
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2011

X10 vs Java: Concurrency Constructs and
Performance
Anh Trinh
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Trinh, Anh, "X10 vs Java: Concurrency Constructs and Performance" (2011). Master's Projects. 203.
DOI: https://doi.org/10.31979/etd.5mqq-5ks9
https://scholarworks.sjsu.edu/etd_projects/203

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F203&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F203&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F203&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F203&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F203&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/203?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F203&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

X10 vs Java:

Concurrency Constructs and Performance

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

Of the Requirement for the Degree

Master of Science

by
Anh Trinh

November 2011

ii

© 2011

Anh Trinh

ALL RIGHT RESERVED

iii

SAN JOSE STATE UNIVERSITY

The Undersigned Project Committee Approves the Project Titled

X10 VS JAVA: CONCURRENCY CONSTRUCTS AND PERFORMANCE

by

Anh Trinh

APPROVED FOR THE DEPARMENT OF COMPUTER SCIENCE

__

Dr. Robert Chun Department of Computer Science Date

__

Dr. Soon Tee Teoh Department of Computer Science Date

__

Mr. Peter Tran NASA Ames Research Center Date

iv

ABSTRACT

To avoid overheating the chip, chip designers have switched to multi-cores. While multi-

core CPUs reserve instruction-level parallelism features that help existing applications run as if

they were running under single core, applications do not reach speeds two or four times faster.

Instead of relying on compiler and hardware to figure out parallelism in source code, software

developers now must control parallelism explicitly in their programs. Many programming

languages and libraries, such as Java, C# .NET, and OpenMP, are trying to help programmers by

providing rich concurrency API. X10 is the new experimental language from IBM Research,

which has been under development since 2004 targeting multi-core programming ranging from

multi-cores single machine to cluster. This project examines the X10 parallel constructs,

compares its usability with the Java language, the OpenMP library, and then compares the

performance between X10 and Java language.

v

ACKNOWLEDGEMENT

I would like to thank Dr. Robert Chun for his patience and support throughout this

project. I would also like to thank Dr. Mark Stamp for stepping in as my adviser at the last

minute, and Dr. Soon Tee Teoh for accepting to be a committee member, and last but not least, I

thank Peter Tran for looking over my work and James Le for reviewing my writing.

vi

Table of Contents

1. Introduction .. 1

2. Parallel computing.. 2

2.1. What is parallel computing? .. 2

2.2. Parallel computing architecture ... 2

2.2.1. Macro architecture .. 2

2.2.2. Micro architecture ... 4

2.3. Parallel computing classification (Flynn’s taxonomy) .. 4

3. Parallelism with hardware solution .. 6

3.1. Pipelining (intra-instruction parallelism) .. 6

3.2. Multi-function units (inter-instruction parallelism) ... 7

3.3. VLIW (Very Long Instruction Word) ... 8

3.4. Hyper-Threading ... 8

3.5. Multi-core .. 9

4. Why have parallelisms in software?... 10

5. Problems in parallel computing ... 11

6. Java and OpenMP solutions ... 13

6.1. Java implementation .. 13

6.2. OpenMP Implementation .. 23

7. X10 Proposed Solution... 33

7.1. Concurrency constructs ... 34

7.2. X10 code examples .. 36

8. Performance ... 45

8.1. Quick sort .. 45

8.1.1. Java ... 47

8.1.2. X10 Java-backend ... 49

8.1.3. X10 C++-backend ... 51

8.1.4. Quick sort summary .. 53

8.2. Matrix multiplication ... 55

8.2.1. Java ... 56

vii

8.2.2. X10 Java-backend ... 58

8.2.3. X10 C++-backend ... 60

8.2.4. Matrix multiplication summary .. 62

8.3. Advanced Encryption Standard (AES) .. 63

8.3.1. Java ... 63

8.3.2. X10 Java-backend ... 65

8.3.3. X10 C++-backend ... 67

8.3.4. AES Summary .. 69

9. Conclusion and future work ... 70

10. References .. 72

Appendix A: Data... i

viii

List of Table and Figures

Figure 1: Examples of cluster computers [19] .. 2

Figure 2: Grid computing example [16] .. 3

Figure 3: Cloud services, applications, and access devices ... 4

Figure 4: Flynn's taxonomy ... 5

Figure 5: Execute non-pipelined instructions one-by-one in sequential fashion 6

Figure 6: Pipeline instruction is divided into 4 phases.. 7

Figure 7: Multiple pipelined instruction execution, each overlaps each other at different phases . 7

Figure 8: Traffic jam illustration (http://chake.chinatefl.com/images/szintersection.jpg) 11

Figure 9: Resource process deadlock diagram ... 11

Figure 10: Race condition of the banking problem, Depositor deposits to the Account while

Withdrawer withdraws from the account. Both perform their respective actions at the same time.

 ... 14

Figure 11: Output shows that race condition causes incorrect balance... 15

Figure 12: Modify Depositor object making it sleep for a random number between 0-10

milliseconds before performing deposit .. 15

Figure 13: Modify Withdrawer object making it sleep for a random number between 0-10

milliseconds before performing withdraw .. 15

Figure 14: Output after sleep statement added; the number of wrong results increases 16

Figure 15: Account object with locking mechanism; only thread with lock can perform action . 16

Figure 16: Java synchronized methods ... 17

Figure 17: Java implementation of sequence number generator ... 18

Figure 18: Output of the sequence generation program running 10 times 18

Figure 19: Sequence number generator uses AtomicInteger instead of Integer 19

Figure 20: Output of sequence number generator using AtomicInteger implementation. 19

Figure 21: Extended banking example, Transferrer A and B objects simultaneous transfer money

from his account to the other. If A, B happens to transfer at the same time, a deadlock occurs

due to locking resources .. 21

Figure 22: Hierarchical resource allocation – whichever account has a smaller hash value will be

acquired first .. 22

Figure 23: The fork/join programming model in OpenMP – the program starts as a single thread.

A team of threads will be forked at the parallel region and join back at the end. 23

Figure 24: Averaging students’ scores program; randomize_array() will generate random student

scores and pre-computed averages. The actual computation codes are within lines 28-37 25

Figure 25: Output of the program running in single thread. The first part of output is the pre-

computed average during random scores generation. The second part is the actual computation

output. .. 26

Figure 26: All averages from running with 2, 4, 8 threads are different compared to the pre-

computed values .. 27

Figure 27: Add OpenMP directive to specify i, j, total, index as private at line 28 29

ix

Figure 28: Output of OpenMP program after making variables (i, j, total, index) private 30

Figure 29: OpenMP implementation of sequence number generator ... 31

Figure 30: Race condition causes incorrect and inconsistent results .. 31

Figure 31: Making seq++ to be executed atomically by adding ‘#pragma omp atomic’ 32

Figure 32: Results after adding atomic directives to seq++ .. 32

Figure 33: X10 compiling architecture ... 33

Figure 34: HelloWorld program; the main activity spawn new activity to do println() 34

Figure 35: HelloWorld program output .. 34

Figure 36: Modified HelloWorld making main activity to wait for all spawning thread to finish

before it can execute line 13 .. 35

Figure 37: HelloWorld program output with finish statement .. 35

Figure 38: X10 program tests atomic block .. 36

Figure 39: Testing atomic block program output .. 36

Figure 40: Banking example – multiple threads access one account simultaneously. Each thread

will deposit $1 to the account 10,000 times .. 38

Figure 41: Banking example program output for various scenarios ... 39

Figure 42: BanksTransactions – two people, each has his own account – each simultaneously

transfers money from his account to the other .. 40

Figure 43: First 2 lines of output show the balance of 2 accounts before transferring. Last 2 lines

show the balance after transferring, which is correct because they transfer to each other with the

same amount .. 41

Figure 44: AtomicSequenceInteger – 4 threads request unique numbers in parallel. Each will ask

for 1000 times. The implementation uses AtomicInteger object as solution. 41

Figure 45: AtomicSequenceInteger program output – indicating the last request having value of

4000 ... 41

Figure 46: X10 implementation of sequence number generator ... 42

Figure 47: X10 implementation of consumer/producer problem .. 43

Figure 48: Verify consumer/producer program by running 'ls -l' and 'diff' commands 44

Figure 49: Testing ‘when’ construct in X10, ‘when(c)’ fails when ‘number++’ is instantaneous 44

Figure 50: Quick sort partitions [22] ... 46

Figure 51: Java quick sort - sorting 1 million numbers .. 47

Figure 52: Java quick sort - sorting 10 million numbers... 48

Figure 53: Java quick sort - sorting 100 million numbers... 48

Figure 54: X10 Java-backend - sorting 1 million numbers ... 49

Figure 55: X10 Java-backend - sorting 10 million numbers ... 50

Figure 56: X10 Java-backend - sort 100 million numbers .. 50

Figure 57: X10 C++-backend – sorting 1 million numbers .. 51

Figure 58: X10 C++-backend – sorting 10 million numbers .. 52

Figure 59: X10 C++-backend – sorting 100 million numbers .. 52

Figure 60: Quick sort comparison of all test cases of both languages and compilation modes 53

x

Figure 61: X10 Java-backend quick sort CPU usage .. 54

Figure 62: X10 C++-backend quicksort CPU usage ... 54

Figure 63: Java quick sort CPU usage .. 55

Figure 64: Matrix multiplication using naive algorithm [20] ... 55

Figure 65: Matrix A is divided into 4 smaller matrices by purple lines; each sub matrix can do

multiplication with matrix B in parallel .. 56

Figure 66: Java matrix multiplication 500x500 matrices .. 57

Figure 67: Java matrix multiplication 1000x1000 matrices .. 57

Figure 68: Java matrix multiplication 2000x2000 matrices .. 58

Figure 69: X10 Java-backend matrix multiplicaiton 500x500 .. 58

Figure 70: X10 Java-backend matrix multiplication 1000x1000 matrices 59

Figure 71: X10 Java-backend matrix multiplication 2000x2000 matrices 59

Figure 72: X10 C++-backend matrix multiplication 500x500 matrices 60

Figure 73: X10 C++-backend matrix multiplication 1000x1000 matrices 61

Figure 74: X10 C++-backend matrix multiplication 2000x2000 matrices 61

Figure 75: Matrix multiplication Java/X10 ... 62

Figure 76: Java - encrypt 2.1 Mbytes file.. 64

Figure 77: Java - encrypt 10.6 Mbytes file.. 64

Figure 78: Java - encrypt 39.9 Mbytes file.. 65

Figure 79: X10 Java-backend encrypts 2.1Mbytes file ... 65

Figure 80: X10 Java-backend encrypts 10.6 Mbytes file .. 66

Figure 81: X10 Java-backend encrypts 39.9 Mbytes file .. 66

Figure 82: X10 C++-backend - encrypt 2.1Mbytes file .. 67

Figure 83: X10 C++-backend - encrypt 10.6 Mbytes file ... 68

Figure 84: X10 C++-backend - encrypt 39.9 Mbytes file ... 68

Figure 85: AES Java/X10 .. 69

Table 2: X10 Java-backend - quicksort runtime ... ii

Table 3: X10 C++-backend quick sort runtime .. iii

Table 4: Java matrix multiplication runtime .. iv

Table 5: X10 Java-backend matrix multiplication runtime ... v

Table 6: X10 C++-backend matrix multiplication runtime .. vi

Table 8: X10 Java-backend AES encryption runtime .. viii

Table 9: X10 C++-backend AES encryption runtime .. ix

1

1. Introduction

Moore’s law states that the number of transistors on a chip will double about every two years,

and this statement has proven to be true thus far [8]. As the number of transistors increase, CPU

clock speed rises as well. Current clock speed has increased to a level where it overheats, which

has become a major issue [14, 15]. To achieve better efficiency without violating Moore’s law,

chip designers have switched to multi-cores. While multi-core CPUs reserve an instruction-level

parallelism (ILP) feature that helps existing applications run as if they were running under single

core, applications do not reach speeds of two times (2X) faster under dual-cores or four times

(4X) faster under quad-cores [8]. The reason is that applications were designed and programmed

in a single-threaded, sequential process fashion.

To maximize all cores, programmers must think, design, and program in a parallel model [3, 9].

Programmers are no longer able to enjoy the implicit parallelism of the ILP to maximize core

performance. Now they must control the parallelism explicitly. Programmers must do the dirty

work of taking care of deadlocks and race conditions. Many programming languages and

libraries such as Java, C# .NET, and OpenMP, are trying to help programmers by providing rich

concurrency API. X10 is the new experimental language from IBM Research, which has been

under development since 2004. The main focus of the language is parallel programming. X10

claims that by using its concurrency constructs, X10 programs are guaranteed to be free of

deadlocks and race conditions [4, 24]. This paper briefly touches on parallel computing

architecture, but its main focus is on comparing concurrent constructs that deal with deadlock

and race conditions between Java language, OpenMP library, and the X10 language, then

comparing performance between Java and X10 on a single local machine.

2

2. Parallel computing

2.1. What is parallel computing?

Parallel computing is a method of computation in which many calculations happen

simultaneously [1]. The principle of parallel computing is to divide a large problem into small,

computable sub-problems and to have them computed concurrently to reduce runtime. Sub-

problems can be distributed among computing resources on a network, or among cores within

CPU die, or a combination of both where each computing resource contains multi-cores CPU. In

computer science, parallel computing often deals with system hardware and software issues

related to concurrent computations [2].

2.2. Parallel computing architecture

2.2.1. Macro architecture

Macro architecture is parallel computing architecture that deals with large-scale systems. The

architecture is concerned with how to assemble individual computing nodes together to perform

massive work [25]. The following are typical macro parallel computing architectures:

• A cluster is a group of computers linked together through a high-speed local area network

(LAN). Clusters are usually used in high-performance calculations and to increase

availability [6].

