
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2011

Metamorphic Detection via Emulation
Sushant Priyadarshi
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Other Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Priyadarshi, Sushant, "Metamorphic Detection via Emulation" (2011). Master's Projects. 177.
DOI: https://doi.org/10.31979/etd.3ge6-6nfx
https://scholarworks.sjsu.edu/etd_projects/177

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F177&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F177&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F177&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F177&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F177&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/177?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F177&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

i

Metamorphic Detection via Emulation

A Project Report

 Presented to

 The Faculty of the Department of Computer Science

 San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

 Master of Computer Science

 by

Sushant Priyadarshi

May 2011

ii

©2011

Sushant Priyadarshi

ALL RIGHTS RESEREVED

iii

SAN JOSE STATE UNIVERSITY

The Undersigned Project Committee Approves the Project Titled

METAMORPHIC DETECTION VIA EMULATION

by

Sushant Priyadarshi

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Mark Stamp Department of Computer Science Date

Dr. Chris Pollett Department of Computer Science Date

Dr. Johnny Martin Department of Computer Science Date

APPROVED FOR THE UNIVERSITY

Associate Dean Office of Graduate Studies and Research Date

iv

ABSTRACT

Metamorphic Detection via Emulation

by Sushant Priyadarshi

In parallel with improvements in anti-virus technologies, computer virus writers have developed

innovative viruses that are challenging to detect. Metamorphic viruses change their appearance

from one generation to another by using various code obfuscation techniques. Today, signature

detection is the most common method used in anti-virus products, but well designed

metamorphic viruses cannot be detected using signatures. Hence, there is a need for a more

robust anti-virus technology.

To counter metamorphic virus, a very successful tool based on hidden Markov models (HMM)

has been previously developed. This tool was able to detect all hacker produced metamorphic

viruses on which it was tested. However, a weakness of this tool was exploited to develop an

advanced metamorphic virus generator. These morphed viruses, which were not detected by the

HMM based technique or standard signature-based detection, rely on carefully selected dead

code insertion for their success.

In this project, we have created a code emulator designed specifically to detect dead code in any

virus file. The output of this code emulator is then used to enhance HMM-based detection of

metamorphic viruses. We test our emulator on the previously mentioned metamorphic generator,

using the existing HMM detector to determine the quality of our results.

v

ACKNOWLEDGEMENTS

I would like to thank Dr. Mark Stamp for his encouragement and guidance in carrying out this

project. I also extend my heartfelt thanks to my family and friends for being a wonderful support.

vi

Table of Contents

1 INTRODUCTION .. 1

2 VIRUS EVOLUTION ... 2

2.1 STEALTH VIRUS .. 3

2.2 ENCRYPTED VIRUS ... 3

2.3 POLYMORPHIC VIRUS ... 3

2.4 METAMORPHIC VIRUS .. 4

3 ANTI-VIRUS METHODS ... 5

3.1 SIGNATURE BASED DETECTION .. 6

3.2 HEURISTICS ... 7

3.3 CODE EMULATION .. 7

4 TECHNIQUES USED FOR CODE OBFUSCATION .. 7

4.1 SUBROUTINE PERMUTATION ... 8

4.2 TRANSPOSITION .. 9

4.3 REGISTER SWAPPING .. 10

4.4 INSTRUCTION SUBSTITUTION .. 10

4.5 INSERTION OF JUNK/DEAD CODE .. 11

5 HIDDEN MARKOV MODEL ... 12

5.1 INTRODUCTION ... 12

5.2 HMM EXAMPLE ... 13

5.3 DETECTING METAMORPHIC VIRUS USING HMM .. 16

5.4 HMM RESULTS OBSERVATION ... 18

6 METAMORPHIC ENGINE .. 19

7 IMPROVED METAMORPHIC ENGINE ... 21

7.1 DYNAMIC SCORING ALGORITHM .. 21

7.2 EXPERIMENTAL RESULTS .. 24

8 CODE EMULATOR FOR METAMORPHIC CODE DETECTION ... 25

8.1 INTRODUCTION ... 25

8.2 GOALS .. 25

8.3 EXPERIMENTAL PROCESS .. 26

8.4 ARCHITECTURE ... 27

vii

8.4.1 Introduction ... 27

8.4.2 Components ... 29

8.5 CODE EMULATION: THE ALGORITHM ... 29

8.5.1 Introduction ... 29

8.5.2 Initializing the Data Structure ... 30

8.5.3 First Pass - Finding Junk Blocks and Junk Subroutines .. 31

8.5.4 Second Pass: Find Equivalent Instruction Substitution ... 33

8.5.5 Finding Dead Code and Recording Execution Path .. 34

8.6 LIST OF REGISTERS SUPPORTED .. 37

8.7 INSTRUCTIONS SUPPORTED ... 38

9 EXPERIMENTS AND ANALYSIS .. 39

9.1 HMM TEST FOR BASE VIRUS FILES .. 39

9.2 HMM TEST WITHOUT CODE EMULATION ... 40

9.2.1 HMM Test with 15% Morphing ... 40

9.2.2 HMM Test with 25% Morphing ... 41

9.2.3 HMM Test with 35% Morphing ... 42

9.3 HMM TESTS WITH CODE EMULATION .. 43

9.3.1 HMM Test with 15% Morphing ... 43

9.3.2 HMM Test with 25% Morphing ... 44

9.3.3 HMM Test with 35% Morphing ... 45

9.4 PERFORMANCE ANALYSIS OF CODE EMULATOR ... 46

9.4.1 Execution Time Analysis .. 46

9.4.2 Instruction Count Comparison .. 47

10 ATTACKS ON CODE EMULATOR ... 49

11 CONCLUSIONS AND FUTURE WORK .. 49

REFERENCES .. 51

APPENDIX A: EQUIVALENT INSTRUCTION SUBSTITUTION [21] .. 54

APPENDIX B: DEAD CODE INSTRUCTIONS [21] .. 57

APPENDIX C: LIST OF 8086 INSTRUCTIONS [23] ... 58

APPENDIX D: HMM MODEL TRAINED N=2 .. 61

APPENDIX E: HMM MODEL TRAINED N=3... 63

APPENDIX F: SCORES OF BASE VIRUS FILES VS NORMAL FILES .. 65

APPENDIX G: HMM TEST WITH 15% MORPHING ... 66

viii

APPENDIX H: HMM TEST WITH 25% MORPHING ... 67

APPENDIX I: HMM TEST WITH 35% MORPHING ... 68

APPENDIX J: HMM TEST WITH 15% MORPHING AFTER CODE EMULATION 69

APPENDIX K: HMM TEST WITH 25% MORPHING AFTER CODE EMULATION 70

APPENDIX L: HMM TEST WITH 35% MORPHING AFTER CODE EMULATION 71

APPENDIX M: CODE EMULATOR – EXECUTION TIME ANALYSIS ... 72

APPENDIX N: INSTRUCTION COUNT COMPARISON .. 73

APPENDIX O: HMM TESTS WITH MODELS BUILT WITH X% MORPHED VIRUS FILES 74

APPENDIX P : HMM TESTS WITH TRAINING FILES .. 80

ix

List of Figures

Figure 1 Polymorphic Virus Generations [15].. 4

Figure 2 : Metamorphic Virus Generations [15]... 5

Figure 3 : Stoned Virus Search Pattern [2] ... 6

Figure 4 : Subroutine Permutation Example [21] ... 9

Figure 5 : RegSwap Example [21] .. 10

Figure 6 : Win85 Instruction Reordering [1] .. 12

Figure 7 : Generic HMM [20] ... 13

Figure 8 : Probability Based on Temperature Transition [8] .. 14

Figure 9 : Probability Based on Tree Size [8] ... 14

Figure 10 : Resulting HMM Model [20] .. 15

Figure 11 : Training Data [21] .. 17

Figure 12 : HMM Model [21] ... 17

Figure 13 : HMM Output [21] .. 18

Figure 14 : Sample HMM Result [16] .. 19

Figure 15 : HMM Results [21] ... 20

Figure 16 : HMM Results with 30% Subroutines and 35% Dead Code [16] 24

Figure 17 : Code Emulator Process Flow ... 27

Figure 18 : Code Emulator Architecture ... 28

Figure 19 : Sample Virus File ... 30

Figure 20 : Class Diagram for Data Structure Maintained ... 31

Figure 21 : Sample Junk Block ... 32

Figure 22: First Pass Algorithm .. 33

Figure 23 : Register Emulation through Database .. 36

Figure 24 : Opcode Frequency of 15 Virus Files .. 38

Figure 25 : HMM Results for 40 Base Virus Files ... 39

Figure 26: HMM Test with 15% Morphing .. 41

Figure 27 : HMM Test with 25% Morphing ... 42

Figure 28 : HMM Test with 35% Morphing ... 43

Figure 29 : HMM Test with 15% Morphing ... 44

Figure 30 : HMM Test with 25% Morphing ... 45

x

Figure 31 : HMM scores with 35% Morphing.. 46

Figure 32 : Execution Time Analysis ... 47

Figure 33 : Instruction Count Comparison ... 48

Figure 34 : Dead Code Instructions [21]... 57

Figure 35 : HMM Test with 15% Morphing ... 74

Figure 36 : HMM Test with 35% Morphing ... 75

Figure 37 : HMM Test with 55% Morphing ... 75

Figure 38 : HMM Test with 75% Morphing ... 76

Figure 39 : HMM Test with 15% Morphing ... 76

Figure 40 : HMM Test with 35% Morphing ... 77

Figure 41 : HMM Test with 55% Morphing ... 77

Figure 42 : HMM Test with 75% Morphing ... 78

Figure 43 : Virus Detection Rate Comparison .. 79

Figure 44 : HMM Test with 15% Morphing ... 80

Figure 45 : HMM Test with 35% Morphing ... 80

Figure 46 : HMM Test with 55% Morphing ... 81

Figure 47 : HMM Test with 75% Morphing ... 81

Figure 48 : HMM Test with 15% Morphing ... 82

Figure 49 : HMM Test with 35% Morphing ... 82

Figure 50 : HMM Test with 55% Morphing ... 83

Figure 51 : HMM Test with 75% Morphing ... 83

Figure 52 : Virus Detection Rate Comparison .. 84

file:///C:/Documents%20and%20Settings/User/Desktop/carla/final/review/Sushant_Priyadarshi.docx%23_Toc294341517

