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 ABSTRACT 

 LIFE HISTORY CHARACTERISTICS OF THE STARRY SKATE, RAJA 
STELLULATA, FROM CALIFORNIA WATERS 

 
by Kelsey Christine James 

The order Rajiformes, or skates, is a morphologically conservative group that 

exhibits a wide range of life history characteristics.  This inter-species variability 

warrants species-specific research.  This study investigates the age, growth, reproduction, 

and habitat of the Starry Skate, Raja stellulata, which is endemic to the U.S. West Coast.  

Age and growth parameters were determined using two preparation techniques: gross 

sectioning and histological sectioning.  The assumption that gross sections deposit one 

band pair a year was indirectly validated with centrum edge analysis and marginal 

increment ratio.  It was not indirectly validated with histological sections.  Age estimates 

from gross sections ranged from 0 to 11 years, and growth was best described by the two 

parameter von Bertalanffy growth function in which L∞ = 865 mm TL and k = 0.15.  Age 

estimates from histological sections ranged from 0 to 15 years, and growth was best 

described by the Gompertz function in which L∞ = 845 mm TL, g = 0.15, and k = 1.53.  

Histological section results are recommended for describing growth of R. stellulata 

because the longevity is more conservative.  Raja stellulata exhibits year-round 

reproduction and attains 50% maturity at 632 mm TL, and 11.2 years old for females and 

603 mm TL, and 11.5 years for males.  Raja stellulata was collected most often on hard 

substrate between 70 and 150 m depth.  An age/depth trend within the central California 

skate assemblage was found where increased habitat depth correlated with increased 

longevity.  
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General Introduction 
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 Elasmobranchs are generally characterized as having slow growth, late age at 

maturity, and extended longevity, making this group susceptible to targeted and 

incidental fishing pressures (Holden 1973, Stevens et al. 2000).  There is, however, 

considerable variation in life history characteristics within this group (Smith et al. 1998, 

Walker 1998, Cortés 2002).  Cortés (2002) examined the demography of 38 species of 

sharks and developed a “fast-slow” continuum based on life history characteristics that 

highlights this inter-species variability.  Species at the fast end of the continuum mature 

early in life, have a short lifespan, and relatively large litters, whereas species at the slow 

end mature late in life, have a long lifespan, and relatively small litters (Cortés 2002).  

This variability in life history characteristics also is observed within the skate order, 

Rajiformes (Dulvy et al. 2000, Ebert et al., 2007, 2009).  Recent research indicates that 

skate species live between seven and thirty-seven years and mature between three and 

twenty-three years (Cailliet and Goldman 2004, Gallagher et al. 2004, Ebert et al. 2009, 

Ainsley et al. 2011).  This variability warrants a species-specific approach to the research 

and fisheries management of skates. 

 Despite the evidence of inter-species variability, skates often are managed in 

aggregate categories such as “unspecified skate” or “other species” (Dulvy et al. 2000).  

This is mainly because skates are predominantly landed as bycatch, and are rarely sorted 

to species (Dulvy et al. 2000).  Skates constitute a large percentage of bycatch in some 

regions, which raises concerns about the impacts of fishing pressure on skate populations 

(Matta et al. 2006).  The use of such aggregate categories can mask species-specific 

fishing impacts (Walker and Hislop 1998, Dulvy et al. 2000).  A study conducted on 
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several species from the northeast Atlantic skate assemblage indicated that fisheries catch 

had remained relatively stable through time, but populations of larger skate species were 

decreasing, while populations of smaller skate species were increasing (Dulvy et al. 

2000).  The use of aggregate categories for skate bycatch, therefore, ignores inter-species 

variability and can mask declines of certain species.  This indicates the importance of 

species-specific life history data. 

Sporadic fishing for skates has occurred along the California coast since the mid-

1880s, with most interest coming from Asian communities that consume the pectoral fins, 

or “wings” (Haas 2010).  Skate landings have varied dramatically during the years, with a 

peak of 1,362 metric tons landed in 1997 and a large decrease in 2002 due to reduced 

Asian demand (Fig. 1; CDFG 2009, Haas 2010).  In the five Pacific U.S. states, nearly 

100% of skate catch is taken indirectly (Camhi 1999), and a large proportion of the catch 

is discarded without documentation (CDFG 2009, Haas 2010).  Those skates that are 

retained are most commonly marketed as “unspecified skate”, which until 2009 could 

include all eleven species of skates in California waters (CDFG 2009, Haas 2010).  After 

2009, one of the eleven species, Raja rhina, was removed from the “other species” 

category and was sorted to species; the rest were still lumped as “other species” (CDFG 

2009, Haas 2010).   
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Figure 1. California commercial skate (Rajiformes) landings, 1916-2008. Adapted from 
CDFG (2009). 

 

The skates off of central California, along the U.S. West Coast, belong to two 

families: Arhynchobatidae and Rajidae.  The Arhynchobatidae, or softnose skates, 

generally occur on the continental slope below 200 m depth.  The two most common 

species are the Sandpaper Skate, Bathyraja kincaidii, and the Roughtail Skate, B. 

trachura.  The Rajidae, or hardnose skates, generally occur in shallower depths on the 

continental shelf and upper slope, usually less than 200 m.  The four most common 

species are the Big, Raja binoculata, California, R. inornata, Longnose, R. rhina and 

Starry Skate, R. stellulata.  An additional five species occur in U.S. Pacific coastal 

waters, but occur deeper and are encountered much less frequently (Ebert 2003). 
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The four species of hardnose skates are more vulnerable to exploitation due to 

their shallower depth range and subsequent proximity to coastal fishing.  Raja binoculata, 

R. inornata, and R. rhina are the most commercially important skate species in California 

but are rarely sorted to species, with 99% of those landed in 2008 marketed as 

“unspecified skate” (CDFG 2009).  Despite the prominence of these species in fisheries 

bycatch, there is little information on their life histories in California waters.  The diet of 

R. binoculata, R. inornata, and R. rhina has been examined in central California 

(Bizzarro et al. 2007, Robinson et al. 2007), and one study examined the age and growth 

of R. binoculata and R. rhina in central California (Zeiner and Wolf 1993).  Otherwise 

little is known about these species, especially R. stellulata. 

  Raja stellulata is a medium to small sized skate with a maximum total length (TL) 

of 761 mm.  It occurs from Baja California, Mexico to Barkley Sound, British Columbia, 

Canada, nearshore to 982 m depth but it is most commonly found at about 100 m depth 

along the continental shelf.  Raja stellulata occupies a different habitat than other skates, 

usually occurring on hard substrate near rocky reefs with some vertical relief (Dave 

Ebert, pers. comm.).  It is distinguished from other skate species by a brown dorsal 

surface with numerous light and dark spots, an eyespot on each pectoral fin, and star-

shaped prickles, its namesake, covering most of the dorsal surface (Ebert 2003).  Its diet 

includes crustaceans, cephalopods, and teleosts including small Lingcod, Ophiodon 

elongatus, and rockfishes, Sebastes spp.  Research on R. stellulata has been minimal; 

after the original description by Jordan and Gilbert (1880), it has appeared rarely in the 
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scientific literature except for an occasional taxonomic note, an unpublished diet study, 

and the description of its egg case (Ebert and Davis 2007). 

 The purpose of this study was to describe the life history characteristics of R. 

stellulata.  The overall objectives include 1) determining the age and growth of R. 

stellulata (Chapter One), 2) assessing maturity and reproductive seasonality of R. 

stellulata (Chapter Two), and 3) classifying the habitat of R. stellulata and identifying 

trends in the central California skate assemblage (Chapter Three). 
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Introduction 

Age and growth parameters describe the growth characteristics and lifespan of a 

species.  These parameters are determined through size-at-age estimates and growth 

modeling and are used for calculations of mortality and population growth rates, which 

are crucial to demographic analyses.  Once a population has been assessed using age and 

growth parameters and demography, fisheries management agencies are better equipped 

to create sustainable management plans.   

Hard structures that accrue calcified material over time are the most reliable 

material to estimate the age of chondrichthyans.  Structures used for chondrichthyan 

ageing include vertebral centra, dorsal fin spines, neural arches, and caudal thorns 

(Cailliet and Goldman 2004).  The calcified material is deposited as concentric bands 

within the hard structure, which grows proportionally with the individual.  Skates have 

been most reliably aged using band counts in vertebral centra, which are often sagitally 

sectioned (Campana 2001).   

A pair of opaque and translucent bands, a band pair, represents one year of 

growth.  Annual band pair deposition has been confirmed in several species of skate 

including Amblyraja radiata, Leucoraja erinacea, L. ocellata, Malacoraja senta, and 

Raja texana (Natanson 1993, Sulikowski et al. 2005, Natanson et al. 2007, Sulikowski et 

al. 2007, McPhie and Campana 2009).   

One difficulty of skate ageing is poor band resolution within the ageing structure.  

Several staining methods have been developed to enhance the banding pattern of 

chondrichthyan hard structures including mineral oil, crystal violet, silver nitrate, and 
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histology (Cailliet and Goldman 2004).  To determine which method enhances the 

banding pattern best, some recent researchers of skate age and growth have compared age 

estimates between two techniques: gross sections and histological sections (Natanson et 

al. 2007, Ainsley 2009, Maurer 2009, Winton 2011).  Gross sections are sagittal vertebral 

sections with either no enhancement or mineral oil only, whereas histological sections are 

decalcified sagittal vertebral sections that are embedded in a wax then stained with Harris 

hematoxylin (Natanson et al. 2007).  A comparison between gross sections and 

histological sections will be completed in this study to assess which preparation 

technique provides the clearest band resolution.   

Some skate species have been successfully aged using an alternative hard 

structure, caudal thorns (Gallagher et al. 2006, Matta and Gunderson 2007, Moura et al. 

2007).  Ridges and troughs present on the surface of the caudal thorn can be counted to 

make age estimates (Gallagher and Nolan 1999).  Usually one ridge and one trough 

represent one year of growth, although this has not been validated (Gallagher and Nolan 

1999).  However, this structure has not been reliable for ageing many other species 

(Davis et al. 2007, Ainsley 2009, Maurer 2009, Perez et al. 2011, Winton 2011).  Caudal 

thorns, if shown to be a useful ageing structure, would be a non-lethal method to age 

skates, thus eliminating the need to sacrifice individuals for age and growth studies.   

One crucial assumption of an age and growth study is one band pair deposited a 

year.  To test this assumption, validation is used to lend credibility to age estimates 

(Campana 2001, Cailliet and Goldman 2004, Cailliet et al. 2006).  Direct validation is the 

confirmation of the fish’s absolute age, while indirect validation determines the 
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frequency of a growth increment (Campana 2001).  Direct validation, including methods 

such as bomb radiocarbon, mark-recapture of chemically tagged fish and captive rearing, 

is preferred, but it is imperative to assess the periodicity of band pair deposition to give 

credibility to age estimates (Campana 2001, Cailliet and Goldman 2004, Cailliet et al. 

2006).  Indirect validation methods include centrum edge analyses that examine the edge 

band type (opaque or translucent), and the edge band pair width against the penultimate 

band pair width (Campana 2001, Cailliet and Goldman 2004, Cailliet et al. 2006).  If the 

edge type or band pair width exhibit a distinct pattern and vary significantly during the 

course of a year, then the periodicity of band deposition can be sufficiently described to 

verify the age estimates (Simpfendorfer et al. 2000, Smith et al. 2007). 