Figure 1: Examples of cluster computers [19]

3

• Grid computing (e.g. NASA Columbia Supercomputer with 10,240-CPU SGI Altix

supercluster, with Intel Itanium 2 CPUs) can be thought of as a distributed system for big

tasks that require massive computation and a great number of files. Grid combines

computers from different administrative domains to solve a single task. Grid components

may be dispersed geographically and more loosely coupled. A grid uses middleware to

divide a big program into smaller pieces and to distribute among nodes [7].

Figure 2: Grid computing example [16]

• Cloud distributed computing (e.g. Amazon Elastic Compute Cloud (EC2), Microsoft

Azure, etc.) describes remote services, such as computation, software, data access, and

storage, that end-user need not be aware of any physical location or the configuration of

the system that delivers the services. This is similar to the concept of an electrical grid

where end-consumers use resources without needing to understand the component

devices in the electrical grid [8].

4

Figure 3: Cloud services, applications, and access devices

2.2.2. Micro architecture

While macro architecture deals many computing nodes in a network, micro parallel computing

architecture is concerned with how to put parallelism into each computing node at the transistor

level [25]. Multi-core is the new era in personal computing, since pushing clock speed at such

high levels also dramatically increases the heat within the CPU dies and chassis. To have greater

efficiency without violating Moore’s law, chip designers have switched to more cores. Multi-

core is the new way to solve the problem by putting many computing processors on one single

die [8].

2.3. Parallel computing classification (Flynn’s taxonomy)

There are four parallel computing platforms spanning across two-dimensional matrix. The first

dimension is instruction centric, focusing on how many instruction streams a computer

architecture may process at one single point in time. The second is data centric and is concerned

with how many data streams can be processed at a single point in time. The classification in the

table below is known as Flynn's taxonomy [8].

5

Figure 4: Flynn's taxonomy

o Single Instruction Single Data (SISD) is a traditional sequential platform where

there is no parallelism in hardware. Only one data stream is processed per clock

cycle and instruction execution is completed in serial fashion.

o Multiple Instructions Single Data (MISD) is a computer platform that has the

ability to process a single data stream with multiple instruction streams

o Single Instruction Multiple Data (SIMD) is a computer platform in which one

single instruction stream can process multiple data streams. Almost all computers

are SIMD machines.

o Multiple Instructions Multiple Data (MIMD) is a computer platform with the

capacity to execute multiple instructions streams on different independent data

streams. MIMD is the most common parallel computing platform today and is

exhibited in technology such as Intel multi-core processors.

6

3. Parallelism with hardware solution

Instruction Level Parallelism (ILP) is processor and compiler techniques that speed up program

execution via parallel execution of individual RISC-based operations, such as memory load and

stores, integer additions, and floating-point multiplications. Although operations are executed in

parallel, there is only a single thread of execution. The processors-compiler system hands a

single program, written for a sequential processor, from which it extracts the parallelism

automatically. The rationale behind this feature is that parallelism becomes transparent in the

system. Programmers do not need to worry about parallelizing the program. Instead they can

write code in sequential and let compiler and processors find parallelism in the program.

Therefore, when computers get newer and faster processors, programs tend to be faster [10].

3.1. Pipelining (intra-instruction parallelism)

Pipelining is one method of injecting parallelism, or concurrency, into computer programs at the

hardware level. It refers to a segmentation of an instruction into phases or stages, which are

executed by dedicated, independent units. A RISC instruction is divided into multiple stages

[Instruction]=>[IF | ID | OF | EX] (IF: Instruction Fetch; ID: Instruction Decode; OF: Operand

Fetch, EX: Execute). Mimicking an industrial assembly line, RISC-based consecutive

instructions can be executed at the same time in an overlapping fashion. In short, pipelining is a

technique that splits a repeated sequential instruction into stages where each stage can be

executed efficiently and concurrently by dedicated autonomous modules. [11]

Figure 5: Execute non-pipelined instructions one-by-one in sequential fashion

7

Figure 6: Pipeline instruction is divided into 4 phases

Figure 7: Multiple pipelined instruction execution, each overlaps each other at different phases

Multiple pipelined instructions are executed at the same time but at different stages. Instruction

execution overlaps each other at different phases. Since each phase is an independent process,

each instruction can execute concurrently, assuming no data dependency between them as

depicted in Figure 7.

3.2. Multi-function units (inter-instruction parallelism)

All ILP processors have multiple functional units that can execute multiple operations in parallel.

Independent instructions are executed in parallel even though a sequential program was given to

the hardware. Superscalar processors perform resource allocation and data dependency between

program instructions. If instructions are independent from each other and there are available

functional units, sequential instructions can be executed in parallel. Superscalar processor will

make sure multiple instructions do not try to use the same functional unit at the same time.

Example: A, B, I, T, X, and Y are simple integers

1: A = I * T

8

2: B = X * Y

3: I = A + B

If there are two addition units and two multiply units available in a processor and they are not in

use, instructions 1 and 2 can be executed in parallel since there are two multiply units.

Furthermore, instructions 1 and 2 do not have any data conflict. They are independent of each

other.

3.3. VLIW (Very Long Instruction Word)

Using ILP to inject transparent parallelism increases hardware complexity because hardware

must perform all conditional branch prediction, out-of-order execution, and other ILP operations.

VLIW tries to achieve all of ILP features with reduced hardware complexity. Instructions have

variable length. Each instruction may pack many operations and send those operations to

processors for execution. For fully utilizing VLIW processors, compilers must be smart enough

to figure all dependencies, to ensure no resource hazards, and to analyze and find parallelism in

code [10].

3.4. Hyper-Threading

A physical processor is made up of different resources, such as CPU registers, interrupt

controller registers, caches, buses, execution units, and branch prediction logic. A thread, on the

other hand, needs only an architectural state. Therefore, a logical processor can be created by

duplicating architectural space. This is called simultaneous multi-threading, or Intel’s Hyper

Threading Technology. The extra hardware allows software to look at a single core as if there

were two. Multiple threads can be scheduled to logical processors as they would be on

multiprocessors. Since there is only one physical core, threads must go interleaving. One process

may stall and allow the other to proceed. With extra hardware, processors accelerate context

switching between threads to achieve faster speed [23].

9

3.5. Multi-core

As the number of transistors increase to obey Moore’s law, the CPU clock frequencies have

become faster. However, this also causes heat to increase greatly. Intel engineers stated that if

microprocessor keeps increase clock frequency, its temperature may reach the sun surface level

[12, 25]. So ditching the idea of further raising frequency speeds, engineers opted to add more

cores. By going with a multi-core solution, CPUs lose heat and gain parallelism and power

efficiency. With each core having ILP capability and its own architecture state – register,

interrupt logic, caches, buses, executions units, and branch prediction – programs are no longer

executed in interleaving fashion. Two cores can execute two programs simultaneously. Better

yet, each core also has Hyper-Threading capability.

10

4. Why have parallelisms in software?

At the micro architecture level, chip designers solve the heat problem without violating Moore’s

law with the multi-cores solution. Yet, the new trend also has its own problems. To take

advantage of the new multi-cores chips, programs must utilize all cores, which means programs

must be executed on different cores in parallel, otherwise it is the same as running on single core

machine. The idea of running the same source code programs faster on next year’s hardware is

no longer valid [26]. Hardware solutions are not feasible for software development. Parallelism

now is exposed directly to software developers, which means software developers must

explicitly design and code the program in parallel thinking [9]. Now, programmers must take full

control of the parallelism in their programs.

11

5. Problems in parallel computing

In parallel programming, deadlocks and race conditions are the most common issues. Between

the two, race conditions are difficult to detect and solve because different runtime environments

can yield different results. At later program execution, race conditions may not occur. In

computer science, a deadlock is a situation where two or more processes are waiting for each

other to release their resource. If there are more than two, processes will create a circular chain

of waiting [8]. The situation can be illustrated by a traffic jam, as in the figure below. In

programming, an example of 3 processes, P1, P2, and P3, denoted as circles and 3 resources, R1,

R2, and R3, denoted as squares, each of the processes need to have at least two resources to

complete a task as in Figure 9. Solid lines represent ownership and dotted lines represent

resource requests. In this scenario, a resource allocation circle is formed, which causes deadlock

where each process holds and waits for available resources.

Figure 8: Traffic jam illustration (http://chake.chinatefl.com/images/szintersection.jpg)

Figure 9: Resource process deadlock diagram

P1 P3

P2

R1

R2 R3

12

A race condition is a situation where multi processes execute code out-of-order that produces

incorrect data [8, 13]. This bug is hard to detect and avoid because different runtime

environments yield different results. One of the classic problems is the sequence number where

two or more processes trying to get unique sequence numbers. However, if those processes try to

get the number at the exact same time, this results in the two processes getting the same number.

13

6. Java and OpenMP solutions

6.1. Java implementation

To ensure that there are no race conditions, the Java language provides two basic

synchronization approaches. By supplying keyword synchronized, synchronized methods

and statements are guaranteed to be executed atomically. Java 5.0/6.0 SE provides many useful

common concurrent APIs within the java.util.concurrent package. The package

contains thread-safe concurrent collection such as BlockingQueue,

ArrayBlockingQueue, ConcurrentHashMap, ConcurrentLinkedQueue, and other

concurrency utilities for task/thread scheduling. The java.util.concurrent.atomic

provides a small set of classes that support lock-free, thread-safe, atomic operations on single

variable, such as AtomicBoolean, AtomicInteger, AtomicIntegerArray, and

others. There is also the Java keyword volatile used for multi-threaded Java programming so

that multiple threads access the same memory space and not from each respective thread’s local

variable cache.

The following Java program demonstrates the classic example of race condition in the form of

the banking problem. The problem shows that if two people withdraw and deposit using the same

account at the same time, the account balance shows different numbers at different runtimes due

to memory consistency errors.

The program in Figure 10 will run as following: Depositor will perform

deposit()operation 100 times and Withdrawer will perform withdraw()operation on

the Account 100 times with the amount of $10 each. The Account will have a $10,000 initial

balance. Each object runs on its own thread concurrently. We assume that the account balance

should have the initial amount of $10,000 when the program finishes. The program runs

repeatedly 500 times as in Figure 11. Most of the results return $10,000 which is correct, but

there is at least one runtime that does not give $10,000.

14

Figure 10: Race condition of the banking problem, Depositor deposits to the Account while Withdrawer withdraws from the
account. Both perform their respective actions at the same time.

import java.io.*;
class Banking{

static class Account{
private double balance = 10000;

public Account(){}
public double deposit(double amount){

balance -= (amount < balance) ? amount : 0.00 ;
return balance;

}
public double withdraw(double amount){

balance += amount;
return balance;

}
public double check(){

return balance;
}

}

static class Withdrawer implements Runnable {

String name = "Withdrawer";
Account account;
public Withdrawer(Account account){

this.account = account;
}
public void run(){

for(int i=0; i<100; i++){
double newBalance = account.deposit(10);

//Do do something with new balance code
}
System.out.println(name + " finishes");

}
}
static class Depositor implements Runnable{

String name = "Depositor";
Account account;
public Depositor(Account account){

this.account = account;
}
public void run(){

for(int i = 0; i < 100; i++){
double newBalance = account.withdraw(10);

//Do do something with new balance code
}
System.out.println(name + " finishes");

}
}

public static void main(String[] args){

Account account = new Account();
Thread t1 = new Thread(new Withdrawer(account));
Thread t2 = new Thread(new Depositor(account));
try{

t1.start();
t2.start();

t1.join();
t2.join();

}catch(InterruptedException e){
e.printStackTrace();

}
System.out.println("Balance: " + account.check());

}
}

15

Figure 11: Output shows that race condition causes incorrect balance

When forcing a thread to sleep for a random number between 0-10 of milliseconds before

performing withdraw()or deposit()at line 6 of Figure 12, 13, it increases the number of

wrong results. When each thread sleeps for a random of number milliseconds within a small

range, it increases the chance that Depositor and Withdrawer perform their actions at the

same time. The updated value from one operation does not reflect the other operation.

Figure 12: Modify Depositor object making it sleep for a random number between 0-10 milliseconds before performing
deposit

Figure 13: Modify Withdrawer object making it sleep for a random number between 0-10 milliseconds before performing
withdraw

sh-3.2$./runjava.sh Banking 10
 ...
 Withdrawer finishes Depositor finishes Balance: 10000.0
 Depositor finishes Withdrawer finishes Balance: 9000.0
 Withdrawer finishes Depositor finishes Balance: 10000.0
 Withdrawer finishes Depositor finishes Balance: 10000.0
 Withdrawer finishes Depositor finishes Balance: 10000.0
 ...

...
 public void run(){
 java.util.Random random = new java.util.Random();
 for(int i=0; i<100; i++){
 try{
 Thread.sleep(random.nextInt(10)); //Line 6: Sleep
 }catch(Exception e){
 e.printStackTrace();
 }
 double newBalance = account.deposit(10);
 }
 System.out.println(name + " finishes");
 }
 ...

...
 public void run(){
 java.util.Random random = new java.util.Random();
 for(int i=0; i<100; i++){
 try{
 Thread.sleep(random.nextInt(10)); //Line 6:Sleep for random ms
 }catch(Exception e){
 e.printStackTrace();
 }
 double newBalance = account.withdraw(10);
 }
 System.out.println(name + " finishes");
 }
 ...

16

Figure 14: Output after sleep statement added; the number of wrong results increases

Looking at the banking problem, we are attempting to use Java Atomic variable because every

operation is trying to modify the balance variable. However, Java only provides

AtomicInteger in java.util.concurrent.atomic package; it does not offer

AtomicDouble. Instead, we use regular Java Intrinsic Lock. We create synchronized block

with lock variable as type Object and have synchronized(lock)statement surrounding

the updating statements. Whenever a thread A wants to execute the block, that thread acquires

lock and releases after it finishes. If lock is acquired or used by some different threads, thread

A will wait until lock is released before it continues. The modification to the program is at lines

7 and 14, as shown in Figure 15.

