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ABSTRACT

FAMILY OF CIRCULANT GRAPHS AND ITS EXPANDER PROPERTIES

by Vinh Kha Nguyen

In this thesis, we apply spectral graph theory to show the non-existence of an

expander family within the class of circulant graphs. Using the adjacency matrix

and its properties, we prove Cheeger’s inequalities and determine when the equalities

hold. In order to apply Cheeger’s inequalities, we compute the spectrum of a general

circulant graph and approximate its second largest eigenvalue. Finally, we show that

circulant graphs do not contain an expander family.
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CHAPTER 1

INTRODUCTION

In this chapter, we introduce the notion of an expander family. The chapter is

divided into two parts. The first part focuses on fundamental definitions of graph

theory. The second part emphasizes the adjacency matrix and its properties.

1.1 Basic Definitions and Examples

1.1.1 Basic Definitions

We begin by recalling some basic definitions. Readers should refer to [Wes01]

for more information.

Definition 1.1.1 (graph). A graph G is an abstract set consisting of a finite vertex

set V (G) and an edge set E(G).

In other words, a graph consists of objects and links between them. An object

is called a vertex, and a link is called an edge. We draw a graph by placing an edge

e = uv between two vertices u and v. Two vertices are called endpoints of an edge.

When vertex u has an edge to vertex v, we say u is adjacent to v, or u is a neighbor

of v.

Definition 1.1.2 (loop). A loop is an edge that connects a vertex to itself.
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Definition 1.1.3 (multiple edges). Multiple edges are edges having the same

pair of endpoints.

Definition 1.1.4 (simple graph). A simple graph is a graph having no loops or

multiple edges.

Remark 1.1.5. In this thesis, we assume that all graphs are simple and have a finite

number of vertices.

Definition 1.1.6 (path). A (v1, vk)-path is a finite sequence of distinct vertices

v1, v2, . . . , vk such that vi is adjacent to vi+1.

The definition of a (u, v)-path is essential to determine the connectedness of a

graph G, which plays a very important role in this thesis. G is connected if it has

a (u, v)-path whenever u, v ∈ V (G). Otherwise, G is disconnected.

Definition 1.1.7 (degree). The degree of a vertex v, denoted as d(v), is the number

of its neighbors or adjacent vertices.

A d-regular graph is a graph in which every vertex has degree d. Two simple

examples are the cycle Cn and the complete graph Kn. The cycle Cn is 2-regular

because Cn is a graph in which every vertex has degree two. On the other hand, the

complete graph Kn is (n − 1)-regular because Kn is a graph in which every vertex

has degree n− 1.

In every graph G, we can count the number of edges by summing the degrees

of all vertices. The resulting formula is a useful tool of graph theory.

Theorem 1.1.8 (Degree-Sum Formula).

∑
v∈V (G)

d(v) = 2|E(G)|
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Proof. Summing the degrees counts each edge twice because each edge has two

vertices as endpoints.

Theorem (1.1.8) is sometimes called the “First Theorem of Graph Theory” or

the “Handshaking Lemma”. It is an easy but far-reaching theorem, and it will be

used many times in this thesis.

Remark 1.1.9. Theorem (1.1.8) implies that the number of vertices of a d-regular

graph G is always even, when d is an odd integer.

Definition 1.1.10 (subgraph). H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆

E(G).

Definition 1.1.11 (components). The components of a graph G are its maximal

connected subgraphs.

An induced subgraph is a subgraph obtained by deleting a set of vertices and

the edges adjacent to them. In particular, when S is a subset of V (G), the induced

subgraph G[S] consists of S and all edges whose endpoints are contained in S. The

full graph G is itself an induced subgraph, as are the individual vertices. A subgraph,

however, may not be an induced subgraph. For example, a path with four vertices is

a subgraph of C4, but it is not an induced subgraph of C4.

The order of a graph is |V (G)|, that is, the number of vertices of the graph G.

For every S ⊆ V (G), let S = V (G) − S and define ∂S to be the set of edges of G

connecting S to S. We can now define the expander parameter of a graph.

Definition 1.1.12 (expander parameter). The expander parameter of a graph

G of order n (n ≥ 2) is defined as follows

h(G) = min
S:1≤|S|≤n

2

|∂S|
|S|

.
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Remark 1.1.13. h(G) = 0 if and only if G is disconnected.

When the value of h(G) is positive, G is called an expander graph. An

expander graph can be viewed as a graph in which every subset S of the vertex set

V (G) expands quickly. In other words, S has many edges connected to S. We are

not interested in the expander parameter of a single graph G but an entire family of

graphs {Gi}.

Definition 1.1.14 (expander family). A family of graphs {Gi} of increasing order

is an expander family if there exist an integer d and some constant ε > 0 such that:

• Gi is d-regular for all i, i.e., {Gi} is uniformly regular.

• h(Gi) > ε for all i.

The concept of an expander family was first introduced by Bassalygo and

Pinsker in 1973 while they did research on communication networks. These Russian

mathematicians proved the existence of such families using probabilistic arguments.

They showed that almost every random d-regular graph is an expander, although

they did not know how to construct an expander family explicitly [BP73].

The original motivation for finding expander families was to build economical

robust networks for telephone and computer communication. Over the past three

decades, expander families have been developed into a powerful tool with wide

applications in many areas such as fast distributed routing algorithms [PU89], LDPC

codes [UW87], and storage schemes [SS96], to name a few. In telecommunication,

expander families can be used to construct efficient error-correcting codes with

non-zero rates of transmission, which provide great protection against noise [HLW06].

In cryptology, optimal expander families, for example the Ramanujan graphs, are used

to construct collision resistant hash functions. These cryptographic hash functions
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have been implemented in many information security applications, notably in digital

signatures and password verifications [CGL08]. Infinite expander families are relevant

to evolving technology, although constructing an applicable one is not an easy task.

1.1.2 Examples

We present two examples of {Kn} and {Cn} to demonstrate ways that a family

of graphs can fail to be an expander family.

Example 1.1.15. {Kn} is not an expander family.

Proof. Let S ⊆ V (Kn) where 1 ≤ |S| ≤ n

2
. Since every vertex of Kn has degree n−1,

a vertex in S is connected to all the vertices in S. This implies |∂S| = |S| · |S|, so

h(Kn) = min
S:|S|≤n

2

|∂S|
|S|

= min
S:|S|≤n

2

|S| · |S|
|S|

= min
S:|S|≤n

2

|S|.

∣∣S∣∣ is smallest when |S| is biggest, and thus taking |S| = n

2
yields

• h(Kn) =
n

2
when n is even.

• h(Kn) =
⌈n

2

⌉
, the smallest integer not less than

n

2
, when n is odd.

Hence h(Kn) =
⌈n

2

⌉
> 0. Unfortunately, {Kn} is not an expander family because

this family does not have uniform regularity, that is, there is no finite d such that

every Kn is d-regular.

Example 1.1.16. {Cn} is not an expander family.

Proof. Let S ⊆ V (Cn) where 1 ≤ |S| ≤ n

2
. Since every vertex of Cn has degree 2, a

simple observation shows:

(1) |∂S| = 2 if Cn[S] is connected.
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(2) |∂S| > 2 if Cn[S] is not connected.

(1) and (2) yield

h(Cn) = min
S:|S|≤n

2

|∂S|
|S|

= min
S:|S|≤n

2

2

|S|
.

As |S| gets bigger,
2

|S|
becomes smaller. This means

• h(Cn) = 4
n

if n is even.

• h(Cn) = 4
n−1

if n is odd.

Thus limn→∞ h(Cn) = 0, hence {Cn} is not an expander family even though it has

uniform regularity.

1.1.3 The Combinatorial Problem

We assume henceforth that every graph G of order n is d-regular. As n

increases, it is extremely difficult to find the expander parameter h(G) because there

are overwhelmingly many S ⊆ V (G) for which 1 ≤ |S| ≤ n

2
to consider. For example,

let G be a 5-regular graph on 20 vertices. Then there are(
20

1

)
+

(
20

2

)
+ · · ·+

(
20

10

)
≈
(

1

2

)
220 = 219

such subsets S, and to calculate h(G) we would need to minimize
|∂S|
|S|

over all such

subsets S. Finding the expander parameter this way is computationally tedious, if

even possible. The complication arises exponentially as |V (G)| increases. Hence we

will examine the adjacency matrix of G for a faster way to compute h(G).

1.2 Adjacency Matrix and Its Properties

There exist special matrices that fully represent a graph G. One such matrix

is the adjacency matrix, which is very useful because its eigenvalues yield many
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properties of G such as connectivity and regularity.

Definition 1.2.1 (adjacency matrix). An adjacency matrix A(G) of a graph G

is

A(G) = [aij] where aij=


0 if vertices i and j are not adjacent.

1 else.

When i 6= j, aij = aji because vertices i and j either form an edge or not. As

a result, the matrix A(G) is symmetric, i.e., A(G) = A(G)T where A(G)T is the

transpose of A(G) in which column i of A(G)T is row i of A(G). The main diagonal

entries aii of A(G) are always zero because we assumed earlier that G is a simple

graph.

Remark 1.2.2. G is a d-regular graph if and only if every row sum of A(G) is d.

Let A = A(G), then A has an eigenvalue λ and a nonzero eigenvector x if

Ax = λx. The eigenvalues of A can be obtained by solving the equation det(λI−A) =

0. Explicitly, λ1, λ2, . . . , λn are roots of the characteristic polynomial

p(A, λ) = det(λI − A) =
n∏
i=1

(λ− λi).