The goal of this chapter is to provide knowledge on the age and growth 

parameters of Raja stellulata.  The research objectives of this chapter were to 1) identify 

and quantify band pairs within the vertebral centra, 2) compare band enhancement 

between gross and histological preparation techniques, 3) assess caudal thorns as an 

alternative, potentially non-lethal, ageing structure, 4) estimate size-at-age, 5) verify these 

band pair counts using centrum edge analysis and marginal increment ratio, and 6) 

calculate theoretical maximum size, longevity, and growth.  

 

Methods 

Collection 

 Specimens of R. stellulata were obtained from two separate surveys along the U.S 

Pacific Coast.  From 2002 through 2005, the National Marine Fisheries Service, 
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Southwest Fisheries Science Center, Santa Cruz Laboratory (SWFSC-SCL) conducted 

demersal longline and trawl surveys off central California from Davenport (ca. 37º 00’ N, 

122º 11’ W) to Monterey (ca. 36º 36’ N, 121º 53’ W; Fig. 1).  Additional specimens were 

collected from 2006 to 2010 by the National Marine Fisheries Service, Northwest 

Fisheries Science Center (NWFSC) during the Fishery Resource and Monitoring 

division’s (FRAM) annual coast-wide groundfish survey extending from the U.S. border 

with Canada (ca. 48º 28’ N, 124º 54’ W) to the U.S. border with Mexico (ca. 32º 31’N, 

117º 11’ W; Fig. 1).   

 
 
Figure 1. Distribution of collection sites of Raja stellulata (n = 58). Red circles were 
collection by longline, and purple triangles were collection by trawl. Inset is northwest 
Monterey Bay. 
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Specimens were returned whole to Moss Landing Marine Laboratories (MLML) 

for processing.  For each, individual total length (TL) were measured to the nearest 

millimeter from snout tip to tail tip and disc widths (DW) measured from one wing tip to 

the other wing tip.  Each specimen was weighed and assigned a sex and maturity status 

following the system of Ebert (2005).  Relationships between TL and DW and between 

TL and mass were determined.  A segment of at least eight vertebrae was excised from 

each specimen between the 5th and 20th vertebrae (Fig. 2).  A subsample of individuals 

also had vertebrae removed from the posterior region of the vertebral column, starting at 

least 10 vertebrae behind the anterior sampling location to determine if centrum growth is 

uniform along the vertebral column.  A second subsample had 5-7 caudal thorns excised 

from behind the tail insertion (Fig. 2).   

  
 
 
Figure 2. Raja stellulata specimen with locations of vertebrae and caudal thorn removal. 
Black box encompasses anterior vertebrae sampling. Dashed box encompasses posterior 
vertebrae and caudal thorn area of sampling. 
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Age Structure Preparation 

 Four anterior vertebrae per specimen were separated into individual centra and 

cleaned of excess tissue.  Two centra were dried and stored in an air-tight container for 

gross sectioning.  The other two were stored in 70% ethanol for at least two months 

before histological preparation.  One dried vertebra from each specimen was selected, 

and two perpendicular measurements of the centrum diameter (mm) were recorded.  The 

mean centrum diameter was calculated and plotted against TL to verify that vertebral 

growth was in proportion to organismal growth.  

 For the gross sectioning technique, each vertebra was mounted on a merchandise 

tag with polyester casting resin.  One vertebra from each specimen was sagitally cut 

through the focus using a low speed saw (Buehler Isomet®, Lake Bluff, IL, USA) with 

paired diamond-edged blades to a thickness of 0.4 – 0.6 mm.  Sections were then 

mounted on microscope slides with Cytoseal™ 60 and polished to an optimal viewing 

thickness using 1,200 grit wet sandpaper.  

 The histological technique followed Natanson et al. (2007).  Centra were 

decalcified using RDO® rapid decalcifying agent, rinsed with water, and returned to 70% 

ethanol.  Vertebrae next underwent a nine-step embedding process, which involved 

submerging the centra in decreasing concentrations of ethanol, tert-butyl alcohol, and 

increasing concentrations of Paraplast Plus® (McCormick Solutions, St. Louis, MO).  

The vertebrae were then sectioned to a thickness of 80-100 µm with a sledge microtome.  

Three to five sections closest to and including the focus of the centrum were retained in 

tissue capsules and immersed in 100% xylene baths that removed the Paraplast Plus®.  
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Sections were stained with Harris hematoxylin and gradually moved through baths to 

100% glycerin, after which they were mounted on microscope slides and sealed with 

clear nail polish.  

 The subsample of posterior vertebrae also were prepared using gross sectioning 

and the histological technique to assess potential differences in the banding pattern along 

the vertebral column.  

 

Caudal Thorns 

 Caudal thorns were prepared for ageing as a possible non-lethal alternative to 

vertebral centra.  Excess tissue was removed from thorns by boiling water and scrubbing 

with a toothbrush.  Thorns were dried and examined under a dissecting microscope using 

reflected light.  The thorn base was measured from anterior to posterior and plotted 

against specimen TL to determine if thorns grow in proportion to TL.  Age 0 was 

determined by identifying the protothorn, the tip of caudal thorn lacking growth bands.  

Each subsequent ridge and trough were considered a band pair, and counted for an age 

estimate.  In an attempt to resolve band pairs a subsample of thorns was stained with a 

1.0% aqueous crystal violet.   

 

Ageing 

Sections prepared using both techniques were photographed under a dissecting 

microscope with transmitted light.  Photographs were analyzed using ImagePro Plus® 

4.1.0 imaging software (Media Cybernetic, L.P. 1993-1999).  The birthmark, age 0, was 
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determined as the first fully formed band pair beyond the focus that was associated with 

an angle change in the corpus calcareum (Cailliet and Goldman 2004).  Each opaque and 

translucent band thereafter was considered a band pair and assumed, as with many skate 

species, to represent one year of growth (Ebert et al. 2007, 2009).    

Age was determined for each individual without knowledge of length, sex, 

collection date, or previous band pair count.  The number of band pairs was counted three 

times by one reader and final ages were assigned based on the final ageing round.  Read 1 

was used to familiarize the reader with the banding pattern, and to confirm good ageing 

criteria so it was excluded from further analysis.  A fourth read was conducted if the 

previous reads disagreed by two or more years.  If, after a fourth read, agreement within 

one band pair was not reached, the vertebra was not used in this study (Neer and 

Thompson 2005).  A subsample of gross sectioned vertebrae was read by a second reader 

to compare precision and accuracy of age estimates.  

 

Precision and Bias 

 Precision analysis among reads of each centrum was determined using the 

following measures: index of average percent error (IAPE) (Beamish and Fournier 1981), 

coefficient of variation (CV), and index of precision (D) (Chang 1982).  The IAPE was 

calculated as: 
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where  N is the total number of samples, R is the number of reads, Xij is the i th age 

estimate of the j th individual and Xj is the mean age estimate for the j th individual.  CV is 

an alternative precision analysis that uses the standard deviation rather than the absolute 

deviation.  It was calculated as: 

j
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Index of precision (D) is a measure of the percent error for each read of an ageing 

structure: 

R

CV
D j

j =  

Variables of CV and D are described above in the IAPE. CVj and Dj are both individual 

calculations that are averaged among individuals to produce mean values (Ebert et al. 

2009).  Age 0 individuals were excluded from calculations of IAPE, CV, and D (Ebert et 

al. 2009).  Percent agreement also was assessed among ages and by 100 mm TL bins 

(Goldman 2004).  

 To determine the source of differences between reads, either systematic bias or 

random error, age bias plots and contingency tables analyzed by chi-squared tests of 

symmetry were conducted (Bowker 1948, Campana et al 1995, Hoenig et al 1995, Evans 

and Hoenig 1998).  All the above precision and bias analyses also were conducted to test 

for differences in age estimates between readers.  Bias analyses also were conducted 

between anterior and posterior of both gross sectioning and histological sectioning and 

between anterior gross and histological sections. 
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Indirect Validation 

 Periodicity of band pair deposition was assessed using centrum edge analysis 

(CEA) and marginal increment ratio (MIR) (Tanaka and Mizue 1979, Campana 2001, 

Cailliet and Goldman 2004).  CEA examines the final band, half of a band pair, of each 

sample placing it in one of four categories 1) narrow/translucent, 2) broad/translucent, 3) 

narrow/opaque, and 4) broad/opaque (Smith et al. 2007).  The proportion of band types 

was plotted by month and tested with a non-parametric Kruskal-Wallis test to detect 

seasonal differences in edge type.   

MIR was calculated as (Conrath et al 2002): 

PBW

MW
MIR =  

where MW is the margin width of the forming band pair, and PBW is the width of the 

penultimate band pair.  Mean MIR was calculated for each month, and plotted by month 

to determine periodicity of band pair deposition.  Differences among months were tested 

using a non-parametric Kruskal-Wallis test (Simpfendorfer et al. 2000, Smith et al. 2007).  

 

Growth Modeling 

 Multiple growth functions were fit to size-at-age estimates for each sex and sexes 

combined.  Growth model parameters were estimated with non-linear least-squares 

regression methods in SigmaPlot version 12.0 (SPSS Software Inc., 2011).  The first 

growth model applied, and the most common to describe chondrichthyan growth, was the 

three parameter von Bertalanffy growth function (3 VBGF) calculated as: 



20 
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where Lt is the age at length t, L∞ is the theoretical asymptotic total length, k is the von 

Bertalanffy growth coefficient, and t0 is the theoretical age at zero length (Ricker 1979).   

 The modified two parameter von Bertalanffy growth function (2 VBGF) 

incorporates a known size-at-birth rather than t0 and was calculated as: 

kt
t eLLLL −

∞∞ −−= )( 0  

 Lt, L∞, and, k are defined above, and L0 is the known length at birth, 151 mm (this study).  

 The Gompertz growth function (modified from Ricker 1979) was the third 

function applied, and was calculated as: 

)( gtke
t eLL

−−
∞=  

where Lt, L∞, and t are described above g is the instantaneous growth coefficient and k is 

a dimensionless parameter.  The Gompertz function has been postulated as more 

appropriate to describe oviparous elasmobranch species growth (Cailliet and Goldman 

2004).  

 The fourth growth equation was the logistic model (modified from Ricker 1979) 

and was calculated as: 

)( 01 ttgt
e

L
L
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+
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where Lt, L∞, and t are described above, g is the instantaneous growth rate and t0 is the 

inflection point.  
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 Finally, three models developed by Schnute (1981) and modified by Quinn and 

Deriso (1999) commonly used to model fish growth were applied.  Case 1 was calculated 

as: 

γ
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Case 3 was calculated as: 
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Case 4 was calculated as: 
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where L1 and L2 are the estimated lengths at selected reference ages τ1 and τ2, which were 

selected to be 1 and 6 years respectively, and κ and γ are parameters describing the curve 

shape.  Schnute’s Cases 2 and 5 are equivalent to the Gompertz and 3 VBGF 

respectively, and so they were excluded (Schnute 1981).  

Goodness-of-fit for each model was determined using Akaike’s Information 

Criterion adjusted for small sample size (AICc, Burnham and Anderson 2002).  AICc was 

calculated from least squares regression statistics assuming normally distributed 

deviations with constant variance as:  
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where n is the total number of samples, K is the number of parameters estimated by the 

growth function including σ2, and RSS is the residual sum of squares.  The AICc 

differences were calculated as: ∆i = AICc – AICmin for all growth models.  Models with ∆i 

< 4 have substantial support whereas those with ∆i >10 have essentially no support 

(Burnham and Anderson 2002).  Model selection was based on goodness-of-fit, 

biological relevance, and comparability with other studies.  Likelihood ratio tests also 

were applied to determine differences in growth parameters between sexes (Kimura 1980, 

Haddon 2001).    