Figure 15: Account object with locking mechanism; only thread with lock can perform action

sh-3.2$./runjava.sh Banking 10
Depositor finishes Withdrawer finishes Balance: 10000.0
Withdrawer finishes Depositor finishes Balance: 9990.0
Depositor finishes Withdrawer finishes Balance: 10000.0
Withdrawer finishes Depositor finishes Balance: 9960.0
Withdrawer finishes Depositor finishes Balance: 9990.0
Depositor finishes Withdrawer finishes Balance: 10000.0
Depositor finishes Withdrawer finishes Balance: 9990.0
Depositor finishes Withdrawer finishes Balance: 9990.0
Depositor finishes Withdrawer finishes Balance: 9990.0
Withdrawer finishes Depositor finishes Balance: 9990.0

static class Account{
 private double balance = 10000;
 private Object lock = new Object();
 public Account(){}

 public double deposit(double amount){
 synchronized(lock){ //Line 7
 balance -= (amount < balance) ? amount : 0.00 ;
 }
 return balance;
 }

 public double withdraw(double amount){
 synchronized(lock){ //Line 14
 balance += amount;
 }
 return balance;
 }

 public double check(){
 return balance;
 }
 }

17

On the other hand, we can even simplify the solution by adding a synchronized method instead

of a synchronized block as shown at lines 6 and 11 in Figure 16. Both solutions give the same

result.

Figure 16: Java synchronized methods

Another classic race condition example is the sequence number generator. It is a typical situation

where two or more clients request a unique number from a server. It is critical that the server will

not give the same number to more than one client.

The program in Figure 17 tries to demonstrate the race condition in the code and is implemented

as follows: There is one SequenceNumberGenerator object that is responsible for spitting

out the next number in the sequence; multiple Requester objects will run on different threads

trying to acquire a unique number. In this experiment, there are two requesters and each will ask

for a unique number for 1000 times. Each time, a thread will sleep for a random number between

0-10 milliseconds before asking for the next number. Because there are two threads and each

requests 1000 numbers each, the last request should have value of 2000. The running output

shows that 10 different runtimes return different incorrect results in Figure 18.

static class Account{
 private double balance = 10000;

 public Account(){}

 public synchronized double deposit(double amount){ //Line 6
 balance -= (amount < balance) ? amount : 0.00 ;
 return balance;
 }

 public synchronized double withdraw(double amount){ //Line 11
 balance += amount;
 return balance;
 }

 public synchronized double check(){
 return balance;
 }
 }

18

Figure 17: Java implementation of sequence number generator

Figure 18: Output of the sequence generation program running 10 times

import java.io.*;

 class SequenceNumber{
 static class SequenceNumberGenerator{
 private int num = 0;
 public SequenceNumberGenerator(int initial){
 num = initial;
 }
 public int getNext(){
 return ++num;
 }
 public int currentValue(){
 return num;
 }
 }

 static class Requester implements Runnable{
 private SequenceNumberGenerator sng;
 private String name;
 public Requester(String name, SequenceNumberGenerator sng){
 this.name = name;
 this.sng = sng;
 }

 public void run(){
 java.util.Random random = new java.util.Random();
 try {
 for(int i=0; i<1000; i++){
 Thread.sleep(random.nextInt(10));
 int value = sng.getNext();
 }
 } catch (InterruptedException e) {
 } finally {
 System.out.println(this.name + " : " + sng.currentValue());
 }
 }
 }

 public static void main(String[] args){
 SequenceNumberGenerator sng = new SequenceNumberGenerator(0);

 Thread t1 = new Thread(new Requester("A", sng));
 Thread t2 = new Thread(new Requester("B", sng));
 t1.start();
 t2.start();
 }
 }

sh-3.2$./runjava.sh SequenceNumber 10
 A : 1941 B : 1977
 B : 1959 A : 1982
 A : 1946 B : 1989
 A : 1958 B : 1990
 B : 1942 A : 1995
 B : 1956 A : 1982
 B : 1932 A : 1979
 A : 1968 B : 1982
 B : 1978 A : 1985
 A : 1974 B : 1986

19

One solution is to make the integer increment in atomic operation. To do that, we have to add

lock object as described above, and have a synchronized(lock) statement surrounding

num++ to ensure atomicity. An alternative and quicker way is to use an AtomicInteger

object, which includes useful atomic methods, one of which is incrementAndGet().

AtomicInteger object fits perfectly to the problem. The program output shows 50 different

runtimes giving 50 of the exact same results, which proves that this solution is correct. In Figure

19, each line in the output has 2 numbers, A:1974 and B:2000, meaning A's last requested value

is 1974 and B's last requested value is 2000. In this program, we only care about the last request,

which should be 2000 every time.

Figure 19: Sequence number generator uses AtomicInteger instead of Integer

Figure 20: Output of sequence number generator using AtomicInteger implementation.

static class SequenceNumberGenerator{
 private AtomicInteger num = new AtomicInteger(0); //Line 2
 public SequenceNumberGenerator(AtomicInteger initial){
 num = initial;
 }

 public int getNext(){ return num.incrementAndGet();}

 public int currentValue(){ return num.get(); }
 }

sh-3.2$./runjava.sh SequenceAtomicNumber 50
 A : 1994 B : 2000
 A : 1957 B : 2000
 B : 1984 A : 2000
 B : 1980 A : 2000
 A : 1975 B : 2000
 B : 1985 A : 2000
 A : 1969 B : 2000
 B : 1956 A : 2000
 B : 1939 A : 2000
 B : 1989 A : 2000
 B : 1994 A : 2000
 A : 1996 B : 2000
 A : 1981 B : 2000
 A : 1958 B : 2000
 A : 1987 B : 2000
 B : 1969 A : 2000
 B : 1980 A : 2000
 B : 1969 A : 2000
 B : 1964 A : 2000
 B : 1953 A : 2000
 B : 1968 A : 2000
 A : 1992 B : 2000
 A : 1976 B : 2000
 B : 1976 A : 2000
 A : 1945 B : 2000
 B : 1957 A : 2000
 A : 1983 B : 2000
 B : 1980 A : 2000

A : 1988 B : 2000
A : 1996 B : 2000
A : 1960 B : 2000
A : 1994 B : 2000
A : 1972 B : 2000
B : 1982 A : 2000
A : 1988 B : 2000
B : 1966 A : 2000
A : 1945 B : 2000
B : 1998 A : 2000
B : 1998 A : 2000
A : 1965 B : 2000
A : 1961 B : 2000
A : 1990 B : 2000
B : 1978 A : 2000
A : 1986 B : 2000
A : 1992 B : 2000
B : 1995 A : 2000
A : 1991 B : 2000
A : 1997 B : 2000
B : 1971 A : 2000
A : 1974 B : 2000

20

The next program extends the bank example. In this scenario, there are two people and each has

an individual account. Simultaneously, each will transfer money from his own account to the

other with an amount of $100. To transfer funds, a person must acquire his own account first,

then he will try to acquire the other. After he gets hold of two accounts, he can withdraw an

amount from his account and deposit that amount to the other account. The deadlock occurs

when two people try to transfer at the exact same time. Each transferor locks his account and

keeps waiting until the others are free, but none of them release their own locks. Therefore, both

will wait indefinitely in this “hold and wait” scenario, as Java code demonstrates in Figure 21.

21

Figure 21: Extended banking example, Transferrer A and B objects simultaneous transfer money from his account to the
other. If A, B happens to transfer at the same time, a deadlock occurs due to locking resources

import java.io.*;
 class BankDeadlock{
 static class Account{
 private int accountNumber = 0;
 private double balance = 0;

 public Account(int accountNumber, double initialAmount){
 this.accountNumber = accountNumber;
 this.balance = initialAmount;
 }
 public double withdraw(double amount){
 balance -= amount;
 return balance;
 }
 public double deposit(double amount){
 balance += amount;
 return balance;
 }
 public double checkBalance(){
 return balance;
 }
 }

 static class Transferrer implements Runnable{
 private String name = "";
 private Account myAccount;
 private Account otherAccount;
 public Transferrer(String name, Account myAccount, Account otherAccount){
 this.name = name;
 this.myAccount = myAccount;
 this.otherAccount = otherAccount;
 }

 public void run(){
 System.out.println(name + " waits to lock my account");
 synchronized(myAccount){
 System.out.println(name + " locks my account");
 System.out.println(name + " waits to lock other account");
 synchronized(otherAccount){
 System.out.println(name + " locks other account\nStart transfer");
 myAccount.withdraw(100);
 otherAccount.deposit(100);
 }
 }

 System.out.println(name + " finished transfer. My account: $" +

myAccount.checkBalance() + " Other: $" + otherAccount.checkBalance());
 }
 }

 public static void main(String[] args){
 Account A = new Account(100, 10000);
 Account B = new Account(101, 10000);
 Thread t1 = new Thread(new Transferrer("A", A, B));
 Thread t2 = new Thread(new Transferrer("B", B, A));
 t1.start();
 t2.start();
 }
 }

22

As for deadlocks, Java has no silver bullet to solve the problem. Instead, it is up to developers to

manage these issues. As stated by Oaks and Wong [17], “Deadlock between threads competing

for the same set of locks is the hardest problem to solve in any threaded program. It’s a hard

enough problem, in fact, that it cannot be solved in the general case. Instead, we try to offer a

good understanding of deadlock and some guidelines on how to prevent it. Preventing deadlock

is completely the responsibility of the developer. The Java virtual machine does not do deadlock

prevention or deadlock detection on your behalf.” To solve this problem, we impose a

hierarchical resource allocation. Resources have to be allocated in a certain order. In this banking

example, the solution is to use checksums of the two accounts. The account with a smaller hash-

sum value will be acquired first, then the other, as in Figure 22.

Figure 22: Hierarchical resource allocation – whichever account has a smaller hash value will be acquired first

static class Transferrer implements Runnable{
 private String name = "";
 private Account myAccount;
 private Account otherAccount;
 private Account account1, account2;
 public Transferrer(String name, Account myAccount, Account otherAccount){
 this.name = name;
 this.myAccount = myAccount;
 this.otherAccount = otherAccount;
 }

 public void run(){
 int myAccountHashValue = System.identityHashCode(myAccount);
 int otherAccountHashValue = System.identityHashCode(otherAccount);

 if(myAccountHashValue < otherAccountHashValue){

 account1 = myAccount;
 account2 = otherAccount;
 }else if(myAccountHashValue > otherAccountHashValue){
 account1 = otherAccount;
 account2 = myAccount;
 }else{
 }

 System.out.println(name + " waits to lock " + account1.getAccountNumber());
 synchronized(account1){
 System.out.println(name + " locks " + account1.getAccountNumber());
 System.out.println(name + " waits to lock " + account2.getAccountNumber());
 synchronized(account2){
 System.out.println(name + " locks " + account2.getAccountNumber() +
 "\nStart transfer");
 myAccount.withdraw(100);
 otherAccount.deposit(100);
 }
 }

 System.out.println(name + " finished transfer. My account: $" +

myAccount.checkBalance() + " Other: $" + otherAccount.checkBalance());
 }
 }

23

6.2. OpenMP Implementation

OpenMP is an API that supports SMP programming in C/C++ and FORTRAN. OpenMP

operates on a fork/join model. Programmers observe source codes and analyze any region that

can run parallel, then they can insert OpenMP directives to tell the compiler that those regions

can be divided and each be worked on independently. The main thread forks child threads to

perform concurrent tasks. In the end, all the slave threads join back to the main thread to finish

final computation.

Similar to other multi-thread programming languages and libraries, OpenMP is still susceptible

to race condition and deadlock. Even though OpenMP has several safety nets to help avoiding

race condition, it does not prevent programs from getting this kind of error. The OpenMP library

is relatively small, so the learning curve is relatively flat. The most important aspect of

developing OpenMP programs is knowing how and when to set variables as shared or private.

Figure 23: The fork/join programming model in OpenMP – the program starts as a single thread. A team of threads will be
forked at the parallel region and join back at the end.

By default, variables are shared, except for loop index variables. If developers want to a variable

to be declared private within each thread, they must declare those variables using the private

directive. The program in Figure 24 demonstrates how OpenMP library deals with race

conditions using shared and private variables. The program will generate 100 random numbers

and put them in an array. This array simulates scores for 10 students where each has 10 scores.

The elements from [0-9] represent the scores of the first student; elements [10-19] represent the

scores of the second student; and subsequence intervals are for subsequent students respectively.

24

The program will calculate averages for all students. First, the program will run only with one

thread. Later, it will add OpenMP directives to make it multi-threaded. At line 28 in Figure 24,

we tell the compiler that we want to run the loop in parallel. Each i index value tells which

student's scores should be calculated. For example, if a thread happens to calculate the average of

the fifth student, which i has value of 4, it must iterate and sum all scores from [40-49] and

compute the average.

25

Figure 24: Averaging students’ scores program; randomize_array() will generate random student scores and pre-computed
averages. The actual computation codes are within lines 28-37

#include <stdio.h>
 #include <omp.h>
 #include <time.h>

 void randomize_array(int array[]);
 void print_array(int array[]);

 int main(int argc, char* argv[]){
 int tnum=0;

 if(argc != 2){
 printf("Usage %s number_of_thread\n", argv[0]);
 return 1;
 }

 tnum=atoi(argv[1]);
 if(tnum==0){
 printf("Number of thread should be a number\n");
 return 2;
 }

 omp_set_num_threads(tnum);

 int array[100]={0};
 int i=0,j=0,index=0,total=0;
 randomize_array(array);
 printf("-----\n");

 #pragma omp parallel for //28
 for(i=0;i<10;i++){ //29
 total=0 //30
 for(j=0;j<10;j++){ //31
 index=i*10+j; //32
 total+=array[index]; //33
 printf("%2d ", array[index]); //34
 } //35
 printf("= %2.2f [%d]\n",total/10.0, omp_get_thread_num()); //36
 } //37
 }

 /* Randomize array elements */
 void randomize_array(int array[]){
 int i=0,j=0,total=0;
 unsigned int iseed = (unsigned int)time(NULL);
 srand (iseed);
 for(i=0;i<10;i++){
 total=0;
 for(j=0;j<10;j++){
 array[i*10+j]=rand()%100;
 total+=array[i*10+j];
 printf("%2d ", array[i*10+j]);
 }
 printf(" AVE = %2.2f\n",total/10.0);
 }
 }

 /* Print out the array */
 void print_array(int array[]){
 int i=0,j=0;
 for(i=0;i<100;i++){

printf("%2d ", array[i]);
 if(i%10==9)
 printf("\n");
 }
 }

26

Figure 25: Output of the program running in single thread. The first part of output is the pre-computed average during
random scores generation. The second part is the actual computation output.