The set of distinct eigenvalues λ1, λ2, . . . , λk with multiplicities m1,m2, . . . ,mk

is called the spectrum of A, written as Sp(A). For more information, readers may

refer to [HJ85]. We now state some important properties of the adjacency matrix

that will be used to prove several results in the forthcoming chapters.

Definition 1.2.3 (orthonormal eigenvectors). The vectors x1, x2, . . . , xn are

orthonormal if

• xTi xj = 0 for all pairs 1 ≤ i < j ≤ n.

• xTi xi = 1 for all i = 1, 2, . . . , n.
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Theorem 1.2.4 (Spectral Theorem). An n× n real symmetric matrix has n real

eigenvalues counting multiplicities and n orthonormal eigenvectors.

Proof. See [Wes01] pp.456.

By Theorem (1.2.4), we can order the eigenvalues of A(G) as follows:

λmin = λn ≤ λn−1 ≤ · · · ≤ λ2 ≤ λ1 = λmax. (1.1)

Let Mn ∈ Cn×n be the set of n × n matrices with complex entries and let ∗

denote the conjugate transpose operation. A matrix A ∈ Mn is called Hermitian if

A∗ = A. It is true that all eigenvalues of a Hermitian matrix are real. A symmetric

real matrix, such as an adjacency matrix, is Hermitian. The following theorem, which

was discovered by two British physicists, characterizes the eigenvalues of an adjacency

matrix A(G).

Theorem 1.2.5 (Rayleigh-Ritz). Let A ∈Mn ∈ Cn×n be a Hermitian matrix, and

let the eigenvalues of A be ordered as in (1.1). Then

λnx
∗x ≤ x∗Ax ≤ λ1x

∗x ∀x ∈ Cn

λmax = λ1 = max
x 6=0

x∗Ax

x∗x
= max

x∗x=1
x∗Ax

λmin = λn = min
x 6=0

x∗Ax

x∗x
= min

x∗x=1
x∗Ax

Proof. See [HJ85] pp.176-177.

Let 4(G) denote the maximum degree of a vertex in G and δ(G) denote the

minimum degree of a vertex in G. Notice that 4(G) = δ(G) if and only if G is

regular. The largest eigenvalue of a graph and its multiplicity are related to 4(G) as

follows.
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Theorem 1.2.6. The eigenvalue of A(G) with largest absolute value is 4(G) if and

only if some component of G is 4(G)-regular. The multiplicity of 4(G) as an

eigenvalue is the number of 4(G)-regular components.

Proof. See [Wes01] pp.460-461.

Let 1 be a vector of 1’s; then A(G)1 is a vector in which each entry is a row

sum of A(G) respectively. Given a d-regular graph G, then A(G)1 = d1, so d is

an eigenvalue of A(G) corresponding to the eigenvector 1. Label the eigenvalues of

A(G) as in (1.1), then Theorem (1.2.6) implies λ1 = d and λ2 < d if and only if G is

connected.

As the number of vertices n increases, the second largest eigenvalue may

approach d. We will see that λ1−λ2 plays a crucial role in determining the expander

parameter of G. We now introduce another important representation of G. Recall

that d(v) is the degree of a vertex v. A Laplacian matrix, named after the well-known

French mathematician Pierre-Simon Laplace, is defined as follows.

Definition 1.2.7 (Laplacian matrix). A Laplacian matrix L(G) of a graph G is

L(G) = [lij] where lij=


0 if i and j are not adjacent

d(i) if i = j

−1 else

Remark 1.2.8. n - rank(L(G)) is the number of components of G. In particular, G

is connected if and only if rank(L(G)) = n− 1.

Using these special matrices and their properties, we give a proof of Cheeger’s

inequalities in Chapter 2; Cheeger’s inequalities estimate the expander parameter of a

d-regular graph G. Chapter 3 covers examples achieving the lower equality. Chapter
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4 introduces circulant graphs and their spectral properties. We then proceed to show

that there is no expander family in the class of circulant graphs in Chapter 5.
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CHAPTER 2

CHEEGER’S INEQUALITIES

The purpose of this chapter is to prove Cheeger’s inequalities, which estimate

the expander parameter of a d-regular connected graph (d ≥ 3), and to examine when

equality occurs. The proof of Cheeger’s inequalities is divided into two parts with one

section proving the lower bound and the other section proving the upper bound.

2.1 Cheeger’s Inequalities and Preliminaries

Jeff Cheeger is an American mathematician distinguished for his excellent

research and contributions in the field of differential geometry. One of his well-known

discoveries, now called the Cheeger’s inequalities, has many profound applications

in graph theory and probability theory [Lur99]. Recall that λ2 is the second largest

eigenvalue of the adjacency matrix A(G). The expander parameter h(G) of a d-regular

simple connected graph G is estimated by the following theorem.

Theorem 2.1.1 (Cheeger’s inequalities). Let G be a d-regular simple connected

graph on n vertices. Then

d− λ2

2
≤ h(G) ≤

√
2d(d− λ2).

Remark 2.1.2. If G is a disconnected d-regular graph, then h(G) = 0 and λ2 = d.
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Hence

d− λ2

2
= h(G) =

√
2d(d− λ2).

It will be useful to label the vertices of G as 1, 2, . . . , n. Let S be any subset of

V (G) such that 1 ≤ |S| ≤ n

2
. Recall that ∂(S) is the set of edges (i, j) where i ∈ S,

j ∈ S. Since S and S are two disjoint subsets of V (G), G can be viewed as follows.

Figure 2.1: A view of the graph G

If S = {1, 2, . . . , |S|} and S = {|S|+ 1, . . . , n}, then

A(G) =

A(G[S]) X

XT A(G[S])

 =

 B X

XT C

 . (2.1)

A(G) is a block matrix where B is an |S|× |S| matrix, C is an |S|× |S| matrix,

and X and XT are matrices representing ∂S. Define 1S to be the |S|× 1 vector of 1’s

and 1S to be the |S| × 1 vector of 1’s. The following results are essential to establish

the proof of Cheeger’s inequalities.

Lemma 2.1.3. 1TSX1S = |∂S| = 1T
S
XT1S
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Proof.

1TSX1S = sum of all entries in X

= number of edges from G[S] to G[S]

= |∂S|

= number of edges from G[S] to G[S]

= sum of all entries in XT

= 1T
S
XT1S

Lemma 2.1.4. 1TSB1S = 2 |E(G[S])|

Proof.

1TSB1S = sum of all entries in B

= total degrees in G[S]

= 2 |E(G[S])| by Theorem (1.1.8)

Lemma 2.1.5. 1T
S
C1S = 2

∣∣E(G[S])
∣∣

Proof.

1T
S
C1S = sum of all entries in C

= total degrees in G[S]

= 2
∣∣E(G[S])

∣∣ by Theorem (1.1.8)
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Lemma 2.1.6. 2 |E(G[S])|+ |∂S| = d|S|

Proof. Since G is a d-regular graph, each vertex in S has degree d. Hence the lemma

follows.

Theorem 2.1.7 (Cauchy-Schwarz inequality). If x, y ∈ Rn, then

|x • y| ≤ ||x|| · ||y||.

Proof. See [Wad04] pp.229-230.

Remark 2.1.8. Equality holds in Theorem (2.1.7) if and only if {x,y} is a linearly

dependent set of vectors.

2.2 Lower Bound

In this section, we prove the lower bound inequality and examine the equality

case. The proof involves many computations related to the block adjacency matrix

A(G) as seen in Equation (2.1).

2.2.1 Lower Bound Proof

We want to show
d− λ2

2
≤ h(G) or d−2h(G) ≤ λ2. To begin, observe that the

definition of an expander parameter yields d − 2h(G) = d − 2
|∂S|
|S|

for some specific

S ⊂ V (G) with 1 ≤ |S| ≤ n

2
. Notice that |S| ≤ n

2
≤ |S| implies

1

|S|
≤ 1

|S|
, so

d− 2
|∂S|
|S|
≤ d−

(
|∂S|
|S|

+
|∂S|
|S|

)
= d− |∂S|

(
1

|S|
+

1

|S|

)
. Let A = A(G).

We will proceed by proving several claims that will be useful here. For these,

let S be any subset of V (G) with 1 ≤ |S| ≤ n

2
. Define the n × 1 vector v to
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be

 1S/|S|

−1S/|S|

. Recall from Section (1.3) that 1, the n × 1 vector of 1’s, is the

eigenvector corresponding to the eigenvalue d of A.

Claim 1: v is orthogonal to 1 i.e. vT1 = 0.

Proof:

vT1 = v1 + v2 + ...+ vn =
∑
i∈S

vi +
∑
j∈S

vj = 1 + (−1) = 0

Claim 2: vTv =
1

|S|
+

1

|S|
Proof:

vTv = v2
1 + v2

2 + . . .+ v2
n = |S| 1

|S|2
+ |S| 1

|S|2
=

1

|S|
+

1

|S|

Claim 3: vTAv =

(
1

|S|
+

1

|S|

)
d−

(
1

|S|
+

1

|S|

)2

|∂S|

Proof:

vTAv =

 1S/|S|

−1S/|S|


T  B X

XT C


1S/|S|

1S/|S|


=

1TS
|S|

B
1S
|S|
− 1TS
|S|

X
1S
|S|
−

1T
S

|S|
XT 1TS
|S|

+
1T
S

|S|
C

1S
|S|

=
1

|S|2
(1TSB1S)− 1

|S||S|
(1TSX1S)− 1

|S||S|
(1T
S
XT1S) +

1

|S|2
(1T
S
C1S)

=
2 |E(G[S])|
|S|2

− 2|∂S|
|S||S|

+
2
∣∣E(G[S])

∣∣
|S|2

by Lemma (2.1.3), (2.1.4), (2.1.5)

=
2|E(G[S])|
|S|2

+
2|E(G[S])|
|S|2

+
|∂S|
|S|2

− |∂S|
|S|2

+
|∂S|
|S|2

− |∂S|
|S|2

− 2|∂S|
|S||S|

=
2|E(G[S])|+ |∂S|

|S|2
+

2|E(G[S])|+ |∂S|
|S|2

−
(

1

|S|2
+

1

|S|2
+

2

|S||S|

)
|∂S|

=
d|S|
|S|2

+
d|S|
|S|2
−
(

1

|S|
+

1

|S|

)2

|∂S| by Lemma (2.1.6)

=

(
1

|S|
+

1

|S|

)
d−

(
1

|S|
+

1

|S|

)2

|∂S|



16

Claim 4:
vTAv

vTv
= d− |∂S|

(
1

|S|
+

1

|S|

)
Proof: apply Claim 2 and Claim 3.

