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ABSTRACT 

 

Metamorphic Detection via Emulation 
 

by Sushant Priyadarshi 
 

 

In parallel with improvements in anti-virus technologies, computer virus writers have developed 

innovative viruses that are challenging to detect. Metamorphic viruses change their appearance 

from one generation to another by using various code obfuscation techniques. Today, signature 

detection is the most common method used in anti-virus products, but well designed 

metamorphic viruses cannot be detected using signatures. Hence, there is a need for a more 

robust anti-virus technology.  

 

To counter metamorphic virus, a very successful tool based on hidden Markov models (HMM) 

has been previously developed. This tool was able to detect all hacker produced metamorphic 

viruses on which it was tested. However, a weakness of this tool was exploited to develop an 

advanced metamorphic virus generator. These morphed viruses, which were not detected by the 

HMM based technique or standard signature-based detection, rely on carefully selected dead 

code insertion for their success. 

  

In this project, we have created a code emulator designed specifically to detect dead code in any 

virus file. The output of this code emulator is then used to enhance HMM-based detection of 

metamorphic viruses. We test our emulator on the previously mentioned metamorphic generator, 

using the existing HMM detector to determine the quality of our results. 
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1 Introduction 

A computer virus is a computer program that can copy itself and infect another program [7]. A 

virus in an executable code form can spread from one network/system to another [12]. Once a 

virus attaches itself to a program, each time the program runs, the virus file is triggered and is 

executed on the host machine. This process can result in additional infections. 

In general, viruses can be classified based on target and concealment strategies [9]. Viruses 

based on target can be Boot-Sector Infectors, File Infectors and Macro Infectors. And different 

strategies on which viruses are based upon are encryption, stealth, oligomorphism, 

polymorphism and metamorphism. Virus is typically used to describe other type of malwares 

such as Trojan horses, worms, etc [31].  

Anti-virus techniques include both static and dynamic approaches [9]. These techniques have 

relative weaknesses and strengths and the effective combination of these techniques can yield 

stronger detection. Scanners, Static Heuristics and Integrity Checkers form the static approach 

whereas Behavior Monitors and Emulation form the dynamic approach in anti-virus techniques.    

Signature detection is the most common method implemented in anti-virus products [32]. A 

signature is essentially a “bit pattern” which is characteristic of a given virus family [33]. Ideally, 

the signature is not common in other software. Signature detection is relatively fast and effective, 

but it cannot detect new and unknown viruses, since signatures must be available prior to the 

detection. Since signature detection is the most popular technique, virus writers have developed 

many innovative techniques to evade signature detection. The most advanced such technique is 

the use of metamorphic code that has the ability to morph its internal structure (but retain its 

function) at each infection. Well designed metamorphic viruses cannot be detected using 

signatures, since there is no common signature available. 

The aim of this project is to develop an anti-virus mechanism based on code emulation, and 

specifically aimed at improved metamorphic detection. The advanced metamorphic virus 

generator in [16] injects dead/junk code from non-virus files into its morphed copies, which 

makes signature detection fail. This code injection also causes the HMM-based detection in [8] 
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to fail, which is noteworthy since the technique in [8] was able to successfully detect all hacker 

produced metamorphic viruses on which it was tested. 

The emulator developed for this project will implement a virtual machine that will be used to 

record the execution of a virus file in a simulated environment and thereby remove the dead 

code. To test the effectiveness of our emulator, the output of this virtual machine will then be 

used as input to the HMM tool developed in [8]. 

This paper contains the following section: 

 Section 2 contains the evolution of computer viruses and their types. 

 Section 3 discusses over the various anti-virus techniques. 

 Section 4 shows various code obfuscation techniques. 

 Section 5 deals with the HMM about its overview, example and how HMM is used as 

anti-virus. 

 Section 6 and 7 discusses about the metamorphic engines developed in [21] and [16]. 

 Section 8 gives the details of code emulator like architecture, algorithm and 

implementation. 

 Section 9 shows all the experiments and their respective analysis. 

 Section 10 discusses few weaknesses of our code emulator 

 Section 11 draws conclusions and also discusses future enhancements 

2 Virus Evolution 

The evolution of virus started with an academic project done by Fred Cohen in 1983 after which 

Len Andleman came up with the term “virus” [9]. Cohen is also considered as the “father of 

computer viruses” though there were viruses before this period. One of the first successful 

viruses was the “Creeper Virus” which was written by Bob Thomas in 1971. Creeper was able to 

make copy of itself and propagate through ARPANET [12].  

 

As the internet usage increased, more and more viruses started pouring into the network and 

infecting computers all over the world at very high rate. According to network security experts, 
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2003 was the “year of worm” [13]. There has been surge in number of viruses and also in 

research of the anti-virus development. 

 

2.1 Stealth Virus 

Stealth viruses use a smart approach to defeat anti-virus products. It basically intercepts all the 

calls made by the anti-virus programs to the host machine’s operating system and then returns 

back the instance of a “clean” file. Frodo, Whale and Brain are some of the more popular stealth 

viruses [9]. 

 

2.2 Encrypted Virus 

One of the advanced methods that the virus writers use to hide their viruses is by encrypting the 

virus body with different keys. So, a virus file will have two parts in it – the encrypted body and 

the decrypting module [28]. Since the virus is being encrypted with different encrypting keys 

each time, a virus scanner based on signature detection cannot detect it. The only way out is to 

do an indirect detection by detecting the decrypting module which will always remain constant. 

For example, a simple XOR operation of each byte of a virus file with a key will encrypt the 

virus file. And again applying XOR operation on the encrypted virus file will decrypt it [8].   

