coli sequences as we can see 

from the data from NCBI. Compare each predicted gene with NCBI, EGF predicts more real 

gene than other online predictor, and it also gives less wrong prediction than other predictor. 

Even though the results look better than some of the online packages prediction, it still has 

the limitation on predictions. For example, it can’t predict short gene (length less than 60 

nucleotides) and overlapping gene (gene inside gene). Those genes do exist in NCBI database 

which include the E. coli gene I used in this paper. It is just the start point of this project by 

using the basic characteristic that found in E. coli; further study on other related organisms 

needed to broader the search power of the system. After all the ideas have being finalized in 

section “steps to find characteristics 7”, then the prediction will be enhanced by adding more 

idea in the original program.   
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Appendix 1—Training Data 

1. 175 TATA rich sequences 

http://mendel.cs.rhul.ac.uk/pprom/PLPR_TATA.seq 

 

2. 130 TATA less sequences 

http://mendel.cs.rhul.ac.uk/pprom/PLPR_TATA-less.seq 

  

  

http://mendel.cs.rhul.ac.uk/pprom/PLPR_TATA.seq
http://mendel.cs.rhul.ac.uk/pprom/PLPR_TATA-less.seq
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Appendix 2—List of NCBI Accession Number 

of Testing Data 

1. ecoli41580 

2. ecoli41592 

3. ecoli41727 

4. ecoli41745 

5. ecoli145467 

6. ecoli297393 

7. ecoli312761 

8. ecoli403342 

9. ecoli414745 

10. ecoli167509193 

11. ecoli260765442 

12. ecoli300901746 

13. ecoli325965637 

14. ecoli341941295 

15. ecoli342315677 

16. ecoli346421495 

17. ecoli354515237 

18. ecoli354515240 

19. ecoli354515242 

20. ecoli354515243 
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Appendix 3—D2K Algorithm Coding in EGF 

# This program take any E.coli sequence from NCBI and find genes from it 

 

#if(!open(infile, 'ecoli356875267.txt')){ 

if(!open(infile, 'ecoli297393.txt')){ 

    print "error opening input file\n"; 

    exit; 

} 

if(!open(outfile, '>out.txt')){ 

    print "error opening output file\n"; 

    exit; 

} 

if(!open(outfile1, '>out1.txt')){ 

    print "error opening output file\n"; 

    exit; 

} 

$data = <infile>;   #ignore FASTA comment 

while ($data = <infile>){ 

   chomp $data; 

   $seq = $seq . $data; 

} 

 

# $seq is the nontemplate strand from the 5' end 

# first three reading frames come from $seq 

 

# other three reading frames come from the reverse complement 

$complement = $seq; 

$complement =~ tr/ACGTacgt/TGCAtgca/; # complement of strand 

$reversecomplement = reverse($complement); # reverse of compement 

$reversecomplement =~ s/T/U/g; # convert to RNA 

 

$seq =~ s/T/U/g; # convert to RNA 

 

# find ORF in original sequence 

$foundorf = 0; 

 

# find ORF in reversecomplement 

$stop = 0; 

 

print "seq strand\n"; 

$seq_result = findORF($seq); 
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print "\n\n reversecomplement strand\n"; 

$reversecomplement_result = findORF($reversecomplement); 

 

#print "reverse complement result: $reversecomplement_result"; 

#print "seq result: $seq_result"; 

 

if (($reversecomplement_result < 0) && ($seq_result < 0)){ 

        print outfile "ORF not found\n"; 

} 

#find orf 

sub findORF{  

 my($seq) = @_; 

        $found = 0; 

 # set the starting position of the reading frame 

 for($frame = 0; $frame < 3; $frame++){ 

        $start = $frame; 

  $tataCount = 0; 

  #$missingStart = substr($seq, 4383, 3); 

  #$missingStop = substr($seq, 5129-3, 3); 

  #print "missing gene: $missingStart--$missingStop"; 

 print "\n frame:  "; 

 print $frame; 

 print "\n";  

  $findPromoter = 0;#one promoter per sequence 

        while ($start < length($seq)){ 

 

  

    # find start codon in reading frame 

    $start = findStartStop($seq, $start,0); 

    if ($start == -1) {last;} 

 #print "start: $start "; 

 #print "\n"; 

    # look for stop codon at least 60 codons out or 180nt 

    if (($start != -1) && ($start+180<=length($seq)-3)){ 

   $stop = findStartStop($seq, $start,1); 

                 # print " stop: $stop"; 

                 #print "\n"; 

   if ($stop >= $start+180){ # length of the gene > 60 codon 

    

   #$totalLength = length($seq); 

   $realStart = ($start +1); 

   $realStop = ($stop +3); 

    

   #$startString = substr ($seq, $realStart, 3); 
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   #$stopString = substr ($seq, $realStop-3, 3); 

   print "start-stop $realStart--$realStop \n"; # $startString---$stopString \n"; 

   print outfile1 "$frame start-stop $realStart---$realStop \n"; 

   $tataLocation = findTata($seq, $realStart); 

   if ($tataLocation != -1) {$tataCount = $tataCount +1;} 

                        $found = 1; 

