
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2012

Knowledge Engineering in Search Engines
Yun-Chieh Lin
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Lin, Yun-Chieh, "Knowledge Engineering in Search Engines" (2012). Master's Projects. 213.
DOI: https://doi.org/10.31979/etd.55rf-ezsx
https://scholarworks.sjsu.edu/etd_projects/213

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70408176?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F213&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F213&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F213&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F213&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F213&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/213?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F213&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

 1

Knowledge Engineering in Search Engines

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment
of Requirements for the Degree

Master of Science

by
Yun-Chieh Lin

 2

Fall 2011

Copyright © 2011

Yun-Chieh Lin

All Rights Reserved

 3

ABSTRACT

 With large amounts of information being exchanged on the Internet, search

engines have become the most popular tools for helping users to search and filter this

information. However, keyword-based search engines sometimes obtain information,

which does not meet user’ needs. Some of them are even irrelevant to what the user

queries. When the users get query results, they have to read and organize them by

themselves. It is not easy for users to handle information when a search engine returns

several million results. This project uses a granular computing approach to find

knowledge structures of a search engine. The project focuses on knowledge engineering

components of a search engine. Based on the earlier work of Dr. Lin and his former

student [1], it represents concepts in the Web by simplicial complexes. We found that to

represent simplicial complexes adequately, we only need the maximal simplexes.

Therefore, this project focuses on building maximal simplexes. Since it is too costly to

analyze all Web pages or documents, the project uses the sampling method to get

sampling documents. The project constructs simplexes of documents and uses the

simplexes to find maximal simplexes. These maximal simplexes are regarded as

primitive concepts that can represent Web pages or documents. The maximal simplexes

can be used to build an index of a search engine in the future.

 4

Table of Contents

1.0 Introduction 1
2.0 Theory 3
 2.1 Information Retrieval 3
 2.2 Text Processing Technology 4
 2.2.1 Tokenization 4
 2.2.2 Keywords Extraction 4

2.3 Granular Computing 6
 2.3.1 Structures of Granular Computing Model 7
 2.3.2 Simplicial Complex 7

 2.3.3 Knowledge Complex 9
 2.3.4 Primitive Concept 9
 2.3.5 Simplex Intersection 11

2.4 Sampling 13
 2.4.1 Sampling Method 13

 2.4.2 Document Sampling 14
3.0 System 16
 3.1 System Architecture 16
 3.2 Term Extraction 18
 3.3 Keyword Computing 18
 3.4 Keyword Sequence 20
 3.4.1 Pair-Keyword Sequence 21
 3.4.2 Three-Keyword Sequence 22
 3.4.2.1 Three-Keyword Sequence Computing 24
 3.4.2.2 Primitive Pair-Keyword Concept 26
 3.4.3 Four-Keyword Sequence 27
 3.4.3.1 Four-Keyword Sequence Computing 28
 3.4.3.2 Primitive Three-Keyword Concept 29

3.4.4 Five-Keyword Sequence 29
 3.4.4.1 Five-Keyword Sequence Computing 29
 3.4.4.2 Primitive Four-Keyword Concept 30

3.4.5 N-Keyword Sequence 31
 3.5 Knowledge Base 31

3.6 Document Analysis 33

4.0 Experimental Result 35
5.0 Conclusion 40
References 42

 5

List of Figures

Figure 1. Example of four geometric shapes…………...……………………………..…8
Figure 2. An example of a simplicial complex ..9
Figure 3. Examples of an intersection of two simplexes. ..12
Figure 4. Flowchart of system Architecture. ...17
Figure 5. Flowchart of keyword processing. ...19
Figure 6. Pair-keyword sequence flowchart. ...22
Figure 7. Flowchart of computing three-keyword sequence ...24
Figure 8. Flowchart of four-keyword sequence computing. ..27
Figure 9. Screenshot of user input. ..36
Figure 10. Content of the text file……………………………………………………… 37
Figure 11. Keywords of partial content of the text file. ...37
Figure 12. Pair-keyword sequences of partial content of the text file38
Figure 13. Three-keyword sequences of partial content of the text file.38
Figure 14. Four-keyword sequences of partial content of the text file…………………..39

 6

1.0 INTRODUCTION

The Internet has grown so fast, and it feels as if it contains almost everything. If

people want to travel, they search online to find the most recommended place. If people

want to research a field of study, they can get a lot of information available on the

internet from all over the world. People are able to search almost any information from

the Internet. Since the information is available at one’s fingertips and searching

information on the internet is a lot more convenience than it used to be, this introduces an

issue of information overload. In addition, there is another issue of getting the right

information that people are looking for since the specific information can be buried

amongst irrelevant information.

Search engine tools help users to filter and extract the desired information. They

can provide Web pages or documents that are relevant to user queries in a fraction of a

second. Although the results have been filtered, some of them still do not match what

users are looking for. The problem is that machines cannot understand the meaning

implied in content. These keyword-based search engines return results that match

keywords of user inputs instead of latent semantics. This causes poor efficiency in

keyword searches.