Now let S be the specific set such that h(G) =
|∂S|
|S|

. As shown in the first

paragraph of the proof, d− 2h(G) ≤ d−|∂S|
(

1

|S|
+

1

|S|

)
. By Claim 4, d− 2h(G) ≤

vTAv

vTv
. It remains to show

vTAv

vTv
≤ λ2. Because A is Hermitian, λ2 = maxf :f⊥1

fTAf

fTf

by Theorem (1.2.5). Since v⊥1 by Claim 1, we have
vTAv

vTv
≤ λ2.

2.2.2 Lower Bound Equality

The preceding proof offers a tight lower bound estimate of the expander

parameter h(G). This estimation can be strict equality. The following result

characterizes exactly when equality occurs.

Theorem 2.2.1.
d− λ2

2
= h(G) if and only if n is even, d + λ2 is even, and there

exists S0 such that |S0| =
n

2
and G[S0], G[S0] are

d+ λ2

2
-regular.

Proof. First, we prove the necessary condition. Assume
d− λ2

2
= h(G). Let S0 ⊂

V (G) such that 1 ≤ |S0| ≤
n

2
and h(G) =

|∂S0|
|S0|

. Reorder V (G) so that S0 =

{1, 2, . . . , |S0|} and S0 = {|S0|+ 1, . . . , n}. Define the n × 1 vector f0⊥1 to be

f0 =

 1S0/|S0|

−1S0
/|S0|

. Based on the lower bound proof of Cheeger’s inequalities,
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λ2 = max
f⊥1

fTAf

fTf

≥ fT0 Af0

fT0 f0

(1)

= d− |∂S0|
(

1

|S0|
+

1

|S0|

)
= d− |∂S0|

n

|S0||S0|

≥ d− 2
|∂S0|
|S0|

because
n

|S0|
≤ 2 (2)

= d− 2h(G).

Since we assumed λ2 = d− 2h(G), inequalities (1) and (2) must become

equalities. Equality in (1) implies f0 is an eigenvector of A corresponding to λ2.

Equality in (2) implies |S0| = |S0| =
n

2
, so n is even. It follows that f0 =

2

n

 1

-1

.

We will use this vector f0 to show there exists S0 such that G[S0] and G[S0] are

both
d+ λ2

2
-regular. Since f0 is an eigenvector of A corresponding to λ2, setting

Af0 = λ2f0 yields

(1) B1−X1 = λ21.

(2) XT1− C1 = −λ21.

Recall that d is an eigenvalue of A corresponding to the eigenvector 1 because

G is d-regular. Setting A1 = d1 yields

(3) B1 +X1 = d1.

(4) XT1 + C1 = d1.

(1) + (3) ⇒ 2B1 = (λ2 + d)1 ⇒ B1 =
d+ λ2

2
1 ⇒ G[S0] is

d+ λ2

2
-regular.

(4) - (2) ⇒ 2C1 = (λ2 + d)1 ⇒ C1 =
d+ λ2

2
1 ⇒ G[S0] is

d+ λ2

2
-regular.

The proof of the necessary condition is done. We now prove the sufficient
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condition. Suppose n is even, d + λ2 is even, and there exists S0 such that |S0| =
n

2

and G[S0], G[S0] are
d+ λ2

2
-regular. Reorder V (G) so that S0 = {1, 2, . . . , |S0|} and

S0 = {|S0|+ 1, . . . , n}. G[S0] is
d+ λ2

2
-regular implies B1 =

(
d+ λ2

2

)
1. Because

n is even and |S0| =
n

2
, B,C,X, and XT are all square matrices of equal sizes. Since

G is d-regular, d is an eigenvalue of A corresponding to the eigenvector 1, so B X

XT C


1

1

 = d

1

1

 .

Block matrix multiplication yields

B1 +X1 = d1(
d+ λ2

2

)
1 +X1 = d1

X1 =

(
d− λ2

2

)
1

1TX1 =

(
d− λ2

2

)
1T1

|∂S0| =
(
d− λ2

2

)(n
2

)
.

By the lower bound of Cheeger’s inequalities and the definition of an expander

parameter,
d− λ2

2
≤ h(G) ≤ |∂S0|

|S0|
=
d− λ2

2
. Thus h(G) =

d− λ2

2
.

Remark 2.2.2. The preceding theorem shows that when equality holds, G[S0] and

G[S0] have equal cardinality and regularity. However, these two induced subgraphs

of G need not be isomorphic as we will see in an upcoming example in Chapter 3.

2.3 Upper Bound

In this section, we prove the upper bound of Cheeger’s inequalities and comment

on the equality case. The upper bound proof is much more difficult than the lower
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bound proof because it involves many intricacies.

2.3.1 Upper Bound Proof

Let g be a nonzero eigenvector of A corresponding to λ2. Since A is symmetric,

g is orthogonal to the eigenvector 1, that is, gT1 = 0. Because g is nonzero, g can’t

be strictly positive or negative. Therefore we can order V (G) so that g =

g+

g−


where g+ = [g1 g2 . . . gr]

T has g1 ≥ g2 ≥ . . . gr > 0 and g− = [gr+1 gr+2 . . . gn]T has

gn ≤ · · · ≤ gr+2 ≤ gr+1 ≤ 0.

Partition A as

 B X

XT C

 so that B is r × r and C is (n− r)× (n− r). Since

−g is also an eigenvector corresponding to λ2, we may also assume 1 ≤ r ≤ n

2
. Let

f =

g+

0

 be an n× 1 vector. We want

h(G) ≤
√

2d(d− λ2)

h2(G) ≤ 2d(d− λ2)

h2(G)

2d
≤ d− λ2.

It suffices to show
h2(G)

2d
≤ fTLf

fTf
≤ d − λ2, where L is the Laplacian matrix

defined in Chapter 1. We divide the proof into two parts:

(1)
fTLf

fTf
≤ d− λ2.

(2)
h2(G)

2d
≤ fTLf

fTf
.

To prove inequality (1), notice that L = dI−A. This yields fTLf = fT (dI)f−
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fTAf = dfTf − fTAf , so it suffices to show λ2 ≤
fTAf

fTf
. Consider

fTAf =

g+

0


T B X

XT C


g+

0

 = g+TBg+.

Claim 1: Bg+ ≥ λ2g
+

Proof:

Ag = λ2g implies

 B X

XT C


g+

g−

 = λ2

g+

g−

.
Multiplying out the first row of the block matrix yields Bg+ + Xg− = λ2g

+.

Since X ≥ 0 and g− ≤ 0, Xg− ≤ 0. Thus Claim 1 holds.

Applying Claim 1, fTAf = (g+)TBg+ ≥ (g+)Tλ2g
+ = λ2(g

+)Tg+ = λ2(f
Tf).

Therefore, λ2 ≤
fTAf

fTf
proving inequality (1). Next, we prove inequality (2). We

want to show

h2(G)

2d
≤ fTLf

fTf

h(G)
√
fTf ≤

√
2d(fTLf)

h(G)
fTf√
fTf

≤
√

2d(fTLf)

h(G)fTf ≤
√

2d(fTLf)(fTf).

Define Bf =
∑

(x,y)∈E(G) |f 2
x − f 2

y |. We split the proof into two parts:

(2a) h(G)fTf ≤ Bf .

(2b) Bf ≤
√

2d(fTLf)(fTf).

Let [i] = {1, . . . , i}, and [i] = {i+ 1, . . . , n} where 1 ≤ i ≤ r ≤ n

2
. For a fixed i,

define |Ei| to be the number of edges from [i] to [i]. In other words, |Ei| is the number

of edges (x, y) ∈ E(G) such that x ≤ i < i + 1 ≤ y. Note that |Ei| corresponds to

|∂S| in the previous sections.
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Claim 2: |Ei| ≥ h(G)i

Proof: h(G) = min|S|≤n
2

|∂S|
|S|
≤ |Ei|

i
. Thus |Ei| ≥ h(G)i.

Using Claim 2 and the definition of |Ei|, we get

Bf =
∑

(x,y)∈E(G)

|f 2
x − f 2

y |

=
∑

(x,y)∈E(G)
x<y

(f 2
x − f 2

y ) by the definition of vector f

=
∑

(x,y)∈E(G)
x≤y

[(f 2
x − f 2

x+1) + (f 2
x+1 − f 2

x+2) + · · ·+ (f 2
y−1 − f 2

y )]

=
∑

(x,y)∈E(G)
x≤y

y−1∑
i=x

f 2
i − f 2

i+1

= (the number of edges (x, y) ∈ E(G) such that x ≤ 1 < 2 ≤ y)(f 2
1 − f 2

2 ) + . . .