xi

List of Tables

Table 1 : Strength and Weakness of Detection Techniques [10] .. 7

Table 2 : Code Obfuscation Techniques [1] ... 8

Table 3 : W32 Example of Instruction Replacement [1] .. 11

Table 4 : Probabilities of all the State Sequences [20] ... 16

Table 5 : Opcodes in Virus and Normal Files [16] ... 21

Table 6 : List Maintained by the Algorithm [16] .. 22

Table 7 : Original Subsequence Score [16] .. 22

Table 8 : Subtraction and Addition of New Count [16].. 23

Table 9 : New Score Calculation [16]... 23

Table 10 : Updated Master Lists [16] ... 24

Table 11 : Equivalent Substitution Example .. 34

Table 12 : Equivalent Instruction Substitution [21] .. 56

Table 13 : List of 8086 Instructions [23] .. 60

Table 14 : HMM Model Trained N=2 .. 62

Table 15 : HMM Model Trained N=3 .. 64

Table 16 : Scores of Base Virus Files vs Normal Files .. 65

Table 17 : HMM Test with 15% Morphing .. 66

Table 18 : HMM Test with 25% Morphing .. 67

Table 19 : HMM Test with 35% Morphing .. 68

Table 20: HMM Test with 15% Morphing after Code Emulation .. 69

Table 21 : HMM Test with 25% Morphing after Code Emulation... 70

Table 22 : HMM Test with 35% Morphing after Code Emulation... 71

Table 23: Execution Time Analysis .. 72

Table 24: Instruction Count Comparison .. 73

1

1 Introduction

A computer virus is a computer program that can copy itself and infect another program [7]. A

virus in an executable code form can spread from one network/system to another [12]. Once a

virus attaches itself to a program, each time the program runs, the virus file is triggered and is

executed on the host machine. This process can result in additional infections.

In general, viruses can be classified based on target and concealment strategies [9]. Viruses

based on target can be Boot-Sector Infectors, File Infectors and Macro Infectors. And different

strategies on which viruses are based upon are encryption, stealth, oligomorphism,

polymorphism and metamorphism. Virus is typically used to describe other type of malwares

such as Trojan horses, worms, etc [31].

Anti-virus techniques include both static and dynamic approaches [9]. These techniques have

relative weaknesses and strengths and the effective combination of these techniques can yield

stronger detection. Scanners, Static Heuristics and Integrity Checkers form the static approach

whereas Behavior Monitors and Emulation form the dynamic approach in anti-virus techniques.

Signature detection is the most common method implemented in anti-virus products [32]. A

signature is essentially a “bit pattern” which is characteristic of a given virus family [33]. Ideally,

the signature is not common in other software. Signature detection is relatively fast and effective,

but it cannot detect new and unknown viruses, since signatures must be available prior to the

detection. Since signature detection is the most popular technique, virus writers have developed

many innovative techniques to evade signature detection. The most advanced such technique is

the use of metamorphic code that has the ability to morph its internal structure (but retain its

function) at each infection. Well designed metamorphic viruses cannot be detected using

signatures, since there is no common signature available.

The aim of this project is to develop an anti-virus mechanism based on code emulation, and

specifically aimed at improved metamorphic detection. The advanced metamorphic virus

generator in [16] injects dead/junk code from non-virus files into its morphed copies, which

makes signature detection fail. This code injection also causes the HMM-based detection in [8]

2

to fail, which is noteworthy since the technique in [8] was able to successfully detect all hacker

produced metamorphic viruses on which it was tested.

The emulator developed for this project will implement a virtual machine that will be used to

record the execution of a virus file in a simulated environment and thereby remove the dead

code. To test the effectiveness of our emulator, the output of this virtual machine will then be

used as input to the HMM tool developed in [8].

This paper contains the following section:

 Section 2 contains the evolution of computer viruses and their types.

 Section 3 discusses over the various anti-virus techniques.

 Section 4 shows various code obfuscation techniques.

 Section 5 deals with the HMM about its overview, example and how HMM is used as

anti-virus.

 Section 6 and 7 discusses about the metamorphic engines developed in [21] and [16].

 Section 8 gives the details of code emulator like architecture, algorithm and

implementation.

 Section 9 shows all the experiments and their respective analysis.

 Section 10 discusses few weaknesses of our code emulator

 Section 11 draws conclusions and also discusses future enhancements

2 Virus Evolution

The evolution of virus started with an academic project done by Fred Cohen in 1983 after which

Len Andleman came up with the term “virus” [9]. Cohen is also considered as the “father of

computer viruses” though there were viruses before this period. One of the first successful

viruses was the “Creeper Virus” which was written by Bob Thomas in 1971. Creeper was able to

make copy of itself and propagate through ARPANET [12].

As the internet usage increased, more and more viruses started pouring into the network and

infecting computers all over the world at very high rate. According to network security experts,

3

2003 was the “year of worm” [13]. There has been surge in number of viruses and also in

research of the anti-virus development.

2.1 Stealth Virus

Stealth viruses use a smart approach to defeat anti-virus products. It basically intercepts all the

calls made by the anti-virus programs to the host machine’s operating system and then returns

back the instance of a “clean” file. Frodo, Whale and Brain are some of the more popular stealth

viruses [9].

2.2 Encrypted Virus

One of the advanced methods that the virus writers use to hide their viruses is by encrypting the

virus body with different keys. So, a virus file will have two parts in it – the encrypted body and

the decrypting module [28]. Since the virus is being encrypted with different encrypting keys

each time, a virus scanner based on signature detection cannot detect it. The only way out is to

do an indirect detection by detecting the decrypting module which will always remain constant.

For example, a simple XOR operation of each byte of a virus file with a key will encrypt the

virus file. And again applying XOR operation on the encrypted virus file will decrypt it [8].

2.3 Polymorphic Virus

Polymorphic virus is just like an encrypted virus with the difference being in the decryption

module. The decryption module also gets changed/mutated after each infection and thus there is

no common part between different copies of same virus [30]. Also, polymorphic viruses can

generate many unique decryptors and can use many other encryption methods for encryption [8].

The Figure 1 illustrates various polymorphic virus variants [15].

4

Figure 1 Polymorphic Virus Generations [15]

2.4 Metamorphic Virus

As opposed to a polymorphic virus where virus writers were trying to hide the decrypting

module, more advanced techniques were developed enabling the virus writers to change the code

of one virus file and create multiple morphed copies but preserving its functionalities [6][29].

These are the type of viruses which have the ability to mutate itself with the code changed but

without changing its functionalities. Metamorphic virus can become a serious threat considering

the fact that there can be thousands of variants of one virus file with their signature being totally

different. Metamorphic viruses uses different kind of code obfuscation techniques like inserting

dead code, register swapping, equivalent code instruction insertion, etc to create morphed copies

of any base virus file [15]. These obfuscation techniques helps in changing the virus signature to

avoid signature based detection. Figure 2 shows the generations of metamorphic virus [15].

5

Figure 2 : Metamorphic Virus Generations [15]

3 Anti-Virus Methods

The anti-virus mechanism used today has to fulfill three functionalities so that they can locate

any virus. The three parameters are detection, identification and disinfection. Detection part

mainly deals in checking whether a given code is malicious in nature or not, based on the virus’s

behavior or appearance. The second parameter is identification, which identifies a detected virus

based on the virus family it belongs to. The third and the last parameter is disinfection or

cleaning which is removal of the detected and/or identified virus. This project deals with the

detection phase.

Detection methods can be divided into two sub-parts which are dynamic and static detection.

This categorization is based on the fact whether the virus file is being executed on the infected

machine or not.

6

3.1 Signature Based Detection

Each virus is represented by a pattern which is a sequence of bytes. Most of the viruses are

uniquely characterized by these bytes of patterns. The anti-virus software scans the part of file or

the whole file or the boot sector in search of this pre-determined signature of any known virus.

Considering the fact that the false alarms in this type of detection will be less, this method is

most commonly used in the anti-virus products available in the industry. The downside of this

method is that it cannot detect a new virus, since its signature will not be saved in the database.

For example, if the signature of an input file is 83EB 0274 EB0E 740A 81EB 0301 0000, then

the scanner will search in the database for this value and will show that it’s a W32/Beast virus

[2]. Similar to this, a Stoned virus can be detected as shown in Figure 3.