 

Results 

 Collection  

A total of 194 specimens was collected by SWFSC-SCL between 2002 and 2005 

(n = 128) and by NWFSC-FRAM between 2006 and 2010 (n = 66).  Specimens collected 

were representative of the size range of this species, from 151 to 761 mm TL (Fig. 3).  

The ratio of females (n = 101) to males (n = 93) was nearly even.  The TL to DW 

relationship was best described by a power function (r2 = 0.981, DW = 0.78*TL^0.98, n 

= 194).  The TL to mass relationship also was best described by a power function (r2 = 

0.937, Mass = 1.02*10-9*TL^3.31, n = 194). 
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Figure 3. Size frequency distribution by sex of Raja stellulata specimens (n = 194). Open 
bars are females and black bars are males. 
 
 

Age Structure Preparation 

Mean centrum diameter was linearly related to TL (r2 = 0.939, MCD = 0.01*TL - 

0.53, n = 192; Fig. 4) that was not significantly different between sexes (two-sample t- 

test: t = 1.16, df = 190, p = 0.249). Two centra were unavailable for measurement.  This 

indicated that centra grew in proportion to TL.  A total of 193 vertebral centra was 

prepared for ageing using the gross sectioning technique, the centrum of one individual 

was missing.  A total of 71 centra was prepared using the histological technique due to 
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time and financial constraints.  A subsample of 18 individuals also had vertebrae 

removed from a posterior region of the vertebral column.  These posterior vertebrae also 

had a positive linear relationship with TL (r2 = 0.888, MCD = 0.01*TL - 0.11, n = 18; 

Fig. 5) that did not significantly differ between sexes (t = -0.06, df = 16, p = 0.954).  All 

eighteen were prepared for ageing using both techniques. 
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Figure  4. Linear relationship of mean centrum diameter and total length (r2 = 0.939, 
MCD = 0.01*TL - 0.53, n = 192). 
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Figure 5. Linear relationship of mean centrum diameter of posterior samples and total 
length (r2 = 0.888, MCD = 0.01*TL - 0.11, n = 18). 
 
 
 

Caudal Thorns 

 Caudal thorns were removed from 57 specimens and prepared for ageing.  The 

measurement of the thorn base, anterior to posterior, had a weak positive linear 

relationship with TL (r2 = 0.631, Thorn length = 0.01*TL + 1.11, n = 57; Fig. 6) that was 

not significantly different between sexes (t = -0.74, df = 55, p = 0.465).  Upon 

examination no banding pattern was evident on the thorn surface of dried thorns (Fig. 7) 
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or of thorns stained with 1.0% crystal violet solution; therefore, no age estimates were 

conducted with caudal thorns. 
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Figure 6. Linear relationship of thorn base and total length (r2 = 0.631, Thorn length = 
0.01*TL + 1.11, n = 57). 
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Figure 7. Caudal thorn of R. stellulata lacking surface bands. 
 

Ageing, Precision and Bias 

Four (2.1%) gross sectioned vertebrae were deemed unreadable and were 

excluded from further analysis.  Age estimates were made for 189 individuals.  Final age 

estimates were assigned from read 3 or in a few cases (n = 22) read 4.  Precision between 

read 2, read 3 and read 4 was good (IAPE = 5.74%, CV = 8.03%, D = 5.38%).  Percent 

agreement also was great, with 47.6% of age estimates agreeing ±0 years, 92.0% 

agreeing ±1 year, and 100% agreeing within ±2 years.  Percent agreement by TL was 

great, with 100 % agreement of ages estimates for individuals less than 200 mm TL 

(Table 1a).  Age estimates for individuals larger than 200 mm TL agreed by at least 
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88.7% ±1 year and 100% ±2 years.  An age bias plot indicated no bias between read 2 

and the mean of read 3 age estimates (Fig. 8).  The Bowker’s, Evans-Hoenig, and 

McNemar’s χ2 tests of symmetry detected no bias between read 2 and read 3 (Bowker’s: 

χ
2 = 26.6, df = 20, p = 0.150; Evans-Hoenig: χ

2 = 4.38, df = 2, p = 0.112; McNemar’s: χ2  

= 1.71, df = 1, p = 0.191).   

 
 
 
Table 1. Percent agreement (PA) by TL. a) gross sections (n = 189) and b) histological 
sections (n = 68) at 100 mm intervals for ages of R. stellulata. 
 
a) 
Length (mm) Total Read  PA ± 0 PA ± 1 PA ± 2 

0-199 1 100.00     
200-299 16 50.00 93.75 100.00 
300-399 12 58.33 91.67 100.00 
400-499 41 51.22 90.25 100.00 
500-599 46 43.48 97.83 100.00 
600-699 62 43.55 88.71 100.00 
700-799 11 54.55 90.91 100.00 

 
 
b) 
Length (mm) Total Read  PA ± 0 PA ± 1 PA ± 2 PA ± 3 

0-199 1 100.00       
200-299 3 33.33 100.00     
300-399 7 28.57 71.43 100.00   
400-499 13 46.15 76.92 92.31 100.00 
500-599 22 31.82 72.73 90.91 100.00 
600-699 15 20.00 53.33 73.33 100.00 
700-799 7 71.43 100.00     
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Figure 8. Age bias plot of read 2 age estimates versus mean read 3 age estimates of gross 
sections (n = 189). Error bars represent one standard error. 
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One (5.6%) of the eighteen posterior vertebrae was deemed unreadable and 

excluded from further analysis.  Seventeen posterior sections were aged to compare 

against anterior sections.  An age bias plot revealed no bias in age estimates between 

vertebral column locations (Fig. 9).  All three χ
2
 tests of symmetry detected no bias 

between anterior and posterior ages (Bowker’s: χ
2 = 10.3, df = 9, p = 0.320; Evans-

Hoenig: χ2 = 0.29, df = 1, p = 0.257; McNemar’s: χ2 = 0.60, df = 1, p = 0.439).  This 

indicated that R. stellulata deposits calcified material in a uniform way throughout the 

vertebral column.  Anterior sections were used to produce age estimates for this species 

due to their larger size.  

 
 
Figure 9. Ages bias plot of posterior age estimates versus mean anterior age estimates of 
gross sections (n = 17). Error bars represent one standard error. 
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A second reader aged a subsample (n = 51) of gross sectioned anterior vertebrae.  

Precision between readers was deemed acceptable (IAPE = 7.61%, CV = 10.76%, D =  

7.61%), as was percent agreement with 33.3% agreeing ±0 years, 77.1% agreeing ±1 

years, 97.9% agreeing ±2 years, and all ages agreeing ±3 years.  An age bias plot detected 

a slight bias, with reader one producing older age estimates from ages five to ten (Fig. 

10).  The Bowker’s χ2 test of symmetry did not detect any bias between readers (χ
2 = 

15.9, df = 12, p = 0.200), however, the Evans-Hoenig and McNemar’s test did detect a 

bias for ages 4-6 (Evans-Hoenig: χ
2 = 12, df = 2. p = 0.002; McNemar’s: χ2 = 10.71, df = 

1, p = 0.001), where reader one assigned older ages than reader two.  Age estimates of 

reader one were used despite the slight bias between readers. 

 
 
Figure 10. Age bias plot of reader one’s age estimates versus mean reader two age 
estimates of gross sections (n = 51). Error bars represent one standard error. 
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Three (4.2%) histologically sectioned vertebrae were deemed unreadable and 

were excluded from further analysis.  Age estimates were determined for 68 vertebrae.  

Precision between reads was high (IAPE = 6.58%, CV = 9.01%, D = 5.78%) and percent 

agreement was deemed acceptable, with age estimated for 36.8% of samples agreeing 

within ±0 years, 70.6% within ±1 year, 89.7% within ±2 years, and 100% within ±3 

years.  Percent agreement by TL was great; age estimates for 100% of individuals less 

than 300 mm TL and greater than 700 mm TL agreed ±1 year (Table 1b).  Age estimates 

for all other size classes agreed by at least 73.3% within ±2 years and 100% within ±3 

years.  An age bias plot indicated bias between ageing rounds of reader one, where ages 

from read 3 were greater than those of read 2 (Fig. 11).  All three tests of symmetry 

detected the same bias (Bowker’s: χ
2 = 41, df = 23, p = 0.01; Evans-Hoenig: χ

2 = 32.57, 

df = 2, p < 0.001; McNemar’s: χ2 = 31.87, df = 1, p < 0.001).  

Four (22.2%) histologically sectioned posterior vertebrae were deemed 

unreadable and were excluded from further analysis.  Fourteen posterior sections were 

aged to compare with anterior sections.  An age bias plot between histological sections of 

posterior and anterior centra did not observe a bias between age estimates from the two 

vertebral column locations; however, estimates for older age classes had more variability 

(Fig. 12).  The three tests of symmetry did not detect a bias (Bowker’s: χ
2 = 8, df = 10, p 

= 0.630; Evans-Hoenig: χ2 = 1.2, df = 2, p = 0.549; McNemar’s: χ2 = 0, df = 1, p = 1.000), 

which was the same result as between anterior and posterior sections prepared as gross 

sections. 
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Figure 11. Age bias plot of read 2 age estimates versus mean read three age estimates of 
histological sections (n = 68). Error bars represent one standard error. 
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Figure 12. Age bias plot of posterior age estimates versus mean anterior age estimates of 
histological sections (n = 14). Error bars represent one standard error. 
 
 
 
 
 
 
 
 



35 
 

Qualitatively, histological sections had a more visible banding pattern, but it was 

more difficult to discern whether a band extended completely across the corpus 

calcareum and intermedialia because the hematoxylin did not stain the corpus calcareum 

evenly.  Faint bands were more distinct with the histological preparation technique, and 

more likely counted as a band rather than considered a check as with the gross sectioning 

technique.  Some vertebrae prepared by the gross sectioning technique had a clear 

banding pattern.  However, even for those individuals, more banding was apparent when 

processed using the histological technique (Fig. 13).  Five individuals were given the 

same age estimate between preparation techniques, and one individual was assigned a 

lower age estimate based upon the histological technique.  Five histological sections were 

assigned an age seven years older than the gross sections and another five were assigned 

an age six years older than the gross sections.  An age bias plot comparing gross sections 

to histological sections (n = 68) indicated a strong bias, in which histological sections 

consistently produced older age estimates than gross sections (Fig. 14).  This bias was 

detected by all three tests of symmetry (Bowker’s: χ
2 = 58.3, df = 36, p = 0.01; Evans-

Hoenig: χ2 = 57.67, df = 6, p < 0.001; McNemar’s: χ2 = 57.07, df = 1, p < 0.001).   
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Figure 13. Comparison of gross section to histological section. Both centra are from the 
same R. stellulata individual. The gross section (on left) was estimated as five years old, 
whereas the histological section (on right) was estimated as seven years old. 
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Figure 14. Age bias plot of gross section age estimates versus mean histological age 
estimates (n = 66). Error bars represent one standard error. 
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Indirect Validation 

Individuals age 0 or age 1 were excluded from indirect validation analyses.  CEA 

of gross sections exhibited a clear pattern, in which a majority of the edge types were 

opaque from February to July and translucent from September to January (Fig. 15).  A 

nonparametric Kruskal-Wallis test did detect a significant trend of proportion opaque 

edge type during twelve months (K = 18.86, df = 10, p = 0.042, n = 119).   