 Each document consists of terms or tokens. A high-frequency token in a

document is called a keyword and a high-frequency co-occurring set of keywords is

called a keyword set. The keywords and keyword sets represent concepts in

documents. These concepts can form a simplicial complex of concepts. They can be used

as an index of a knowledge-based search engine.

 7

This project uses a granular computing approach to analyze documents and Web

pages. The purpose is to find primitive concepts. Granular Computing is an emerging

technology. It is a subset of granular mathematics and makes use of granularity in

problem solving. A simplicial complex is the second granular computing model. This

model can visualize text processing in a geometric way. In text processing, a high

frequency keyword sequence is regarded as an ordered simplex.

 8

2.0 THEORY

2.1 Information Retrieval

Information retrieval has two processes, storage, and retrieval. In the overall

process, one first collects the vast and disordered information on the Internet or elsewhere.

This is the storage phrase. Then one organizes and classifies it in a certain way to make

the information ordered and systematic. This ordered data can then be used to build a

database. Retrieval is the process that utilizes retrieval systems or tools

to search information that can be potential queries. In the information retrieval field,

there are three types of techniques, text retrieval, data retrieval, and knowledge

retrieval. The following briefly describes the three types:

1. Text Retrieval: In this system, one parses whole statements

and directly compares word by word.

Advantage: High recall

Disadvantages: Easily misleading semantics, low precision, and non-semantic

2. Data Retrieval: In this system, one has a structured data store and specific schema

query.

Advantage: High-Speed

Disadvantages: Low semantics

 9

3. Knowledge Retrieval: In this system, one returns information based

on knowledge matches.

 Advantage: High recall and high precision

 Disadvantage: The constructive process is more complicated

Knowledge retrieval is better than the others are for information retrieval since it

has high recall and high precision. This project uses new algorithms to build a

knowledge base for this information retrieval purpose.

2.2 TEXT PROCESSING TECHNOLOGY

2.2.1 Tokenization Process

In order to analyze each document to get its main idea, the document has to be

converted to a list of terms. Tokenization is used to extract words from documents and

gets rid of spaces and punctuations such as period, commas, or semicolons. The reason is

that those symbols are irrelevant since a document turns into a set of terms instead of

sentences.

2.2.2 Keywords Extraction

Term Frequency – Inverse Document Frequency, TFIDF, is an often-used

statistical method in the vector space model. The term “Frequency” means the total

number of times a term appears in a document. Document Frequency means the total

 10

number of times a term appears in all documents. The idea is to use term frequency

to weigh a keyword in a document. If the frequency is higher than for other keywords,

the term could represent more important concepts in the document. However, some

terms have high term frequency but may not be relevant. Those terms, such as the

subject or a conjunction are too common to represent a concept. Although the terms have

high frequency, they do not make documents distinguishable. Therefore, if a term has

high term frequency and low document frequency, it is more representative of the

document. The following is the format of TFIDF:

1. Term Frequency (TF)

tf ij = Nj
Nall

 Nj: total number of term j in document i

 Nall: total number of terms in document I

2. Inverse Document Frequency (IDF)

 idf j = log2
!
!"#

 d: total number of documents

 df j: total number of documents that has term j

3. TFIDF

Wij = TF × IDF = Nj
Nall

 log2
!
!"#

 Wij: weight of term j in document i

 11

After computing weights of all terms in every document, each document now has

TF-IDF values of terms. These values are used to extract keywords.

2.3 Granular Computing

 Granular Computing is an emerging technology and computing paradigm of

information processing. It is a subset of granular mathematics and makes use of

granularity in problem solving. Granules are the ingredients of granular computing; they

are subset, clusters, and classes of the universe. In our daily lives, many things are

granulated into sub-things. For instance, the human body is granulated into parts such as

hand, leg, and head. A faculty in a computer department is a granule. Each faculty

member may play different roles.

When people process massive and complicated information, they divide the

information into small simple parts. Each part is regarded as a granule. In fact, granules

are parts that are formed by individuals such as a point, an element through proximity

relation, a similarity relation, or a functional relation. This information processing is

called information granulation.

Granular computing turns a complicated problem into several simpler

problems. It helps people get better analysis and problem solving. Granular computing

has been applied to many other fields, such as cluster analysis, information retrieval,

databases, machine learning, and concept formation.

 12

The next few sections will introduce structures of granular computing, (e.g.

simplicial complex model, keyword simplicial complex model, and the primitive

concept). The last section illustrates the intersection of simplexes.

2.3.1 Structures of a Granular Computing Model

A granular computing model has four structures. These structures are granular

structure, quotient structure, knowledge structure, and linguistic structure.

1. Granular Structure (GrS): It is the collection of all granules. In the
case of partition, GrS is the collection of the equivalence classes.
2. Quotient Structure (QS): If each granule is abstracted into a point and
the intersections of granules are abstract to the interactions of points,
then such a collection of points is called the quotient structure. In the
case of partition, the quotient structure is a classical set, called quotient

set . The process of abstracting granular structure into quotient structure is
called information hiding.