The first part of the program output is in a single-threaded environment. The first part of the

output is the randomly generated number with the pre-computed average, which will be used to

check the accuracy of later experiments. The second part of the output is the actual computation.

The number in the bracket indicates which thread is used to compute averages by using the

omp_get_thread_num() function. The first output shows that computation is correct by

checking the result against the pre-computed result manually.

Below is the result of the program running with 2 threads, 4 threads, and 8 threads,

consecutively. The result shows that single-threaded program output is different than the multi-

threaded program. Disregarding the output format, we can see that the averages are different

between runs with a different number of threads. The calculations are off for all rows.

$./ompGroupAve 1
 78 48 84 7 23 25 23 35 27 29 AVE = 37.90
 0 32 21 4 72 92 56 69 21 94 AVE = 46.10
 89 88 38 43 38 17 20 22 11 63 AVE = 42.90
 82 89 63 18 97 86 95 72 73 23 AVE = 69.80
 1 74 7 74 30 31 66 87 1 39 AVE = 41.00
 33 42 80 72 86 18 89 58 92 0 AVE = 57.00
 21 26 41 36 45 90 22 40 63 95 AVE = 47.90
 15 16 21 74 91 52 6 9 91 59 AVE = 43.40
 49 24 53 29 96 39 99 37 49 44 AVE = 51.90
 89 22 70 31 58 67 21 80 60 36 AVE = 53.40

 78 48 84 7 23 25 23 35 27 29 = 37.90 [0]
 0 32 21 4 72 92 56 69 21 94 = 46.10 [0]
 89 88 38 43 38 17 20 22 11 63 = 42.90 [0]
 82 89 63 18 97 86 95 72 73 23 = 69.80 [0]
 1 74 7 74 30 31 66 87 1 39 = 41.00 [0]
 33 42 80 72 86 18 89 58 92 0 = 57.00 [0]
 21 26 41 36 45 90 22 40 63 95 = 47.90 [0]
 15 16 21 74 91 52 6 9 91 59 = 43.40 [0]
 49 24 53 29 96 39 99 37 49 44 = 51.90 [0]
 89 22 70 31 58 67 21 80 60 36 = 53.40 [0]

27

Figure 26: All averages from running with 2, 4, 8 threads are different compared to the pre-computed values

ant@hp-m8100y:~/school/cs297$./ompGroupAve 2
 80 48 94 91 2 82 29 76 46 24 AVE = 57.20
 43 12 61 74 26 81 36 1 29 97 AVE = 46.00
 17 21 76 35 30 44 35 59 45 53 AVE = 41.50
 34 25 53 29 68 55 11 49 83 9 AVE = 41.60
 73 79 74 86 53 0 19 42 53 49 AVE = 52.80
 39 70 70 15 58 52 60 93 63 5 AVE = 52.50
 98 98 82 3 79 2 10 90 51 94 AVE = 60.70
 51 25 73 25 63 26 77 35 68 30 AVE = 47.30
 84 60 53 6 27 63 10 39 8 74 AVE = 42.40
 96 6 72 78 61 51 32 71 93 84 AVE = 64.40

 80 48 94 91 2 82 29 76 46 24 = 53.10 [0]
 43 12 61 74 26 81 39 93 63 5 36 = 49.40 [1]
 98 98 82 3 79 2 10 90 = 49.40 [0]
 17 21 76 35 30 44 35 51 59 51 53 = 42.10 [0]
 34 25 53 29 68 55 11 49 = 42.10 [1]
 51 25 73 25 63 26 77 83 83 9 35 = 46.70 [0]
 73 79 74 86 53 0 19 42 = 46.70 [1]
 84 60 53 6 27 63 10 53 53 49 39 = 44.40 [0]
 = 44.40 [1]
 96 6 72 78 61 51 32 71 93 84 = 64.40 [1]
 ant@hp-m8100y:~/school/cs297$./ompGroupAve 4
 30 34 71 67 77 81 90 10 32 27 AVE = 51.90
 23 77 0 93 16 96 11 20 49 55 AVE = 44.00
 68 96 65 22 25 18 72 1 81 53 AVE = 50.10
 56 11 39 79 78 68 60 20 78 45 AVE = 53.40
 47 54 22 99 47 38 48 58 11 49 AVE = 47.30
 13 79 45 78 1 22 97 73 24 30 AVE = 46.20
 78 32 41 69 11 19 38 24 91 68 AVE = 47.10
 69 91 22 43 90 70 34 38 28 45 AVE = 53.00
 88 94 24 85 24 77 8 73 51 84 AVE = 60.80
 3 81 16 44 51 79 15 41 3 59 AVE = 39.20

 30 34 71 67 77 81 90 10 32 27 = 54.80 [0]
 3 11 39 79 78 68 60 3 3 59 = 44.00 [3]
 78 = 44.00 [2]
 69 91 22 43 23 96 11 20 49 55 = 54.60 [0]
 68 96 65 22 25 90 18 34 28 1 = 40.20 [0]
 20 = 40.20 [1]
 47 54 22 99 47 38 48 45 28 45 = 48.60 [2]
 88 94 24 85 24 77 8 73 58 51 49 = 57.30 [2]
 = 57.30 [1]
 13 79 45 78 1 22 97 73 24 30 = 46.20 [1]
 ant@hp-m8100y:~/school/cs297$./ompGroupAve 8
 65 86 84 57 80 39 95 21 15 85 AVE = 62.70
 9 19 2 86 57 83 46 85 99 16 AVE = 50.20
 13 50 26 75 15 96 59 33 47 57 AVE = 47.10
 83 64 95 67 21 75 58 68 97 25 AVE = 65.30
 6 58 45 8 96 2 92 43 39 43 AVE = 43.20
 11 53 93 89 28 60 38 40 94 85 AVE = 59.10
 97 77 49 93 96 23 20 7 43 69 AVE = 57.40
 84 49 28 29 58 24 84 2 19 23 AVE = 40.00
 45 31 76 91 72 57 51 10 97 97 AVE = 62.70
 95 46 26 97 39 75 72 12 34 15 AVE = 51.10

 13 97 77 77 49 75 96 65 86 84 57 80 6 45 92 10 39 39 20 = 62.90 [2]
 11 53 93 89 28 60 38 97 96 97 97 = 60.60 [4]
 95 46 26 97 39 75 72 12 40 = 62.90 [0]
 9 19 2 86 57 83 46 85 = 60.60 [1]
 83 64 95 67 21 75 58 68 97 25 = 65.30 [1]
 99 = 65.30 [0]
 = 62.90 [3]
 84 49 28 34 29 39 24 72 2 34 23 = 38.40 [3]
 = 38.40 [4]
 85 = 38.40 [2]

28

The problem is caused by shared variables total, index, j, and because they are shared by

all threads, updated values on one thread affects the other. Although loop variables are private by

default, inner nested loop variables are not. So, a good idea is to make total, index, j to be

private explicitly. There are several changes in the second revision of the program. Beside output

formatting changes for readability, the most important change is the omp pragma that sets i, j,

total, index to be private at line 28 in Figure 27. By making i, j, total, index private,

each thread can access array through index variable without interfering with other threads' index

value. With this setting, each thread can fully iterate 10 consecutive score correctly.

29

Figure 27: Add OpenMP directive to specify i, j, total, index as private at line 28

 #include <stdio.h>
 #include <omp.h>
 #include <time.h>

 void randomize_array(int array[]);
 void print_array(int array[]);

 int main(int argc, char* argv[]){
 int tnum=0;

 if(argc != 2){
 printf("Usage %s number_of_thread\n", argv[0]);
 return 1;
 }
 tnum=atoi(argv[1]);
 if(tnum==0){
 printf("Number of thread should be a number\n");
 return 2;
 }
 printf("------------\nNumber of cores: %d\n------------\n",omp_get_num_procs());
 omp_set_num_threads(tnum);

 int array[100]={0};
 int i=0, j=0, index=0, total=0;
 randomize_array(array);
 printf("------------\n");
 //27
 #pragma omp parallel for private(i,j,total,index) //28
 for(i=0;i<10;i++){ //29
 total=0; //30
 for(j=0;j<10;j++){
 index=i*10+j;
 total+=array[index];

}
 printf("AVERAGE = %2.2f [TheadID: %d]\n",total/10.0, omp_get_thread_num());
 }

 }
 /*
 * Randomize array elements
 */
 void randomize_array(int array[]){
 int i=0,j=0,total=0;
 unsigned int iseed = (unsigned int)time(NULL);
 srand (iseed);
 for(i=0;i<10;i++){
 total=0;
 for(j=0;j<10;j++){
 array[i*10+j]=rand()%100;
 total+=array[i*10+j];
 printf("%2d ", array[i*10+j]);
 }
 printf(" AVE = %2.2f\n",total/10.0);
 }
 }

 /*
 * Print out the array
 */
 void print_array(int array[]){
 int i=0,j=0;
 for(i=0;i<100;i++){
 printf("%2d ", array[i]);
 if(i%10==9)
 printf("\n");
 }
 }

30

Figure 28: Output of OpenMP program after making variables (i, j, total, index) private

The next program is the sequence number generator. The program will generate sequence

numbers 10,000 times in a loop, and we tell the compiler that we want to run the loop in parallel

with a different number of threads from user input. In this program, threads will race each other

to get the next sequence number using OpenMP threads. One or more threads may get the same

consecutive number if they happen to perform increment operation at the same time.

 ant@antux:~/school/cs297$./ompPPGroupAvg 4

 Number of cores: 2

 72 3 25 43 32 46 16 48 88 93 AVE = 46.60
 55 88 16 65 55 41 98 0 32 38 AVE = 48.80
 0 5 97 31 45 38 76 5 92 14 AVE = 40.30
 56 65 69 82 8 53 28 76 1 16 AVE = 45.40
 69 9 56 38 74 12 31 24 12 63 AVE = 38.80
 14 65 20 11 96 18 2 72 23 94 AVE = 41.50
 38 31 59 8 13 20 61 94 96 63 AVE = 48.30
 62 18 24 19 8 50 83 39 74 47 AVE = 42.40
 54 40 12 75 3 60 93 5 33 68 AVE = 44.30
 0 71 99 59 31 65 31 93 59 80 AVE = 58.80

 AVERAGE = 46.60 [ThreadID: 0]
 AVERAGE = 48.80 [ThreadID: 0]
 AVERAGE = 40.30 [ThreadID: 0]
 AVERAGE = 58.80 [ThreadID: 3]
 AVERAGE = 48.30 [ThreadID: 2]
 AVERAGE = 42.40 [ThreadID: 2]
 AVERAGE = 44.30 [ThreadID: 2]
 AVERAGE = 45.40 [ThreadID: 1]
 AVERAGE = 38.80 [ThreadID: 1]
 AVERAGE = 41.50 [ThreadID: 1]
 ant@antux:~/school/cs297$./ompPPGroupAvg 8

 Number of cores: 2

 53 88 37 63 39 37 50 17 15 3 AVE = 40.20
 96 19 27 75 54 83 51 68 37 4 AVE = 51.40
 91 47 35 99 96 90 17 89 96 23 AVE = 68.30
 89 1 63 26 17 2 16 67 72 83 AVE = 43.60
 22 20 54 1 95 8 85 98 28 74 AVE = 48.50
 55 71 21 90 71 69 32 40 58 80 AVE = 58.70
 15 99 34 78 26 51 33 94 70 5 AVE = 50.50
 77 93 25 32 94 72 92 31 22 73 AVE = 61.10
 5 77 44 78 19 67 47 3 60 57 AVE = 45.70
 84 75 57 18 6 35 21 39 81 91 AVE = 50.70

 AVERAGE = 68.30 [ThreadID: 1]
 AVERAGE = 43.60 [ThreadID: 1]
 AVERAGE = 48.50 [ThreadID: 2]
 AVERAGE = 58.70 [ThreadID: 2]
 AVERAGE = 50.50 [ThreadID: 3]
 AVERAGE = 61.10 [ThreadID: 3]
 AVERAGE = 45.70 [ThreadID: 4]
 AVERAGE = 50.70 [ThreadID: 4]
 AVERAGE = 40.20 [ThreadID: 0]
 AVERAGE = 51.40 [ThreadID: 0]
 ant@antux:~/school/cs297$

31

Figure 29: OpenMP implementation of sequence number generator

The program output in Figure 30 shows it running in 2, 4, and 8 threads, respectively. The

expected final number should be 10,000. However, the result shows different value for the last

request. Race condition causes multiple threads getting the same number; therefore, the number

increases incorrectly.

Figure 30: Race condition causes incorrect and inconsistent results

 #include <stdio.h>
 #include <omp.h>
 #include <time.h>

 int main(int argc, char* argv[]){
 int tnum=0;

 if(argc != 2){
 printf("Usage %s number_of_thread\n", argv[0]);
 return 1;
 }

 tnum=atoi(argv[1]);
 if(tnum==0){
 printf("Number of thread should be a number\n");
 return 2;
 }

 printf("------------\nNumber of cores: %d\n------------\n",omp_get_num_procs());
 omp_set_num_threads(tnum);

 int seq = 0,i=0;

 #pragma omp parallel for
 for(i=0; i<10000; i++){
 seq++;
 }
 printf("%d\n",seq);
 }

ant@antux:~/school/cs297$./ompSeqNum 2

 Number of cores: 2

 9695
 ant@antux:~/school/cs297$./ompSeqNum 4

 Number of cores: 2

 8446
 ant@antux:~/school/cs297$./ompSeqNum 8

 Number of cores: 2

 8913
 ant@antux:~/school/cs297$

32

Making seq++ to be an atomic statement by inserting #pragma omp atomic, the atomic

statement can only be executed by only one thread at a time. The atomic directive was added to

the program at line 25 in Figure 31.