Figure 3 : Stoned Virus Search Pattern [2]

7

3.2 Heuristics

This method looks for code having “virus-like” behavior (abnormal activity) and can easily find

known or even unknown viruses [9]. It is a static analysis, which means that the code being

looked for “threat” is not being executed on an infected machine. Heuristics analysis is done in

two steps [9] – Data Gathering in which the data is collected using many heuristics and Analysis

in which the techniques like data mining, expert systems or neural networks can be used to

analyze. Heuristics method may give false alarms but it is effective in finding new viruses.

3.3 Code Emulation

Code emulation is a technique in which a virus is allowed to execute in a simulated environment

without actually impacting the host machine. This is a dynamic analysis method as the code of

the virus is run to see its behavior. A good emulator comprises of five functionalities [9], which

are CPU emulation, Memory emulation, Hardware and Operating System emulation, Emulation

controller and Analyzer. Code emulation is a good method to find new viruses including the

metamorphic virus. Table 1 lists the various weaknesses and strengths of various detection

methods.

Table 1 : Strength and Weakness of Detection Techniques [10]

4 Techniques Used for Code Obfuscation

Code obfuscation techniques can be used by programmers to conceal any logic or purpose by

making the code difficult to understand. In the world of viruses, use of these techniques is a boon

for any virus writer to make the viruses hidden from the anti-virus software. Metamorphic

8

engines execute many code obfuscation techniques which allow them to evade signature based

detection. These techniques help metamorphic engines to create many morphed copies of a

single base virus file.

For assembly programs, code obfuscation basically works over the data section and the control

flow [1]. Insertion of jump statements to change the flow of execution is involved in Control

Flow obfuscation whereas, dealing with register renaming, subroutine permutation, insertion of

dead code constitutes code obfuscation techniques related to the data section. Table 2 shows the

code obfuscation techniques used by the well known metamorphic viruses [1].

Table 2 : Code Obfuscation Techniques [1]

4.1 Subroutine Permutation

This is a very basic technique used for code obfuscation wherein, the subroutines are reordered

/shuffled around using instructions such as jump and label without impacting the subroutine’s

functionality (Figure 4 shows one such scenario). So, if any program is having n number of

subroutines, then all the subroutines can be reordered in n! (n factorial) different ways.

W32/Ghost virus [1] had in total 10 subroutines which gave it the capacity to reorder its

subroutine in 3,628,800 ways.

9

Figure 4 : Subroutine Permutation Example [21]

4.2 Transposition

Modifying the order of execution of instructions in any program is called Transposition. This

method can be only applied to a set of instructions which do not have any mutual dependencies.

If the output of first instruction is not taken into account by the second instruction, then these two

instructions can be swapped as their order of execution will not impact the program’s function.

In order to swap two instructions, say instruction one is ADD R1, R2 and instruction two is

MOV R3, R4, one needs to make sure that the following rules are satisfied [3]:

1. R3 != R2

2. R3 != R1

3. R4 != R1

10

For example, instructions MOV A, B and ADD C, D can be swapped based on the above given

rule as it would not impact the outcome of the program.

4.3 Register Swapping

This method modifies the current registers used in a particular instruction by swapping it with

another equivalent register, which is helpful in evading signature detection as this changes the

opcode pattern. W95/RegSwap virus [4] used this technique extensively. An example of two

generations of RegSwap appears in Figure 5.

Figure 5 : RegSwap Example [21]

4.4 Instruction Substitution

Metamorphic engines use this technique very commonly for generating highly morphed virus

copies. The idea of this method is to replace instruction (even group of instructions) with an

equivalent instruction [6]. In assembly language, instruction “add eax, 1” can be replaced with

“inc eax”. A few examples used by W32/MetaPhor [1] are shown in Table 3.

11

Table 3 : W32 Example of Instruction Replacement [1]

4.5 Insertion of Junk/Dead Code

Most of the metamorphic engines insert junk or dead code in the virus file to vary the signatures

of individual virus files morphed from a base virus file. This technique is very effective if used

within a certain limit. Inserting dead code beyond a particular point triggers an abnormality

which can be easily detected by intrusion detection systems. If an instruction or group of

instructions has been inserted, which might be executed but does not alter the functionality of the

program, it can be termed as “do nothing code”. Instructions like “push eax” followed by “pop

eax”, if executed, will not affect the program’s normal functionality. And if an instruction or

block of instructions which has been inserted after a unconditional “jmp” instruction to the next

authentic/actual instruction, then this inserted code is called “dead code” as these instructions

will never be executed.

The Win95/Zperm is one of the virus which has used this technique in order to create

metamorphic copies [1]. Figure 6 illustrates an example of instruction reordering.

12

Figure 6 : Win85 Instruction Reordering [1]

5 Hidden Markov Model

5.1 Introduction

A Markov process in probability and statistics is a random phenomenon dependent upon time for

which the phenomenon holds a specific property [19]. Hidden Markov Model (HMM) is a tool

based on pattern analysis. In this analysis, the system which is being modeled is nothing but a

Markov process. A few areas where HMM is used are bioinformatics, protein modeling, gesture

recognition and speech recognition applications [10].

First, HMM is fed with an input/training data. HMM then tries to extract a list of unique symbols

from the training data. In addition, it also identifies their respective positions in the training data.

The data obtained by these extractions and identifications is treated as a model with which HMM

will determine whether there is similarity of pattern between the model and a new set of input.

The HMM makes use of the following notations [20]:

13

Figure 7 depicts the HMM in generic form [20]. The state at time t is represented by Xt and Ot

represents the observation at time t. The dashed line shows the Markov process which is

calculated based on State transition probability matrix and the initial state X0. For every state, we

have an Observation sequence representing the Markov process’ actual states by the matrices -

Observation probability distribution matrix (B) and State transition probability matrix (A).

Figure 7 : Generic HMM [20]

5.2 HMM Example

The inner working of HMM is illustrated through an example in [8]. Lets assume about the

annual temperature of any given place. It can be either cold (C) or hot (H). One can determine

the annual temperature of any year in the future by observing the various size of the trees (size

can be Large-L, Medium-M or Small-S). To solve this problem, we have the following

information :

14

a. The probability of a hot year occurring before a cold year is 0.4 or the probability of two

consecutive hot years is 0.7. The probability of a cold year occurring before a hot year is

0.3 or the probability of two consecutive cold years is 0.6. Figure 8 shows the

probabilities’ matrix.

Figure 8 : Probability Based on Temperature Transition [8]

b. This information deals with the temperature and tree size (Large-L, Medium-M or Small-

S). The probability of tree being small in a hot year is 0.1 and small in a cold year is 0.7.

The probability of tree being medium in a hot year is 0.4 and medium in a cold year is

0.2. And the probability of tree being large in a hot year is 0.5 and large in a cold year is

0.1. The matrix representation is shown in Figure 9.

Figure 9 : Probability Based on Tree Size [8]

Now correlating the above information with the HMM notations here, its states are represented

by the annual temperatures. The observable symbols are identified as tree sizes. In each state, the

probability of observation symbols are represented by tree sizes at each temperature. Figure 10

shows the resulting HMM model [20].

15

Figure 10 : Resulting HMM Model [20]

For a given observation like (S,M,S,L) having length T=4, to determine the state transition, the

HMM would perform the following steps :

1. Determine N
T
, which are the state transitions.

2. N ow for each state transition (4 in this example), calculate observations sequence’s

probability [8].

Table 4 shows all the probabilities.

16

Table 4 : Probabilities of all the State Sequences [20]

3. From the Table 4, we can see that the maximum probability is 0.002822. This

corresponds to “CCCH” which is the most probable annual temperature sequence.

5.3 Detecting Metamorphic Virus using HMM

To detect a metamorphic virus using HMM, we need training data. This training data is nothing

but virus files generated from same virus generator, and converted to .asm file (assembly files)

using IDA Pro [22]. HMM needs a unique observation sequence and observation symbols to

train a model. Concatenating the opcodes of viruses will give the unique observation sequence

and unique assembly opcodes forms the observation symbols. For example, considering the

training data in Figure 11, HMM model can be constructed as shown in Figure 12.

17

Figure 11 : Training Data [21]

Figure 12 : HMM Model [21]

18

After constructing the model for a particular virus family, now HMM is used to check whether a

particular virus belongs to that family or not. The HMM would produce the result as shown in

Figure 13.

Figure 13 : HMM Output [21]

Considering a threshold value of -4.38, the virus files IDAN0, IDAN1, IDAN2, IDAN3 and

IDAN4 belongs to same virus family as their scores are greater than the threshold. The other files

have scores less than the threshold, so they cannot be considered as belonging to the same virus

family.

5.4 HMM Results Observation

200 viruses generated by Next Generation Virus Creation Kit in [8] were tested with HMM. In

total, 25 models were trained and used to differentiate non-virus (normal files) from that of 200

virus files. Out of 25 models, 23 were able to identify normal programs depending upon their

scores, which meant NGVCK viruses were easily detected. Figure 14 shows an example of a

result which shows the difference of scores between the normal files and the virus files [16].

19

Figure 14 : Sample HMM Result [16]

6 Metamorphic Engine

A metamorphic engine was developed in [21], which used many code obfuscation techniques to

produce highly morphed copies of any base virus file. These morphed copies were made by

copying codes from normal files which were Cygwin utility files. The metamorphic generator

used code obfuscation techniques such as dead code insertion, NOP sequence insertion,

equivalent instruction substitution and transposition. Special algorithms were developed to

incorporate the above discussed code obfuscation techniques. The morphed virus copies were

then tested against the commercial virus scanners and later with the Hidden Markov Model

developed in [8].