3. Knowledge Structure: By giving each granule (point) in the quotient
structure a meaningful symbol, the named quotient structure is
called knowledge structure . The knowledge structure provides an

intuitive view of the quotient structure; the symbols and interaction
among symbols are in sync with the granules (points) and interactions
among granules(points) . In the case of n partitions (equivalence
relations), the knowledge structure can be arranged into a n-column
relational table .

4. Linguistic structure: By assigning each granule in the granular
structure a word that reflects its meaning . The interactions among these

words are reflected implicitly in precisiated natural language. (in
knowledge structure, the interactions among symbols are explicitly
reflected from the quotient structure) . The linguistic structure is the
domain of computing with words.
(Lin, Hsu, 2008)

2.3.2 Simplicial Complex

 13

A simplicial complex is the second granular computing model. This model can be

interpreted in a geometric way. By using the Cartesian product of n sets, elements can be

addressed in an n-dimensional Euclidean space. This is used to denote n-simplex. A

simplex that contains (n+1) vertices is called n-simplex.

For instance, if n = 0, a 0-simplex is formed by a vertex. If n = 1, a 1-simplex is

formed by two vertices. If n=2, a 2-simplex is formed by three vertices. If n=3, a 3-

simplex is formed by four vertices. In other words, an n-simplex can be constructed

when an (n-1)-simplex connects to a new vertex. An m-subset of n-simplex is called an

m-face. Take a 3-simplex for example; it has four 0-faces, six 1-faces, four 2-faces, and

one 3-face. Figure 1 shows the geometric shapes of these four simplexes.

 Figure 1. Example of four geometric shapes

 14

A combination of simplexes can form a simplicial complex. A simplicial

complex consists of vertices and simplexes. If a simplex is called a maximal simplex, it

means that the simplex is not a face of other simplexes. In a simplicial complex, if a k-

simplex is the maximal simplex in the complex, the complex is called a k-complex.

Figure 2 is an example of a hyper-graph of the simplicial complex. This

simplicial complex contains eleven vertices and the highest dimension of the simplex is

three. It is a 3-complex. In this project, the main concern is to find maximal simplexes

in complexes. The reason is that these maximal simplexes are applied to obtain primitive

concepts of a set of documents.

Maximal simplexes in Figure 2:

1. Two 3-simplex, (a,b,c,d) and (e,g,h,f)

 2. Five 2-simplex, (b,c,k), (c,j,k), (j,k,i), (j,i,f) , and (i,f,g)

 Figure 2. An example of a simplicial complex

 15

2.3.3 Knowledge Complex

 According to the last section, a simplicial complex model is applied to linear text

in this project. Vertices are keywords and edges are distances between two

vertices. However, the main different between a simplicial complex and a knowledge

complex is that a simplicial complex has no vertex order. In a text file, term order is

important. Different orderings of the terms may present different concepts or no

meaning. Therefore, when two keyword sets have exactly the same keywords but in

different order, they are considered two simplexes.

2.3.4 Primitive Concept

 A 0-simplex as a keyword might contain different concepts. If a term combines

to other terms, it would present clearer concepts. For example, “Network” might be

present in many fields. “Traffic, Network” or “Neural, Network” are the combinations of

a pair of keywords. The 2-simplexes such as “Biological, Neural, Network” or “Artificial,

Neural, Network” denote further semantics.

 A set of given documents may contain a set of concepts. Each concept consists of

a connected component of the simplex. Humans use articles to present their ideas or

thoughts. The idea consists of many concepts. Some of them consist of primitive

concepts. A primitive concept is regarded as a maximal simplex with the highest

dimension. Faces of a primitive concept are called sub-concepts. The maximal simplex

is not a part of other simplexes in the complex. There are many concepts in a

 16

document. This project proposes to find primitive concepts of a set of documents and

uses them to form a knowledge base.

2.3.5 Simplex Intersection

 As previous sections mentioned, primitive concepts are also called maximal

simplexes. The characteristic of a maximal simplex is that it is not any other simplex's

face in the simplicial complex. A simplicial complex consists of simplexes. Each of

them is a maximal simplex.

 This section introduces the relation between two maximal simplexes. This project

considers the intersection between two simplexes to be the relation between two

simplexes. The intersection could be a 1-simplex, 2-simplexes.... The intersection is

formed when two keyword sequences are shared with a keyword sequence. For example,

a keyword sequence is a simplex, and keyword components of a simplex are regarded as

vertices. Figure 7 shows two examples of the intersection of two simplexes.

The following are the steps to find the intersection of every two simplexes.

 Step 1: Get all keywords and keyword sequences of the knowledge database from

the longest sequences to single keywords.

 Step 2: Compare every two of them to find the common keyword components. If

 they have common keywords, these keywords are the intersection.