Figure 31: Making seq++ to be executed atomically by adding ‘#pragma omp atomic’

Figure 32: Results after adding atomic directives to seq++

 #include <stdio.h>
 #include <omp.h>
 #include <time.h>

 int main(int argc, char* argv[]){
 int tnum=0;

 if(argc != 2){
 printf("Usage %s number_of_thread\n", argv[0]);
 return 1;
 }
 tnum=atoi(argv[1]);
 if(tnum==0){
 printf("Number of thread should be a number\n");
 return 2;
 }
 printf("------------\nNumber of cores: %d\n------------\n",omp_get_num_procs());
 omp_set_num_threads(tnum);

 int seq = 0,i=0;

 #pragma omp parallel for
 for(i=0; i<10000; i++){ //Line 24
 #pragma omp atomic //Line 25
 seq++; //Line 26
 } //Line 27
 printf("%d\n",seq);
 }

ANHs-MacBook-Pro:cs297 anhtrinh$./ompSeqNumAtomic 2

 Number of cores: 2

 10000
 ANHs-MacBook-Pro:cs297 anhtrinh$./ompSeqNumAtomic 4

 Number of cores: 2

 10000
 ANHs-MacBook-Pro:cs297 anhtrinh$./ompSeqNumAtomic 8

 Number of cores: 2

 10000

33

7. X10 Proposed Solution

X10 is the recent experimental language under development at IBM Research since 2004 in

collaboration with several academic partners. X10 is a member of Partitioned Global Address

Space (PGAS). Claiming it is a type-safe, parallel language, X10 aims at parallel system with

multi-core SMP nodes interconnected in scalable cluster configurations. X10 means ten-fold

productivity increases. It is designed for the modern multi-core era and for traditional clustered

architectures. X10 supports execution across multiple address spaces, also global object model.

Even though X10 has been under development for years, it is still in the early stages, and is still

considered unstable. Library support, interoperability, IDE, compiler performance, and runtime

performance of certain X10 idioms have their known issues. Besides claiming itself as type-safe,

X10 also guarantees that it will never have a logical deadlock with async, finish, atomic

operations [18, 24].

X10 compiler has 2 modes. One is Java-backend and the other is C++-backend. As shown in the

Figure 33, the X10 compiler will take in X10 source code and parse it into Abstract Syntax Tree,

and then generate C++ or Java output files per user choice. The output files are then passed to a

post-compiler to generate executable/class files as the final result of the compilation process.

These final output files can either execute in JVM (Java) or natively (C++).

Figure 33: X10 compiling architecture

34

7.1. Concurrency constructs

X10 has a limited number of concurrency constructs to ease multi-threaded program’s

development. The followings are the most basic concurrency constructs that a multi-thread

program would use in X10.

• async: Spawning an activity

By executing async(s), the program will spawn an activity – another word for a thread in X10

language – and execute statement s in parallel. While executing s in parallel, main will continue

and proceed with the next code statement [4].

In the sample HelloWorld.x10 above, the program is compiled with Java-backend. The main

thread executes the first println()at line 6, then it spawns another thread executing

println(at line 7, then continues without waiting for the spawning activity to finish.

Figure 34: HelloWorld program; the main activity spawn new activity to do println()

Figure 35: HelloWorld program output

• finish

 import x10.io.*;
 import x10.util.*;

 class HelloWorld{
 public static def main(args:Array[String](1)){
 x10.io.Console.OUT.println("Hello World 1"); //6
 async{ //7
 x10.io.Console.OUT.println("Hello World 2"); //8
 x10.io.Console.OUT.println("Goodbye 2"); //9
 } //10
 x10.io.Console.OUT.println("Goodbye 1");
 }
 }

ant@antux:~/school/cs297/x10$ x10c HelloWorld.x10
ant@antux:~/school/cs297/x10$ x10 HelloWorld
Hello World 1
Goodbye 1
Hello World 2
Goodbye 2

35

The statement finish S converts global termination to local termination. An activity A

executes finish S by executing S and then it waits for all activities spawned by S to terminate

[4].

A revised version of HelloWorld.x10 in Figure 36 with finish has different execution flow.

Main executes first println() then it spawns another activity to executes other println()

in the async block. Meanwhile, main waits for the spawning activity to finish before it can

proceed and execute the rest of the codes.

Figure 36: Modified HelloWorld making main activity to wait for all spawning thread to finish before it can execute line 13

Figure 37: HelloWorld program output with finish statement

• atomic: Atomic Blocks

X10 developers believe locks are low-level construct and error-prone synchronization

mechanism, which makes it very easy for a program to cause race conditions and deadlocks [24].

X10’s atomic blocks provide a high-level mechanism to obtain mutual exclusion. Programmers

can use atomic blocks to ensure shared data are maintained even though the data are being

accessed by multiple processes simultaneously [4].

import x10.io.*;
import x10.util.*;

class HelloWorld{
 public static def main(args:Array[String](1)){
 finish{
 x10.io.Console.OUT.println("Hello World 1");
 async{
 x10.io.Console.OUT.println("Hello World 2");
 x10.io.Console.OUT.println("Goodbye 2");
 }
 }
 x10.io.Console.OUT.println("Goodbye 1"); //13
 }
}

ant@antux:~/school/cs297/x10$ x10c HelloWorld.x10
ant@antux:~/school/cs297/x10$ x10 HelloWorld
Hello World 1
Hello World 2
Goodbye 2
Goodbye 1

36

The code snippet in Figure 38 will execute loops. For each loop iteration will spawn an activity.

Each activity will race to execute line 7, which is the important line of the program. By using

atomic, X10 ensures that statements in atomic block will be executable atomically without any

interference.

Figure 38: X10 program tests atomic block

Figure 39: Testing atomic block program output

• when: Conditional Atomic Blocks

Conditional atomic block allows an activity to wait for certain conditions to be met before

executing later code statements. However, conditional atomic block is not a guarantee if the

conditions hold intermittently [4].

7.2. X10 code examples

The following programs in this section demonstrate the usage of X10 concurrency constructs by

re-implementing above programming examples in the Java implementations and OpenMP

implementations sections. All the programs will be compiled and run using Java-backend.

A banking problem, where multiple threads are trying to deposit or to withdraw from an account

at the same time, demonstrates race condition handling in X10. The program has Holder class,

import x10.io.*;
import x10.util.*;
class AtomicBlock{
 public static def main(args:Array[String](1)){
 var v:int = 0;
 finish for([i] in 1..4) async{
 atomic{ //7
 v = i; //8
 x10.io.Console.OUT.println(i + " " + v); //9
 } //10
 }
 }
}

ant@antux:~/school/cs297/x10$ x10c AtomicBlock.x10
 ant@antux:~/school/cs297/x10$ x10 AtomicBlock
 1 1
 2 2
 3 3
 4 4

37

deposit and withdraw activities through Account API, which are deposit(amount:int)

and withdraw(amount:int). Within each method, add and subtract operations are set to

atomic statement as in line 11 and 15, as in Figure 40, to ensure that only one process access

functions one at a time.

38

Figure 40: Banking example – multiple threads access one account simultaneously. Each thread will deposit $1 to the

account 10,000 times

import x10.io.Console;
public class Banking{
 public static class Account{
 var id:int;
 var balance:int;
 public def this(id:int, balance:int){
 this.id = id;
 this.balance = balance;
 }
 public def withdraw(amount:int):int{
 atomic balance -= amount; //11
 return balance; //12
 } //13
 public def deposit(amount:int):int{ //14
 atomic balance += amount; //15
 return balance;
 }
 public def balance():int{ return balance;}
 }

 public static class Holder{
 var name:String;
 var acct:Account;

 public def this(name:String, acct:Account){
 this.name = name;
 this.acct = acct;
 }
 public def deposit(amount:int){ var balance:int =this.acct.deposit(amount);}
 public def withdraw(amount:int){var balance:int =this.acct.withdraw(amount);}
 }
 public static def main(args:Array[String](1)){
 var acct:Account = new Account(1000, 100000);
 var family:Holder = new Holder("Family", acct);
 Console.OUT.println("Initial Balance: 100000");
 Console.OUT.println("-----------------");
 Console.OUT.println("4 threads each will add $1 for 100000 times (total
$100000) to account balance.");
 finish for(1..4) async{
 for(1..100000){ family.deposit(1); }
 }
 Console.OUT.println("Balance: " + acct.balance());
 Console.OUT.println("-----------------");
 Console.OUT.println("4 threads each will subtract $1 for 100000 times (total
$100000) to account balance.");
 finish for(1..4)async{
 for(1..100000){family.withdraw(1); }
 }
 Console.OUT.println("Balance: " + acct.balance());
 Console.OUT.println("-----------------");
 Console.OUT.println("2 threads P1 will withdraw $1 for 1000 times, P2 will
deposit $1 for 1000 times");
 var p1:Holder = new Holder("P1", acct);
 var p2:Holder = new Holder("P2", acct);
 finish{
 async for(1..1000) p1.withdraw(1);
 async for(1..1000) p2.deposit(1);
 }
 Console.OUT.println("Balance: " + acct.balance());
 }
 }

39

Figure 41: Banking example program output for various scenarios

Extending the banking example, the program below simulates money transferring between 2

accounts and 2 account owners. Each account initially has $1,000,000 as its balance.

Simultaneously, each owner will transfer $500,000 from his account to the other account. The

program also utilizes X10 atomic blocks, but this time we set it as method level instead of

individual statement. The first two lines of the output show the initial balance of the accounts;

the last two lines show the balance after the program terminates. Both parts of the output give the

same result.

ant@antux:~/school/cs297/x10$ x10c Banking.x10
ant@antux:~/school/cs297/x10$ x10 Banking
Initial Balance: 100000

4 thread each will add $1 for 100000 times (total $100000) to account balance.
Balance: 500000

4 thread each will subtract $1 for 100000 times (total $100000) to account balance.
Balance: 100000

2 thread P1 will withdraw $1 for 1000 times, P2 will deposit $1 for 1000 times
Balance: 100000

40

Figure 42: BanksTransactions – two people, each has his own account – each simultaneously transfers money from his
account to the other

 import x10.io.*;
 import x10.io.Console;
 import x10.util.*;

 class BanksTransactions{
 public static class Account{
 var balance:int = 1000000;
 var accid:int = 0;

 public def this(accid:int){
 this.accid = accid;
 }

 public atomic def deposit(amount:int){ //Line 11
 this.balance += amount;
 }

 public atomic def withdraw(amount:int){ //Line 15
 this.balance -= amount;
 }

 public atomic def balance(){
 return this.balance;
 }
 }

 public static class Owner{
 var myacct: Account;
 var uracct: Account;
 var name: String;

 public def this(myacct: Account, uracct:Account, name:String){
 this.myacct = myacct;
 this.uracct = uracct;
 this.name = name;
 }

 public def transfer(amount: int){
 this.myacct.withdraw(amount);
 this.uracct.deposit(amount);
 }
 }

 public static def main(args:Array[String](1)){
 var account1:Account = new Account(1);
 var account2:Account = new Account(2);
 Console.OUT.println("Acct1: " + account1.balance());
 Console.OUT.println("Acct2: " + account2.balance());

 finish{
 val owner1:Owner = new Owner(account1, account2, "A");
 val owner2:Owner = new Owner(account2, account1, "B");
 async{
 for(1..500000){
 owner1.transfer(1);
 }
 }
 async{
 for(1..500000){
 owner2.transfer(1);
 }
 }
 }
 Console.OUT.println("Acct1: " + account1.balance());
 Console.OUT.println("Acct2: " + account2.balance());
 }
 }

41

Figure 43: First 2 lines of output show the balance of 2 accounts before transferring. Last 2 lines show the balance after
transferring, which is correct because they transfer to each other with the same amount

Duplicating the sequence number generation like in Java and OpenMP, two versions of the X10

program are implemented. One is using AtomicInteger, which is similar to the Java version, and

the other uses atomic block. The main thread of the program will spawn four threads. Each will

try to get 1000 sequence number simultaneously. If there is no race condition, the value of the

last request should be 4000.

Figure 44: AtomicSequenceInteger – 4 threads request unique numbers in parallel. Each will ask for 1000 times. The
implementation uses AtomicInteger object as solution.

Figure 45: AtomicSequenceInteger program output – indicating the last request having value of 4000

 ant@antux:~/school/cs297/x10$ x10c BanksTransactions.x10
 ant@antux:~/school/cs297/x10$ x10 BanksTransactions
 Acct1: 1000000
 Acct2: 1000000
 Acct1: 1000000
 Acct2: 1000000

 import x10.io.Console;
 import x10.util.concurrent.AtomicInteger;

 class AtomicSequenceInteger{
 public static class Generator{
 var seq:AtomicInteger=new AtomicInteger();
 public def this(start:int){
 seq.set(start);
 }

 public def next(){
 return seq.getAndIncrement();
 }

 public def current(){
 return seq.get()-1;
 }
 }

 public static def main(args:Array[String](1)){
 val gen = new Generator(1);
 Console.OUT.println("4 Threads each will try to get 1000 sequence number.");
 finish for(1..4) async{
 for(1..1000){
 gen.next();
 }
 }
 Console.OUT.println(gen.current());
 }
 }

 ant@antux:~/school/cs297/x10$ x10c AtomicSequenceInteger.x10
 ant@antux:~/school/cs297/x10$ x10 AtomicSequenceInteger
 4 Threads each will try to get 1000 sequence number.
 4000

42

By implementing using atomic block, the SequenceNumber mimics the AtomicInteger

object behavior.