+ (the number of edges (x, y) ∈ E(G) such that x ≤ n− 1 < n = y)(f 2
n−1 − f 2

n)

= |E1|(f 2
1 − f 2

2 ) + · · ·+ |Er|(f 2
r ) because fi = 0 for i > r

≥ h(G)(f 2
1 − f 2

2 ) + · · ·+ h(G)r(f 2
r ) by Claim 2

= h(G)[(f 2
1 − f 2

2 ) + 2(f 2
2 − f 2

3 ) + · · ·+ r(f 2
r )]

= h(G)(f 2
1 + · · ·+ f 2

r )

= h(G)(fTf).

The proof of (2a) is complete. To prove (2b), we use the following results.

Claim 3: fTAf =
∑

(x,y)∈E(G) 2fxfy

Proof: fTAf =
∑n

i,j=1 fiaijfj =
∑

(x,y)∈E(G) 2fxfy because aij = aji = 1 if (i, j) ∈

E(G), and 0 otherwise.

Claim 4: d(fTf) =
∑

(x,y)∈E(G) f
2
x + f 2

y

Proof: d(fTf) = d(f 2
1 + · · ·+ f 2

n) =
∑

(x,y)∈E(G) (f 2
x + f 2

y ) because G is d-regular.

Claim 5: fTLf =
∑

(x,y)∈E (fx − fy)2
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Proof:

fTLf = fT (dI − A)f

= d(fTf)− fTAf

=
∑

(x,y)∈E

(f 2
x + f 2

y )−
∑

(x,y)∈E

2fxfy by Claim 3 and Claim 4

=
∑

(x,y)∈E

(fx − fy)2.

We now prove (2b).

Bf =
∑

(x,y)∈E

|f 2
x − f 2

y |

=
∑

(x,y)∈E

|(fx + fy)(fx − fy)|

=
∑

(x,y)∈E

|fx + fy||fx − fy|

≤
√ ∑

(x,y)∈E

(fx + fy)2

√ ∑
(x,y)∈E

(fx − fy)2 by Theorem (2.1.7)

≤
√ ∑

(x,y)∈E

2(f 2
x + f 2

y )
√

(fTLf) by Claim 5

=
√

2d(fTf)(fTLf) by Claim 4.

The proof of the upper bound inequality is complete.

2.3.2 Upper Bound Equality

In this section, we show that the upper inequality can not be equality.

Theorem 2.3.1. h(G) =
√

2d(d− λ2) never holds when G is connected.

Proof. Assume h(G) =
√

2d(d− λ2). Then every inequality in the upper bound proof

must become equality. In particular, we have (fx + fy)
2 = 2(f 2

x + f 2
y ), so fx = fy for
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all (x, y) ∈ E(G). Since G is connected, there is an x, y-path for every x, y ∈ V (G).

This means the n × 1 vector f is constant, i.e., f = [a a . . . a]T for some real value

a. However, f = [g1 . . . gr 0 . . . 0]T where g1 ≥ · · · ≥ gr > 0 and 1 ≤ r ≤ n

2
implies

0 6= a = 0, a contradiction.
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CHAPTER 3

CONNECTED GRAPHS ACHIEVING LOWER EQUALITY

In this chapter, we provide three connected graphs that achieve the lower

equality of Theorem (2.1.1). They are the regular complete multipartite graph

K2p,...,2p, the hypercube Qn, and the specially constructed 4-regular graph of order

12 (see Figure 3.2). To find the expander parameter of a graph G, the number of

edges connecting G[S] to G[S] is needed. Sometimes this number, |∂S|, can easily be

computed using known information about G.

Lemma 3.0.2. Let G be a d-regular graph on n vertices, and S ⊂ V (G) with |S| =

|S| = n

2
. If G[S] and G[S] are k-regular, then |∂S| = n(d− k)

2
.

Proof. Assume G[S] is k-regular. By Theorem (1.1.8), we have∑
v∈V (G)

d(v) = 2|E(G)|

nd = 2(|E(G[S])|+ |∂S|+ |E(G[S])|)

nd = 2|E(G[S])|+ 2|∂S|+ 2|E(G[S])|

nd =
n

2
k + 2|∂S|+ n

2
k

nd = nk + 2|∂S|
n(d− k)

2
= |∂S|
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3.1 Complete Multipartite Graph

Definition 3.1.1 (multipartite graph). A multipartite graph Gn1,n2,...,nk is a

graph in which the set of vertices V (G) is divided into subsets, called parts, with

orders |S1| = n1, |S2| = n2, . . . , |Sk| = nk ≥ 1 such that no two vertices in the same

part have an edge connecting them.

Definition 3.1.2 (complete multipartite graph). A complete multipartite

graph Kn1,n2,...,nk is a multipartite graph such that any two vertices that are not in

the same part have an edge connecting them.

Consider the regular complete multipartite graph G = K2p,...,2p with t ≥ 2 parts

and p ≥ 1. Then |V (K2p,...,2p)| = 2pt, and K2p,...,2p is 2p(t− 1)-regular. Cheeger’s

inequalities and the definition of an expander parameter yield
2p(t− 1)− λ2

2
≤

h(G) ≤ |∂S|
|S|

for any S ⊂ V (G) with |S| ≤ n

2
. We will calculate λ2 and show that

there exists a set S ⊂ V (K2p,...,2p) such that
|∂S|
|S|

=
2p(t− 1)− λ2

2
. The following

result is essential to find λ2(K2p,...,2p).

Lemma 3.1.3. Let G be a d-regular graph of order n. If Sp(A(Ḡ)) = {n− d− 1 ≥

α2 ≥ α3 ≥ . . . ≥ αn}, then Sp(A(G)) = {d ≥ −αn−1 ≥ −αn−1−1 ≥ . . . ≥ −α2−1}.

Proof. Assume n − d − 1, α2, . . . , αn are eigenvalues of A(Ḡ) such that n − d − 1 ≥

α2 ≥ α3 ≥ . . . ≥ αn. Since A(Ḡ) is real symmetric, let {x1 = 1, x2, . . . , xn} denote an

orthonormal set of eigenvectors corresponding to the eigenvalues n−d−1, α2, . . . , αn.

Consider the identity matrix I. Note that A(G) + A(Ḡ) = A(Kn) = 11T − I, so
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A(G)xi + A(Ḡ)xi = 11Txi − Ixi for i 6= 1 i.e. xi 6= 1

A(G)xi + αixi = 0− xi by orthonormality

A(G)xi = (−αi − 1)xi.

Recall that Kn is the complete graph on n ≥ 1 vertices. Let (α)(n−1) denote

an eigenvalue α with multiplicity (n − 1). The spectrum of A(Kn) is computed as

follows.

Lemma 3.1.4. Sp(A(Kn)) = {n− 1, (−1)(n−1)}

Proof. Let J be the matrix of all 1’s. Then A(Kn) = J − I, and so Sp(A(Kn)) =

Sp(J − I) = Sp(J) − {(1)(n)} = {n, (0)(n−1)} − {(1)(n)}. Thus Sp(A(Kn)) = {n −

1, (−1)(n−1)}.

Lemmas (3.1.3) and (3.1.4) enable us to calculate the second largest eigenvalue

of K2p,...,2p.

Lemma 3.1.5. If G = K2p,...,2p, then λ2(A(G)) = 0.

Proof. Let G = K2p,...,2p, then

A(G) =



0 J . . . J

J 0 . . . J

...
...

. . .
...

J J . . . 0


⇒ A(Ḡ) =



A(K2p) 0 . . . 0

0 A(K2p) . . . 0

...
...

. . .
...

0 0 . . . A(K2p)


.
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Sp(A(Ḡ)) = t copies of Sp(A(K2p)) = t copies of {2p−1, (−1)(2p−1)} by Lemma

(3.1.4). Thus λ2(A(G)) = −(−1)− 1 = 0 by Lemma (3.1.3).

λ2(K2p,...,2p) = 0 implies p(t− 1) ≤ h(K2p,...,2p). We refer to Theorem (2.2.1) to

pick an appropriate subset of the vertex set V (G). We pick S such that |S| = pt = |S|

and G[S] = Kp,...,p = G[S]. Since both G[S] and G[S] are p(t − 1)-regular, Lemma

(3.0.2) implies

|∂S| = 2pt[2p(t− 1)− p(t− 1)]

2
= pt(p(t− 1)).

Thus
|∂S|
|S|

=
pt(p(t− 1))

pt
= p(t − 1). Hence h(K2p,...,2p) = p(t − 1), and the

lower bound equality holds for K2p,...,2p.

3.2 Hypercube Graph

We begin this section by introducing the notions of Kronecker product and

Kronecker sum of matrices, which will be used to find the spectrum of the hypercube

graph.

Definition 3.2.1 (Kronecker product). Let A ∈ Rm×n and B ∈ Rp×q, then the

Kronecker product A⊗B is defined as

A⊗B =


a11B . . . a1nB

...
. . .

...

am1B . . . amnB

 ∈ Rmp×nq. (3.1)

Definition 3.2.2 (Kronecker sum). Let A ∈ Rn×n and B ∈ Rm×m, then the

Kronecker sum A⊕B is the mn×mn matrix (Im ⊗A) + (B ⊗ In) where Ik is the

k × k identity matrix.
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From the definition of Kronecker sum, the spectrum of (A⊕B) can be written

as a linear combination of the spectrum of matrix A and the spectrum of matrix B.

Lemma 3.2.3. Sp(A⊕B) = Sp(A) + Sp(B)

Proof. See [Gra81] pp.30.

Both [Lau04] and [Gra81] offer many insights on Kronecker product and

Kronecker sum with applications in engineering and statistics. Interested readers

should refer to these sources for more information. We continue this section with the

definition of a hypercube graph.