 17

Figure 3. Examples of an intersection of two simplexes (A) 3-simplex and 2simplex
(B) 2-simplex and 2-simplex

Figure 3 (A): there is a 3-simplex (V0, V1, V2, V3) and a 2-simplex (V1, V3, V4). These

 two simplexes have a common 1-simplex (V1,V3) .

Figure 3 (B): there is a 2-simplex (V0, V1, V2) and a 2-simplex (V0, V2, V3). These

 two simplexes have a common 1-simplex (V0,V2) .

2.4 SAMPLING

 In social science research, usually there is not enough time to collect the data of a

whole population. To do this is to select samples, which are parts of a population,

through a sampling method. These property samples can refer to the population property

by using inferential statistics. They have the same characteristics as the population. This

sampling technique is used to handle large volumes of data. Even if the number of the

population cannot be estimated, it is still possible to refer to the parameters of the

population in a fixed quantity range.

 18

2.4.1 Sampling Method

 The sampling method has two classes. The first one is probability sampling and

the second is non-probability sampling. In probability sampling, every individual of the

population has a certain probability to be selected to research samples. In non-probability

sampling, the relation of probability between samples and the population is

unknown. There are four commonly used probability sampling methods, simple random

sampling, systematic sampling, stratified sampling, and cluster sampling.

The following illustrates these methods of probability sampling.

1. Simple random sampling, SRS: Every individual of the population has the same

probability to be selected to samples. This method is simple and fair and can

use statistical theory directly to refer and estimate. To do random sampling,

first

we need to obtain a sampling frame of the population. Second, a random

generator uses the list to generate some random numbers. Each of these

random numbers has corresponding individuals. The corresponding individuals

are regarded as samples.

2. Systematic sampling: It is a simplified random method. The most common

way is to select samples according to a fixed interval from a sampling frame

of the population. For example, the total population is 500 and the distance of

intervals is 10. The method has to choose a sample from every interval. First,

 19

a random number from 1 to 10 is generated in an interval. If the number is 3, it

is the first sample. To compute the rest of the samples, the number adds 10

every time. The samples should be 3, 13, 23, 33, 43, 53… untill the

last one.

3. Stratified sampling: this method is more accurate than SRS. According to

some related conditions, individuals of the population are separated into

different strata. Certain individuals can be selected from these separating

strata. These individuals from the population are samples.

4. Cluster sampling: According to some characteristic of the parent

population, individuals are separated into different clusters. The method

randomly selects some of these clusters and uses they to select samples.

2.4.2 Document Sampling

 This project is to design a knowledge base system. Selecting a collection of

documents becomes important. Those documents should be randomly selected from Web

pages or library resources. If documents belong to some specific topics, the knowledge

base would not be useful since it only contains primitive related concepts.

 A set of documents that are selected for analysis should contain more

topics. However, usually there is too much information. If we want to build a

knowledge base for a search engine, it is not feasible to go through all of the available

documents. This type of data processing is usually too hardware intensive and not very

efficient. In addition, collecting all of the available information from the Internet is

 20

currently impossible.

 The document sampling method solves the problem and helps to reduce

computing loads. It is a way of dealing with massive number of Web pages or

documents. Use a sampling method to select Web pages or documents; these samples

represent general knowledge. If the number of samples is large enough and chosen

correctly, those document samples can obtain most fields and provide full concepts.

 21

3.0 Design

 This system is used to capture maximal simplexes of each document and forms a

knowledge base. This section introduces the system architecture and discusses each step

in detail.

3.1 System Architecture

 This system first analyzes each document and uses tokenization to extract

terms. After parsing the document into terms, it removes terms that are stop words. The

system then computes the weight of the rest of the terms to get document

keywords. These keywords can be formed pair-keyword sets by computing their

distances and document frequency. Using the algorithm, two paired keyword sets can be

combined to a three-keyword set, two three-keyword sets can be combined to a four-

keyword sets, and two four-keyword set can be combined to a five-keyword set. Finally,

those keyword sets are used to eliminate partial concepts and find maximal simplexes of

documents. The following is the flowchart of system architecture:

 22

Figure 4. Flowchart of system Architecture

 23

3.2 Term Extraction

 To analyze documents, each document needs to be considered a list of ordered

terms or tokens. Every character of a document is read during tokenization. If the

character is a letter from an alphabet, the system keeps it and goes to the next

character. This process will not stop until the next character is non-alphabetic. Once it

stops, the previous alphabetic characters are regarded as a token and they go into a token

list.

Second, if a line of the document is a blank line or the first character is a

paragraph mark, all terms between these lines are selected as a group. They are marked

the same paragraph number. These paragraph numbers are regarded as distances between

terms that are also used to determine a relationship between two terms. Each document

has a table, it contains three attributes, the first one is a Document Identifier, the second

is a Token, and the last one is a Paragraph Number. They are used for computing

keywords and keyword sets.

3.3 Keyword Computing

 Keywords are meaningful words. In a linguistics aspect, keywords can describe

an article’s main subject. In the information retrieval field, keywords are interpreted

terms that can represent an article. Every article has its own keywords to define its

subject. An article can be distinguished from others by using keywords.