Figure 46: X10 implementation of sequence number generator

The final program is the consumer/producer problem. The program Producer will read an

input and put each character to Buffer. Buffer is a bounded ArrayList with max size of

10 elements. With conditional atomic block, producer can only put characters when buffer is not

full. Similarly, consumer can only take one character if the queue is not empty. When producer

reaches the end of the file, it will put '\003', indicating that it finished reading the input file and

will terminate. When consumer sees '\003', it will also terminate. Consumer will fetch the

character from Buffer and output that into a file. The final result is the replication of the input

file. The goal of this program is to test the conditional atomic construct in X10.

 import x10.io.Console;
 class SequenceNumber{
 public static class Generator{
 var seq:int=0;
 public def this(start:int){
 seq = start;
 }

 public atomic def next(){
 return seq++;
 }

 public def current(){
 return seq-1;
 }
 }

 public static def main(args:Array[String](1)){
 val gen = new Generator(1);
 Console.OUT.println("4 Threads each will try to get 1000 sequence number.");
 finish for(1..4) async{
 for(1..1000){
 gen.next();
 }
 }
 Console.OUT.println(gen.current());
 }
 }

43

Figure 47: X10 implementation of consumer/producer problem

 import x10.io.*;
 import x10.util.*;
 class ConsumerProducerFile{
 public static class Consumer{
 var buffer:Buffer;
 public def this(buffer:Buffer){ this.buffer = buffer; }
 public def consume(item:Char){
 if(item == '\003'){ return; } //HIT END OF FILE INDICATOR
 val filepath = "ConsumerProducerFile-Copy.x10";
 var file:File = new File(filepath);
 var buf:ArrayList[Char] = new ArrayList[Char]();
 try{
 if(file.exists()){
 var fr:FileReader = new FileReader(file);
 while(fr.available() > 0){
 var char:Char = fr.readChar();
 buf.add(char);
 }
 fr.close();
 }
 var fw:FileWriter = new FileWriter(file);
 for(char in buf){ fw.writeChar(char); }
 fw.writeChar(item);
 fw.close();
 }catch(e:Exception){ e.printStackTrace(); }
 }
 public def start(){
 var item:Char;
 do{
 item = this.buffer.removeItem();
 consume(item);
 }while(item!='\003');
 x10.io.Console.OUT.println("Consumer finished.");
 }
 }

 public static class Producer{
 var buffer:Buffer;
 public def this(buffer:Buffer){ this.buffer = buffer; }
 public def start(){
 var fr:FileReader=new FileReader(new Fle("ConsumerProducerFile.x10"));
 while(fr.available() > 0){
 val item:Char = fr.readChar();
 this.buffer.addItem(item);
 }
 this.buffer.addItem('\003');
 fr.close();
 x10.io.Console.OUT.println("Producer finished.");
 }
 }

 public static class Buffer{
 var ptr:int=0, size:int;
 var queue:ArrayList[Char];
 public def this(size:int){
 this.size = size;
 queue = new ArrayList[Char](size);
 }
 public def addItem(item:Char){ when(queue.size()<size) queue.add(item); }
 public def removeItem(){ when(queue.size()>0) return queue.removeFirst(); }
 public atomic def size(){ return queue.size(); }
 }

 public static def main(arg:Array[String](1)){
 val buffer = new Buffer(10);
 val con = new Consumer(buffer);
 val pro = new Producer(buffer);
 finish{
 async pro.start();
 async con.start();
 }
 }
}

44

Figure 48: Verify consumer/producer program by running 'ls -l' and 'diff' commands

Because the X10 IO package does not provide a way to open a file in append mode, a

workaround is implemented. Appending is simulated by opening the file, reading every character

into an ArrayList, appending the newly read from the Buffer queue to the end of

ArrayList. Then the consumer will write the ArrayList of characters back to the file with

“-Copy” in the file name. With bounded memory, consumer can only take an item in the

Buffer when the queue is not empty. Likewise, producer can only put an item into the queue if

the queue is not full. Within the class Buffer, two underlined statements in Figure 47

demonstrate the usage of X10 conditional atomic block. Comparing the input and the output of

the program by executing 'ls -l' and 'diff', the two files are the same.

Conditional atomic block in X10 is implemented as spinlock. To prove the claim of when(c)

not to guarantee if c holds intermittently, we write a simple routine. The program contains a

number variable initialized with 0. Main will spawn two threads: one increases the value of

number through a loop; the second will wait and check if the number reaches 5, then print out

the value. The program runs for several iterations and the results are not the same. Sometimes the

program terminates; other times it just hangs. By checking the system task monitor, we can see

the CPU spins 100%. So, programmers must use when(condition) with care.

Figure 49: Testing ‘when’ construct in X10, ‘when(c)’ fails when ‘number++’ is instantaneous

ant@antux:~/school/cs297/x10$ ls -l ConsumerProducerF*.x10
-rw-r--r-- 1 ant ant 2102 2011-05-25 03:02 ConsumerProducerFile-Copy.x10
-rw-r--r-- 1 ant ant 2102 2011-05-25 01:23 ConsumerProducerFile.x10
ant@antux:~/school/cs297/x10$ diff ConsumerProducerFile.x10 ConsumerProducerFile-Copy.x10
ant@antux:~/school/cs297/x10$

class TestWhen{
 public static def main(Array[String](1)){
 var number:int=0;
 finish{
 async{
 when(number==5)
 Console.OUT.println(number);
 }
 async{
 for(i int 0..10)
 number++;
 }
 }
 }
 }

45

8. Performance

For further study of the X10 programming language, this section examines runtime performance

of X10 and Java on a single local machine. Since X10 is a “higher-level” language than Java and

C++, X10 performance is considered optimal if Java-backend performance is comparatively

equal with core Java performance. Hopefully, Native-backend compilation will surpass Java.

To assume X10 has Java and C++ comparable performance is a bit optimistic because X10 will

likely generate extra codes adding overhead that an ordinary optimized program would not.

Therefore, it is expected that X10 Java-backend will run slower than Java. In addition, X10

runtime environment is an extension of Java runtime environment (JRE); the runtime

environment has an impact on Java-backend programs. At the same time, Native-backend may

generate extra overhead in C++ code, but Native-backend is expected to run faster than Java

because C++ object code does not need to run through a virtual machine.

In this experiment, three basic algorithms were used for performance benchmarking: quick sort

algorithm, matrix multiplication, and AES encryption. Each algorithm will run with three

different data sets, and each data set will run 25 times and be measured in milliseconds (ms).

All test cases will use the same environment as follows:

• Operating System: Linux Ubuntu version 11.11 (32-bits)

• CPU: Quad-cores 2.4GHz (No hyper-threading)

• Memory: 4GB RAM

• Java version: 6.0SE

• Gcc 4.6

8.1. Quick sort

Quick sort is an O(nlog n) sorting algorithm, which was developed by Tony Hoare. Using a

divide-and-conquer approach, the algorithm picks a pivot and rearranges elements into two

regions. Larger or equal elements than pivot will stay on right half and smaller will stay on the

46

left half. This process is preferred as partition. The algorithm then recursively repeats the

operation for right and left regions until all items are sorted [5, 22].

Figure 50: Quick sort partitions [22]

In a sequential version of quick sort, the algorithm will pick one side after first partitioning,

splitting that half into another 2 sub regions, and repeat the operation until the smallest region

containing 2 elements is sorted. After the two regions on the left furthest side are sorted, the

algorithm will work on the sibling regions and work back up. The recursive algorithm will use

call stack heavily to keep track of function calls and return.

In a parallel version, sub regions are stacked for later processing; the program will spawn new

threads to operate on sub regions in parallel fashion. When all threads finish processing, all sub

regions should be sorted. If a system can create an unlimited number of processes, a large divide-

and-conquer problem is solved in a short time. In reality, a system always has limitations.

In this experiment, quick sort java-implementation has a small, limited number of processes. The

main thread first partitions the original input list, then it splits the list into 2 sub regions and

spawns 2 processes where each thread will operate on one region in parallel with the other.

Again, each sub region will split and spawn another 2 processes, which will create 4 more

processes. The 4 newly created processes will operate as single-threaded quick sort versions on

the subset elements. The X10 quick sort program will have total of 7 processes as illustrated

below.

47

15, 5, 11, 0, 1, 4, 2, 8, 10, 3, 9, 13, 7, 6, 12, 14 1st

6, 5, 7, 0, 1, 4, 2, 3 10, 8, 9, 13, 11, 15, 12, 14 2nd

A[...] B[...] C[...] D[...] 3rd

There are three test cases for sorting random numbers for each language and compilation mode.

Each test case will sort 1, 10, and 100 million of random-generated numbers ranging from 0 to

231-1 (max value of integer). Normally, a system always has many OS processes running in the

background, so putting a timer in the program may not get accurate elapse time. Therefore, this

experiment will run the program multiple times, then take the mean of all results. Because this

experiment is about comparing performance between two languages, the conclusion can be

drawn as long as both programs run under the same environment.

8.1.1. Java

The following figures illustrate the runtime results of quick sort using Java implementation.

They show the runtime results of sorting 1, 10, and 100 million random numbers 25 times.

The Figure 51 shows the program taking 139 ms at minimum and 224 ms at maximum to sort.

On average, the program takes 173.6 ms to finish sorting 1 million numbers. (For more details,

see Appendix A.)

Figure 51: Java quick sort - sorting 1 million numbers

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

T
im

e
 (

m
s)

Run number

Run Average Min: 139

Max: 224

Mean: 173.6

48

Figure 52 shows the runtime result of sorting 10 million numbers using Java implementation.

The results show at minimum the program taking 833 ms, and at maximum taking 1846 ms to

finish. On average, it takes 1179.16 ms. (For more details, see Appendix A.)

Figure 52: Java quick sort - sorting 10 million numbers

Figure 53 shows the program taking 9282 ms at minimum, and taking 20502 ms at maximum to

sort. On average, the program takes about 13380.26 ms to finish sorting. (For more details, see

Appendix A.)

 Figure 53: Java quick sort - sorting 100 million numbers

0

500

1000

1500

2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

T
im

e
 (

m
s)

Run number

Run Average

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

T
im

e
 (

m
s)

Run number

Run Average

Min 833

Max: 1846

Mean: 1179.16

Min: 9282

Max: 20502

Mean: 13380.26

49

8.1.2. X10 Java-backend

The following figures illustrate the runtime results of quick sort using X10 implementation with

Java-backend compilation. This experiment uses X10 implementation from a tutorial found at

X10’s official website [27].

Figure 54 shows the program taking 813 ms at minimum, and 1182 ms at maximum. On average,

the program takes 924.52 ms to finish based on 25 runs. (For more details, see Appendix A.)

Figure 54: X10 Java-backend - sorting 1 million numbers

Figure 55 shows the runtimes of sorting 10 million numbers. The program takes at least 4914

ms, and at maximum 5459 ms to finish sorting. On average, the program takes 5076.32 ms to

sort. (For more details, see Appendix A.)

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

T
im

e
 (

m
s)

Run number

Run Average Min: 813

Max: 1182

Mean: 934.52

50

Figure 55: X10 Java-backend - sorting 10 million numbers

Figure 56 shows the runtimes of sorting 100 million numbers. The program takes 47120 ms at

the minimum and 49822 ms at the maximum to finish. On average, the program takes 48335.21

ms to finish sorting. (For more details, see Appendix A.)

Figure 56: X10 Java-backend - sort 100 million numbers

4600

4700

4800

4900

5000

5100

5200

5300

5400

5500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

T
im

e
 (

m
s)

Run number

Run Average

45500

46000

46500

47000

47500

48000

48500

49000

49500

50000

50500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

T
im

e
 (

m
s)

Run number

Run Average

Min: 4914

Max: 5459

Mean: 5076.32

Min: 47120

Max: 49822

Mean: 48335.21

51

8.1.3. X10 C++-backend

The following figures illustrate the runtime results of quick sort using X10 implementation with

C++-backend compilation. This experiment also uses the same X10 implementation from a

tutorial found at X10’s official website, except that the program is compiled using C++-backend.

Figure 57 shows the runtime results of sorting 1 million numbers using X10 C++-backend. The

program takes 2912 ms at minimum, and 3518 ms at maximum to finish sorting. On average, the

program takes 3220.92 ms. Looking at the graph, the runtime is more uniform compared to other

Java implementation and Java-backend, but it is slower. (For more details, see Appendix A.)

Figure 57: X10 C++-backend – sorting 1 million numbers

Figure 58 shows the runtime result of sorting 10 million numbers. The program takes 32436 ms

at the maximum and 29016 ms at the minimum. On average, the X10 C++-backend takes

31314.8 ms to finish sorting. The last 5 runs seem to be faster the first 20, yet it is much slower

compared to Java implementation or Java-backend. (For more details, see Appendix A.)

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Run Average Min: 2912

Max: 3518

Mean: 3220.92

52

Figure 58: X10 C++-backend – sorting 10 million numbers

Figure 59 shows the runtime result of sorting 100 million numbers for 5 times. The program

takes 313976 ms at the maximum and 311708 ms at the minimum. On average, it takes 312974.4

ms to finish sorting. The experiment is stopped after 5 times because each run takes more than 5

minutes. Even with 5 results, it is sufficient to say that X10 C++-backend is very slow. (For

more details, see Appendix A.)

Figure 59: X10 C++-backend – sorting 100 million numbers

27000

28000

29000

30000

31000

32000

33000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Run Average

310500

311000

311500

312000

312500

313000

313500

314000

314500

1 2 3 4 5

Series1 Series2

Max: 32436

Min: 29016

Mean: 31314.8

Max: 313976

Min: 311708

Mean: 312974.4

53

8.1.4. Quick sort summary

In Figure 60, the chart shows the averages of all runs from both languages and test cases. The

first three columns are the average of sorting 1 million numbers where Java takes 173.6

milliseconds; X10 Java-backend takes 934.52 milliseconds; and X10 C++-backend takes

3220.92 milliseconds. The next three columns are averages sorting 10 million numbers, and the

last three columns are averages sorting 100 million numbers.