Definition 3.2.4 (hypercube graph). A hypercube graph Qn is a graph on 2n

vertices of the form (i1, . . . , in) where each ij ∈ {0, 1}, and two vertices are adjacent

if they differ in exactly one coordinate.

Example 3.2.5. We give the example of Q2 to illustrate the definition. The graph

Q2 has vertex set {00, 01, 10, 11}. Since two vertices are adjacent if they are differed

in exactly one coordinate, Q2 can be seen as a cycle of length 4, i.e., C4.

In general, the vertex (i1, i2, . . . , in) is adjacent to vertices (i1 + 1, i2 . . . , in),

(i1, i2 + 1, . . . , in), . . . , and (i1, i2, . . . , in + 1). Since each vertex of Qn is adjacent to

exactly n vertices, Qn is n-regular. The number of edges in Qn can be counted using

Theorem (1.1.8), and it is
n2n

2
= n2n−1.

Qn has a special property that it is constructible from Qn−1. To do so, we first

adjoin 0 and 1 to each vertex of Qn−1 to get (i1, i2, . . . , in−1, 0) and (i1, i2, . . . , in−1, 1)

respectively. There now exist two copies of Qn−1. We built Qn by forming exactly

2n−1 edges between vertices (i1, i2, . . . , in−1, 0) and (i1, i2, . . . , in−1, 1). Figure (3.1)

taken from [Wes01] pp.36 shows the construction of Q3 from Q2.
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Since Q1 is isomorphic to K2, A(Q1) = A(K2). Recursively, A(Qn) can be

expressed as a Kronecker sum of A(Qn−1) and A(K2) [Har88]. We use this fact and

Lemma (3.2.3) to compute the spectrum of Qn. We prove the following result by

inducting on n.

Figure 3.1: Q3 is formed by connecting 2 copies of Q2.

Lemma 3.2.6. Sp(A(Qn)) = {(n)(
n
0), (n− 2)(

n
1), . . . , (−n)(

n
n)}

Proof. Basic step:

n = 1 ⇒ Sp(A(Q1)) = Sp(A(K2)) = {1,−1}

n = 1 ⇒ {(1)(
1
0), (−1)(

1
1)} = {1,−1}

Inductive step:

Assume Sp(A(Qn)) = {(n)(
n
0), (n−2)(

n
1), . . . , (−n)(

n
n)}. Consider the hypercube graph

Qn+1. Using the recursive expression, we have Sp(A(Qn+1)) = Sp(A(Qn) ⊕ A(K2)).

The calculation is done as follows.

Sp(A(Qn)⊕ A(K2)) = Sp(A(Qn)) + Sp(A(K2)) by Lemma (3.2.3)

=
{

(n)(
n
0), (n− 2)(

n
1), . . . , (−n)(

n
n)
}

+ {1,−1}

=
{

(n+ 1)(
n
0), (n− 1)(

n
1), . . . , (−n+ 1)(

n
n), (n− 1)(

n
0), . . . , (−n− 1)(

n
n)
}

=
{

(n+ 1)(
n+1

0 ), (n− 1)(
n
1)+(n1), . . . , (−n+ 1)(

n
n)+( n

n−1), (−n− 1)(
n+1
n+1)
}

=
{

(n+ 1)(
n+1

0 ), (n− 1)(
n+1

1 ), . . . , (−n+ 1)(
n+1
n ), (−n− 1)(

n+1
n+1)
}
.
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Lemma (3.2.6) implies λ2(A(Qn)) = n − 2. Cheeger’s inequalities give 1 =

n− λ2(A(Qn))

2
≤ h(Qn). It remains to show h(Qn) ≤ |∂S|

|S|
= 1 for a certain S ⊂

V (Qn). Since Qn is formed by two copies of Qn−1, we pick S ⊂ V (Qn) such that

|S| = 2n−1 = |S| and G[S] = Qn−1 = G[S]. By the definition of an expander

parameter, h(Qn) ≤ |∂S|
|S|

=
2n−1

2n−1
= 1. Hence h(Qn) = 1, and the lower bound

equality holds for Qn.

Both K2p,...,2p and Qn satisfy the lower bound equality. When we pick such S

in each graph, the induced subgraphs on S and S are isomorphic. However,

resulting graphs G[S] and G[S] need not to be isomorphic as we will see in the next

example.

3.2.1 A Constructed 4-regular Graph

We construct a 4-regular graph G in Figure (3.2) to demonstrate that the lower

bound equality of Cheeger’s inequalities may hold without having

isomorphism between G[S] and G[S]. Here d = 4, |V (G)| = 12, and (i, i∗) ∈ E(G)

for i = 1, 2, 3, 4, 5, 6. The following result will be used to show the non-isomorphism

of the two induced subgraphs.

Lemma 3.2.7. Let S ⊂ V (G). If |S| = 6 and G[S] is 3-regular, then S = {1, 2, 3, 4, 5, 6}

or S = {1∗, 2∗, 3∗, 4∗, 5∗, 6∗}.

Proof. Assume |S| = 6 and G[S] is 3-regular. Let T ⊆ {1, 2, 3, 4, 5, 6} and T ∗ ⊆

{1∗, 2∗, 3∗, 4∗, 5∗, 6∗}. Let S = T ∪ T ∗. Since |S| = 6, we have the following cases:

(1) |T | = 0 and |T ∗| = 6.

(2) |T | = 1 and |T ∗| = 5.
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Figure 3.2: 4-regular graph on 12 vertices
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(3) |T | = 2 and |T ∗| = 4.

(4) |T | = 3 and |T ∗| = 3.

(5) |T | = 4 and |T ∗| = 2.

(6) |T | = 5 and |T ∗| = 1.

(7) |T | = 6 and |T ∗| = 0.

Cases (1) and (7) are what we want. Cases (2) and (6) contradict our regularity

assumption because the maximum degree of a vertex in T or T ∗ in G[S] is 1. Cases

(3) and (5) also contradict our regularity assumption because the maximum degree

of a vertex in T or T ∗ in G[S] is 2.

In case (4), since G[S] is 3-regular, G[T ] and G[T ∗] must be 2-regular because

(i, i∗) ∈ E(G) for i = 1, 2, 3, 4, 5, 6. However, G[{1, 2, 3, 4, 5, 6}] has no C3. Thus

case (4) fails. Therefore only cases (1) and (7) are possible, and we must choose

S = {1, 2, 3, 4, 5, 6} or S = {1∗, 2∗, 3∗, 4∗, 5∗, 6∗}.

Using Matlab, the second largest eigenvalue of A(G) is 2. Cheeger’s inequalities

imply 1 =
4− 2

2
=

d− λ2

2
≤ h(G). To show that h(G) = 1, it suffices to pick a

S ⊂ V (G) such that
|∂S|
|S|

= 1. Choosing S = {1, 2, 3, 4, 5, 6} yields 3-regular induced

subgraphs G[S] and G[S] , and |∂S| = 6. Thus
|∂S|
|S|

=
6

6
= 1. Hence h(G) = 1, and

the lower bound equality holds for the constructed 4-regular graph in Figure (3.2).

By Lemma (3.2.7), G[S] and G[S] are the only 3-regular induced subgraphs of

G. Based on Figure (3.2), G[S] is not isomorphic to G[S] because one has C3, but

the other doesn’t.
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CHAPTER 4

CIRCULANT GRAPHS

In this chapter, we introduce the family of circulant graphs. We are interested

in this particular family because it has many important applications in engineering

and computer science. Its expander parameter, if not zero, will provide useful

information to applications of expander graphs. We begin with a preliminary section

on definitions. Using a special permutation matrix Z, we then compute the spectrum

of a circulant graph and discuss some properties related to the computation of its

expander parameter.

4.1 Preliminaries

Definition 4.1.1 (circulant matrix). Every n× n matrix C of the form

C =



c0 c1 . . . cn−2 cn−1

cn−1 c0 c1 cn−2

... cn−1 c0
. . .

...

c2
. . . . . . c1

c1 c2 . . . cn−1 c0


is called a circulant matrix.

The matrix C is completely determined by its first row because other rows are

votations of the first row. Notice that C is symmetric if cn−i = ci for i = 1, 2, . . . , n−1.
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Moreover, C is an adjacency matrix if c0 = 0 and cn−i = ci ∈ {0, 1}. The class of

circulant matrices belongs to a larger class of matrices called Toeplitz. Readers who

wish to learn more about these matrices and their applications in engineering can

check out a review document at http://www-ee.stanford.edu/ gray/toeplitz.pdf.

Definition 4.1.2 (circulant graph). A circulant graph is a graph which has a

circulant adjacency matrix.

Examples of circulant graphs are the cycle Cn, the complete graph Kn, and

the complete bipartite graph Kn,n [Ski90]. Since circulant graphs are recognizable

through their adjacency matrices, they form a strong link between graph theory and

matrix theory. A graph is called an integral graph if it has integral spectrum.

Within the class of circulant graphs, integral circulant graphs have many significant

applications in telecommunication networks and distributed computing [Kar].

Circulant graphs are always regular. Let Cd,n denote a d-regular circulant graph

on n vertices. The circulant adjacency matrix of Cd,n, A(Cd,n), is easy to formulate,

but calculating its spectrum is not straight forward.

4.2 Spectrum of A Circulant Graph

The spectrum of A(Cd,n) requires clever tricks to obtain. Notice that A(Cd,n)

can be written as a linear combination of powers of the following n× n matrix

Z =



0 1 0 . . . 0

0 0 1 . . . 0

...
...

...
. . .

...

0 0 0 . . . 1

1 0 0 . . . 0


.
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Z is a special permutation matrix with the following properties:

(1) ZT = Z−1 because Z is a permutation matrix.