 Stop words are words that do not contain important meanings. They are usually

common words or function words such as “are”, “on”, “is”, or “the”. After the

 24

tokenization process, every document contains some stop words. These terms should be

removed since stop words do not provide important meaning. Figure 2 shows the

flowchart of keyword processing.

Figure 5. Flowchart of keyword processing

To extract keywords from each document, every document needs to go through

this procedure.

Step 1: To calculate weights of terms, use the TFIDF method denoted in section

2.2.2.

Step 2: Decide the keywords according to a threshold that is the default value by

 25

the system. If the weight of a term is greater than the threshold, the

system selects the term for the keyword database. Otherwise, it defines

the term as a stop word.

These terms are inserted into different tables according to corresponding

documents. The table contains four attributes: a document identifier, a token, a position,

and a paragraph number of tokens. They are used for the next step to compute keyword

sets.

The table of stop words contains terms that are all less than the threshold. These

terms are regarded as a list of stop words in this project. They are used to extract

keywords from a new document. This will be illustrated in section 3.6.

3.4 Keyword Sequence Computing

Keywords are retrieved from a database to form a keyword set, which can consist

of keywords from the same paragraph. In this project, a keyword set is ordered. It is also

called a keyword sequence. This section will describe how to form paired keyword

sequences, three-keyword sequences, four-keyword sequences, and five-keyword

sequences in detail. The section also describes how to use keyword sequences of high-

dimension to eliminate sub-keyword sequences.

3.4.1 Pair-Keyword Sequence

 26

From each table of document keywords, every keyword has its own position and

paragraph number. These two attributes are the key to assembling pair-keyword

sequences. The positions of keywords are used for ordering keyword sequences. As the

previous section mentioned, a pair-keyword sequence is regarded as a 1-simplex in a

complex. The system defines an edge as a paragraph length. In other words, two

keywords are only considered combining only if they are in the same paragraph. Figure 5

is the process of forming pair-keyword sequences.

Figure 6. Flowchart of the process of pair-keyword sequencing

 27

The following are steps in the computing process. These steps illustrate the

process of computing pair-keyword sequences in detail:

Step 1: Order keywords according to their positions and group them by

paragraph number.

Step 2: According to these groups, keywords in the same paragraph are combined

with each other by their positions. For example, “social”, “structure”,

“network” can be combined to (“social”, “structure”), (“social”,

“network”), and (“structure”, “network”). Combinations of two

keywords are called paired keyword sequence candidates.

Step 3: Compute document frequency. The pair-keyword sequence needs to be

checked in all of the documents. It only counts when the two keywords

are in the same paragraph of the document. If these two keywords appear

in the same document but in different paragraphs, they do not count as a

pair-keyword sequence. The DF value is used to decide whether the

sequence meets a threshold.

Step 4: If the value is greater than the threshold, this sequence is selected for the

table of pair-keyword sequences. If not, the system removes the

paired keyword sequence candidate.

A table of pair-keyword sequences contains three attributes, they are the

document identify, pair-keyword1, and pair-keyword2. These tables provide information

 28

for computing three-keyword sequences. Pair-keyword sequences that are in the tables

present some concepts. These concepts are used to form three-keyword sequences. The

process will be described in the next section.

3.4.2 Three-Keyword Sequence

 To form three-keyword sequences of a document, the system checks the

document’s paired keyword sequences but not keywords. The reason is that existent

keywords are subsets of paired keyword sequences. These keywords are already

examined during computing paired keyword sequence. In other words, a combination of

(n-1)-keyword sequence can form an n-keyword sequence.

3.4.2.1 Three-keyword Sequence Computing

 It is more complicated to form a three-keyword sequence than a paired keyword

sequence. To generate a real three-keyword sequence, many conditions need to be

checked. After generating three-keyword sequence candidates, these candidates then go

through the processes to generate real three-keyword sequences. (See the flowchart in

Figure 5):

 29

Figure 7. Flowchart for computing three-keyword sequences

The following steps illustrate these procedures in detail:

Step 1: Obtain a list of paired keyword sequences and check every two of these

paired keyword sequences. If the combination of the two paired

keyword sequences have one matching keyword element, this ordered

combination is considered a temporary three-keyword

sequence. Otherwise, the system ignores any combination that has more

 30

than three elements

Step 2: The paragraph number of each keyword in a temporary three-keyword

sequence needs to be examined. This process is to check if the edges

between the temporary three-keyword sequences are outside the distance

restriction. If the paragraph is the same, the system keeps the three-

keyword sequence in the list. Otherwise, it ignores the sequence and goes

back to the procedure of combining paired keyword sequences.

Step 3: A temporary three-keyword sequence is required

to be disassembled into three 2-faces. All three 2-faces are contained in

paired keyword sequences. This temporary three-keyword sequence is

considered in the next step. Three 1-simplexes are required to form one 2-

simplex. The temporary three-keyword sequence is formed from two

paired keyword sequences does not meet the requirement of 2-simplex. It

needs to be examined in this step. If the 2-faces are all contained in the

paired keyword sequences, this temporary three-keyword sequence is

regarded as a three-keyword sequence candidate.