Figure 60: Quick sort comparison of all test cases of both languages and compilation modes

According to Figure 60, Java takes the shortest time for all cases to finish sorting. Meanwhile,

X10 C++-backend takes the longest time for all test cases. On the other hand, Java-backend

performs better when data size increases. For 1 million numbers, X10 Java-backend is more than

4X slower compared to ordinary Java, less than 4X for 10 million numbers, and less than 3X for

100 million numbers.

173.6 1179.16

20502934.52

5076.32

48335.21

3220.92

31314.8

312974.4

0

50000

100000

150000

200000

250000

300000

350000

1 million numbers 10 million numbers 1000 million numbers

Quicksort

Java X10 Java-backend X10 C++-backend

54

The CPU histogram in Figure 61 and Figure 62 shows that all four cores actively work proves

that X10 utilizes all cores in both compilation modes. Looking at memory usage, X10 uses more

memory than Java: 1.4GB for X10 Java-backend, 727.4 MB for X10 C++-backend, and

692.9MB for Java as Figure 61, Figure 62, and Figure 63. However, X10 performance is nothing

close to the ordinary Java version.

Figure 61: X10 Java-backend quick sort CPU usage

Figure 62: X10 C++-backend quicksort CPU usage

55

Figure 63: Java quick sort CPU usage

8.2. Matrix multiplication

To continue with benchmarking, this study also measures the performance of matrix

multiplication using naive matrix multiplication algorithm. Naive matrix multiplication

algorithm is the most basic way to multiply matrices. Elements in the resulting matrix C are the

dot products of rows from matrix A and columns from matrix B, as in Figure 64. Unlike quick

sort, which compares and then swaps elements, matrix multiplication uses simple mathematical

operations.

Figure 64: Matrix multiplication using naive algorithm [20]

56

In a multithreaded version, matrix A will be divided into 4 smaller matrices where each little

matrix An will multiply with matrix B in parallel as Figure 65. For example, when matrix

multiplying with 500x500 matrices, matrix A will be divided into 4 smaller matrices at a size of

124x500 where each piece multiplies with 500x500 matrix B. Each individual smaller matrix

multiplication should not have any data dependency on other. Because they do not have any data

dependency, dot product results can be put into only one result matrix without worrying about

the other overwriting the same element index.

Figure 65: Matrix A is divided into 4 smaller matrices by purple lines; each sub matrix can do multiplication with matrix B in

parallel

8.2.1. Java

The following figures illustrate the runtimes of matrix multiplication using Java implementation.

Figure 66 shows the runtime of matrix size 500x500. The program at minimum takes 228 ms,

and at maximum takes 252 ms to finish operation. On average, it takes 235.08 ms to finish. (For

more details, see Appendix A.)

57

Figure 66: Java matrix multiplication 500x500 matrices

Figure 67 shows the runtime of matrix size 1000x1000. The program at minimum takes 2259 ms,

and at maximum takes 2537 ms to finish operation. On average, it takes 2333.63 ms to finish.

(For more details, see Appendix A.)

Figure 67: Java matrix multiplication 1000x1000 matrices

215

220

225

230

235

240

245

250

255

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Run Average

2100

2150

2200

2250

2300

2350

2400

2450

2500

2550

2600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Run Average

Min: 228

Max: 252

Mean: 235.08

Min: 2259

Max: 2537

Mean: 2333.63

58

Figure 68 shows the runtime of matrix size 2000x2000. The program at minimum takes 21921

ms, and at maximum takes 23200 ms to finish operation. On average, it takes 22639.56 ms to

finish. (For more details, see Appendix A.)

Figure 68: Java matrix multiplication 2000x2000 matrices

8.2.2. X10 Java-backend

The following figures illustrate the runtimes of matrix multiplication using X10 implementation

with Java-backend compilation. Figure 69 shows the runtime of matrix size 500x500. The

program at minimum takes 228 ms, and at maximum takes 252 ms to finish operation. On

average, it takes 235.08 ms to finish. (For more details, see Appendix A.)

Figure 69: X10 Java-backend matrix multiplicaiton 500x500

21000

21500

22000

22500

23000

23500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Run Average

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Run Average

Min: 21921

Max: 23200

Mean: 22639.56

Min: 234

Max: 333

Mean: 278.44

59

Figure 70 shows the runtime of matrix size 1000x1000. The program at minimum takes 2223

ms, and at maximum takes 2843 ms to finish operation. On average, it takes 2449.12 ms to

finish. (For more details, see Appendix A.)

Figure 70: X10 Java-backend matrix multiplication 1000x1000 matrices

Figure 71 shows the runtime of matrix size 2000x2000. The program at minimum takes 16288

ms, and at maximum takes 20720 ms to finish. On average, it takes 16959.6 ms to finish. (For

more details, see Appendix A.)

Figure 71: X10 Java-backend matrix multiplication 2000x2000 matrices

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Run Average

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Run Average

Min: 2223

Max: 2843

Mean: 2449.12

Min: 16288

Max: 20720

Mean: 16959.6

60

8.2.3. X10 C++-backend

The following figures illustrate the runtimes of matrix multiplication using X10 implementation

with C++-backend compilation. Figure 72 shows the runtime of matrix size 500x500. The

program at minimum takes 356 ms, and at maximum takes 721 ms to finish operation. On

average, it takes 401.4 ms to finish. (For more details, see Appendix A.)

Figure 72: X10 C++-backend matrix multiplication 500x500 matrices

Figure 73 shows the runtime of matrix size 1000x1000. The program at minimum takes 3696

ms, and at maximum takes 5479 ms to finish operation. On average, it takes 3906.12 ms to

finish. (For more details, see Appendix A.)

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Series1 Series2
Min: 356

Max: 721

Mean: 401.4

61

Figure 73: X10 C++-backend matrix multiplication 1000x1000 matrices

Figure 73 shows the runtime of matrix size 2000x2000. The program at minimum takes 33098

ms, and at maximum takes 34644 ms to finish operation. On average, it takes 33278.88 ms to

finish. (For more details, see Appendix A.)

Figure 74: X10 C++-backend matrix multiplication 2000x2000 matrices

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Run Average

32000

32500

33000

33500

34000

34500

35000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Run Average

Min: 3696

Max: 5479

Mean: 3906.12

Min: 33098

Max: 34644

Mean: 33278.88

62

8.2.4. Matrix multiplication summary

In Figure 75, the first three columns show averages of multiplying 500x500 matrices; the second

set of columns show averages for 1000x1000 matrices; and the last three show averages runtime

for 2000x2000 matrices. The runtime performance is different than quick sort performance.

X10 is not as much slower than Java. In contrast, X10 Java-backend performs even faster than

ordinary Java implementation with large matrices. Looking at the matrix size 500x500 and

1000x1000, Java-backend catches up in terms of speed. For 2000x2000, Java-backend takes less

time to finish. Even though, C++-backend is still slower than Java for all these test cases, C++-

backend closes the performance gap. For large, less data-dependent problems, X10 tends to

perform well. Unlike quick sort, compare-and-swap operations are slow.

Figure 75: Matrix multiplication Java/X10

235.08

2333.64

22639.56

278.44

2449.12

16969.6

401.4

3906.12

33278.88

0

5000

10000

15000

20000

25000

30000

35000

500x500 1000x1000 2000x2000

Matrix multiplication

Java X10 Java-backend X10 C++-Backend

63

8.3. Advanced Encryption Standard (AES)

Unlike the previous two benchmarks, which are compare-then-swap operations for sorting and

simple mathematics for matrix multiplication, AES encryption benchmark involves lower-level

operations, such as switching, shifting bits and bytes. This experiment implements AES ECB

mode using 256 bits key size. Because AES algorithm is widely known and there are many open-

source implementations in various programming languages available online, the experiment uses

a Java implementation by Popa Tiberiu [21]. The approach included any existing implementation

in Java, porting it to X10 language, and then benchmarking the run time performance.

The parallel approach is to split the input file into 4 chunks as long as each chunk is the correct

size. In ECB mode, current encryption block is not related to previous block or next block,

which makes AES parallelization implementation easier. Using an object-oriented approach, an

AES object initialization takes plain text chunk, key, and index offset from the original plain text

as parameters. Once all AES objects are ready, it will start encrypting the plain text input.

When all of them finish encrypting their assigned chunks, the main process takes output from all

AES objects and assembles them back in to one. Times are captured when processes start and

finish encryption operations. Any I/O operations, such as file assembly and file saving, will be

ignored.

There will be 3 test cases where each will have different input file sizes: 2.1 Mbytes, 10.6

Mbytes, and 39.9 Mbytes. Similar to other algorithm test cases, each runs 25 times.

8.3.1. Java

The following figures illustrate the runtime results of AES encryptions using Java

implementation. Figure 76 shows the runtimes of encrypting 2.1 Mbytes file. The Java program

takes 891 ms at minimum and 1045 ms at maximum to finish encryption. On average, it takes

949.56 ms for encryption. (For more details, see Appendix A.)

64

Figure 76: Java - encrypt 2.1 Mbytes file

Figure 77 shows the runtimes of encrypting a 10.6 Mbytes file. The Java program takes 3968 ms

at minimum and 4332 ms at maximum to finish encryption. On average, it takes 4094.58 ms to

encrypt. (For more details, see Appendix A.)

Figure 77: Java - encrypt 10.6 Mbytes file

800

850

900

950

1000

1050

1100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Run Average

3700

3800

3900

4000

4100

4200

4300

4400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Run Average

Min: 891

Max: 1045

Mean: 949.56

Min: 3968

Max: 4332

Mean: 4094.68

65

Figure 78 shows the runtimes of encrypting a 39.9 Mbytes file. The program takes 14569 ms at

minimum and 19885 ms at maximum to finish encryption. On average, it takes 15478.04 ms for

all processes to finish. (For more details, see Appendix A.)

Figure 78: Java - encrypt 39.9 Mbytes file

8.3.2. X10 Java-backend

The following figures illustrate the runtime results of AES encryption using X10 implementation

with Java-backend compilation. Figure 79 shows the runtimes of encrypting a 2.1 Mbytes file 25

times. The program takes 1826 ms at minimum and 2028 ms at maximum. On average, it takes

1906.64 ms to encrypt. (For more details, see Appendix A.)

Figure 79: X10 Java-backend encrypts 2.1Mbytes file

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Series1 Series2

1700

1750

1800

1850

1900

1950

2000

2050

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Run Average

Min: 14569

Max: 19885

Mean: 15478.04

Min: 1826

Max: 2028

Mean: 1906.64

66

Figure 80 shows the runtimes of encrypting a 10.6 Mbytes file 25 times. The program takes 8078

ms at minimum and 8289 ms at maximum. On average, it takes 8175.24 ms to encrypt. (For

more details, see Appendix A.)

Figure 80: X10 Java-backend encrypts 10.6 Mbytes file

Figure 81 shows the runtimes of encrypting a 39.9 Mbytes file 25 times. The program takes

28635 ms at minimum and 30678 ms at maximum to finish encrypting. On average, it takes

29003.4 ms for all processes to finish. (For more details, see Appendix A.)

Figure 81: X10 Java-backend encrypts 39.9 Mbytes file

7950

8000

8050

8100

8150

8200

8250

8300

8350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Run Average

27500

28000

28500

29000

29500

30000

30500

31000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Run Average

Min: 8078

Max: 8289

Mean: 8175.24

Min: 28635

Max: 30678

Mean: 29003.4

67

8.3.3. X10 C++-backend

The following figures illustrate the runtime results of AES encryption using X10 implementation

with C++-backend compilation. Figure 82 shows the runtimes of encrypting a 2.1 Mbytes file 25

times. The program takes 7795 ms at minimum and 9401 ms at maximum to finish encryption.

On average, it takes 8780.96 ms for all processes to finish. (For more details, see Appendix A.)

Figure 82: X10 C++-backend - encrypt 2.1Mbytes file

Figure 83 shows the runtimes of encrypting a 10.6 Mbytes file 25 times. The program takes

40355 ms at minimum and 56747 ms at maximum to finish. On average, it takes 44111.56 ms

for all processes to finish. (For more details, see Appendix A.)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Run Average Min: 7795

Max: 9401

Mean: 8780.96

68

Figure 83: X10 C++-backend - encrypt 10.6 Mbytes file

Figure 83 shows the runtimes of encrypting a 39.9 Mbytes file 25 times. The program takes

148668 ms at minimum and 212953 ms at maximum to finish. On average, it takes 161767.5 ms

for all processes to finish. (For more details, see Appendix A.)

Figure 84: X10 C++-backend - encrypt 39.9 Mbytes file

0

10000

20000

30000

40000

50000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Run Average

0

50000

100000

150000

200000

250000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Run Average

Min: 40355

Max: 56747

Mean: 44111.56

Min: 148668

Max: 212953

Mean: 161767.5

69

8.3.4. AES Summary

In this case, Java again outperforms X10 in either compilation method. The ordinary Java

version runs twice as fast X10 Java-backend and nearly 10 times as fast for the C++-backend.

For 2.1Mb file input, C++-backend runs less than 10 times slower than Java runtime, as file size

increases the runtime ratio changes.

• 2.1 Mb: C++-backend/Java = 9.25

• 10.6 Mb: C++-backend/Java = 10.77

• 39.9 Mb: C++-backend/Java = 10.45

Looking at the last column in the graph, C++-backend takes more than 10 times longer compared

to Java implementation. In this case, 10-times productivity does not mean 10-times faster.

X10 Java-backend seems to keep constants runtimes ratio or little better as file size increases

comparing to regular Java program.

• 2.1 Mb: Java-backend/Java = 2.008

• 10.6 Mb: Java-backend/Java = 1.997

• 39.9 Mb: Java-backend/Java = 1.874

Figure 85: AES Java/X10

949.56 4094.68

15478.04

1906.64 8175.24

29003.4

8780.96

44111.56

161767.5

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

2.1Mb 10.6Mb 39.9Mb

Java X10 Java-backend X10 C++-backend

70

9. Conclusion and future work

X10 programming syntax is very similar to C++ and Java, proving that the creators of this

language aimed to reduce the learning curve associated with learning a new programming

language. Since X10 supports OOP, Java and C++ programmers can pick up the language easily

within a short timeframe. Compared with OpenMP, I was having trouble inserting correct

directives into the programs and understanding the OpenMP directives. By eliminating lock, X10

programmers no longer have an option to think about locking, which is a good move because it is

one less thing to worry. Now, programmers can focus on how to solve parallelism with atomic

blocks and other concurrency constructs. With X10’s limited concurrency constructs, the X10

language is easier to develop multi-threaded programs than Java.