The experiments conducted with the commercial available anti-virus scanners were very

successful. The tests showed that the base virus file was detected by the anti-virus products and

thus quarantined. But when the anti-virus scanners were tested against the morphed copies, it

failed. The scanners were not able to detect the morphed copies of the same base virus file which

20

was detectable and thus showing the high level of metamorphism created by the metamorphic

generator.

Then the morphed copies were tested against the virus detection tool based on HMM. For one of

the test case, 90 virus files were used to make HMM model and then 30 virus files were tested

against this generated model. Even with high degree of metamorphism involved, HMM was

successful in differentiating between the normal files and the virus files as shown in Figure 15

[21].

Figure 15 : HMM Results [21]

21

7 Improved Metamorphic Engine

Even though the metamorphic engine developed in [21] as discussed in previous section was able

to develop highly metamorphic virus files, HMM developed in [8] was able to classify the virus

files into the same virus family. This drawback of the metamorphic engine developed in [21] was

because the engine was randomly applying code obfuscation techniques. Therefore, an improved

version of metamorphic engine was developed in [16] to remove this randomness feature. A

scoring algorithm known as Dynamic Scoring Algorithm was developed [16], which basically

made sure that the code obfuscation techniques are applied only if they make the virus file look

like a normal file/program.

7.1 Dynamic Scoring Algorithm

The Dynamic Scoring Algorithm developed in [16] has been mainly divided into three steps :

1. Algorithm Initialization - After passing a virus file and a normal file as parameters, four

master lists are created. These lists maintains the information which are individual

opcode count and opcode-pair counts of both the normal file and the virus file. Consider

the opcodes as shown in Table 5 as present in the normal and virus files.

Table 5 : Opcodes in Virus and Normal Files [16]

Then the four lists generated by the algorithm will have the following contents as shown

in Table 6. The algorithm also computes the difference between each opcode-pair and

opcode count and adds them.

22

Table 6 : List Maintained by the Algorithm [16]

2. Score the Changes - Before making any change permanently, a new score is calculated to

see whether the new change will bring the virus file closer to the normal file or not. A

score less than 0 make the virus file closer to the normal file. An exact score of 0 means

there is no change. A score more than 0 mean that the virus file and the normal file is less

similar to each other. For example, if “add mov” is changed to “mov add” after

transposition, the two opcode sequences passed will be “mov add mov pop” (which is

original subsequence) and “mov mov add pop” (which is the new subsequence).

A change in score is computed as following [16]:

a. Calculate and save the to-be-affected-counts. Table 7 shows this calculation.

The to-be-affected score in this case will be 5.

Table 7 : Original Subsequence Score [16]

b. From the master list, subtract the original subsequence’s respective counts.

23

c. Counts of the new subsequence should be added to the master lists. Table 8

shows the steps b and c. Notice that the “Add_Pop” is the new counter in the

table.

Table 8 : Subtraction and Addition of New Count [16]

d. Now compute the affected counts. Table 9 shows that the new score will be 3

and the original score was 5, which indicates that if the transposition is done,

then the virus file will become closer to the normal file by 2 points.

Table 9 : New Score Calculation [16]

3. Updating the changes - This step deals with making the changes in the master list

permanently. The master score now will decrease from 8 to 6 as the score was improved

by 2. Table 10 shows the updated master lists .

24

Table 10 : Updated Master Lists [16]

7.2 Experimental Results

The improved metamorphic generator was successful in evading HMM detection. It was possible

only by generating highly morphed viruses and also maintaining the similarity between the virus

file and the normal file, based on the Dynamic Scoring Algorithm. Figure 16 shows one of the

test case result, which depicts the failure of HMM to classify correctly between the virus and

normal files..

Figure 16 : HMM Results with 30% Subroutines and 35% Dead Code [16]

25

8 Code Emulator for Metamorphic Code Detection

8.1 Introduction

In general, the code emulator should have the ability to run the virus code being analyzed in an

emulated environment. In this way, there is a very high chance that the virus will expose itself

about its functionalities. Using virtual flags and registers, the code emulator will run the

instruction set of the CPU. Even though code emulation may be a costly solution, but given the

task at hand to detect the metamorphic virus, it can be a very effective solution in the long run.

In order to implement a metamorphic virus detector though code emulation, we had to make sure

that most of the code obfuscation techniques were taken care of. Code obfuscation techniques

such as equivalent code substitution, dead code insertion, junk block insertion and dead

subroutine insertion were the primary targets of our code emulator. The aim of our code emulator

is to bring the morphed copies of virus file as close (statistically) as possible to the base virus

file. By doing this we can make sure that when these un-morphed copies are given as an input to

the HMM, it will detect them with ease.

8.2 Goals

The main goals that we wanted to achieve through the implementation of code emulator are:

1. The code emulator should implement as many assembly level language instructions

as possible.

2. The code emulator should have the capability to emulate all the important CPU

registers.

3. The emulator should be able to filter out or change the instructions/subroutines,

which are because of code obfuscation techniques such as: equivalent code

substitution, dead code insertion, junk block insertion and dead subroutine insertion.

4. The emulator should also preserve the basic functionality of the virus program.

5. The code emulator should try to bring the un-morphed copies closer to the base virus

file “statistically”.

26

8.3 Experimental Process

In an effort to detect the metamorphic virus or to generate the metamorphic virus, significant

background research and work has been done previously. A logical gap was developed in the

continued research between the developments of HMM [8] and the metamorphic code generator

[16]. So where does exactly our code emulator will fit in? To get the complete picture, Figure 17

shows the entire flow of actions that will be taken to test and validate the results.

For our research, we need two types of data which are the virus files and normal files. For virus

files, we used the Next Generation Virus Creation Kit (NGVCK – Version 0.3 stable released on

June 2001) to create 200 virus files [25]. These generated virus files were named from “IDAN0”

to “IDAN199”. For normal files, we chose Cygwin utility files [25] which were randomly

chosen. These utility files have pretty much same low level system functionalities as the virus

files and thus are ideal candidates for comparison and morphing. These normal files were named

from “IDAR0” to “IDAR39”.

1. We collected 200 virus files belonging to the same family generated by the NGVCK.

These virus files are the base virus files which will be used in our project.

2. IDA Pro [22] is used to dissemble the files into .asm virus files.

3. Out of those 200, 160 virus files are used to make models for the HMM, which will

be used later for detection.

4. Remaining 40 virus files and 40 normal files are taken as an input to the metamorphic

code generator developed in [16], which are used to create highly morphed copies of

all the virus files with different morphing percentage.

5. Once we have a collection of morphed virus files, we feed those files into our code

emulator.

6. The output of the code emulator will be un-morphed virus files which will be served

as an input to the HMM.

7. The HMM on its behalf will now try to distinguish these virus files based on the

model which we had constructed in step 3.

8. The last step will be to analyze the different scores given by the HMM.

27

Figure 17 : Code Emulator Process Flow

8.4 Architecture

8.4.1 Introduction

One of the main goal for the development of code emulator was to have a robust architecture,

where proper subsystems were identified. We tried to ensure that though implementing the code

28

emulator is complex, each layer or subsystem is built over relatively clean and simple concepts.

Since the code emulator will be having lot of interaction with the files system and database, we

chose to implement the emulator in JAVA because we needed a better hold and greater

flexibility over the program and the data. The code emulator has been basically divided into

seven main components like Execution Path Recorder, Equivalent Instruction Substitution

Finder, etc. Figure 18 shows the overall architecture of our code emulator displaying the various

components involved.

Figure 18 : Code Emulator Architecture

29

8.4.2 Components

The various components of our code emulator has the following functions:

1. Database Access Layer – This layer has been implemented based on the Singleton

Pattern [27] to have more efficiency. The data access layer provides a database

connection to all the other requesting components. The singleton pattern makes

sure that the only one instance of the class is created, and thus providing global

point of access to the database’s object.

2. File Handler – This component deals with the writing and reading of various virus

files. These operations of accessing file system has been given exclusively to this

component.

3. Detector – This module is the main component where the instructions read from

the file are passed. This component has been designed as per the Code Emulation

Algorithm. The main task of this component is to act as a controller, which

decides over which component will be executed next.

4. Dead Code Finder – This module is responsible for finding the dead code as per

the Code Emulation Algorithm. This module maintains a list of already known

series of dead code instructions through which it finds the equivalent dead codes

in the virus file.

5. Equivalent Instruction Substitution Finder – This module is responsible for

finding the equivalent instructions based on pattern matching.

6. Junk Block/Junk Subroutine Finder – This component finds all the subroutines

which are not called from anywhere and marks them appropriately.

7. Execution Path Recorder – This module is the last one to be called by the

Detector module. This is where the emulation takes place and along with, it also

marks all the instructions which have been executed.

8.5 Code Emulation: The Algorithm

8.5.1 Introduction

To make sure that our code emulator is following a specific path or process, we came up with an

algorithm known as the Code Emulation Algorithm. This algorithm consists of steps specific for

30

a certain types of code obfuscation techniques. Keeping in mind the various code obfuscation

techniques that needs to be handled, the algorithm is designed to make couple of parsing before

the actual emulation of registers take place. The sections below explain the steps in detail.

8.5.2 Initializing the Data Structure

As a first logical step, virus file will be read into a particular data structure. So it was important

to have a data structure defined for our emulator, which should be easy to handle and maintain.

One observation which was very much evident from the disassembled virus files was the way the

instructions were laid out. Every location/subroutine individually had a different set of

instructions as shown in the Figure 19.