The MIR also displayed a semiannual pattern with values approaching one in July 

and August and values markedly less from October to January (Fig. 15).  MIR values of 

gross sections were tested over months with a nonparametric Kruskal-Wallis test and a 

significant difference among months was detected (K = 18.74, df = 10, p = 0.044, n = 

172).  Both indirect validation methods indicated semiannual banding pattern with 

opaque bands present mostly in spring and summer and translucent bands present on the 

centrum edge mostly in fall and early winter.   

CEA and MIR also were performed for histological sections.  A visual difference 

among months was detected for CEA with translucent bands dominating during fall, but 

no trend was detected for MIR.  One-way ANOVAs of CEA and MIR for histological 

sections were not significantly different among months (CEA: F = 0.41, df = 7, p = 

0.708; MIR F = 0.63, df = 7, p = 0.889; Fig. 16).  
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Figure 15. Monthly variation in mean marginal increment ratio and centrum edge type for 
gross sections. Sample sizes for MIR (n = 172) are below each month in parentheses. 
Sample size for CEA is 119. Error bars represent one standard error. Hatched grey is a 
narrow opaque edge, solid grey is a broad opaque edge, hatched white is a narrow 
translucent edge and solid white is a broad translucent edge. 
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Figure 16. Monthly variation in mean marginal increment ratio and centrum edge type for 
histological sections. Sample sizes (n = 62) are below each month in parentheses. Error 
bars represent one standard error. Hatched grey is a narrow opaque edge, solid grey is a 
broad opaque edge, hatched white is a narrow translucent edge and solid white is a broad 
translucent edge. 
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Growth Modeling 

Age estimates of females using gross sections were 0 to 11 years (n = 99) and 

male age estimates were 0 to 10 years (n = 90).  Age zero was assigned to a 151 mm TL 

female and a 222 mm TL male, indicating a birth size of 150-225 mm TL.  The largest 

female, 761 mm TL, was estimated at 10 years old, whereas the oldest females (11 years 

old) were 733 and 702 mm TL.  The largest male, 717 mm, was 7 years old, whereas the 

oldest male (age estimate of 10) was 658 mm TL.   

For gross sections, the two parameter von Bertalanffy growth function best 

described the growth of R. stellulata.  Growth model parameters of all seven models for 

gross sections are presented in Table 2a.  Likelihood ratio tests for six of the seven 

growth functions indicated no evidence of significant difference between sexes; 

therefore, sexes were pooled (p > 0.182).  The seventh growth function, the Gompertz, 

indicated that male and female growth were significantly different (p < 0.001).  All 

growth functions fit the data “well” or “reasonably well” using AICc values, except the 

Schnute Case 4 (Table 3a; Fig. 17).  The 2 VBGF was chosen as the best model based on 

AICc value, biological relevance, and comparability.  The 2 VBGF parameters were L∞ = 

865 mm TL, and k = 0.15.   
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 Table 3. Goodness-of-fit table for each of the seven growth models. a) gross sections and 
b) histological sections.  Models are ordered from best to worst fit according to AICc. k is 
the number of model parameters; AICc is the small-sample, bias corrected form of the 
Akaike’s information criterion; ∆i is the Akaike difference; SEE is the standard error 
estimate. 
 
a) 

Growth Model k adj r2 AICc ∆i SEE 
2 VBGF 3 0.787 682.76 0.00 61.99 
Logistic 4 0.789 683.43 0.67 61.62 
3 VBGF 4 0.786 684.47 1.71 62.01 
Schnute Case 1 5 0.788 685.54 2.77 61.79 
Schnute Case 3 4 0.782 686.22 3.47 62.68 
Schnute Case 4 3 0.704 709.66 26.95 72.99 
Gompertz 4 0.789 712.36 29.61 61.70 

 
  
b) 

Growth Model k adj r2 AICc ∆i SEE 
2 VBGF 3 0.806 244.07 0.00 57.61 
Gompertz 4 0.804 246.19 2.12 57.91 
3 VBGF 4 0.804 246.24 2.18 57.97 
Logistic 4 0.803 246.35 2.28 58.08 
Schnute Case 3 4 0.803 246.41 2.34 58.13 
Schnute Case 1 5 0.801 248.51 4.44 58.35 
Schnute Case 4 4 0.750 251.62 7.55 65.47 
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Figure 17. Seven growth curves fit to gross section data of R. stellulata (n = 189). Sexes 
were combined for six of the seven functions. Light grey and black short dash lines 
represent the Gompertz growth function for females and males respectively. 
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Age estimates of females using histological sections were 0 to 15 years (n = 34) 

whereas males were 2 to 14 years (n = 34).  Age zero was assigned to a 151 mm TL 

female, supporting the estimated birth size of 150-225 mm TL.  The largest female with a 

histological sample was 755 mm TL and 15 years old, as was the second largest female, 

which measured 740 mm TL.  The youngest male was 2 years and 319 mm TL,  

whereas the smallest male was 271 mm TL and 3 years of age.  The largest male using 

the histological technique was 717 mm TL and 12 years old, whereas the oldest male, 

estimated at 14 years, was the second largest male at 709 mm TL.   

For histological sections, the Gompertz growth function best described the growth 

of  R. stellulata (Table 2b).  Likelihood ratio tests indicated that all growth functions used 

did not provide evidence of significant differences between sexes.  Therefore, the data 

were pooled (p ≥ 0.539; Table 2b).  All models applied fit the data well, except Schnute 

Case 1 and Schnute Case 4 (Table 3b; Fig. 18).  The model with the smallest AIC value 

(244.067; ∆i = 0.000) was the 2 VBGF (Table 3b); however the L∞ was much greater (a 

difference of 278 mm) than the observed maximum TL.  The model with the second 

smallest AIC value (246.19; ∆i = 2.12) was the Gompertz model, which had a 

biologically relevant L∞ of 845 mm TL.  Therefore, based on AICc values and biological 

relevance, the Gompertz model was chosen as the best model.  However, five of the 

seven growth functions were deemed acceptable with AICc values less than 4 (Table 3b).  

The Gompertz parameters were L∞ = 845 mm, g = 0.15, and k = 1.53. 
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Figure 18. Seven growth curves fit to histological section data of R. stellulata (n = 68). 
Sexes were combined for all functions. 
 

 



48 
 

Discussion 

 The vertebrae of R. stellulata exhibited a clear banding pattern when processed 

with the gross sectioning technique, but by using the histological technique, the same 

individuals had up to seven additional band pairs than their gross section counterparts.  

Various methods of band enhancement have been used on chondrichthyan vertebrae to 

make ageing more accurate and precise.  The gross sectioning technique requires basic 

sectioning equipment and is relatively inexpensive.  Many skates, however, do not 

exhibit strong banding patterns and require band enhancement for improved readability 

(Licandeo et al. 2006, McFarlane and King 2006, Ainsley 2009, Winton 2011).  The 

histological sectioning technique requires specialized equipment and chemicals and is 

more expensive and labor intensive than the gross sectioning technique.  It has been 

shown, however, to greatly enhance the banding pattern of several skates, which in turn 

can improve accuracy and precision of age estimates (Natanson et al. 2007, Ainsley 2009, 

Maurer 2009, Winton 2011).  The histological technique undoubtedly enhances the 

banding pattern revealing bands that might not be observed using the gross sectioning 

technique.  

Caudal thorns have not been an appropriate ageing structure for several species of 

skate, including Bathyraja interrupta (Ainsley 2009), B. kincaidii (Perez et al. 2011), B. 

lindbergi, B. maculata, (Maurer 2009), B. minispinosa, B. taranetzi (Ebert et al. 2009), B. 

trachura (Davis et al. 2007, Winton 2011), and Raja clavata (Gallagher 2000, Gallagher 

et al. 2005).  Furthermore, a complete lack of banding has been observed in Raja 

brachyura, R. montagui, and Leucoraja naevus (Gallagher 2000, Gallagher et al. 2005).  



49 
 

The caudal thorns of R. stellulata do grow in proportion to TL like other skates, but do 

not express a banding pattern, making caudal thorns an inappropriate ageing structure.  

Gallagher (2000) suggested that the absence of ridge and trough banding may be due to 

the smoother transition between seasonal bands experienced by faster growing temperate 

skate species as compared with deeper, slower growing species.  This may be the case, 

but more research into band deposition in caudal thorns is warranted to explain presence 

or absence of a banding pattern. 

 Precision and bias analyses confirm the consistency of the reader and assess the 

readability of the age structures.  Gross sections had slightly greater precision (IAPE, CV 

and D) than histological sections and no detectable bias among reads, whereas read 3 of 

the histological sections were consistently assigned older ages than read 2.  This 

suggested that the gross sections were easier to read.  This may be due to inexperience 

with the histological process, in which the hematoxylin stain affects different species 

differently.  Additionally, the sledge microtome tended to tear the vertebral sections.  As 

a result, the histological sections often had uneven stain and additional marks that 

decreased precision and accuracy.  Despite the reader’s increased precision and reduced 

bias with the gross sections, the histological technique is an invaluable tool to assess 

poorly calcified structures such as skate vertebrae.  In most cases, histological preparation 

has increased the precision and readability of skate vertebrae (Ainsley 2009, Maurer 

2009, Winton 2011). 

 The periodicity of band pair deposition is a crucial component in determining the 

life history characteristics of a species.  The seasonal trade-off between an opaque and a 
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translucent band present on the distal edge of the corpus calcareum is a strong indicator 

that one band pair is deposited annually in R. stellulata (Fig. 15).  The change in MIR 

over a year’s period also supports one band pair deposited per year (Fig. 15).  Both CEA 

and MIR were significantly different among months for gross sections (CEA p = 0.042; 

MIR p = 0.044), which supports annual band pair deposition.  Several skate species also 

deposit one band pair a year (Natanson 1993, Sulikowski et al. 2003, Sulikowski et al. 

2005, Matta and Gunderson 2007, Natanson et al. 2007).  These validations support the 

underlying assumption that skates have one band pair deposited a year. 

 Annual band pair deposition was not expected to change between age structure 

preparation techniques.  Vertebral sections prepared by the histological technique did not 

exhibit the same obvious band pair deposition pattern as in the gross sections.  

Discrepancies in trends between preparation methods are likely because of differences in 

sample sizes and the reader’s inexperience with the histological technique.  CEA and 

MIR measurements were available for gross sections for all months except May, whereas 

the sample size for histological sections was lower, with samples not available for May, 

August, November, and December.  An increased sample size processed with the 

histological technique that represented the entire year would likely help distinguish 

differences of edge type among months.   

Additionally, some difficulty was encountered with assigning edge types to the 

histological sections.  The hematoxylin stain, which colored opaque bands, gave pigment 

to the distal edge of the corpus calcareum.  It was difficult to determine the type of edge 

band for CEA because the distal edge was characterized by dark purple (opaque) pigment 



51 
 

that was not necessarily representative of a true band.  More experience with this 

preparation technique and its effect specifically on the vertebrae of R. stellulata could 

elucidate this problem.   

 Marginal increment ratio analysis is based on the comparison between the 

penultimate band pair and the forming band pair.  The ultimate or forming band pair is 

expected to be narrower than the penultimate band pair.  This was not the case with R. 

stellulata, in which there were many instances that the forming band pair was broader 

than the penultimate band pair.  This phenomenon has been exhibited by several skate 

species endemic to the eastern North Pacific (Ainsley 2009, Maurer 2009, Winton 2011).  