                        if ($foundorf == 1){ 

                                print outfile "\n ---Next--\n"; 

                        } 

   $foundorf = 1; 

   # printed assuming first position is 1 

   print outfile "ORF found in reading frame ",$frame+1, " Start Loc: ", 

        $start+1, " Stop Loc: ", $stop+1, " and Shine-Dalgarno is 

found or not (-1): ", findShine($frame, $start, $seq), ". \n"; 

                        print outfile substr($seq, $start, $stop+3-$start); 

   #print promoter info    

   if (findPromoters($seq, $start)==1){ 

           print outfile "\n ORF supported by promoters\n"; 

     $findPromoter = 1; 

        } 

        else{ 

    

    if ($findPromoter = 0){ 

     print outfile "\n ORF not supported by promoters\n";} 

       else { 

     print outfile "\n ORF is in the operon\n";} 

      }        

   } 

                 if ($stop != -1) {$start = $stop;} 

              } 

              $start = $start + 3; # use $start + 3 in E. coli, and $start -15  in E. 

albertii 

              } 

     $tataCount = $tataCount/6; 

   print "\n Probability of using frame $frame is $tataCount.\n"; 

   print outfile1 "\n Probability of using frame $frame is $tataCount.\n"; 

 

    } 

 if ($found == 0){return(-1);} 

        elsif ($found == 1){return(1);} 

  

  

} 
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sub findStartStop{ #combine find start and stop of orf 

   my($seq, $start, $choice) = @_; 

   for ($i=$start; $i<=length($seq)-3; $i+=3){ 

 if ($choice){    #start 

   if ((substr($seq, $i, 3) eq "UAA") 

    || (substr($seq, $i, 3) eq "UAG") 

    || (substr($seq, $i, 3) eq "UGA")){ 

   return($i); 

     } 

  } 

  else {   #stop 

   if ((substr($seq, $i, 3) eq "AUG") 

   || (substr($seq, $i, 3) eq  "GUG") 

  # || (substr($seq, $i, 3) eq  "UGA")  

   || (substr($seq, $i, 3) eq  "CUG") 

   || (substr($seq, $i, 3) eq  "UUG")){ 

   return($i); 

  } 

  } 

   } 

   return(-1); 

    

} 

 

sub findShine{  #find shine-dalgarno sequence 

 my($frame, $start, $seq) = @_; 

 #print "frame ",$frame+1," \n"; 

 $position = ($start -5)*3 + 2; 

 $string = substr($seq, $position, 7); 

 #print "\n String is >>> $string <<< \n"; 

 #print "\n String is >>> $seq <<< \n"; 

 return index($string, "AGGAGG"); 

} 

 

sub findPromoters{ #find promoter 

   my($seq, $orfstart) = @_; 

 

   # modified to work with exercise 1 program 

   $element35 = "UUGACA"; 

   $element10 = "UAUAAU"; 

 

   # initialize the search position for the -35 element 

   $search35 = 0; 
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   # check distance from translational start site 

   while ($search35 < $orfstart-85){ 

      if (index(substr($seq, $search35, length($element35) +10) , $element35)> -1){ 

        # element -35 found, initialize search position for -10 element 

        $elementdist = 15; 

        $search10 = $search35 + length($element35) + $elementdist; 

        while ($search10 < $orfstart-60 && $elementdist <= 19){ 

           if (index(substr($seq, $search10, length($element10)+10) , 

$element10)> -1){ 

              # valid -10 element found, return success 

              return (1); 

           } 

           # continue searching for -10 element 

           $search10++; 

           $elementdist++; 

        } 

        # -35 element not found, continue searching 

        $search35 = $search35 + length($element35); 

      } 

      else{ 

        # -35 element not found, continue searching 

        $search35++; 

      } 

   } 

   # valid promoters not found - return 0 

   return(0); 

} 

 

sub findTata{ #find TATA box 

    my($seq, $start) = @_; 

 $tataRegion = $start - 20; 

  $string = substr($seq, $tataRegion, 20); 

 #print " tata-->$string  $tataRegion  "; 

 #print index($string, "UAUU"); #find TATA box location 

 

 return index($string, "UAUU"); 

 

} 

 

close (infile); 

close (outfile); 

close (outfile1); 
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Appendix 4—Result Comparison 

1. ecoli41580 

 

 

  



42 
 

2. ecoli41592 
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3. ecoli41727 
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4. ecoli41745 
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5. ecoli145467 
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6. ecoli297393 
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7. ecoli312761 
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8. ecoli403342 
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9. ecoli414745 
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10. ecoli167509193 
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11. ecoli260765442 
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12. ecoli300901746 
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13. ecoli325965637 
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14. ecoli341941295 
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15. ecoli342315677 
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16. ecoli346421495 
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17. ecoli354515237 
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18. ecoli354515240 

 

 

 

 

 



59 
 

19. ecoli354515242 
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20. ecoli354515243 
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Appendix 5—Web Application 

1. Home page 

 

2. One example 
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