Figure 19 : Sample Virus File

So, we maintained a separate JAVA class for each location where it was populated with their

respective instructions and opcodes saved as array lists. We also maintained separate flag for

each location (at class level) and also for each instruction. The respective flags were made true if

a particular location/subroutine is called and/or if a particular instruction is executed. This was

31

the optimal way to keep track of all the instructions being executed. Figure 20 shows a

representation of the class with a few methods included.

Figure 20 : Class Diagram for Data Structure Maintained

8.5.3 First Pass - Finding Junk Blocks and Junk Subroutines

This is a helper pass which is basically run to ensure that less strain is put over the execution

recorder phase (where the emulation of registers take place). In this pass, the emulator will try to

find any junk block or junk subroutine which has been embedded into the morphed virus file.

This pass does not deal with the emulation of the registers, but it scans all the instructions

looking for specific property related to junk block or junk subroutine code.

To improve efficiency, we are maintaining a list known as “CalledSubroutine”. While reading

the data from the file into the data structure, this list was being populated with the names of any

subroutine which has been called. So, whenever we encountered with the instruction “call”, the

subroutine name or the location name was fed into the CalledSubroutine list. This step provided

us with the information about the subroutines which “might” never be called for any given

scenario. Once the “CalledSubroutine” list is populated, we will delete the subroutines from the

data structure whose names are not included in our list.

The second part of this pass is to find the probable junk blocks of code. This part deals with the

searching of unconditional “jmp” instructions. If there are any unconditional jump instructions,

32

then we can mark the remaining instructions in any subroutine/location as “probables” for being

never executed. Note that at this stage, we do not delete these instructions from the data

structure, but we just mark them so that later in execution recorder stage, we can cross check

whether these instructions are executed or not through register emulation. The Figure 21 shows

a similar condition.

Figure 21 : Sample Junk Block

To sum up, the algorithm to be followed for this round is shown in Figure 22.

33

Figure 22: First Pass Algorithm

8.5.4 Second Pass: Find Equivalent Instruction Substitution

One of the steps to make morphed copies of the base virus file was to substitute an equivalent

instruction [16]. The equivalent instruction substitution does make a lot of difference for

scanners, which are based on signature detection and HMM, too. Since substitution of an

equivalent instruction will not make any difference to the existing functionality, catching it

through the emulation process solely will be very tough as we cannot impose any general logic

behind it. To overcome this problem, we used the list of instructions and their equivalent

instructions listed in [21] and used them in our implementation (See Appendix A for a complete

list of instructions and their equivalent instructions). There are close to 50 instructions and their

substitute instructions in this list.

In order to implement this scenario, we did pattern matching of various instructions and their

operands to reverse it back to the original instruction. For example, consider the following

instruction substitution for instruction “dec R” in the Table 11.

34

Table 11 : Equivalent Substitution Example

Now in this pass, as the emulator goes through all the instructions, it will try to match all the new

patterns with the patterns of the equivalent instructions already saved in the emulator. Referring

from the Table 11, it can be seen that a simple instruction of “dec R” or “dec mem” can be

replaced with “neg R” followed by “not R” or “neg mem” followed by “not mem”. So the job of

emulator at this stage will be to find the matching patterns and replacing those instructions with

their original counterparts. In this case, wherever the emulator finds “neg R not R” as the two

consecutive instructions for a particular location or subroutine, these instructions will be replaced

with “dec R”.

8.5.5 Finding Dead Code and Recording Execution Path

This is the last and the most important step in the execution of a virus file. Till this step, the virus

file which has been put into the data structure, has been cleaned up of “most” of the instructions

which was result of various code obfuscation techniques. But there will be still many more

instructions left to be found, whether they are actually impacting over the functionality of the

virus program or not.

As a first part of this step, while the code emulator goes instruction by instruction, it tries to find

out the dead code (instruction which executes but will not impact over the functionality). We

took the list of possible dead codes [21] (See Appendix B for a complete list) and the code

emulator will keep looking for them during the execution of the virus file. If any of the sequence

of instructions were found in the file, the code emulator will simply block them from being

executed and mark them as unvisited.

The next phase of this step was the actual emulation of a virus file. In order to run this step, we

emulated the various registers present in the 8086 architecture in our database. All the registers

35

were created as a new column inside a table of our database. For example, if we have 2 registers

EAX and EBX to be emulated, then we will have 2 columns named EAX and EBX in our

database’s table. So whenever the emulator will encounter instructions handling these two

registers, database table will be updated appropriately. Our emulator is supporting most of the

registers (See Section 8.6 for list of Supported Registers).

Other emulation that our code emulator is dealing with is the emulation of different kind of

instructions. We implemented the functionality of many instructions (See Section 8.7 for list of

Supported Instructions). For example, if the emulator encounters “mov eax,ebx”, then the

emulator will use database query to remove the value of ebx (from the database table’s column

ebx) and then insert it into the column eax. Each instruction was implemented separately based

on their functionality in our emulator, so that they perform the same operation with our emulated

registers as it would have done with the real CPU registers.

To get a complete picture of emulation, consider an example where the emulator encounters two

instructions as “mov ebp, esp” and then “dec ebx”. We have a separate implementation of these

instructions in our emulator. So in this case, the emulator will pick up the value from column

“esp” in the database and insert it into the column “ebp”. Then the code emulator will decrement

the value present in the column “ebx” . Figure 23 depicts this scenario.

36

Figure 23 : Register Emulation through Database

The code emulator while executing these instructions, also keeps updating in the data structure

whether or not any particular instruction has been visited/executed. In this way, when the

emulation stops, the code emulator would have marked all the possible instructions which were

executed for a particular path. Basically the code emulator tries to follow a particular path and

record all subroutines/locations/instructions that have been executed.

At the end of this step, the code emulator will produce a .asm file which will have the

instructions that were marked as visited/executed in our data structure.

37

8.6 List of Registers Supported

For performing an effective code emulation, the code emulator will attempt to capture as many

registers as possible so that most of the .asm file of Intel 8086 could be executed. Registers are

fast memory, almost always connected to circuitry that allows various arithmetic, logical,

control, and other manipulations, as well as possibly setting internal flags [24]. Implementation

of various registers will be based over the functionalities of individual register set. Below are the

register sets which have been identified for implementation:

1. Accumulators : All the operations such as rotate, logical, arithmetic shift or similar

operations are done by the registers known as Accumulators. In 8086, AX is the one

word accumulator of size 16 bits. Variation is that higher order byte of AX is called

AH, whereas lower order byte is called AL.

2. General Purpose Registers : General Purpose Registers in 8086 are BP, BX, AX, CX,

SP and DI. To cover these, we needed to have both the lower order and the higher

order bytes variations. Higher order for general purpose registers are called BH, AH,

DH, and CH and the lower order bytes are named as BL, AL, DL, and CL.

3. Index Registers : In 8086, index registers are nothing but use of general purpose

registers. So we have used the general purpose registers as index registers itself. A

more complicated version can be made by combining the index register and the

address register.

4. Base Registers : These are used to segment memory. In 8086, there are six of them :

GS- data segment, SS- stack segment, , ES- extra segment, FS- data segment register,

CS- code segment and DS- data segment.

5. Program Counter : We did not emulate the program counter as we had other

mechanism to follow the execution path. Program Counter basically stores the next

executable instruction’s address.

6. Stack Pointer : In 8086, SP- stack pointer combined with SS - stack segment pointer

is used to create address of the stack.

38

8.7 Instructions Supported

For the implementation of our code emulator, target was to include most of the 8086/8088

instructions sets. Refer to Appendix C for a complete list of instructions [23] supported by the

8086/8088 architecture. There are close to 100 individual instructions with many instructions

having different variations (which meant different approach for each variation). So to avoid

unnecessary implementation of less used instructions, we wrote a utility java program, which

took input as 15 of the virus files and created a list of most frequently used instructions in these

virus files. So we implemented close to 30 instructions in total based on the figures thus

collected. Figure 24 shows the list of those instructions and their average frequency of

occurrence in those 15 virus files.

Figure 24 : Opcode Frequency of 15 Virus Files

0

10

20

30

40

50

60

m
o

v

p
u

sh

ad
d

ca
ll

cm
p jz

jn
z

p
o

p

su
b

le
a

te
st in
c

jm
p

m
o

vz
x

d
ec

lo
d

sd

re
tn xo

r

re
p

st
ar

t

jle

lo
o

p

p
o

p
a

st
o

sd

lo
d

sb

p
u

sh
a

im
u

l

Instructions

Count

39

9 Experiments and Analysis

9.1 HMM Test for Base Virus Files

To make sure that HMM is detecting our 40 base virus files; we ran a test for HMM detection. If

the scores obtained by HMM for the virus files are lower than the scores obtained for the normal

files, then the HMM will be able to distinguish between them. This is because, HMM maintains

a threshold value. Score of any file lower than the threshold is considered as a normal file and

score of file higher than the threshold is considered as a virus file.

Figure 25 shows the HMM result for our 40 base virus files. The HMM was successfully able to

differentiate between the normal files from the virus files.

Figure 25 : HMM Results for 40 Base Virus Files

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

0 5 10 15 20 25 30 35 40 45

Virus File

Normal File

40

It can be observed from the above figure that the minimum score of virus family is -4.38473 and

the maximum score of normal file is -8.90711, so the HMM was able to make a clear distinction

of both type of files (Refer to Appendix F for the complete list of HMM scores).