This result may confound MIR’s usefulness for verification as width of the band pair is 

likely based on growth, which varies among individuals (Officer et al. 1997).  

Consequently, seasonal growth is a factor that cannot be accounted for when calculating 

average MIR. 

 The two age structure preparation techniques, gross sectioning and histology, 

provided similar life history parameter estimates for R. stellulata.  At least five of the 

seven growth functions applied to each preparation technique described the growth of R. 

stellulata adequately.  For gross sections, the best model based on AICc, and biological 

relevance was the 2 VBGF.  For histological sections, the best model based on the same 

criteria was the Gompertz model.  The theoretical maximum TLs, L∞, varied by only 20 

mm, and the estimated length at birth, L0, varied by only 32 mm (Table 2).  Both age 

preparation techniques resulted in similar life history parameters, but due to the older age 
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estimates of the histological technique its parameters should be used for fisheries 

management. 

 The life history characteristics of R. stellulata fall within the range of other skate 

species that are found in the California Current ecosystem.  Raja binoculata and R. rhina 

exhibit similar maximum estimated ages, 12 and 13 years respectively using the gross 

sectioning technique (Zeiner and Wolf 1993).  Raja binoculata is a larger skate and has a 

larger growth coefficient than R. stellulata due to its relatively short longevity (Zeiner 

and Wolf 1993).  The largest specimen of R. binoculata in Zeiner and Wolf’s (1993) 

study was only 1,610 mm TL rather than the reported maximum length of 2,400 mm TL; 

therefore the maximum age estimate from Zeiner and Wolf (1993) may be an 

underestimate for the species as a whole.  The final member of the Rajidae family that 

belongs to the California shallow water species complex, Raja inornata, has a maximum 

age estimate of 13 years using the gross sectioning technique, which is similar to R. 

stellulata (Wade Smith and Dave Ebert, unpubl. data).  The two sympatric bathyrajid 

skates, B. kincaidii and B. trachura, attain older maximum ages, and have growth 

coefficients both greater and smaller than R. stellulata (Davis et al. 2007, Perez et al. 

2011).  These differences are likely due to taxonomic or habitat differences. 

The L∞ and maximum age of medium-sized rajid skates worldwide are similar to 

those estimated for R. stellulata.  Raja texana from the Gulf of Mexico has a maximum 

TL of 630 mm and a L∞ of 682 mm TL for females and 526 mm TL males (Sulikowski et 

al. 2007).  This species also has a younger maximum age estimate using gross sections (9 

years) than R. stellulata (Sulikowski et al. 2007).  Also in the same range is Raja 
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montagui from the Irish Sea, which has a slightly greater maximum TL, 770 mm, but 

lesser L∞, 784 mm TL for females and 724 mm TL for males, and a maximum estimated 

age of 7 years old using gross sections (Gallagher et al. 2004).  Malacoraja senta 

sampled in the Gulf of Maine attains 680 mm TL, and is one of the few other species of 

rajid that was assessed for age and growth using the histological preparation (Natanson et 

al. 2007).  Despite its smaller size, its maximum age estimate was 15 years old and the L∞ 

was 754 mm TL for females and 696 mm TL for males.  These comparisons lead to the 

conclusion that R. stellulata has life history characteristics typical of similarly sized 

species of rajids.  
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Introduction 

Reproductive parameters are important in establishing population estimates and 

predicting how a population may respond to different stressors, such as fishing pressure.  

One essential parameter is age or size at maturity. This parameter strongly regulates 

population growth rates through its influence on the productivity of a species (Holden 

1973, Smith et al. 1998).  Another important parameter is the periodicity of reproduction.  

This seasonality in reproduction affects the lifetime fecundity of an individual, which in 

turn affects the population size, growth rate, and management options.  Therefore, 

research into species-specific reproductive parameters is imperative for determining 

population sizes, potential growth rates, and creating management strategies. 

Age at maturity is a fundamental component of demographic analyses.  Smith et 

al. (1998) showed, using a demographic model, that there is a close relationship between 

age at maturity and the potential population rebound rates of twenty-six eastern Pacific 

shark species.  Shark species that mature late in life have lesser rates of population 

increase whereas species that mature early in life have higher rates of population increase 

(Smith et al. 1998).  Another study on the demography of eight species of Alaskan skates 

revealed population growth rates were so low that based on the criteria of Musick (1999),  

four of the eight are vulnerable to depletion by fishing pressure (Ebert et al. 2007, 2009).  

Thus, age at maturity is a crucial parameter to determine for a species. 

Elasmobranchs exhibit an array of reproductive cycles that range from distinct 

annual (or longer) cycles to year-round reproduction with no discernable reproductive 

peaks.  Hamlett and Koop (1999) showed that skates and oviparous sharks tend to exhibit 
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year-round reproduction sometimes with seasonal peaks.  A species with seasonal peaks 

has egg cases present in utero year-round, but exhibit a distinct seasonal peak in the 

number of gravid females or other reproductive indicators (Holden 1975, Braccini and 

Chiaramonte 2002, Mabragana and Cousseau 2004).  Since Hamlett and Koop (1999) 

many skate species have been found to exhibit year-round reproductive cycles including: 

Bathyraja kincaidii (Perez et al. 2011), B. interrupta (Ainsley et al. 2011), B. trachura 

(Davis et al. 2007), B. parmifera (Matta and Gunderson 2007), Amblyraja radiata, and 

Malacoraja senta (Kneebone et al. 2007).  Examples of skate species that exhibit year-

round reproduction with seasonal peaks include Leucoraja erinacea (Richards et al. 

1963), Psammobatis extenta (Braccini and Chiaramonte 2002), Raja clavata (Holden 

1975) and Rioraja agassizi (Oddone et al. 2007).  The presence of these reproductive 

cycles influences the appropriate management technique for these species; seasonal 

closures would not be effective with year-round reproduction, but with seasonal peaks in 

reproduction, timely protection from fishing would allow females to deposit more eggs.   

The purpose of this chapter is to provide knowledge on the reproductive 

parameters of Raja stellulata.  The objectives were to 1) estimate size and age at first, 

50%, and 100% maturity, and 2) determine the periodicity of the reproductive cycle.   

 

Methods 

 Collection 

 Specimens of R. stellulata were obtained from two separate surveys along the 

U.S. West Coast.  From 2002 through 2005, the National Marine Fisheries Survey 
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(NMFS) Southwest Fisheries Science Center Santa Cruz Laboratory (SWFSC-SCL) 

conducted demersal longline and trawl surveys off central California from Davenport (ca. 

37º 00’ N, 122º 11’ W) to Monterey (ca. 36º 36’ N, 121º 53’ W).  Additional specimens 

were collected from 2006 to 2010 by the NMFS Northwest Fisheries Science Center 

Fishery Resource and Monitoring division (NWFSC-FRAM) during the annual coast-

wide groundfish survey extending from the U.S. border with Canada (ca. 48º 28’ N, 124º 

54’ W) to the U.S. border with Mexico (ca. 32º 31’N, 117º 11’ W).     

Specimens were returned whole to Moss Landing Marine Laboratories (MLML) 

for processing.  Individual total lengths (TL) from snout tip to tail tip, and disc width 

(DW) from one wing tip to the other wing tip, were measured to the nearest one 

millimeter, each was weighed and assigned a sex and maturity status following the 

system of Ebert (2005).  Three reproductive classifications were used for both sexes: 

juvenile, adolescent, and adult.  Males were considered mature when the claspers were 

well calcified, including the terminal cartilage elements, and extended beyond the pelvic 

fin tips.  Maturity was confirmed internally if the epididymis and testes were greatly 

coiled.  Males were considered adolescent when the claspers extended beyond the pelvic 

fin tips, but lacked calcification and moderate internal coiling was present.  Males were 

considered juvenile when flexible claspers did not extend beyond the pelvic fin tips and 

there was minimal internal coiling.  Females were considered mature when large ( > 10 

mm) circular oocytes were present in the ovaries, the oviducal gland was kidney-shaped 

and well-differentiated from the uterus, and/or egg cases were present.  Females were 

considered adolescent when mature oocytes were not present, but the oviducal gland was 
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partially differentiated from the uterus.  Females were considered juvenile when no 

oocytes were present and the oviducal gland was not or poorly differentiated from the 

uterus.  The ratio of females to males was determined and analyzed with a chi-squared 

test.  A two-sample t-test was used to detect a difference in sizes collected between sexes. 

Additional reproductive measurements were recorded during processing including 

the oviducal gland width (mm), largest ovum diameter (mm), and total number of mature 

( > 10 mm) oocytes in each ovary for females, and inner clasper length (mm) for males.  

Oviducal gland width and inner clasper length were plotted against TL for females and 

males, respectively.  The relationships were examined for trends, where an abrupt change 

in slope indicated maturation.   

 

Maturity 

First and 100% maturity at size and age (from histological age estimates, Chapter 

One) were determined.  Age and size at 50% maturity also was determined for each sex 

with a logistic regression using SigmaPlot version 12.0 (Systat Software Inc., 2011): 

)1(

1
)( bxae

Y
+−+

=  

where Y is the maturity status (0 = immature, 1 = mature) and x is the TL in mm.  

Binomial data were binned into 30 mm size and one year age classes.  Age and size at 

which 50% of the population was mature (TL50) was calculated as:  

b

a
TL

−
=50  

where a is the y-intercept and b is the regression coefficient.   
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Reproductive Seasonality 

To assess potential seasonality of reproduction an average gonadosomatic index 

(GSI) for both sexes was plotted by month (Flammang et al. 2008) and oceanographic 

season.  GSI was calculated as: 

100*
TM

GM
GSI =  

where GM is the gonad mass in g and TM is total mass of the skate in g.  Differences in 

average GSI among months or oceanographic seasons were tested using a non-parametric 

Kruskal-Wallis test due to violated assumptions and a two-sample t-test (Zar 1999).   

 Oceanographic seasons are specific to the region being studied.  Subsurface 

water movement between approximately 100 and 300 m depth along the West Coast of 

the U.S. is dominated by the California Undercurrent (CU), which is a northward flow of 

warmer, saltier southern water along the coast (Hickey 1979, Chelton 1984, Tisch et al. 

1992, Hickey 1998).  The CU is present coast-wide year-round, but does exhibit 

seasonality with a peak flow in summer and early fall and a second peak in winter when 

it is augmented by the Davidson Current, a northward surface current that occurs in 

winter from Point Conception northward (Hickey 1998, Di Lorenzo 2003, Breaker 2005).  

This season of strong CU flow will be referred to as the California Undercurrent Season 

(CUS) and for the purposes of this study ranges from June until February.  The CU 

experiences a minimum during spring due to overwhelming effect of equatorward winds 

driving upwelling and equatorward flow along the coast that brings cold, nutrient-rich 

water south from the Pacific subarctic (Hickey 1998, Di Lorenzo 2003).  This season of 

minimal CU flow will be referred to as the Upwelling Season (UPS) and for the purposes 
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of this study ranges from March through May.  Despite differences between surface 

currents north of Point Conception and in the Southern California Bight (SCB) the CU is 

present in the SCB and expresses the same semiannual pattern found north of Point 

Conception (Di Lorenzo 2003).   

 A second method that compares ovum size among months was used to assess 

seasonality of ovulation in females (Conrath 2004, Ebert et al. 2007, 2009).  The largest 

ovum diameters of each mature female and the number of mature ova were averaged and 

plotted by month and oceanographic season.  Differences among months in mean 

maximum ovum diameter and number of mature ova were tested using a one-way 

ANOVA or non-parametric Kruskal-Wallis tests (Matta and Gunderson 2007).  