Step 4: Compute the document frequency of the three-keyword sequences

candidates of all of the documents. The condition is the same as the

previous computing process. All three keywords should be in the same

paragraph of one document.

Step 5: If the DF value is greater than the threshold, this three-keyword sequence

candidate is inserted into a corresponding table of three-keyword

 31

sequences.

3.4.2.2 Primitive Paired Keyword Concept

 The keyword sequences in tables are regarded as concepts. These concepts

include primitive concepts and sub-concepts. The system eliminates those sub-concepts

and keeps primitive concepts. Every time a three-keyword sequence is generated from a

document, two-faces of that three-keyword sequence are added to a sub-concept list.

After the process of computing three-keyword sequences, the system uses this

sub-concept list to remove tuples from the corresponding table of paired keyword

sequences. The rest of the paired keyword sequences are maximal simplexes since each

of these sequences is not a subset of any three-keyword sequences. These paired

keyword sequences are also called primitive concepts.

3.4.3 Four-Keyword Sequence

 To form a four-keyword sequence, the mechanism is the same as computing

three-keyword sequences with some small changes. This section first illustrates the

process of computing four-keyword sequences. Then it describes how to use these four-

keyword sequences to define primitive three-keyword sequences.

3.4.3.1 Four-Keyword Sequence Computing

 Two three-keyword sequences can assemble to a four-keyword set. A four-

keyword set needs to be checked to form a four-keyword sequence. Here is the process

 32

to examine a keyword set. Figure 7 shows the process of computing four-keyword

sequences.

Figure 8. Flowchart of four-keyword sequence computing

The following are steps of the process:

Step 1: Combine two three-keyword sequences. In each table of three-keyword

sequences, the system assembles every two sequences and generates a

keyword set by their position ordered.

Step 2: Check components of the keyword set. If the number of its components

is four, this four-keyword set goes to the next step. Otherwise, the

step moves back to assemble another pair of three-keyword sequences.

 33

Step 3: Check the distances between the keywords of the four-keyword set. If

they are all in the same paragraph; the four-keyword set goes to the next

step. Otherwise, the step moves back to Step1.

Step 4: Disassemble the four-keyword set into four three-keyword components.

Step 5: Check the two components that are not used to assemble in Step 1. If the

components exist in the table of three-keyword sequences, the

four-keyword set moves to the next step. Otherwise, this four-keyword set

is disqualified.

Step 6: Compute the DF of the four-keyword set.

Step 7: Compare the DF value with the user input threshold. If the DF value is

greater than the threshold, this sequence is inserted into the table of four-

keyword sequences. Otherwise, move back to Step 1.

3.4.3.2 Primitive Three-Keyword Concept

After the process of computing four-keyword sequences, the next procedure is

removing sub-concepts from tables of three-keyword sequences. In the disassembling

step, every four-keyword sequence has disassembled into four three-keyword

sequences. These three-keyword sequences should be removed to leave primitive

concepts.

3.4.4 Five-Keyword Sequence

 34

 To generate a five-keyword sequence, the algorithm is almost the same as

computing four-keyword sequences. The reason to keep extending keywords is that the

system is trying to find all primitive concepts from a collection of documents. These

primitive concepts are close enough to represent an idea. Although sub-concepts also

provide some concepts, they are not close enough to represent the subject of the

document.

Most primitive concepts of five-keyword sequences have already narrowed down

the concepts to specific fields. On the other hand, if the system can use the algorithm to

find five-keyword sequences, this algorithm can also be applied to compute the n-

keyword sequence.

3.4.4.1 Five-Keyword Sequence Computing

When combining an n-keyword sequence, the system always selects a pair of (n-

1)-keyword sequences to be the elements. The reason is that (n-1)-keyword sequences

are currently maximal simplexes. Simplexes of lower dimension can also form five-

keyword sequences, which are subsets of maximal simplexes.

The following briefly describes steps of the computing process:

Step 1: Combine two four-keyword sequences. From each table of four-keyword

sequences, the system assembles every two sequences by their position

ordered.

Step 2: Check components of the keyword set. If the number of its components

 35

is five, then it goes to the next step. Otherwise, the step moves back to

assemble another pair of four-keyword sequences.

Step 3: Check the paragraph numbers of five keyword elements of the

five-keyword set. If the numbers are the same, then the set goes to the

next step. Otherwise, move back to Step1.

Step 4: Disassemble the five-keyword set into four four-keyword components.

Step 5: Check the three components that are not used to assemble in Step 1. If

they both exist in the table of three-keyword sequences; the system goes to

the next step. Otherwise, this four-keyword set is disqualified.

Step 6: Compute the DF of the five-keyword set.

Step 7: Compare the DF value with the user input threshold. If the value of

document

frequency is greater than the threshold, the sequence is inserted into the

 corresponding table.