Even though X10 is more stable in later versions, it is not as mature as other languages. Looking

at X10 libraries, they are not rich as Java in terms of documentation and available functions.

Despite X10 being around for years, it is still considered a new programming language and was

adopted less by the developers’ community. Programming in X10 sometimes is frustrating

because there are limited resources to look to for help. Unlike Java or C/C++, there are not many

forums or blogs about any programming questions or issues, and only limited “X10 language”

related resources will come up in a Google or Bing search. Most of the results are from the X10

language website. Most active resources are mailing lists. Questions related to X10 are usually

answered within 24 hours by X10 developer team members, but users may not be able to find

solutions to their questions. Besides mailing lists, programmers will rely heavily on X10

language specification and library API documentation, which is very similar to the Java API

documentation format using Javadocs standard formats. For developing a multi-threaded

programming, X10 provides simple API for manipulating thread concurrency.

X10 seems to be more stable in version 2.0 or later. Looking at some earlier versions of X10

research papers, X10 language syntax was very different; it was very much like Java syntax.

Therefore, any old existing code would not be compiled in later versions. As X10 progressively

improves and changes, there are risks of working codes from previous versions being unable to

be compiled in the latest version. These backward compatibility issues are a normal risk when

developing with experimental languages.

71

After going through these programming exercises, it is clear that X10 has its own advantages and

disadvantages, including:

• Pros:

o Handles type-safe asynchrony and atomic constructs to support multi-threaded

environments.

o Mirrors and supports popular object-oriented programming languages like Java

and C++ language bindings for a faster learning curve and adoption.

o Open-source supported community lead by IBM and major universities and

research organization world-wide.

o Simple, concrete concurrency constructs.

• Cons:

o Still in early development and adoption phases and not mainstream yet.

o API still premature and lacks some key I/O features, such as appending to a file.

o Poor performance, as single local machine benchmarks show.

X10 performance is not as good as Java or C++ on multi-core local machine, in exchange X10

gives programmers easy ways to develop multi-threaded program. On a single machine, X10

may not have luck against Java, but X10 may have potential with cluster or multi-network nodes,

because X10 provides Place, DistArray for multiple-host environments. One good study

would compare performance between distributed computation in Java and X10.

In a previous AES benchmark, several tweaks were applied. The X10 language has real concept

of multi-dimensional array unlike other languages treating multi-dimensional array as array of

array. Therefore, the way to declare an array in X10 dictates how array access becomes

optimized. By replacing Rail[Byte] with Array[Byte], current AES performance boosts

by 25%. However, 25% more is nowhere close to Java. It would be good to see how X10

generates Java/C++ code, and then analyze to see what can be optimized. Another advanced

study would be applying artificial intelligence to an X10 compiler to scan program source code

and decide which type of array access should be used.

72

10. References

1. http://en.wikipedia.org/wiki/Parallel_computing

2. http://www.intel.com/pressroom/kits/upcrc/parallelcomputing_backgrounder.pdf

3. Mattson, T., & Wrinn, M. (2008). Parallel programming: can we PLEASE get it right this
time? In Proceedings of the 45th annual Design Automation Conference (DAC '08). New
York, NY: ACM. doi: 10.1145/1391469.1391474
http://doi.acm.org/10.1145/1391469.1391474

4. http://x10-lang.org/

5. Cormen, T. (2001). Introduction to Algorithms. Cambridge, MA: MIT Press.

6. http://en.wikipedia.org/wiki/Computer_cluster

7. http://en.wikipedia.org/wiki/Grid_computing

8. Akhter, S. (2006). Multi-core programming : increasing performance through software

multi-threading. Hillsboro, OR: Intel Press.
9. , Arvind; August, D., Pingali, K., Chiou, D., Sendag, R., & Yi, J.J. (2010). Programming

multicores: Do applications programmers need to write explicitly parallel programs? Micro,

IEEE, 30(3), 19-33.
doi: 10.1109/MM.2010.54
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5506935&isnumber=55069
26

10. Rau, B.R., & Fisher, J.A. (2003). Instruction-level parallelism. In A. Ralston, E.D. Reilly, &
D. Hemmendinger (Eds.), Encyclopedia of Computer Science (4th ed.) (833-837).
Chichester, UK: John Wiley and Sons Ltd.

11. Ramamoorthy, C.V. & Li, H.F. (1977). Pipeline Architecture. ACM Comput. Surv. 9, 1
(March 1977), 61-102. DOI=10.1145/356683.356687
http://doi.acm.org/10.1145/356683.356687

12. http://spectrum.ieee.org/semiconductors/processors/multicore-cpus-processor-proliferation

13. http://developers.sun.com/solaris/articles/raceconditions.html

14. Ross, P.E. (2008). Why CPU Frequency Stalled. Spectrum, IEEE, 45(4), 72.
doi: 10.1109/MSPEC.2008.4476447
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4476447&isnumber=44764
22

15. Chapman, M. (2005). The benefits of dual-core processors in high-performance computing.
IBM Systems and Technology Group URL: http://www-
07.ibm.com/servers/eserver/includes/content/opteron/pdf/XSW01277USEN.PDF

16. http://heprc.phys.uvic.ca/sites/heprc.phys.uvic.ca/

17. Oaks, S. (2004). Java threads. Beijing Farnham: O'Reilly.

73

18. Philippe, C., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von Praun,
C., & Sarkar, V. (2005). X10: An object-oriented approach to non-uniform cluster
computing. SIGPLAN Not, 40(10), 519-538. DOI=10.1145/1103845.1094852
http://doi.acm.org/10.1145/1103845.1094852

19. http://www.scl.ameslab.gov/Projects/parallel_computing/cluster_examples.html

20. http://en.wikipedia.org/wiki/Matrix_multiplication

21. http://n3vrax.wordpress.com/2011/08/14/aesrijndael-java-implementation/

22. http://en.wikipedia.org/wiki/Quicksort

23. Marr, D. T., Binns, F., Hill, D. L., Hinton, G., Koufaty, D. A., Miller, J. A., & Upton, M.
(2002). Hyper-Threading Technology Architecture and Microarchitecture. Intel Technology
Journal, 6(1), 1-12. Retrieved from http://www.mendeley.com/research/hyperthreading-
technology-architecture-and-microarchitecture/

24. Kemal, E., Saraswat , V., & Sarkar, V. X10: An experimental language for high productivity
programming of scalable systems (extended abstract). In Workshop on Productivity and
Performance in High-End Computing (P-PHEC), February 200

25. http://www.sjsu.edu/people/robert.chun/courses/CS286Fall2011/s1/PP%20is%20a%20Hard
ware%20Solution.pdf

26. http://www.gotw.ca/publications/concurrency-ddj.htm

27. http://x10-lang.org/documentation/tutorials/sc2010-tutorial.html

i

Appendix A: Data

Run number 1 million numbers 10 million numbers 100 million numbers

1 183 844 10778

2 151 941 10867

3 224 1206 20502

4 167 1497 9282

5 197 1211 16578

6 140 1184 12250

7 148 833 12344

8 184 1058 18824

9 151 884 14198

10 166 1017 14993

11 189 1332 12379

12 180 1350 10490

13 193 1050 11139

14 184 1023 10585

15 189 1567 12701

16 191 1403 11883

17 139 1383 11347

18 170 1846 15795

19 180 990 10129

20 156 934 19307

21 151 1412 9898

22 191 1084 16473

23 187 1103 14821

24 144 1245 11596

25 185 1082 10232

Table 1: Java quicksort runtime

ii

Table 2: X10 Java-backend - quicksort runtime

Run number 1 million numbers 10 million numbers 100 million numbers

1 906 5096 47621

2 885 4986 49096

3 964 5036 48008

4 1022 5053 47213

5 888 4979 49822

6 952 5074 48572

7 877 5132 49301

8 1053 5144 47986

9 874 4982 48722

10 846 5023 48751

11 1182 4974 48347

12 884 4936 47958

13 1002 5459 48189

14 813 5091 47665

15 888 5141 47486

16 897 5046 48765

17 972 4914 48892

18 940 5105 47723

19 923 5024 47562

20 878 5195 47843

21 829 5346 47120

22 964 5043 48748

23 1109 4967 49415

24 971 5130 49240

25 844 5032 49540

iii

Table 3: X10 C++-backend quick sort runtime

Run number 1 million numbers 10 million numbers 100 million numbers

1 3136 31250 311919

2 3176 31624 313735

3 3173 31792 311708

4 3180 31753 313976

5 3053 31539 313534

6 3377 31875

7 3249 31741

8 3067 31689

9 3291 31956

10 3162 32153

11 3287 32436

12 3432 31974

13 3205 31751

14 3388 31848

15 3333 32429

16 3456 31204

17 3361 31555

18 3518 31580

19 3291 31838

20 3422 31476

21 3068 29450

22 2964 29361

23 2912 29016

24 3037 29783

25 2985 29797

iv

Table 4: Java matrix multiplication runtime

Run number 500x500 1000x1000 2000x2000

1 234 2324 22316

2 246 2498 22139

3 250 2321 22411

4 252 2492 23200

5 238 2479 23021

6 232 2293 23116

7 229 2399 22698

8 232 2301 23084

9 228 2518 22924

10 234 2537 22365

11 230 2267 23152

12 231 2280 22377

13 247 2269 21921

14 230 2275 22986

15 231 2266 23014

16 229 2306 22341

17 230 2270 22351

18 233 2290 23061

19 229 2264 23148

20 232 2269 22367

21 230 2267 22331

22 244 2265 22779

23 235 2298 22337

24 229 2259 22169

25 242 2570 22381

v

Table 5: X10 Java-backend matrix multiplication runtime

Run number 500x500 1000x1000 2000x2000

1 274 2513 18176

2 258 2388 17888

3 248 2566 17637

4 269 2318 17805

5 274 2345 17504

6 249 2223 16306

7 295 2267 16340

8 256 2533 16309

9 279 2632 16296

10 258 2459 16364

11 234 2400 16325

12 301 2225 16288

13 286 2484 16375

14 304 2429 16307

15 289 2656 16324

16 311 2331 16315

17 333 2326 16296

18 283 2716 16378

19 316 2548 16327

20 251 2564 16331

21 255 2843 20356

22 330 2484 16397

23 300 2266 16325

24 249 2226 20720

25 259 2486 16301

vi

Table 6: X10 C++-backend matrix multiplication runtime

Run number 500x500 1000x1000 2000x2000

1 721 3783 33160

2 362 3726 34644

3 360 3789 33182

4 359 3740 33263

5 360 4960 33137

6 358 4106 33167

7 360 3765 33225

8 367 3714 33267

9 453 3707 33253

10 408 3776 33159

11 369 3806 33232

12 668 3789 33198

13 365 3892 33257

14 360 4072 33418

15 358 3884 33134

16 380 3747 33154

17 361 3744 33206

18 359 3696 33200

19 366 3714 33125

20 361 3713 33373

21 359 3818 33353

22 356 3751 33215

23 498 3748 33405

24 360 3734 33098

25 407 5479 33147

vii

Run number 2.1Mb 10.6Mb 39.9Mb

1 937 4072 15287

2 1009 4243 14569

3 902 4030 14840

4 977 4211 15383

5 934 4054 15064

6 897 4115 14818

7 954 4029 15717

8 1004 4059 15114

9 943 4060 14578

10 907 4077 14622

11 1010 4068 14842

12 983 4030 14695

13 968 4110 14848

14 1045 4066 14654

15 944 3968 14676

16 1017 4253 14633

17 925 4047 14823

18 921 4067 14691

19 927 4077 14572

20 916 4073 14688

21 935 4122 15202

22 891 4032 15521

23 944 4145 19885

24 918 4332 19573

25 931 4027 19656

Table 7: Java AES encryption runtime

viii

Table 8: X10 Java-backend AES encryption runtime

Run number 2.1Mb 10.6Mb 39.9Mb

1 1855 8157 29148

2 1892 8124 28758

3 1965 8231 28759

4 2002 8267 29117

5 1948 8140 28814

6 1910 8149 29060

7 1942 8154 29049

8 1905 8240 30678

9 1875 8078 28874

10 1828 8130 28635

11 1873 8247 28783

12 1826 8257 28753

13 1859 8195 28813

14 1863 8194 28866

15 2028 8181 28800

16 1916 8086 29044

17 2006 8148 29032

18 1950 8101 28907

19 1900 8281 29122

20 1869 8122 28930

21 1863 8289 29029

22 1913 8225 28966

23 1914 8150 29109

24 1933 8133 29069

25 1831 8102 28970

ix

Table 9: X10 C++-backend AES encryption runtime

Run number Run number 2.1Mb 10.6Mb

1 8813 43412 156748

2 8934 41554 154687

3 8922 43361 159324

4 9134 41828 161178

5 8759 43179 148668

6 8869 43847 154097

7 8369 42510 160107

8 9401 42687 155669

9 9228 45812 159137

10 7795 41385 160576

11 8835 42774 164165

12 8892 42880 160338

13 8955 56747 163077

14 8421 46936 212953

15 8648 43483 151674

16 8651 44635 152937

17 9335 52848 169783

18 8458 43522 161624

19 8912 46103 151929

20 8507 47644 153930

21 9112 42135 159085

22 8569 41115 161266

23 9068 40355 193453

24 8627 41297 160426

25 8310 40740 157356

	San Jose State University
	SJSU ScholarWorks
	Fall 2011

	X10 vs Java: Concurrency Constructs and Performance
	Anh Trinh
	Recommended Citation

	Microsoft Word - trinh_anh.docx