(2)

Z2 =



0 0 1 . . . 0

...
...

...
. . .

...

0 0 0 . . . 1

1 0 0 . . . 0

0 1 0 . . . 0


Technically, Z2 is a cyclic shifting of columns of Z to the right one time.

If we continue to shift them n− 1 times, we get Zn = I.

(3) Zn−kZk = I for k = 1, 2, . . . , n− 1.

(4) The characteristic polynomial of Z is

p(x) = det(xI − Z) = x(xn−1) + (−1)n−1(−1)(−1)n−1 = xn − 1.

(5) Sp(Z) = {e 2kπi
n : 1 ≤ k ≤ n} where i =

√
−1.

These properties of Z are essential to determine the spectrum of a circulant

graph of order n. Let

ω = e
2kπi
n = cos

2kπ

n
+ i sin

2kπ

n
for 1 ≤ k ≤ n [SS03]. (4.1)

The definition of ω leads to an equally important result which will be applied in the

proof of Theorem (4.2.2).

Lemma 4.2.1. ωt + ωn−t = 2 cos
2ktπ

n
for 1 ≤ k ≤ n and 1 ≤ t ≤ n.
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Proof. Let 1 ≤ k ≤ n and 1 ≤ t ≤ n, then

ωt + ωn−t = e
2ktπi
n + e2ktπie(−

2ktπi
n )

= e
2ktπi
n + e−

2ktπi
n because e2πi = 1

= cos
2ktπ

n
+ i sin

2ktπ

n
+ cos

2ktπ

n
− i sin

2ktπ

n
by Equation (4.1)

= 2 cos
2ktπ

n

Using properties of the matrix Z and Lemma (4.2.1), the spectrum of a circulant

graph is established in the following theorem.

Theorem 4.2.2. Let A be an adjacency matrix of a circulant graph on n vertices. If

n is odd, then

Sp(A) =


n−1

2∑
r=1

2cr cos
2krπ

n
: 1 ≤ k ≤ n

 .

If n is even, then

Sp(A) =


n−2

2∑
r=1

2cr cos
2krπ

n
+ cn

2
cos kπ : 1 ≤ k ≤ n

 .

Proof. Label the vertices of a circulant graph as 0, 1, . . . , n− 1. Then the adjacency

matrix A is



0 c1 . . . cn−2 cn−1

cn−1 0 c1 cn−2

... cn−1 0
. . .

...

c2
. . . . . . c1

c1 c2 . . . cn−1 0


where ci = cn−i = 0 if vertices i and n−i are not adjacent, and ci = cn−i = 1 if vertices

i and n− i are adjacent. We have A = c1Z
1 + c2Z

2 + . . .+ cn−1Z
n−1 =

∑n−1
r=1 crZ

r.
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If n is odd, then A = c1(Z+Zn−1) + . . .+ cn−1
2

(
Z

n−1
2 + Z

n+1
2

)
, and ω ∈ Sp(Z)

implies c1(ω
1 + ωn−1) + c2(ω

2 + ωn−2) + . . .+ cn−1
2

(
ω
n−1

2 + ω
n+1

2

)
∈ Sp(A). By Lemma

(4.2.1),

Sp(A) =

{
2c1 cos

2kπ

n
+ . . .+ 2cn−1

2
cos

2k
(
n−1

2

)
π

n
: 1 ≤ k ≤ n

}

=


n−1

2∑
r=1

2cr cos
2krπ

n
: 1 ≤ k ≤ n

 .

If n is even, then A = c1(Z +Zn−1) + . . .+ cn−2
2

(
Z

n−2
2 + Z

n+2
2

)
+ cn

2

(
Z

n
2

)
, and

ω ∈ Sp(Z) implies c1(ω
1 + ωn−1) + . . .+ cn−2

2

(
ω
n−2

2 + ω
n+2

2

)
+ cn

2

(
ω
n
2

)
∈ Sp(A). By

Lemma (4.2.1),

Sp(A) =

{
2c1 cos

2kπ

n
+ . . .+ 2cn−2

2
cos

2k
(
n−2

2

)
π

n
+ cn

2
cos

2k
(
n
2

)
π

n
: 1 ≤ k ≤ n

}

=


n−2

2∑
r=1

2cr cos
2krπ

n
+ cn

2
cos kπ : 1 ≤ k ≤ n

 .

The regularity d of a circulant graph affects the number of its vertices n. If d is

odd, then n is even. If d is even, then n is either odd or even. Note that the value of

d depends on the number of nonzero cr. The position r of cr affects the connectivity

of a circulant graph. This relation will be explained in the next section.

4.3 Spectral Properties

The spectrum of a circulant graph indicates whether it is connected or not.

The connectivity also depends on an algebraic relation between parameters r and n

in Theorem (4.2.2). We begin this section by reviewing some number theory concepts.

These backgrounds enable us to prove some interesting spectral properties of circulant

graphs.
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4.3.1 Number Theory Backgrounds

The following fundamental definitions and theorems are based on [Kos07].

Definition 4.3.1 (divisor). An integer a is a divisor of an integer b if ax = b for

some integer x. We write a|b.

Definition 4.3.2 (relatively prime). Two positive integers, a and b, are relatively

prime if 1 is the greatest common divisor of a and b; that is, if gcd(a, b) = 1.

Theorem 4.3.3. Two positive integers, a and b, are relatively prime if and only if

there are integers x and y such that ax+ by = 1.

Proof. see [Kos07] pp.161.

Definition 4.3.4 (congruence). An integer a is congruent to an integer b modulo

m if m|(a− b). In symbols, we write a ≡ b (mod m).

Theorem 4.3.5. a ≡ b (mod m) if and only if a = b+ km for some integer k.

Proof. see [Kos07] pp.231.

4.3.2 Connectedness of C3,n

We want to consider connected Cd,n, because if it is not connected, then its

expander parameter is automatically equal to 0. We first examine the case of C3,n.

Theorem 4.3.6. Let Sp(A(C3,n)) =

{
2 cos

2rkπ

n
+ cos kπ : 1 ≤ k ≤ n

}
for a unique

r such that 1 ≤ r ≤ n

2
− 1. Then C3,n is connected if and only if gcd(r,

n

2
) = 1.
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Proof. Since the regularity of C3,n is odd, n is even. Let
n

2
= m. We divide the proof

into two parts.

Part 1: If gcd(r,m) = 1, then C3,n is connected. We prove by contradiction.

Assume gcd(r,m) = 1, but C3,n is disconnected. We will show that this

assumption leads to a contradiction. Let Sp(A(C3,n)) = {λi : i = 1, 2, . . . , n}. Notice

that λ1 = 3 when k = n = 2m. By Theorem (1.2.6), C3,n is connected if and

only if λ2 = max

{
2 cos

2rkπ

n
+ cos kπ : 1 ≤ k ≤ n− 1

}
< 3. There are two cases to

consider.

Case 1: k is odd.

We have 2 cos
2rkπ

n
+ cos kπ = 2 cos

2rkπ

n
− 1 < 3, this automatically makes

C3,n connected.

Case 2: k is even

Let k = 2t for some integer t such that 1 ≤ t ≤ m − 1. Since C3,n is assumed

to be disconnected, λ2 = max

{
2 cos

2rkπ

n
+ cos kπ : 1 ≤ k ≤ n− 1

}
= 3, so

cos
2rkπ

n
= 1 ⇐⇒ 2rkπ

n
= 2lπ for some integer l ≥ 1

⇐⇒ 2rkπ = 2lπn

⇐⇒ rk = ln

⇐⇒ n|rk

⇐⇒ m|rt because n = 2m and k = 2t

⇐⇒ rt ≡ 0 (mod m) by Theorem (4.3.5).

Since gcd(r,m) = 1, r and m do not share common prime factors. This means

the least value of t which makes rt a multiple of m is t = m, a contradiction to the

fact that 1 ≤ t ≤ m− 1. Therefore, if gcd(r,m) = 1, then C3,n is connected.

Part 2: If C3,n is connected, then gcd(r,m) = 1. We prove by contrapositive.
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Assume gcd(r,m) 6= 1. We want to show that C3,n is not connected. By the

assumption, r = ta and m = tb for some integers a, b with t > 1. Choose k = 2b,

then k ≤ tb = m < n. Consider the spectrum of A(C3,n){
2 cos

2rkπ

n
+ cos kπ : 1 ≤ k ≤ n

}
.

Replacing r = ta,m = tb, and k = 2b yields 2 cos
2rkπ

n
+cos kπ = 3. Notice that

2 cos
2rkπ

n
+ cos kπ = 3 when k = n = 2m. Let Sp(A(C3,n)) = {λi : i = 1, 2, . . . , n},

then λ1 = 3 = λ2 implies C3,n is not connected by Theorem (1.2.6). Therefore, if C3,n

is connected, then gcd(r,m) = 1.

Several calculations reveal that the second largest eigenvalue of A(C3,n) is always

1 when C3,n is connected. This sparks our interest in finding whether the same result

holds for other regular circulant graphs. We discover that if the first row of A(Cd,n)

is [0 0 1 . . . 1 0], then the second eigenvalue equals to 1.

Theorem 4.3.7. Let n ≥ 6 be an even integer. If A is the adjacency matrix of Cn−3,n

with its first row being [0 0 1 . . . 1 0], then λ2(A) = 1.

Proof. SupposeA is the adjacency matrix of Cn−3,n with its first row being [0 0 1 . . . 1 0].