9.2 HMM Test without Code Emulation

To conduct this step in the experiment process, we took the 40 base virus files and morphed them

using Metamorphic Virus Generator Engine [16]. The engine will take one normal file and one

virus file as input and apply various code obfuscation techniques in an effort to make the base

virus file closer to the normal file. For our experiment, we have 40 base virus files and 40 normal

files. So, we took the 1
st
 virus file with 1

st
 normal file, 2

nd
 virus file with 2

nd
 normal file and so

on. At this stage we expect that there will be many morphed virus files which would not be

detected by the HMM. We morphed the base virus files with different settings (different

percentage of morphing).

9.2.1 HMM Test with 15% Morphing

We started our experiments by morphing the base virus files by 15%, which was having 5%

subroutine copied into from the normal file. Then we ran the HMM test again for these set of

morphed virus files. The HMM was not able to detect all the morphed virus files as it did before

the morphing had happened. Figure 26 shows the result of our HMM test. With the maximum

score of normal files being -8.90711, we found that there were 20 virus files whose score was

less than the maximum score of the normal file (Refer to Appendix G for a complete list of

HMM scores).

41

Figure 26: HMM Test with 15% Morphing

9.2.2 HMM Test with 25% Morphing

For this round, we started our experiments by morphing the base virus files by 25%, which was

having 15% subroutine copied into from the normal file. Then we ran the HMM test again for

these set of morphed virus files. The HMM was not able to detect the entire morphed viruses.

Figure 27 shows the result of our HMM test. With the maximum score of normal files being -

8.90711, we found that there were 20 virus files whose score was less than the maximum score

of the normal file (Refer to Appendix H for a complete list of HMM scores).

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

0 10 20 30 40 50

Morphed Virus File

Normal File

42

Figure 27 : HMM Test with 25% Morphing

9.2.3 HMM Test with 35% Morphing

We started our experiments by morphing the base virus files by 35%, which was having 25%

subroutine copied into from the normal file. Then we ran the HMM test again for these set of

morphed virus files. The HMM was not able to detect all the virus files as it did before the

morphing had happened. Figure 28 shows the result of our HMM test. With the maximum score

of Normal Files being -8.90711, we found that there were 16 virus files whose score was less

than the maximum score of the normal file (Refer to Appendix I for a complete list of HMM

scores).

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

0 10 20 30 40 50

Morphed Virus File

Normal File

43

Figure 28 : HMM Test with 35% Morphing

9.3 HMM Tests with Code Emulation

From the tests conducted in the previous section, we got sure that HMM was not able to detect

all the virus files after morphing. Now we took the 40 morphed virus files generated from the

above tests (for various morphing percentage) to run with our Code Emulator. The code emulator

will try to remove as much as code obfuscation techniques applied to the virus files and create

“Un-Morphed” virus copies. We will test these un-morphed virus copies with the HMM tool.

The expectation was that as the HMM was able to detect base virus files, it will also detect the

corresponding un-morphed virus files.

9.3.1 HMM Test with 15% Morphing

We took the 40 morphed virus files (having 15% morphing and 5% subroutine copying) and run

them in our code emulator, whose output was un-morphed virus files. We then tested the 40 un-

morphed virus files to see whether HMM can now detect these or not. Figure 29 shows that the

HMM was able to distinguish between the un-morphed virus files and the normal files. The

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

0 10 20 30 40 50

Morphed Virus File

Normal File

44

minimum score of un-morphed virus files is -6.39854 and the maximum score for the normal file

was -8.90711. Thus from the HMM scores generated, we can show that the code emulator was

successful in detecting the code obfuscation techniques (Refer to Appendix J for a complete list

of HMM scores).

Figure 29 : HMM Test with 15% Morphing

9.3.2 HMM Test with 25% Morphing

In this step, we took the 40 morphed virus files (having 25% morphing and 15% subroutine

copying) and run them in our code emulator, whose output was un-morphed virus files. We now

tested these 40 un-morphed virus files to see whether HMM can now detect these or not. Figure

30 shows that the HMM was able to distinguish between the un-morphed virus files and the

normal files. The minimum score of un-morphed virus files is -6.26291 and the maximum score

for the normal file was -8.90711 (Refer to Appendix K for a complete list of HMM scores).

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

0 10 20 30 40 50

Un-Morphed Virus File

Normal File

45

Figure 30 : HMM Test with 25% Morphing

9.3.3 HMM Test with 35% Morphing

The Figure 31 shows that the HMM was able to distinguish between the un-morphed virus files

and the normal files. This test was aimed to see whether the code emulator can remove code

obfuscation techniques from virus files, which have been morphed as high as 35% with 25%

subroutine copying. The minimum score of un-morphed virus files is -6.73408 and the maximum

score for the normal file was -8.90711 (Refer to Appendix L for a complete list of HMM scores).

Thus from the HMM scores generated, we can show that the code emulator was successful in

detecting the code obfuscation techniques.

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

0 10 20 30 40 50

Un-Morphed Virus File

Normal File

46

Figure 31 : HMM scores with 35% Morphing

9.4 Performance Analysis of Code Emulator

To analyze the performance of our code emulator, we conducted two tests which have been

discussed in this section. The first analysis deals with the execution time of the virus file by our

code emulator. In the second analysis, we tried to ascertain the percentage of actual code

(undead), which our code emulator missed during emulation of a virus file.

9.4.1 Execution Time Analysis

 We wanted to get an idea about the performance of our code emulator. Figure 32 shows the time

analysis graph where the x-axis represents the virus file size in KB and the y-axis represents their

execution time in milliseconds (Refer to Appendix M to see the time as per virus file name and

their size). As the virus file size increased, the code emulator took more time to finish its

operation.

-60

-50

-40

-30

-20

-10

0

0 10 20 30 40 50

Un-Morphed Virus File

Normal File

47

Figure 32 : Execution Time Analysis

9.4.2 Instruction Count Comparison

The code emulator tries to remove those instructions from the virus file which can be present due

to various morphing techniques. While performing emulation, there can be instructions which are

legitimate (undead), but are still removed by the code emulator. So, we compared the number of

instructions in the base virus file to the number of instructions left in the virus files after

emulation. According to Figure 33, we lost an average of 25 instructions per virus file after

emulation (Refer to Appendix N for the exact values) i.e. around average 3.35% of original

instructions. There were cases where no difference in the instruction count was found (like the

virus files IDAN127 and IDAN139), but at the same time there were cases where the number of

instructions lost due to emulation was 116 like the virus file IDAN125.

0

20

40

60

80

100

120

140

160

180

200

45 71 73 73 75 75 77 77 79 79 79 81 83 87 90 94 98 101103103

Millseconds

File Size in KB

Execution Time Analysis

Time (in Milliseconds)

48

Figure 33 : Instruction Count Comparison

0

200

400

600

800

1000

1200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

No. of Instructions

File Number

Instruction Count Comparison

No. of Instructions
in base Virus File

No. of Instructions
after Emulation

49

10 Attacks on Code Emulator

The implemented code emulator does have certain limitations which a virus writer can exploit to

make the virus more complicated for any code emulator. The NGVCK generated viruses had one

entry point from where our code emulator starts its process. Virus writers can introduce multiple

entry points for any virus for which an advanced emulator will have to perform its operations

from all the respective entry points. In our code emulator, we took the exception of Dummy

Loops Detection. Based on some conditions, these loops are inserted to make the emulator run

thousands of instruction unnecessarily thus preventing it from rebuilding the original base virus

file.

In the Code Execution Recording phase, we followed the path of the instructions being executed.

But there can be viruses where the instructions are based over the CPU properties. The overhead

will be that the emulator will have to run over different kind of CPU to detect the virus’s actual

behaviors.

11 Conclusions and Future Work

The emulator we developed was able to emulate the execution of virus files and remove the

unexecuted instructions/subroutines successfully. The code emulator was also able to remove or

change the instructions which were result of various code obfuscation techniques such as

equivalent instruction substitution, junk code/block insertion and dead code insertion. Once the

virus files were un-morphed by our code emulator, the HMM tool which was not able to classify

the virus files from the normal files (after the virus files were morphed by the metamorphic

engine) are now able to classify them.

The virus files which were morphed up to as high as 35% (with 15% to 25% subroutine copying)

also exposed themselves in our code emulator. We also showed that though code emulator is

complex to implement, but with a good design and algorithm it can be a very powerful tool to

detect not only metamorphic viruses but also any kind of virus.

50

The code emulator can be made a real powerful tool once many new techniques have been

incorporated to the existing one. We listed few of our weaknesses with which our code emulator

can be attacked. Handling these issues could be the next logical step in an attempt to improve the

code emulator. One very challenging task what we anticipate is to make the code emulator very

efficient. Our code emulator had a few steps which was a kind of “add on” to help the actual

emulation. To remove these steps will be a beneficial step towards increasing its efficiency.

Other very interesting work which can be done is to combine the HMM and the code emulator in

one package. The automation of processes like disassembling .exe files and making HMM

models would be very beneficial. This will be full of new challenges, but end product, if

achieved, can be a wonderful tool to find metamorphic viruses. The present code emulator did

not take care of I/O devices emulation. Even though special treatments are required for each I/O

device, which will be very comprehensive to implement, few common features like managing

interrupts (both hardware and software) and physical memory access can be implemented.

51

References

[1] J. Borello and L. Me, “Code Obfuscation Techniques for Metamorphic Viruses”, Feb 2008,

http://www.springerlink.com/content/233883w3r2652537

[2] P. Szor, “The Art of Computer Virus Defense and Research,” Symantec Press 2005.