3.4.4.2 Primitive Concept of Four-Keyword Sequence

After computing the procedure, the system uses the same algorithm in section

3.4.3.2 to find primitive four-keyword concepts. First, the system obtains a list of four-

keyword components of five-keyword sequences. Second, it removes all of them from

the corresponding four-keyword sequence tables.

3.4.5 N-Keyword Sequence

 36

 The longest keyword sequence that this project can compute is a seven-keyword

sequence. The algorithms of computing sequences and concepts are similar to section

3.4.3 and section 3.4.4. In other word, this algorithm can apply to N-keyword

sequences. The system will not begin the process of computing n-keyword sequences if

there is no (n-1)-keyword sequence.

3.5 Knowledge Base

 After term extraction, keyword computing, keyword sequence computing, and the

primitive concept process, this system can build a knowledge base according to these

primitive concepts. Keyword sequences of the knowledge base are a high frequency of

co-occurrences of keywords. These keyword sequences can represent latent semantics.

The knowledge database has seven tables. The table headings are Keyword,

Paired Keyword Sequence, Three-Keyword Sequence, Four-Keyword Sequence, Five-

Keyword Sequence, Six-Keyword Sequence, and Document Name.

The following shows attributes in each table:

1. Table Name: Keyword

Attributes: doc_id, keyword

2. Table Name: Paired Keyword Sequence

 Attribute: doc_id, keyword1, keyword2

3. Table Name: Three-Keyword Sequence

 Attribute: doc_id, keyword1, keyword2, keyword3

4. Table Name: Four-Keyword Sequence

 37

 Attribute: doc_id, keyword1, keyword2, keyword3, keyword4

5. Table Name: Five-Keyword Sequence

 Attribute: doc_id, keyword1, keyword2, keyword3, keyword4, keyword5

6. Table Name: Six-Keyword Sequence

 Attribute: doc_id, keyword1, keyword2, keyword3, keyword4, keyword5

 , keyword6

7. Table Name: Seven-Keyword Sequence

 Attribute: doc_id, keyword1, keyword2, keyword3, keyword4, keyword5

 , keyword6,keyword7

 The keyword attributes in these tables are position-ordered. This database can be

applyied to a search engine in the future. When users input a keyword set, it compares

the index tuples to get the results. A different order of keywords makes different latent

semantics. The most important thing is that a search engine uses this mechanism to

return the most closely related results that match user’ requirements.

3.6 Document Analysis

 After the system has built the knowledge base, it can be used to analyze the new

documents. Each new document does not need to go through the entire computing

process. The system uses the knowledge base and the table of stop words to analyze

these new documents. These are some of the advantages of this process. The first one is

that the new documents do not need to compute TFIDF. The computation is very time

 38

consuming for keywords. The second is that it also saves the time to compute DF for

keyword sequences. The normal way to compute document frequency is to go through

all documents to complete the computing. It would be inefficient when the number of

documents is large.

The following is the process of analyzing a document:

 Step 1: Use the term extraction method to convert document into terms.

 Step 2: Remove stop words from these terms to obtain keywords of each

document. The system compares terms with a list of stop words from the stop word

table. If the term matches the list, the system removes it. In this process, the system uses

the removing process instead of keyword computing. The reason is that it does not need

to compute TFIDF for keywords. Those stop words are low weights of the terms of

sampling documents. Removing these stop words from terms can extract keywords.

Step 3: Use a paired keyword sequence candidate to compare with paired

keyword sequences. First, the system orders the keywords according to their positions

and groups them by paragraph numbers. Second, according to these groups, keywords

are combined to each other by their position. Third, the system compares these paired

keyword sequence candidates to the existing paired keyword sequences, which are

generated from sampling documents. If the sequence matches, then insert it into the

corresponding table.

Step 4: Use a three-keyword sequence candidate to compare with the existing

three-keyword sequences. The way to form a three-keyword sequence candidate is to

combine two paired keyword sequences and then check the components.

 39

 Step 5: Use four-keyword sequence candidates to compare with existing four-

keyword sequences. To form a four-keyword sequence candidate first

combine two three-keyword sequences to a sequence candidate. Then

check the components of the keyword sequence.

Step 6: Use five-keyword sequence candidates to compare with existing five-

keyword sequences. The method to generate the sequence candidates is

the same as section 3.4.2.1.

 The different between the process of analyzing documents and analyzing samples

is that the system does not compute TFIDF for keywords and DF for keyword

sequences. Definitions of keywords and keyword sequences are based on the knowledge

database. This approach reduces the computing time since the system does not need to

go through all the documents every time.

4.0 Experimental Result

 This chapter illustrates the experimental result based on the system design

mentioned on chapter 3. Since the entire computing process is time consuming, we use

10,000 documents to build a knowledge database at the beginning. In this stage, the test

 40

result was used to examine the keywords and keyword sequences. Normally, function

words and stop words should have low TFIDF values and the keywords that can represent

concepts of a document should appear in the middle of the keyword list. If keyword

sequences appear in many documents, it means these keyword sequences contain some

latent semantics. Although the number of data sources might be small, the system still

can capture some concepts of the document set.