Differences between oceanographic seasons in mean maximum ovum diameter and 

number of mature ova were tested using a two-sample t-test.  Month of collection was 

recorded for gravid females to determine possible seasonality of egg deposition.   

 

Results 

 Collection 

 A total of 194 R. stellulata was collected as described in Chapter One.  The ratio 

of females to males was 1:09:1 and the observed female to male ratio was not 

significantly different from 1:1 (χ2 = 0.25, df = 1, p = 0.615). A two-sample t-test 

detected no significant difference in TLs between sexes (t = 0.97, df = 192, p = 0.333).   

The relationship between oviducal gland width of females and TL increased at 

550 mm TL, which indicated the onset of maturity (Fig. 1).  The relationship between 



66 
 

inner clasper length of males and TL showed an increase of slope at 500 mm TL, which 

indicated the onset of maturity (Fig. 2).  
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Figure 1. Relationship between oviducal gland width and total length (n = 101). 
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Figure 2. Relationship between inner clasper length and total length (n = 93).  
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Maturity 

 First maturity of females occurred at 474 mm TL and 9 years, 50% maturity at 

632 mm TL (p < 0.001; Fig. 3) and 11.2 years (p < 0.001; Fig. 4), and 100% of females 

were mature at ≥ 692 mm TL and 15 years.  The lengths corresponded to 62.3%, 83.0% 

and 90.9% of the maximum TL. The ages corresponded to 60.0%, 74.4% and 100.0% of 

the maximum age. 
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Figure 3. Maturity ogives for males and females by total length. Dashed lines are 95% 
confidence intervals for female (grey) and male (black) ogives. 50% maturity is indicated 
by the black solid line with the male estimate shown with the perpendicular black line 
and the female estimate shown with the perpendicular grey line. Total length is binned by 
30 mm. 
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Figure 4. Maturity ogives for males and females by estimated age. Dashed lines are 95% 
confidence intervals for female (grey) and male (black) ogives. 50% maturity is indicated 
by the black solid line with the male estimate shown with the vertical black line and the 
female estimate shown with the vertical grey line. Age is binned by one year. 
 

 First maturity of males occurred at 460 mm and 6 years, 50% maturity occurred at 

603 mm (p < 0.001; Fig. 3) and 11.5 years (p < 0.001; Fig. 4) and 100% of males were 

mature at ≥ 658 mm TL and ≥ 13 years.  These lengths corresponded to 60.4%, 79.2%, 

and 86.5% of the maximum TL.  The ages corresponded to 40.0%, 76.5% and 86.7% of 

the maximum age. Males matured at similar sizes and ages as females and logistic 

regressions were not significantly different between sexes (Size: F = 1.58, df = 20, p = 

0.143; Age: F = 2.05, df = 14, p = 0.088). 
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Reproductive Seasonality 

 Average female GSI did not differ significantly among months (Kruskal-Wallis: 

K = 2.68, df = 4, p = 0.612; Fig. 5) or between oceanographic seasons t = -0.36, df = 11,  

p = 0.726).  A nonsignificant peak in average GSI was observed in July with lesser values 

occurring in winter.  Average male GIS was not significantly different among months (K 

= 3.93, df = 4, p = 0.415; Fig. 6) or between oceanographic seasons (t = -1.26, df = 20, p 

= 0.222).  A nonsignificant peak in average GSI was observed in March. 
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Figure 5. Average female GSI by month (n = 13). Grey bar represents UPS and hatched 
bar represents CUS. Error bars represent one standard error. 
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Figure 6. Average male GSI by month (n = 22). Grey bar represents UPS and hatched bar 
represents CUS. Error bars represent one standard error. 

 

Average maximum ovum diameter was not significantly different among months 

(K = 5.85, df = 5, p = 0.321; Fig. 7) or between oceanographic seasons (t = -1.23, df = 11, 

p = 0.245).  There was a broad, nonsignificant peak in average maximum ovum diameter 

during winter and spring.  Average number of mature ova also was not significantly 

different among months (K = 6.39, df = 5, p = 0.270; Fig. 7), however it was significant 

between oceanographic seasons (t = -2.55, df = 13, p = 0.024) with a greater average 

number of mature ova during UPS.   
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Figure 7. Average maximum ovum diameter and average number of mature ova by 
month. Grey bar represents UPS and hatched bar represents CUS. Error bars represent 
one standard error. 
 

Three gravid females were encountered in this study: one was collected in April 

off Santa Cruz, California, one in July off Morro Bay, California and one in September 

off Florence, OR. Both individuals from April and July had fully formed egg cases, 

whereas the individual from September had a partially formed egg case. 
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Discussion 

 The known size range of R. stellulata was well represented in this study.  The 

largest individual collected, a female of 761 mm, matched known maximum TL for R. 

stellulata (Ebert 2003), whereas the largest male was 717 mm, only 44 mm smaller than 

the maximum female TL.  The smallest individual collected, also a female, was just 

longer than the documented range of size at birth of 120 to 150 mm (Ebert 2003).    

Both sexes of Raja stellulata matured at similar lengths and ages. There were only 

small, nonsignificant differences between sexes; females attained 50% maturity 40 mm 

TL longer than males.  Small differences in maturation between sexes are common 

features exhibited by skates in the Northeast Pacific: Raja binoculata, Raja rhina (Zeiner 

and Wolf 1993, McFarlane and King 2006, Ebert et al 2008b), Bathyraja interrupta 

(Ainsley 2009) and Bathyraja parmifera (Matta and Gunderson 2007) and by skates 

worldwide: Amblyraja radiata (Sulikowski et al. 2006), Dipturus polyommata (Kyne et 

al. 2008), Leucoraja erinacea (Cicia et al. 2009), Raja brachyura, R. clavata, R. 

montagui, R. naevus (Gallagher et al. 2004), R. texana (Sulikowski et al. 2007), R. 

miraletus, R. straeleni, Malacoraja spinacidermis, Rajella barnardi, Rajella 

caudaspinosa, Rajella dissimilis, and Rajella leopardus (Ebert et al. 2008a).  These data 

on Raja stellulata corroborates the hypothesis that oviparous species and smaller sized 

skates (<150 cm maximum TL) tend not to exhibit significant size differences between 

sexes (Ebert et al. 2008a, b).   

 Raja stellulata matures at large sizes and at approximately 75% of its maximum 

estimated age.  The estimates of TL at 50% maturity were slightly greater, approximately 
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80% of the maximum TL, than estimates of age at 50% maturity, approximately 75% of 

the maximum age.  Two closely related species in the eastern North Pacific, R. 

binoculata and R. rhina, also attain 50% maturity at a greater percent of maximum TL 

than percent maximum estimated age (McFarlane and King 2006).  This trait is prevalent 

in other species in the family Rajidae, regardless of maximum TL, including A. radiata 

(Sulikowski et al. 2006), D. innominatus, D. nasutus, (Francis et al. 2001), D. laevis 

(Gedamke et al. 2005), D. trachyderma (Licandeo et al, 2007), L. erinacea (Cicia et al. 

2009), Malacoraja senta (Sulikowski et al. 2009), R. brachyuran, R. montagui, R. naevus 

(Gallagher et al. 2004), R. texana (Sulikowski et al. 2007) and is exhibited by many shark 

species as well (Cortés 2000).   

 A distinct reproductive cycle was not observed for R. stellulata.  The GSI results 

did not reveal any significant seasonal trends for either females or males.  Furthermore, 

average maximum ovum diameter also did not present any significant seasonal trends.  

Average number of mature ova was significantly greater during the UPS, however this 

was likely driven by the presence of one female in April with 26 mature ova.  Despite this 

one significant seasonal trend, R. stellulata appears to exhibit a year-round reproductive 

cycle.  The presence of gravid females in April, July, and September lends support for 

this conclusion.  This cycle type is exhibited by at least four species from the northeast 

Pacific: Bathyraja kincaidii (Perez et al. 2011), B. interrupta, (Ainsley 2009), Bathyraja 

trachura (Davis et al. 2007), and B. parmifera (Matta and Gunderson 2007) and several 

species worldwide including: Amblyraja radiata, Malacoraja senta, (Kneebone et al. 
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2007), Bathyraja albomaculata, (Ruocco et al. 2006) and Fenestraja plutonia (Quattrini 

et al. 2009).   

 Skates, along with other oviparous elasmobranchs, generally, exhibit greater 

fecundities than viviparous elasmobranchs (Lucifora and García 2004, Musick and Ellis 

2005).  Estimates of fecundity for skates are rare however, mainly due to the difficulty of 

assessing fecundity of oviparous species.  Estimates of annual egg production of several 

rajid species range from 2 to 360 eggs per year (Musick and Ellis 2005, Ebert et al. 

2008b).  Holden (1975) estimated fecundity of 60 to 140 eggs per year for captive Raja 

clavata, whereas captive Raja binoculata lays > 350 eggs annually (Ebert et al. 2008b).  

Matta and Gunderson (2007) estimated wild B. parmifera fecundity as 21 to 37 egg cases 

per year based on natural mortality and GSI.  Obviously estimated skate egg production 

varies widely among and within species.  The large ranges are likely due to uncertainty in 

estimates, differences in methodology of captive observations (Holden 1975, Ebert et al. 

2008b) and differences in numerical calculations (Matta and Gunderson 2007).  A 

fecundity table of Musick and Ellis (2005) included several species of similar maximum 

TL as R. stellulata: Leucoraja naevus, Raja asterias, R. eglanteria, R. miraletus and R. 

montagui, who have fecundities ranging from 25 to 112 with a mean value of 65 eggs per 

year.  It is likely that the fecundity of R. stellulata would fall into this range, but more 

research such as captive observations or numerical estimates is needed to produce an 

accurate estimate of fecundity.  
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Introduction 

 Habitat can be loosely defined as the space and conditions where a species can be 

found.  Different chondrichthyan species, as with all species, have different geographic 

ranges from the Mekong Freshwater Stingray, Dasyatis laosensis, which only inhabits the 

limited waters of the Mekong and Chao Phraya Rivers in Southeast Asia (Compagno 

2005) to the blue shark, Prionace glauca, which globally occupies most of the upper 

open ocean environment (Stevens 2010).  Investigation of a species’ geographic range 

and the habitats therein is a crucial part of fisheries management and the life history of a 

species.   

One method to reduce fishing pressure on a species is to protect specific habitats 

within its geographic range.  Amendments to the Magnuson-Stevens Fishery 

Conservation  and Management Act in 1996 required coastal states to identify what is 

known as Essential Fish Habitat (EFH), which is described as “those waters and substrate 

necessary to fish for spawning, breeding, feeding or growth to maturity” (USDOC 2007).  

The determination and subsequent protection of this marine habitat, or parts of it, will 

allow organisms living in these areas to maintain or increase the species’ population, 

which in turn promotes sustainable fishing practices.   

The first step in determining EFH is to describe the factors that characterize a 

marine habitat.  Key habitat characteristics that determine species distribution include 

depth, temperature, and sediment composition (Mueter and Norcross 1999, Mahon and 

Smith 1989).  These characteristics are relatively easy to discern for most marine habitats 

and can be further described using temperature and depth data loggers and large scale 
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habitat mapping projects.  The same characteristics also describe a species’ vulnerability 

to fishing when combined with known local fishing pressures such as fishing gear type 

and target fisheries.  