[3] HowStuffWorks, “Computer & Internet Security,” May 2008,

http://computer.howstuffworks.com/virus.htm

[4] Orr, “The Molecular Virology of Lexotan32: Metamorphism Illustrated,” 2007.

http://www.antilife.org/files/Lexo32.pdf

[5] A. Venkatesan, “Code Obfuscation and Metamorphic Virus Detection,” Master’s thesis, San

Jose State University, 2008.

[6] Walenstein, R. Mathur, M. Chouchane, R. Chouchane, and A. Lakhotia, “The Design Space

of Metamorphic Malware,” In Proceedings of the 2nd International Conference on Information

Warfare, March 2007.

[7] Dr. Solomon's Virus Encyclopedia, 1995, ISBN 1897661002

[8] W. Wong, “Analysis and Detection of Metamorphic Computer Viruses,” Master’s

thesis, San Jose State University, 2006.

http://www.cs.sjsu.edu/faculty/stamp/students/Report.pdf

[9] John Aycock, “Computer Viruses and Malware”, Springer Publications 2006

[10] S. Attaluri, “Profile hidden Markov models for metamorphic virus analysis,” Master’s

thesis, San Jose State University, 2007.

http://www.cs.sjsu.edu/faculty/stamp/students/Srilatha_cs298Report.pdf

[11] Von Neumann, John (1966). "Theory of Self-Reproducing Automata". Essays on Cellular

Automata (University of Illinois Press): 66–87. Retrieved June 10., 2010

[12] http://en.wikipedia.org/wiki/Computer_virus

[13] PCWorld. (2008). “Security Worries for 2004”, Retrieved August 10,

2010,from http://www.pcworld.com/article/114058/security_worries_for_2004.html 32

[14] VX Heavens, http://vx.netlux.org/

[15] P. Szor, P. Ferrie, “Hunting for Metamorphic”, Symantec Security Response.

http://www.symantec.com/avcenter/reference/hunting.for.metamorphic.pdf

52

[16] Da Lin, “Hunting for Undetectable Metamorphic Viruses”, Master’s thesis, San Jose State

University, 2010

[17] The Ollydbg Debugger, http://webster.cs.ucr.edu/AsmTools/OllyDbg/

[18] ProgrammersHeaven, “Inject Code To Portable Executable File,” 2010,

 http://www.programmersheaven.com/2/Inject-code-to-Portable-Executable-file

[19] http://en.wikipedia.org/wiki/Markov_process

[20] M. Stamp, “A Revealing Introduction to Hidden Markov Models,” January 2004.

http://www.cs.sjsu.edu/faculty/stamp/RUA/HMM.pdf

[21] P Desai, “Towards an Undetectable Computer Virus”, Master’s thesis, San Jose State

University, 2008

[22] IDA Pro, http://www.hex-rays.com/idapro/

[23] Wikipedia, “8086 Instructions,” April 2010,

http://en.wikipedia.org/wiki/X86_instruction_listings#Original_8086.2F8088_instructions

[24] http://www.osdata.com/topic/language/asm/register.htm

[25] VX Heavens, “Next Generation Virus Construction Kit,” June 2001,

http://vx.netlux.org/vx.php?id=tn02

[26] Cygwin, “Cygwin Utility Files,”

 http://www.cygwin.com/

[27] Oodesign, “Singleton Pattern,”

http://www.oodesign.com/singleton-pattern.html

[28] Wikipedia, “Encryption with a Variable Key,” April 2010,

http://en.wikipedia.org/wiki/Computer_virus#Encryption_with_a_variable_key

[29] “Benny/29A,” Theme: metamorphism,

http://www.vx.netlux.org/lib/static/vdat/epmetam2.htm

[30] Wikipedia, “Polymorphic Code,” April 2010,

http://en.wikipedia.org/wiki/Computer_virus#Polymorphic_code

[31] Wisegeek, “What is Malware,” May 2010,

http://www.wisegeek.com/what-is-malware.htm

53

[32] Wikipedia, “Signature Based Detection,” April 2011,

http://en.wikipedia.org/wiki/Antivirus_software#Signature-based_detection

[33] About, “What is a Virus Signature,” May 2010,

http://antivirus.about.com/od/whatisavirus/a/virussignature.htm

54

Appendix A: Equivalent instruction substitution [21]

Notations:

R – Register (eax, ax, ah, al)

RR – Random register

mem, [mem] – Memory address ([esi])

imm – Immediate value (12h)

op1 – To-operand with length more than 1 including R and mem

op2 – From-operand with length more than 1 including R, mem, and imm
loc – any location or label

55

56

Table 12 : Equivalent Instruction Substitution [21]

57

Appendix B: Dead Code Instructions [21]

Figure 34 : Dead Code Instructions [21]

58

Appendix C: List of 8086 Instructions [23]

59

60

Table 13 : List of 8086 Instructions [23]

61

Appendix D: HMM Model Trained N=2

Model

N=2, M=76, T=67032

I:

1.00000000000000 0.00000000000000

A:

0.31213745192201 0.68786254807796

0.99999374304194 0.00000625695803

B:

call 0.08218503496863 0.03371900087267

sub 0.06417040292496 0.02231340405298

pop 0.02997515656273 0.09260052958416

mov 0.19554566095211 0.25090974189873

or 0.01377346911843 0.00000000000000

jz 0.00000000000000 0.08610033301483

push 0.14347589399134 0.07921793237216

lea 0.01597360820614 0.01796039785637

xor 0.02014892699289 0.01342772980439

rol 0.00158144088397 0.00472946366722

add 0.16496314877007 0.10651431749596

cmp 0.06473782285829 0.00000000000000

jnz 0.00000000000000 0.06058505575661

test 0.00982020650126 0.00000000000000

jmp 0.03524565445683 0.00074140491387

sar 0.00130327978519 0.00077759378900

dec 0.03017438600252 0.00159803441059

pusha 0.01946415288583 0.00000000000000

popa 0.02102429536802 0.00406488936664

jb 0.00000000000000 0.01797417666253

movzx 0.00633346740711 0.00602089047992

imul 0.00000000000000 0.00585716551121

shl 0.00468050134375 0.01245081165768

movsb 0.00000000000000 0.00391697943562

lodsw 0.00056746394289 0.00104197944089

ror 0.00406322284121 0.00170710881670

stosw 0.00000000000000 0.00175714965336

clc 0.01198568793487 0.00000000000000

retn 0.00017857316316 0.07980051733038

stc 0.00808278535104 0.00000000000000

ja 0.00000000000000 0.00285536818672

and 0.00982310629799 0.01811639000946

jnb 0.00000000000000 0.00483216154675

inc 0.01471252036211 0.02030629820452

stosd 0.00000000000000 0.00248929534227

div 0.00000000000000 0.00582055822677

62

rcl 0.00111653269881 0.00716250747895

adc 0.00453676494134 0.00251956113741

cld 0.00449021197316 0.00152562965895

shr 0.00183230442523 0.00440135979471

rcr 0.00151080100019 0.00000000000000

not 0.00397610573962 0.00366412587481

neg 0.00337886115374 0.00233597665418

loop 0.00023144348474 0.00035906057008

start 0.00237618465993 0.00145082448129

jbe 0.00000000000000 0.00545448538232

xchg 0.00000000000000 0.00424644499563

lodsb 0.00059653230453 0.00045060992486

stosb 0.00000000000000 0.00135446952447

rep 0.00000000000000 0.00219643706670

sbb 0.00129044575376 0.00083285948202

lodsd 0.00021804863447 0.00122050185215

popf 0.00000000000000 0.00003660728445

bound 0.00000000000000 0.00003660728445

in 0.00000000000000 0.00010982185334

jnp 0.00005036003334 0.00000000000000

ins 0.00002397489038 0.00007496660907

fnstenv 0.00002518001667 0.00000000000000

scasb 0.00000000000000 0.00003660728445

retf 0.00004811051560 0.00003987768482

cmc 0.00000000000000 0.00003660728445

aad 0.00002518001667 0.00000000000000

enter 0.00002518001667 0.00000000000000

movsd 0.00005036003334 0.00000000000000

jp 0.00000000000000 0.00003660728445

repe 0.00000000000000 0.00010982185334

jns 0.00002518001667 0.00000000000000

fild 0.00002518001667 0.00000000000000

icebp 0.00002518001667 0.00000000000000

jecxz 0.00002518001667 0.00000000000000

std 0.00003128771775 0.00002772776885

jle 0.00002518001667 0.00000000000000

out 0.00002518001667 0.00000000000000

hlt 0.00002518001667 0.00000000000000

cmpsb 0.00000000000000 0.00003660728445

fidiv 0.00000000000000 0.00003660728445
Table 14 : HMM Model Trained N=2

63

Appendix E: HMM Model Trained N=3

N=3, M=76, T=67032

I:

1.00000000000000 0.00000000000000 0.00000000000000

A:

0.05276957768954 0.32624506516877 0.62098535714169

0.99351380535297 0.00648619464703 0.00000000000000

0.00000000000000 0.19527911680493 0.80472088319506

B:

call 0.10758113770840 0.08648240197820 0.04102623878677

sub 0.00000000000000 0.03581588477658 0.06531482231911

pop 0.18166133767637 0.00000000000000 0.03246089973430

mov 0.00000000000000 0.00214018531199 0.35144683990257

or 0.00012871267202 0.02145703596697 0.00669954940899

jz 0.18012165403566 0.00000000000000 0.00000000000000

push 0.12363627514111 0.38829768090538 0.03403992656142

lea 0.00587430282473 0.00000000000000 0.02524571594103

xor 0.00000000000000 0.00758730122965 0.02582966139870

rol 0.00015627484036 0.00000000000000 0.00457472755101

add 0.00012882190291 0.01315385159534 0.22386179377281

cmp 0.00000000000000 0.20651418412296 0.00000000000000

jnz 0.12674376591370 0.00000000000000 0.00000000000000

test 0.00008500730552 0.03123737790837 0.00000000000000

jmp 0.01849599396451 0.00227467727887 0.02769900085102

sar 0.00012832115939 0.00055517619690 0.00155122999419

dec 0.00000000000000 0.04816595322001 0.01546967979789

pusha 0.00000000000000 0.00000000000000 0.01861589698618

popa 0.00994806263832 0.06471620675649 0.00025081700451

jb 0.03760192692666 0.00000000000000 0.00000000000000

movzx 0.00000000000000 0.00000000000000 0.01001838699385

imul 0.00000000000000 0.00000000000000 0.00385322576687

shl 0.00082072400712 0.00000000000000 0.01240938862476

movsb 0.00000000000000 0.00000000000000 0.00257684473159

lodsw 0.00000000000000 0.00000000000000 0.00122821571319

ror 0.00063405649312 0.00000000000000 0.00480980329256

stosw 0.00000000000000 0.00000000000000 0.00115596773006

clc 0.00000000000000 0.03823444249029 0.00000000000000

retn 0.15195076882412 0.00000000057476 0.00488519056093

stc 0.00000000000000 0.02578415134324 0.00000000000000

ja 0.00597342220016 0.00000000000000 0.00000000000000

and 0.00000000000078 0.00257744170986 0.02054039345274

jnb 0.01010886833874 0.00000000000000 0.00000000000000

inc 0.00016599922965 0.01407682673458 0.02315747361172

stosd 0.00000000000000 0.00000000000000 0.00163762095092

div 0.00558348927739 0.00000000000000 0.00207331680300

64

rcl 0.01434107987383 0.00017317118835 0.00121811440210

adc 0.00219209464094 0.00181431389863 0.00476327726245

cld 0.00306595152299 0.00000000000000 0.00433404310556

shr 0.00035094525423 0.00010394120584 0.00450642931023

rcr 0.00000000000000 0.00481946754079 0.00000000000000

not 0.00000000000000 0.00000000000000 0.00621332654907

neg 0.00000000000000 0.00000000000000 0.00476836688650

loop 0.00000000000000 0.00000000000000 0.00045757055982

start 0.00000000000000 0.00349429548412 0.00217942640244

jbe 0.01141076804903 0.00000000000000 0.00000000000000

xchg 0.00000000000000 0.00000000000000 0.00279358868098

lodsb 0.00000000000000 0.00000000000000 0.00086697579755

stosb 0.00000000000000 0.00000000000000 0.00089105845859

rep 0.00000000000000 0.00000000000000 0.00144495966258

sbb 0.00057683585006 0.00000000000000 0.00160072074936

lodsd 0.00000000000000 0.00000000000000 0.00101147176380

popf 0.00000000000000 0.00000000000000 0.00002408266104

bound 0.00007658233590 0.00000000000000 0.00000000000000

in 0.00000000000000 0.00000000000000 0.00007224798313

jnp 0.00015250381015 0.00000069315403 0.00000000000000

ins 0.00000000000000 0.00000000000000 0.00007224798313

fnstenv 0.00000000000000 0.00000000000000 0.00002408266104

scasb 0.00000000000000 0.00000000000000 0.00002408266104

retf 0.00007456857443 0.00005653792738 0.00003184753700

cmc 0.00000000000000 0.00000000000000 0.00002408266104

aad 0.00000000000000 0.00008032445901 0.00000000000000

enter 0.00000000000000 0.00000000000000 0.00002408266104

movsd 0.00000000000000 0.00006517720536 0.00002862406947

jp 0.00007658233590 0.00000000000000 0.00000000000000

repe 0.00000000000000 0.00000000000000 0.00007224798313

jns 0.00000000000000 0.00000000000000 0.00002408266104

fild 0.00000000000000 0.00008032445901 0.00000000000000

icebp 0.00000000000000 0.00000000000000 0.00002408266104

jecxz 0.00000000000000 0.00008032445901 0.00000000000000

std 0.00000000000000 0.00000000000000 0.00004816532209

jle 0.00000000000000 0.00000000000000 0.00002408266104

out 0.00000000000000 0.00008032445901 0.00000000000000

hlt 0.00000000000000 0.00008032445901 0.00000000000000

cmpsb 0.00007658233590 0.00000000000000 0.00000000000000

fidiv 0.00007658233590 0.00000000000000 0.00000000000000

Table 15 : HMM Model Trained N=3

65

Appendix F: Scores of Base Virus Files vs Normal Files

Table 16 : Scores of Base Virus Files vs Normal Files

66

Appendix G: HMM Test with 15% Morphing

Table 17 : HMM Test with 15% Morphing

67

Appendix H: HMM Test with 25% Morphing

Table 18 : HMM Test with 25% Morphing

68

Appendix I: HMM Test with 35% Morphing

Table 19 : HMM Test with 35% Morphing

69

Appendix J: HMM Test with 15% Morphing after Code Emulation

Table 20: HMM Test with 15% Morphing after Code Emulation

70

Appendix K: HMM Test with 25% Morphing after Code Emulation

Table 21 : HMM Test with 25% Morphing after Code Emulation

71

Appendix L: HMM Test with 35% Morphing after Code Emulation

Table 22 : HMM Test with 35% Morphing after Code Emulation

72

Appendix M: Code Emulator – Execution Time Analysis

Table 23: Execution Time Analysis

73

Appendix N: Instruction Count Comparison

Table 24: Instruction Count Comparison

74

Appendix O: HMM Tests with Models Built with x% Morphed Virus Files

Considering the fact that the base virus files may not be always available, we performed few

additional tests to see whether the code emulator and HMM can distinguish between the

morphed virus and normal files. Idea was to make HMM models based on the morphed virus

copies rather than using base virus files. We collected 200 morphed viruses having 15%

morphing. HMM model was made using 160 of these morphed copies and the remaining 40 were

used for HMM scoring. We repeated this process for 35%, 55% and 75% morphing too. We then

also analyzed the detection rate before and after the emulation.

HMM Tests without Code Emulation

Figure 35 : HMM Test with 15% Morphing

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

0 10 20 30 40 50

Morphed Virus Files

Normal Files

75

Figure 36 : HMM Test with 35% Morphing

Figure 37 : HMM Test with 55% Morphing

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

0 10 20 30 40 50

Morphed Virus Files

Normal Files

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

0 10 20 30 40 50

Morphed Virus Files

Normal Files

76

Figure 38 : HMM Test with 75% Morphing

HMM Tests with Code Emulation

Figure 39 : HMM Test with 15% Morphing

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

0 10 20 30 40 50

Morphed Virus Files

Normal Files

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

0 10 20 30 40 50

Un-Morphed Virus Files

Normal Files

77

Figure 40 : HMM Test with 35% Morphing

Figure 41 : HMM Test with 55% Morphing

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

0 10 20 30 40 50

Un-Morphed Virus Files

Normal Files

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

0 10 20 30 40 50

Un-Morphed Virus
Files

Normal Files

78

Figure 42 : HMM Test with 75% Morphing

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

0 10 20 30 40 50

Un-Morphed Virus
Files

Normal Files

79

Virus Detection Rate Comparison

Figure 43 : Virus Detection Rate Comparison

0

20

40

60

80

100

120

15 35 55 75

Detection
Percentage

Morphing Percentage

Without Code
Emulation

With Code
Emulation

80

Appendix P: HMM Tests with Training Files

HMM Tests without Code Emulation

Figure 44 : HMM Test with 15% Morphing

Figure 45 : HMM Test with 35% Morphing

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

0 10 20 30 40 50

Morphed Training Virus
Files

Normal Files

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

0 10 20 30 40 50

Morphed Training
Virus Files

Normal Files

81

Figure 46 : HMM Test with 55% Morphing

Figure 47 : HMM Test with 75% Morphing

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

0 10 20 30 40 50

Morphed Training
Virus Files

Normal Files

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

0 10 20 30 40 50

Morphed Training
Virus Files

Normal Files

82

HMM Tests with Code Emulation

Figure 48 : HMM Test with 15% Morphing

Figure 49 : HMM Test with 35% Morphing

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

0 10 20 30 40 50

Un-Morphed Training
Virus Files

Normal Files

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

0 10 20 30 40 50

Un-Morphed Training
Virus Files

Normal Files

83

Figure 50 : HMM Test with 55% Morphing

Figure 51 : HMM Test with 75% Morphing

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

0 10 20 30 40 50

Un-Morphed Training
Virus Files

Normal Files

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

0 10 20 30 40 50

Un-Morphed Training Virus
Files

Normal Files

84

Virus Detection Rate Comparison

Figure 52 : Virus Detection Rate Comparison

0

20

40

60

80

100

120

15 35 55 75

Detection
Percentage

Morphing Percentage

Without Code
Emulation

With Code
Emulation

	San Jose State University
	SJSU ScholarWorks
	Spring 2011

	Metamorphic Detection via Emulation
	Sushant Priyadarshi
	Recommended Citation

	tmp.1306704346.pdf.vyPAJ