 After the first experiment, we made some changes. In the second experiment, we

chose 20000 documents for sampling. This allowed us to build a larger knowledge

database and our experimental equipment can still handle the computing load. The

following are the results of the system setting and computing procedures:

 When the system is launched, it requires the user to input some conditions. The

first one is the size of samples. From a collection of documents, users can choose how

many documents they want to sample. The system chooses a simple random sampling

method to obtain sampled documents. It randomly selects a document number and puts it

into a list. Every time the system selects a new number, it checks whether the number is

different from the previous numbers. If the system chose the same number, it needs to

select again until all 20000 document numbers are different. Figure 8 shows the

screenshot of user input.

 41

Figure 9. Screenshot of user input

 The total number of documents in this experiment is 20000. We chose results

from one of the documents as an example in this section. From this example, we can

observe the result of keywords and keyword sequences from a text file. Figure 9 is the

partial content of an original file. After the process of keyword computing, figure 10

shows the list of keywords of the file. Figure 11 to figure 13 are the result of computing

keyword sequences in the file.

Figure 10. Content of the text file

 42

Figure 11. Keywords of partial content of the text file

Figure 12. Paired keyword sequences of partial content of the text file

 43

Figure 13. Three-keyword sequences of partial content of the text file

Figure 14. Four-keyword sequences of partial content of the text file

 In this partial content, the maximal simplexes are 3-simplexes shown as

above. These figures show the simplexes of the document. They also show that the

longer sequence can present clearer semantics. Therefore, the algorithm of the system

captures the concepts of documents. In this case, as long as the document contains

maximal simplexes such as n-simplex, the system is able to find these simplexes by using

the algorithm.

 44

5.0 CONCLUSION

 To provide complete information to users, search engines must contain massive

amount of data corresponding to user queries. When a user makes a query, the search

engines often returns too many results. Users cannot get the desired information

immediately because the results are often unorganized. Although these results are

returned fast, users still have to check the results one by one to find out which ones match

what they are searching for.

The purpose of the project was to analyze Web pages and documents to obtain

knowledge components in them. These knowledge components represent the latent

semantics of the documents. If the concepts can be captured, documents can be clustered

into meaningful classes. This approach helps to organize Web pages and documents in

 45

search engines. It would also improve the quality of the returned results.

 This project proposes to find the maximal simplexes of documents. A 0-simplex

is regarded as a keyword and is not enough to identify a latent semantic in a

document. The reason is that a single keyword can have too many meanings. The way to

identify a document from others is to capture primitive concepts in the document. A

maximal simplex can represent a primitive concept. Each maximal simplex consists of

many simplexes of low-dimension. In this project, simplexes with low-dimension are

used to form maximal simplexes. These simplexes with low-dimension are not used to

build a knowledge base.

 The algorithms in this project were successful at discovering maximal simplexes

in a given set of documents. The maximal simplexes can be used to cluster a document

set. These clusters are classified by concepts. These maximal simplexes can also be used

to index a knowledge base in the future.

 46

REFERENCE

[1] Knowledge Based Search Engine: Granular Computing on Web, Tsau Young (T. Y.)
Lin, Jean-David Hsu, 2008.

[2] A Simplicial complex, A Hyper-graph, Structure in the Latent Semantic Space of
Document Clustering, T.Y. Lin, I Chiang, 2005.

[3] Granular Computing: Examples, Intuitions and Modeling, T.Y. Lin. In: the
Proceedings of 2005 IEEE International Conference on Granular Computing,” July 25-27,
2005.

[4] Concept Analysis and Web Clustering using Combinatorial Topology, T.Y. Lin. In:
Workshops Proceedings of the 6th IEEE International Conference on Data Mining, 2006.

[5] Granular Computing: Ancient Practices, Modern Theories and Future Directions, T.Y.
Lin, 2008.

[6] Some reflections on soft computing, granular computing and their roles in the
conception, design and utilization of information/ intelligent systems, Soft Computing,
Zadeh, L.A, 1998.

 47

[7] Term Weighting Approaches in Automatic Text Retrieval, G. Salton and C. Buckley,
1960.

[8] Granular Computing II: Infrastructure for AI-Engineering, T. Y. Lin. In: the
Proceedings of 2006 IEEE International Conference on Granular Computing, 2006.

[9] Extraction of knowledge from databases, Information Processing and Management, P.
Willett,1988.

[10] The Key Roles of Information Granulation and Fuzzy logic in Human Reasoning,
Zadeh,L. A, In: 1996 IEEE International Conference on Fuzzy Systems, New Orleans,
Louisiana, 1996

	San Jose State University
	SJSU ScholarWorks
	Spring 2012

	Knowledge Engineering in Search Engines
	Yun-Chieh Lin
	Recommended Citation

	Microsoft Word - cs298report - YUN-CHIEH01212012.docx