According to the proof of Theorem (4.2.2), A = Z2 + Z3 + . . . + Zn−2. If ω = e
2πki
n

for 1 ≤ k ≤ n− 1, then
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λ2(A) = max
1≤k≤n−1

ω2 + ω3 + . . .+ ωn−2

= max
1≤k≤n−1

ω2
(
1 + ω + . . .+ ωn−4

)
= max

1≤k≤n−1
ω2

(
1− ωn−3

1− ω

)
geometric series sum

= max
1≤k≤n−1

ω2 − ωn−1

1− ω

= max
1≤k≤n−1

cos 4πk
n
− cos 2πk

n

1− cos 2πk
n

= max
1≤k≤n−1

cos 2θ − cosθ
1− cos θ

for θ =
2πk

n

= max
1≤k≤n−1

2 cos2 θ − 1− cos θ

1− cos θ

= max
1≤k≤n−1

(2 cos θ + 1)(cos θ − 1)

1− cos θ

= max
1≤k≤n−1

−(2 cos θ + 1).

Let f(k) = −(2 cos θ + 1). To find λ2(A), we compute the maximum value

of f(k). This computation, however, is the same as finding the minimum value of

cos θ for a valid k. Notice that cos θ = cos 2πk
n

= −1 implies 2πk
n

= π, 3π, . . . Since

1 ≤ k ≤ n−1, k =
n

2
is the only value that maximizes f(k). Thus λ2(A) = f(n

2
) = 1.

Unfortunately, the same result doesn’t hold for odd n as described in Table

(4.1). In Chapter 5, Theorem (4.3.6) will be used to find explicit values of the second

largest eigenvalues of connected 3-regular circulant graphs.
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Table 4.1: Value of λ2 of a particular circulant graph

n 1st row of A λ2

6 [0 0 1 1 1 0] 1
7 [0 0 1 1 1 1 0] 0.8019
8 [0 0 1 1 1 1 1 0] 1
9 [0 0 1 1 1 1 1 1 0] 0.8794

10 [0 0 1 1 1 1 1 1 1 0] 1
11 [0 0 1 1 1 1 1 1 1 1 0] 0.9190
12 [0 0 1 1 1 1 1 1 1 1 1 0] 1

...
...

...
50 [0 0 1 . . . 1 0] 1

100 [0 0 1 . . . 1 0] 1
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CHAPTER 5

FAMILY OF D-REGULAR CIRCULANT GRAPHS

In this chapter, we compute expander parameters of the family of d-regular

circulant graphs. To do so, we calculate the second largest eigenvalues and apply

Theorem (2.1.1). We consider values of d ≥ 3 because computational results for

d = 0, 1, or 2 are known. When d = 0, we have a graph with just one vertex and no

edge. When d = 1, we have K2. When d = 2, we have Cn; its expander parameter

has been calculated in Example (1.1.16).

5.1 d = 3

It is not possible to picture a 3-regular circulant graph on n vertices as n gets

larger, let alone to compute its expander parameter directly from the definition. C3,n’s

expander parameter, in a sense, can be estimated using Cheeger’s inequalities. To do

so, we need to find its second largest eigenvalue. The following lemma is crucial to

establish the explicit value of λ2(C3,n).

Lemma 5.1.1. Let r and m be two positive integers. If gcd(r,m) = 1, then rki 6≡ rkj

(mod 2m) for every ki 6= kj ∈ {2, 4, . . . , 2m− 2}.

Proof. Assume gcd(r,m) = 1, and there exist k1 and k2 such that rk1 ≡ rk2 (mod 2m).

Then r(k1−k2) ≡ 0 (mod 2m). This implies 2m|r(k1−k2). Since k1 and k2 are even,

k1 − k2 = 2x for some integer x. Note that 1 ≤ x ≤ m− 2 because
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• mini,j |ki − kj| = 2.

• maxi,j |ki − kj| = 2m− 2− 2 = 2(m− 2).

2m|r(k1 − k2) ⇐⇒ 2m|2rx ⇐⇒ m|rx. Since gcd(r,m) = 1, there exist integers

α and β such that mα + rβ = 1. Multiply x to both sides yields xmα + xrβ = x.

Since m|xmα and m|xrβ, m|(xmα + xrβ), and thus m|x. However, m|x contradicts

the fact that 1 ≤ x ≤ m− 2. By contradiction, rk1 6≡ rk2 (mod 2m).

Recall that Sp(A(C3,n)) =

{
2 cos

2rkπ

n
+ cos kπ : 1 ≤ k ≤ n

}
for a unique r

such that 1 ≤ r ≤ m− 1 where m =
n

2
. We have λ1(A(C3,n) = 3 when k = n = 2m,

and λ2(A(C3,n) = max

{
2 cos

2rkπ

n
+ cos kπ : 1 ≤ k ≤ n− 1

}
< 3 if and only if C3,n

is connected.

Theorem 5.1.2. If C3,n is connected, then λ2(A(C3,n)) = 2 cos
2π

m
+ 1 where m =

n

2
.

Proof. Assume C3,n is connected. Connectedness occurs when gcd(r,m) = 1, by

Theorem (4.3.6). Now gcd(r,m) = 1 implies the smallest value of {2r, 4r, . . . , (2m−

2)r} is 2 by Lemma (5.1.1). The computation of λ2(A(C3,n)) is done as follows.

λ2(A(C3,n)) = max
1≤k≤n−1

2 cos
2πrk

n
+ cos πk

= max
1≤k≤2m−1

2 cos
2πrk

2m
+ cos πk

= max
2≤k≤2m−2
k is even

2 cos
rkπ

m
+ 1

= 2 cos
2π

m
+ 1

Note that limn→∞ λ2(A(C3,n)) = limm→∞ 2 cos
2π

m
+ 1 = 2 cos 0+1 = 2+1 = 3.

We next examine the 4-regular circulant graph C4,n.
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5.2 d = 4

Because C4,n is 4-regular, n can be either odd or even. For instance, the first

row of the circulant adjacency matrix of C4,n is [0 1 1 0 1 1] for n = 6, and either

[0 1 1 0 0 1 1] or [0 0 1 1 1 1 0] for n = 7. Let A be the circulant adjacency matrix of

C4,n. Theorem (4.2.2) gives

Sp(A) =

{
2 cos

2πr1k

n
+ 2 cos

2πr2k

n
: 1 ≤ k ≤ n

}
for some r1, r2 such that 1 ≤ r1 < r2 ≤

n− 1

2
.

The values of λ2(A) are different with respect to different pairs of r1, r2. This

behavior is shown in Table (5.1) in which we record all possible values of λ2(A) for

n = 11 and n = 12. According to Table (5.1), there exist repeating values of λ2(A)

for certain pairs of r1, r2, but this occurrence is completely random.

Recall that C4,n is connected if λ2(A) < 4, and disconnected if λ2(A) = 4. To

ignore the connectedness issues, we consider the minimum value of λ2(A) over all

pairs of r1, r2. Theoretically, this number is less than 4. But can it equal to 4 in the

limit as n→∞?

Let min {λ2(A)} denote the minimum value of λ2(A) over all pairs of r1, r2.

As the number of vertices n increases, min {λ2(A)} also increases. For example,

min {λ2(A)} = 1 when n = 10, min {λ2(A)} = 1.6180 when n = 15, and min {λ2(A)} =

2 when n = 18. We predict that min {λ2(A)} approaches 4 as n goes to infinity. Our

prediction is supported by Figure (5.1).

For easy use of notation, we define 44(n) to be min {λ2(A)}, explicitly

44(n) = min
1≤r1<r2≤n−1

2

max
1≤k≤n−1

2 cos
2πr1k

n
+ 2 cos

2πr2k

n
.

Computing the exact value of 44(n) can be frustratingly tedious. A clever

method is to estimate 44(n) with a function depending only on n. In the next
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Table 5.1: λ2(A) for n = 11, 12. There are repeating values, but they occur randomly.

n 1st row of A i.e. [0 c1 c2 . . . c2 c1] value of λ2(A)
11 c1 = c2 = 1, other ci = 0 2.5131
11 c1 = c3 = 1, other ci = 0 1.3979
11 c1 = c4 = 1, other ci = 0 1.3979
11 c1 = c5 = 1, other ci = 0 2.5131
11 c2 = c5 = 1, other ci = 0 1.3979
11 c3 = c5 = 1, other ci = 0 2.5131
11 c4 = c5 = 1, other ci = 0 1.3979
11 c4 = c3 = 1, other ci = 0 2.5131
11 c4 = c2 = 1, other ci = 0 2.5131
11 c3 = c2 = 1, other ci = 0 1.3979

12 c1 = c2 = 1, other ci = 0 2.7321
12 c1 = c3 = 1, other ci = 0 1.7321
12 c1 = c4 = 1, other ci = 0 2
12 c1 = c5 = 1, other ci = 0 2
12 c2 = c5 = 1, other ci = 0 2.7321
12 c3 = c5 = 1, other ci = 0 1.7321
12 c4 = c5 = 1, other ci = 0 2
12 c4 = c3 = 1, other ci = 0 2
12 c4 = c2 = 1, other ci = 0 4
12 c3 = c2 = 1, other ci = 0 1

Figure 5.1: A plot of minimum values of λ2(A) for n = 10, 11, . . . , 100. It shows
min {λ2(A)} is approaching 4.
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section, we will show that 44(n) ≥ 4 − 8π2(√
n− 1− 1

)2 . Figure (5.2) (left) depicts

4− 8π2(√
n− 1− 1

)2 approaching 4 as n goes to infinity. Figure (5.2) (right) compares

the estimated values with the real values of 44(n). Notice that the estimated graph

is smoother, and it lies below the real graph of 44(n).