EFH reports that include sediment composition, depth, and temperature have been 

published for at least seven western Atlantic skate species (Packer et al. 2003a-g).  All 

seven occur on soft sediment bottoms of either mud, sand, broken shell, or gravel, from 

zero to 1,200 m depth, but most commonly near or above 100 m depth and within a 10º C 

range (Packer et al. 2003a-g).  Skates worldwide typically inhabit soft sediment habitats, 

which can be detrimental because soft sediment is the ideal substrate for trawl fisheries, 

the largest fishery on skates (Stevens et al. 2000).   

Assessments of EFH also have been conducted for three species of skate that 

occur in the eastern North Pacific: R. binoculata, R. inornata, and R. rhina.  All three 

species occur on soft sediments of either mud, urchins, or cobble from zero to 1,069 m 

depth, most commonly occurring at 100 m depth (McCain et al. 2005).  This also 

conforms to the convention that skates occur on soft sediments.   

Another skate of the eastern North Pacific is the Starry Skate, R. stellulata, that 

inhabits rocky habitats.  Raja stellulata was referred to as the Rock Skate by fishermen 

(Starks 1918), which alludes to its use of rocky habitat.  This is confirmed by 

photographs taken by SCUBA divers of R. stellulata throughout its geographic range 

(Fig. 1).  Despite this exception to the convention that skates live on soft bottoms, no 

research has been conducted to describe the habitat of R. stellulata. 
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Figure 1. Photographs by SCUBA divers of R. stellulata on rocky habitat. a) in Barkley 
Sound, British Columbia (Photo Credit: Scott Stevenson); and b) at Santa Barbara 
Channel Islands (Photo Credit: Chris Grossman). 

 

Differences in life history characters may be driven in part by differences in 

habitat.  It has been observed that in the eastern North Pacific skate species tend to 

segregate by depth (Dave Ebert, pers. comm.).  In addition, a recent study by Winton 

(2011) determined for Alaskan bathyrajids that as habitat depth of a species increased the 

longevity of that species increases relating life history to habitat.  If this convention is 

true of other skate assemblages worldwide then it would be a powerful tool to apply to 

skate species that are not available for a thorough life history study. 

The goal of this chapter is to provide knowledge on the habitat and distribution of 

Raja stellulata and relate the knowledge to other skate species in central California.  The 

main objectives were to 1) characterize R. stellulata habitat using the variables: substrate 

consolidation, depth, and temperature, 2) compare gear type efficacy on R. stellulata 

collection, and compare with substrate consolidation, depth, and temperature, 3) 

determine spatial trends of R. stellulata habitat throughout its geographic range, and 4) 

examine age and depth trends in the central California skate assemblage. 
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Methods 

 Collection 

Raja stellulata specimens were collected by Southwest Fisheries Science Center 

Santa Cruz Laboratory (SWFSC-SCL) from 2002 to 2005 and by Northwest Fisheries 

Science Center Fishery Resource and Monitoring division (NWFSC-FRAM) from 2006 

to 2010 by trawl and demersal longline along the coast of California and Oregon (ca. 45º 

16’ N, 124º 28’ W to 32º 20’ N, 119º 40’ W).  Geographic coordinates, depth, 

temperature, and gear type were recorded for each collection site.  

 

Habitat Description 

Geographic coordinates were mapped using ArcMap (ArcGIS version 9.0).  Maps 

of substrate consolidation from the California State University, Monterey Bay (CSUMB) 

Seafloor Mapping Laboratory and the Pacific States Marine Fisheries Commission 

(PSMFC) Pacific Coast Marine Habitat Program were applied to the collection site map.  

Each coordinate pair was used once regardless that multiple specimens were often 

collected at one site.  Each collection site was assigned a substrate consolidation type 

based on its location: hard outcrop, mixed substrate, or soft sediment (Greene et al. 1999, 

Greene et al. 2007).  Percentage occurrence of each substrate consolidation was 

calculated to observe habitat trends.  Trends between substrate type and sex and substrate 

type and TL were examined using a Kruskal-Wallis (K-W) test, due to violated 

assumptions, and a linear regression, respectively. 
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Minimum, maximum and mean depths were calculated to determine depth trends.  

Minimum, maximum, and mean temperatures were calculated to determine temperature 

trends.  A t-test was conducted to compare depth and sex and a linear regression 

examined the relationship between depth and TL to determine possible spatial 

segregation of sexes or sizes.  K-W tests were conducted, due to violated assumptions, 

between substrate type and depth, and substrate type and temperature. 

 

Gear Effects 

A comparison using a t-test was made between collection gear types, longline and 

trawl, to determine potential gear selectivity or bias on the sizes of skates collected.  To 

further examine gear type and habitat trends t-tests were conducted between gear type 

and depth, gear type and temperature, collection survey (NWFSC-FRAM or SWFSC-

SCL), and depth, and collection survey and temperature.  Further comparisons examined 

substrate type and gear type, and substrate and collection survey.  

 

Spatial Trends 

Spatial trends were examined with linear regressions for latitude and TL, and 

longitude and TL.  T-tests were conducted to test for differences between latitude and 

sex, longitude and sex, latitude and gear type, longitude and gear type, latitude and 

survey, and longitude and survey.  Finally, K-W tests were conducted, due to violated 

assumptions, to test differences between latitude and substrate type and longitude and 

substrate type. 
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Age/Depth Trend 

Average depth for six central California skate species, B. kincaidii, B. trachura, R. 

binoculata, R. inornata, R. rhina and R. stellulata, was calculated from collection data 

from SWFSC-SCL and NWFSC-FRAM surveys.  Maximum estimated age from gross 

section age estimates were plotted against average depth and the trend was examined 

with a linear regression. 

 

Results 

 Collection 

The surveys sampled at over 3,600 sites during the study period.  Geographic 

coordinates, depths and gear type for R. stellulata collections were available for 58 

locations, which corresponded to 182 specimens out of 194 used for this study (Chapter 

One, Two).  Temperatures were available for 31 locations, which corresponded to 122 

individuals.  Additional data were provided by NWFSC-FRAM in which R. stellulata 

was collected, but not retained.  This provided an additional 47 collection sites, depths 

and gear types and 89 additional individuals.  Temperature also was available for these 

data adding 44 temperature points.  Total combined number of collection sites with 

geographic coordinates, depth and gear type for R. stellulata was 105 and total combined 

number of temperature points was 75. 
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Habitat Description 

One thousand three hundred and sixty-eight sites of both surveys were assigned a 

substrate type.  In total, 350 (26%) were designated hard outcrop, 356 (26%) as mixed 

substrate, and 652 (48%) as soft sediment.  One hundred of R. stellulata’s collection sites 

were assigned a substrate consolidation (Fig. 2).  Fifty-three (53%) were designated hard 

outcrop, thirty-two (32%) were designated soft sediment, and fifteen (15%) were 

designated mixed substrate.  Collection sites were represented by 259 individuals, with 

56.8% of the individuals occurring on hard outcrop, 30.1% occurring on soft sediment, 

and 13.1% occurring on mixed substrate.  Substrate type did significantly differ with 

skate TL (K = 37.20, df = 2, p < 0.001), where mixed substrate had smaller sizes than 

either hard outcrop or soft sediment (Fig. 3).  Sexes did not exploit different substrate 

types because the female to male ratio did not differ significantly from 1:1 for any 

substrate type (χ2 < 2.22, df = 2,  p > 0.136).   

The minimum depth that R. stellulata were collected was 54.2 m; the maximum 

depth was a new record of 982.4 m and the average collection depth was 129.1 m.  

Eighty-one of the 105 collections sites (77.1%) occurred between 70 and 150 m depth.  

The average temperature was 8.9º C (range: 4.1 – 11.6º C).  Depth was not different 

between sexes (two-sample t-test: t = -0.94, df = 264, p = 0.348) and was not 

significantly correlated with TL (p = 0.311).  Substrate types used by R. stellulata did not 

differ significantly with depth (Kruskal-Wallis test: K = 0.42, df = 2, p = 0.810), it did 

however differ significantly with temperature (K = 16.25, df = 2, p < 0.001).  Cooler 

temperatures were found on soft sediments than on hard outcrop or mixed substrate.   
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Figure 2. Map of R. stellulata collection sites assigned a substrate consolidation (n = 
100). Inset of northwest Monterey Bay. 
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Figure 3. Substrate type with TL (n = 261). Asterisk indicates significant difference (p < 
0.001). 
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   Gear Effects 

Gear type, trawl or longline, exhibited a significant difference in sizes of R. 

stellulata collected (t = -10.86, df = 268, p < 0.001).  Trawls collected 156 individuals 

with a mean TL of 402 mm and a range of 151 to 761 mm TL, whereas longlines 

collected 114 individuals with a mean TL of 584 mm and a range from 413 mm to 735 

mm TL.  Gear types did not sample significantly different depths (t = 1.12, df = 103, p = 

0.266) or temperatures (t = -0.77, df = 73, p = 0.445).  Trawl gear was used at 77 of the 

100 collection sites.  When trawl gear was used, it collected R. stellulata 34 times on hard 

outcrop (44.2%), 28 times on soft sediment (36.4%) and 15 times on mixed substrate 

(19.5%).  Longline gear was used at the other 23 collection sites.  When longline gear 

was used, it collected R. stellulata 19 times on hard outcrop (82.7%), 4 times on soft 

sediment (17.4%), and never on mixed substrate. 

 Collection surveys, SWFSC-SCL and NWFSC-FRAM, were spatially different, 

however, there was no difference between survey and depth (t = -1.04, df = 103, p = 

0.301) or between survey and temperature (t = 0.64, df = 73, p = 0.523).  A majority of 

the collection sites was from the NWFSC-FRAM survey (n = 74), 34 of the sites were on 

hard outcrop (45.9%), 25 of the sites were on soft sediment (33.8%), and 15 sites were on 

mixed substrate (20.3%).  NWFSC-FRAM exclusively used trawl gear for collection.  

The SWFSC-SCL collected R. stellulata at 26 sites with 19 on hard outcrop (73.1%), 7 

on soft sediment (26.9%), and none on mixed substrate.  SWFSC-SCL used mostly 

longline gear for collection with a few sites collected with trawl gear (n = 3).   
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 Spatial Trends 

Latitude did not correlate with TL (p = 0.533), but longitude was significantly 

correlated with TL (r2 = 0.012, TL = -14.92*Longitude – 1341.72, p = 0.040) where as 

longitude decreased, TL decreased.  Sex did not vary significantly with either latitude or 

longitude (Latitude: t = -1.36, df = 264, p = 0.174; Longitude: t = 1.45, df = 264, p = 

0.149).  Gear type, longline or trawl, was not significantly different with latitude (t = -

1.24, df = 103, p = 0.217) or longitude (t = -0.29, df = 103, p = 0.775).   Collection 

survey also was not significantly different with latitude (t = -1.34, df = 103, p = 0.185) or 

longitude (t = -0.33, df = 103, p = 0.740).  Substrate type was significantly different with 

latitude and longitude (Latitude: K = 32.07, df = 2, p < 0.001; Longitude: K = 34.71, df = 

2, p < 0.001), in that soft sediment was encountered more often than the other substrate 

types at higher latitudes (Fig. 4a).  Soft sediment was encountered more often at western 

latitudes (Fig. 4b). 
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Figure 4. Mean a) latitude and b) longitude of different substrate types (n = 100). Error 
bars represent one standard error. Asterisk indicates significant difference (p < 0.001). 
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Age/Depth Trend 

Average depth ranged among species from 65 m for R. binoculata to 956 m for B. 

trachura.  Maximum estimated age ranged from 11 years for R. stellulata to 20 years for 

B. trachura.  Age was significantly correlated with depth among central California skate 

species (r2 = 0.760, Age = 0.01*Depth + 11.45, p < 0.001) where an increase in habitat 

depth resulted in an increase in maximum estimated age (Fig. 5). 