Figure 5.2: The left figure is the plot of the estimated function of 44(n). The curve
is smooth, and it is approaching 4. The right figure shows the plot generated by the
estimated function of 44(n) lying below the plot of the true values of 44(n).

5.3 Results

In this section, we show that circulant graphs do not contain an expander family.

The following results are essential to develop estimating functions of 44(n) and in

general 4d(n). Using the Pigeonhole Principle, which informally states: “if a flock

n pigeons comes to roost in a house with r pigeonholes and n > r, then at least one

hole contains more than one pigeon”, we prove the first result.

Theorem 5.3.1. Given N real numbers a1, a2, . . . , aN and a positive integer q, we
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can find an integer t in the range 1 ≤ t ≤ qN and integers x1, x2, . . . , xN such that

|tai − xi| ≤
1

q
for i = 1, 2, . . . , N .

Proof. Consider the qN compartments

[
i1
q
,
i1 + 1

q

)
× . . . ×

[
iN
q
,
iN + 1

q

)
for 0 ≤

i1, . . . iN ≤ q − 1 of the N -dimensional unit cube obtained by partitioning each edge

adjacent to the origin into q parts. Also consider (qN + 1) N -dimensional points,

(ua1 − bua1c , . . . , uaN − buaNc) where 0 ≤ u ≤ qN and buac denotes the largest

integer not greater than ua, inside the N -dimensional unit cube. By the Pigeonhole

Principle, there are two points lying in the same compartment. That is, there exist

integers u1 and u2 such that 0 ≤ u1 < u2 ≤ qN and 0 ≤ i1, . . . , iN ≤ q − 1 satisfying

(u1a1 − bu1a1c , . . . , u1aN − bu1aNc) ∈
[
i1
q
,
i1 + 1

q

)
× . . .×

[
iN
q
,
iN + 1

q

)
.

(u2a1 − bu2a1c , . . . , u2aN − bu2aNc) ∈
[
i1
q
,
i1 + 1

q

)
× . . .×

[
iN
q
,
iN + 1

q

)
.

Note that

u1a1 − bu1a1c , u2a1 − bu2a1c ∈
[
i1
q
,
i1 + 1

q

)
...

u1aN − bu1aNc , u2aN − bu2aNc ∈
[
iN
q
,
iN + 1

q

)
.

Thus for 1 ≤ i ≤ N ,

|(u2ai − bu2aic)− (u1ai − bu1aic)| ≤
1

q

|(u2 − u1)ai − (bu2aic − bu1aic)| ≤
1

q

|tai − xi| ≤
1

q

where 1 ≤ t = u2 − u1 ≤ qN and xi = bu2aic − bu1aic ∈ Z.
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Theorem (5.3.1) is a special case of the well-known Dirichlet Theorem from

[Tit51] pp.152-153. It can be applied to an even more specific case.

Corollary 5.3.2. Given positive integers n, t, and r1, r2, . . . , rt, there exist an integer

k in the range 1 ≤ k ≤ n− 1 and integers x1, . . . , xt such that∣∣∣∣krin − xi
∣∣∣∣ ≤ 1

(n− 1)
1
t − 1

for i = 1, 2, . . . , t.

Proof. Let
ri
n

= ai where i = 1, 2, 3, . . . , t = N and q =
⌊
(n− 1)

1
t

⌋
. Theorem (5.3.1)

implies there exist an integer k in the range 1 ≤ k ≤ qt ≤ n−1 and integers x1, . . . , xt

such that ∣∣∣∣krin − xi
∣∣∣∣ ≤ 1

q

=
1⌊

(n− 1)
1
t

⌋
≤ 1

(n− 1)
1
t − 1

.

It remains to approximate the cosine of an angle. The approximation is relevant

because the spectrum of a circulant graph is computed in terms of cosines.

Lemma 5.3.3. cos θ ≥ 1− θ2

2
for any θ.

Proof. We want to show cos θ − 1 +
θ2

2
≥ 0. Let f(θ) = cos θ − 1 +

θ2

2
. It suffices

to prove f(θ) is an increasing function which has a minimum value at θ = 0. Since

f ′(θ) = θ − sin θ ≥ 0, f(θ) is an increasing function. Setting f ′(θ) = 0 to get θ = 0.

Now substitute θ = 0 into f(θ) to get f(0) = 0, and thus f(θ) has a minimum value

at θ = 0.
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5.3.1 d = 4 Revisited

We apply the preceding results to estimate cos

(
2π
kri
n

)
for i = 1, 2.

cos

(
2π
kri
n

)
= cos

(
2π

(
kri
n
− xi

))
where xi is the integer from Corollary (5.3.2)

≥ 1− 2π2

∣∣∣∣krin − xi
∣∣∣∣2 by Lemma (5.3.3)

≥ 1− 2π2

(
1√

n− 1− 1

)2

by Corollary (5.3.2) with t = 2.

We can now estimate 44(n).

44(n) = min
1≤r1<r2≤n−1

2

max
1≤k≤n−1

2 cos 2π
r1k

n
+ 2 cos 2π

r2k

n

≥ 2

(
1− 2π2 1

(
√
n− 1− 1)2

)
+ 2

(
1− 2π2 1

(
√
n− 1− 1)2

)
= 4− 8π2(√

n− 1− 1
)2 .

Since limn→∞
1√

n− 1− 1
= 0, limn→∞44(n) ≥ 4. The largest eigenvalue of a

4-regular circulant graph on n vertices is 4. Thus limn→∞44(n) = 4.

Using similar approximation steps, we estimate 4d(n) for both odd and even

values of d. We assume henceforth d is a fixed integer i.e. d < ∞. When d is odd,

there are
d− 1

2
pairs of cos

(
2π
rik

n

)
for i = 1, 2, . . . ,

d− 1

2
, plus the extra term of

cos kπ. When d is even, the calculation is less messy because there are exactly
d

2

pairs of cos

(
2π
rik

n

)
for i = 1, 2, . . . ,

d

2
. Given this information, we estimate 4d(n)

in the following subsection.

5.3.2 Main Theorem

Theorem 5.3.4.

lim
n→∞

4d(n) = d
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Proof. Case 1: d is odd.

4d(n) = min
1≤r1<...<r d−1

2
≤n−2

2

max
1≤k≤n−1

2 cos

(
2π
r1k

n

)
+ · · ·+ 2 cos

(
2π
r d−1

2
k

n

)
+ cos kπ

≥ 2

1− 2π2

(
1

(n− 1)
2
d−1 − 1

)2
+ · · ·+ 2

1− 2π2

(
1

(n− 1)
2
d−1 − 1

)2
+ 1

= 2

(
d− 1

2

)1− 2π2

(
1

(n− 1)
2
d−1 − 1

)2
+ 1

= d− 2(d− 1)π2

(
1

(n− 1)
2
d−1 − 1

)2

.

Because d is fixed, limn→∞

(
1

(n− 1)
2
d−1 − 1

)
= 0.

Case 2: d is even.

4d(n) = min
1≤r1<...<r d

2
≤n−1

2

max
1≤k≤n−1

2 cos

(
2π
r1k

n

)
+ · · ·+ 2 cos

(
2π
r d

2
k

n

)

≥ 2

1− 2π2

(
1

(n− 1)
2
d − 1

)2
+ · · ·+ 2

1− 2π2

(
1

(n− 1)
2
d − 1

)2


= 2

(
d

2

)1− 2π2

(
1

(n− 1)
2
d − 1

)2


= d− 2π2d

(
1

(n− 1)
2
d − 1

)2

.

Because d is fixed, limn→∞

(
1

(n− 1)
2
d − 1

)
= 0. Combining the two cases, we have

limn→∞4d(n) ≥ d. Since the largest eigenvalue of a d-regular circulant graph is d,

limn→∞4d(n) = d.
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5.3.3 Conclusion

Cheeger’s inequalities and Theorem (5.3.4) yield

lim
n→∞

h(Cd,n) ≤ lim
n→∞

√
2d(d− λ2(A(Cd,n))) ≤ lim

n→∞

√
2d(d−4d(n)) = 0.

Since h(Cd,n) is nonnegative, limn→∞ h(Cd,n) = 0. This means circulant graphs do

not contain an expander family according to Definition(1.1.12).

There may be a better way to approximate λ2(A(Cd,n)). Our method eliminates

the difficulty in choosing ri, and it omits the connectedness issues of Cd,n. Having

many inequalities involved in the approximation may weaken our method. In

particular, estimated values of λ2(A(Cd,n)) are very near d or equal to d most of the

time. However, we are only interested in the case when n goes to infinity, so a better

method is sufficient but not necessary.
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APPENDIX A

MATLAB CODE TO GENERATE FIGURE (5.2)

function [tttt,poly]= comparison()

tttt=[];

poly=[];

for n=10:100

m=floor((n-1)/2);

a=n-1;

b=m*(m-1)/2;

tt=[];

for i=1:m

for j=1:m

if i =j i¡j

for k=1:a

z(k)=2*cos(2*pi*i*k/n) + 2*cos(2*pi*j*k/n);

end

for l=1:b

x(l)=max(z);

end

ta=min(x);
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tt=[tt,ta];

end

end

end

ttt=min(tt);

tttt=[tttt,ttt];

end

for n=10:10000

t(n) = 4 - ((8*pi2)/(sqrt(n− 1)− 1)2);

end

poly = t(1, 10 : 100);

x = [10 : 100];

f(x) = poly;

g(x) = tttt;

plot(x, f(x),′ r′, x, g(x),′ b′)

axis([0 100 0 5])

xlabel(′Number of vertices′)

ylabel(′V alues of min lamda2′)

title(′Comparison of real vs estimating values′)

legend(′estimating graph′, ′real graph′)
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