 

 
Figure 5.  Relationship of the maximum estimated age of central California skates with 
mean depth (adj r2 = 0.760). Standard error of mean depth (not shown) was less than 15 
m for each species. 
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Discussion 

 The occurrence of R. stellulata on hard outcrop rather than soft sediment may be a 

driving factor as to why it is not a major component of California skate bycatch.  

Historically, its alternate common name was the Rock Skate referring to its occurrence on 

rocky outcrops (Starks 1918).  Furthermore, in this study it was most often collected on 

hard outcrops (53%) followed by soft sediment (32%) and mixed substrate (15%), 

whereas the distribution of substrate sampled was 48% soft sediment and 26% hard 

outcrop and mixed substrate each.  The largest fishery for skates is trawl fisheries, which 

are most effective on soft sediment (Stevens et al. 2000).  EFH descriptions in the  

Western Atlantic and eastern North Pacific designate soft sediment habitats, which 

included mud, sand, broken shell, urchins, gravel, and cobble for ten skate species 

(Packer et al. 2003a-g, McCain et al. 2005).  These skate species exemplify the habitat 

generalization that skates occur on soft sediments and are documented bycatch mostly in 

trawl fisheries (Martin and Zorzi 1993, Stevens et al. 2000, Packer et al. 2003a-g, CDFG 

2009).   

 The depth range collected in this study reflected the previously observed depth 

trends (Ebert 2003).  A depth range extension from 732 m (Ebert 2003) to 982.4 m is 

quite a large extension, but is likely a rare case since 77.1% of the collections sites were 

between 70 and 150 m depth and only five collections below 300 m.  The temperature 

range was representative of the depth range as would be expected since depth and 

temperature are correlated.   
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 Gear selectivity is well documented and utilized in fishing practices to increase 

intentional catch and reduce bycatch.  Not surprisingly, trawl and demersal longline gear 

exhibited selectivity in the size distribution of R. stellulata (p < 0.001) and substrate type 

sampled.  Trawl gear successfully collected the entire size range, 151 to 761 mm TL 

whereas longline gear only collected individuals greater than 400 mm TL.  Trawl gear 

was the dominant sampling method (n = 77) and sampled all three substrate types, mostly 

hard outcrop (44.2%) and soft sediment (36.4%) with only 19.5% sampled on mixed 

substrate.  Longline gear was used less (n = 28) and was more selective sampling most 

often on hard outcrop and never on mixed substrate.  The collection surveys reflected the 

gear type selectivity because the NWFSC-FRAM surveys used exclusively trawl gear and 

the SWFSC-SCL surveys used mostly longline gear with only three sites collected with 

trawl gear.  Large R. stellulata were most often caught using longline gear on hard 

outcrop, whereas small R. stellulata were most often caught using trawl gear on any 

substrate type.   

 Habitat factors are often inter-related where significant relationships can be 

described through understood trends such as increasing depth and decreasing 

temperature.  For R. stellulata, substrate type differed significantly with temperature (p < 

0.001) with cooler temperatures recorded from soft sediment sites.  Because both 

substrate type and temperature are correlated with latitude and longitude the difference in 

temperature between substrate types is likely due to the spatial trends where temperatures 

decrease with increasing latitude and soft sediment occurs more often in higher latitudes.  

Another example is that substrate type also differed significantly with TL (p < 0.001) 
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with mixed substrate sites having smaller sizes than either other substrate type.  This 

result is likely an artifact of gear type because trawl gear effectively sampled small R. 

stellulata on all substrates and longline gear failed to sample small R. stellulata and never 

sampled mixed substrate. Finally, longitude was correlated with TL (p = 0.040).  This is 

likely because there were fewer samples at western latitudes that could not adequately 

represent the full size range.  The adjusted r2 is very small (adj. r2 = 0.012) indicating that 

this correlation describes very little of the variation. 

 A potentially biologically significant result was that both the relationships 

between substrate types and latitude and substrate types and longitude were significant (p 

< 0.001).  Raja stellulata was collected on soft sediment more often at higher latitudes 

and western longitudes (Fig. 4).  This can stem from two causes: that the substrate type of 

the U.S. West coast differs with latitude and longitude or that R. stellulata exhibits a shift 

in habitat use from mostly hard outcrop and mixed substrates to soft sediments at higher 

latitudes and western longitudes.  Soft sediment was sampled more often than hard 

outcrop at higher latitudes and western longitudes, so this may be an artifact of sampling 

methods.  The application of a more uniform sampling design using both longline and 

trawl throughout R. stellulata’s geographic range would resolve issues potentially related 

to gear type. 

 The central California skate assemblage, B. kincaidii, B. trachura, R. binoculata, 

R. inornata, R. rhina, and R. stellulata, exhibits an inter-species trend of increasing 

longevity with increasing depth (Fig. 5).  There are distinct taxonomic and environmental 

differences between Raja and Bathyraja; they belong to different families (Rajidae and 
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Arynchobatidae) and inhabit different depth and temperature habitats.  The same inter-

species trend of increased longevity with increased habitat depth was observed in the 

Alaskan skate assemblage among bathyrajid species (Winton 2011).  The trend is likely 

driven by the effects of temperature, which is directly related to depth, on an organism’s 

metabolism.  Beverton and Holt (1959) determined that the growth rate of a 

poikiolothermic fish decreased with decreasing temperature.  Therefore, slower growth 

and increased longevity would be expected in cooler temperatures or deeper depths.  This 

trend may be helpful in assessing life history characteristics of species that have little data 

available for them and have yet to be collected in large enough numbers for a full life 

history study. 
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The objectives of this study were to describe the life history characteristics of the 

Starry Skate, Raja stellulata.  Overall, R. stellulata is a medium-sized skate with 

moderate longevity and moderate growth.  It matures at a large size and relatively late in 

life with both sexes maturing about the same sizes and ages.  It is primarily found on hard 

outcrops between 70 and 150 m depth, secondarily on soft sediment, and smaller 

individuals are most frequently found on mixed substrate.  Raja stellulata is not a large 

percentage of California trawl fisheries bycatch, however, as recently as 2008, 99% of 

skate landings were marketed as “unspecified skate” (CDFG 2009). 

 The age and growth parameters of R. stellulata were assessed using two 

preparation techniques: gross sectioning and histological sectioning.  The histological 

technique, despite the additional equipment, labor and expenses, unmistakably enhanced 

the banding pattern within the centra where up to seven additional band pairs were 

counted.  The enhancement capabilities of the histological technique were invaluable in 

determining the age of other species of skate, especially bathyrajids whose vertebrae are 

notoriously poorly calcified (Natanson et al. 2007, Ainsley 2009, Maurer 2009, Winton 

2011).  This technique is strongly recommended for future skate age and growth studies. 

 A large and imperative accomplishment for any chondrichthyan life history study 

is to validate or verify band pair deposition periodicity.  This study was able to verify 

annual deposition of one band pair for R. stellulata using both CEA and MIR on gross 

sections.  This finding lends support to other studies of skates that assume an annual band 

pair deposition, but could not validate it.  The difference in edge analyses between gross 

and histological sections in this study is likely due to the much reduced, almost half, 
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sample size processed with the histological technique.  The mechanisms behind band 

deposition in chondrichthyans are still not well understood, therefore, observed 

variability in edge type or MIR could be a result of reader error or unknown 

environmental or internal processes affecting the organism.  More research into band 

deposition processes is required because conflicting species-specific patterns have been 

observed (Waring 1984, Natanson et al. 1993, Officer et al. 1997). 

 The size and age at maturity occurred at almost 80% of the maximum TL and 

60% of the maximum estimated age.  This result conforms to the generalization that 

elasmobranchs mature late in life and at relatively large sizes (Holden 1973, Stevens et al. 

2000).  There also were no significant differences in maturation between sexes.  This 

supports the hypothesis that skates < 150 cm TL tend not to exhibit sexual dimorphism in 

sizes (Ebert et al. 2008a, b).   

 The reproductive cycle of R. stellulata is year-round with no significant seasonal 

peaks.  However, all reproductive indicators examined (GSI, maximum ovum diameter, 

and number of mature ova) were somewhat elevated between early spring and summer.  

More samples are required to determine if an increase in reproductive activity occurs 

from spring to summer, or if it reflects individual variability.  Egg cases were present in 

April, July and September, which supports a year-round reproductive cycle with no 

seasonal peaks. 

 Raja stellulata is typical of both congeners in the eastern North Pacific and rajid 

skates worldwide of similar TL.  Raja inornata attains the same approximate maximum 

TL, (~760 mm), and a similar maximum age, 13 years versus 15 years of R. stellulata and 
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has similar age at maturity of 7-8 years (Wade Smith and Dave Ebert, unpubl. data).  The 

other two rajid congeners, R. binoculata and R. rhina attain larger sizes, but slightly 

younger ages when compared with R. stellulata (Zeiner and Wolf 1993).  Rajid species of 

similar maximum TLs in other locations like the Gulf of Mexico, R. texana, the Irish Sea, 

R. montagui, the western North Atlantic, A. radiata, L. erinacea, M. senta, and northeast 

Taiwan, Okamejei acutspina have similar maximum ages ranging from 7 to 15 years and 

age at maturities ranging from 4 to 10 years (Gallagher et al. 2004, Natanson et al. 2007, 

Sulikowski et al. 2005, Sulikowski et al. 2007, McPhie and Campana 2009, Sulikowski et 

al. 2009, Joung et al. 2011).  These species comparisons indicate that skates of similar 

maximum TL and similar phylogenetic position have similar life history characteristics. 

 In contrast to the similarities among rajid skates are the bathyrajid skates, a group 

with similar morphology and habits, but different life history characteristics.  Two 

common bathyrajid skates, B. kincaidii, and B. trachura, both attain similar maximum 

TLs as R. stellulata (~630 to 940 mm TL), but attain much older ages of 18 years for B. 

kincaidii (Perez et al. 2011) and 20 years for B. trachura in central California waters 

(Davis et al. 2007).  There is a distinct taxonomic difference between the two families, 

but the two groups also inhabit different depth and temperature habitats. 

Raja stellulata is likely not a large component of fisheries bycatch due to the 

habitat it uses.  Its occurrence on hard outcrop is a beneficial trait because trawl gear is 

mostly excluded from this habitat, therefore, reducing fishing pressure on R. stellulata.  

The lack of demersal longline fishing in rocky areas in California also has aided the 

incidental protection of this species.  The moderate longevity and growth and the year-



106 
 

round reproduction lends this species to be more resilient to fishing pressure than other 

longer-lived, slower growing species.  However, demographic analyses using the life 

history parameters determined in this study must be conducted before the vulnerability of 

R. stellulata can be assessed accurately. 

Age and depth are correlated among central California skates in that longevity 

increases with depth.  This is potentially a useful concept to apply to skates with 

unknown life history characters.  The trend should be applied to other skate assemblages 

worldwide to determine its validity.  The same correlation was determined for Alaskan 

bathyrajid species (Winton 2011), and likely is a trend that could be applied worldwide. 
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