 

2.3 Polymorphic Virus 

Polymorphic virus is just like an encrypted virus with the difference being in the decryption 

module. The decryption module also gets changed/mutated after each infection and thus there is 

no common part between different copies of same virus [30]. Also, polymorphic viruses can 

generate many unique decryptors and can use many other encryption methods for encryption [8].  

The Figure 1 illustrates various polymorphic virus variants [15]. 
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Figure 1 Polymorphic Virus Generations [15] 

 

2.4 Metamorphic Virus 

As opposed to a polymorphic virus where virus writers were trying to hide the decrypting 

module, more advanced techniques were developed enabling the virus writers to change the code 

of one virus file and create multiple morphed copies but preserving its functionalities [6][29].   

These are the type of viruses which have the ability to mutate itself with the code changed but 

without changing its functionalities. Metamorphic virus can become a serious threat considering 

the fact that there can be thousands of variants of one virus file with their signature being totally 

different. Metamorphic viruses uses different kind of code obfuscation techniques like inserting 

dead code, register swapping, equivalent code instruction insertion, etc to create morphed copies 

of any base virus file [15]. These obfuscation techniques helps in changing the virus signature to 

avoid signature based detection. Figure 2 shows the generations of metamorphic virus [15]. 
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Figure 2 : Metamorphic Virus Generations [15] 

3 Anti-Virus Methods 

The anti-virus mechanism used today has to fulfill three functionalities so that they can locate 

any virus. The three parameters are detection, identification and disinfection. Detection part 

mainly deals in checking whether a given code is malicious in nature or not, based on the virus’s 

behavior or appearance. The second parameter is identification, which identifies a detected virus 

based on the virus family it belongs to. The third and the last parameter is disinfection or 

cleaning which is removal of the detected and/or identified virus. This project deals with the 

detection phase. 

  

Detection methods can be divided into two sub-parts which are dynamic and static detection. 

This categorization is based on the fact whether the virus file is being executed on the infected 

machine or not. 
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3.1 Signature Based Detection 

Each virus is represented by a pattern which is a sequence of bytes. Most of the viruses are 

uniquely characterized by these bytes of patterns. The anti-virus software scans the part of file or 

the whole file or the boot sector in search of this pre-determined signature of any known virus. 

Considering the fact that the false alarms in this type of detection will be less, this method is 

most commonly used in the anti-virus products available in the industry. The downside of this 

method is that it cannot detect a new virus, since its signature will not be saved in the database.  

 

For example, if the signature of an input file is 83EB 0274 EB0E 740A 81EB 0301 0000, then 

the scanner will search in the database for this value and will show that it’s a W32/Beast virus 

[2]. Similar to this, a Stoned virus can be detected as shown in Figure 3. 

 

 
Figure 3 : Stoned Virus Search Pattern [2] 
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3.2 Heuristics 

This method looks for code having “virus-like” behavior (abnormal activity) and can easily find 

known or even unknown viruses [9]. It is a static analysis, which means that the code being 

looked for “threat” is not being executed on an infected machine. Heuristics analysis is done in 

two steps [9] – Data Gathering in which the data is collected using many heuristics and Analysis 

in which the techniques like data mining, expert systems or neural networks can be used to 

analyze. Heuristics method may give false alarms but it is effective in finding new viruses. 

 

3.3 Code Emulation 

Code emulation is a technique in which a virus is allowed to execute in a simulated environment 

without actually impacting the host machine. This is a dynamic analysis method as the code of 

the virus is run to see its behavior. A good emulator comprises of five functionalities [9], which 

are CPU emulation, Memory emulation, Hardware and Operating System emulation, Emulation 

controller and Analyzer. Code emulation is a good method to find new viruses including the 

metamorphic virus. Table 1 lists the various weaknesses and strengths of various detection 

methods. 

 

 

 

Table 1 : Strength and Weakness of Detection Techniques [10] 

 

4 Techniques Used for Code Obfuscation 

Code obfuscation techniques can be used by programmers to conceal any logic or purpose by 

making the code difficult to understand. In the world of viruses, use of these techniques is a boon 

for any virus writer to make the viruses hidden from the anti-virus software. Metamorphic 
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engines execute many code obfuscation techniques which allow them to evade signature based 

detection. These techniques help metamorphic engines to create many morphed copies of a 

single base virus file. 

 

For assembly programs, code obfuscation basically works over the data section and the control 

flow [1]. Insertion of jump statements to change the flow of execution is involved in Control 

Flow obfuscation whereas, dealing with register renaming, subroutine permutation, insertion of 

dead code constitutes code obfuscation techniques related to the data section. Table 2 shows the 

code obfuscation techniques used by the well known metamorphic viruses [1]. 

 

 
Table 2 : Code Obfuscation Techniques [1] 

 

4.1 Subroutine Permutation 

This is a very basic technique used for code obfuscation wherein, the subroutines are reordered 

/shuffled around using instructions such as jump and label without impacting the subroutine’s 

functionality (Figure 4 shows one such scenario). So, if any program is having n number of 

subroutines, then all the subroutines can be reordered in n! (n factorial) different ways. 

W32/Ghost virus [1] had in total 10 subroutines which gave it the capacity to reorder its 

subroutine in 3,628,800 ways. 
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Figure 4 : Subroutine Permutation Example [21] 

 

4.2 Transposition 

Modifying the order of execution of instructions in any program is called Transposition. This 

method can be only applied to a set of instructions which do not have any mutual dependencies. 

If the output of first instruction is not taken into account by the second instruction, then these two 

instructions can be swapped as their order of execution will not impact the program’s function. 

 

In order to swap two instructions, say instruction one is ADD R1, R2 and instruction two is 

MOV R3, R4, one needs to make sure that the following rules are satisfied [3]:   

1. R3 !=  R2  

2. R3 != R1  

3. R4 != R1  
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For example, instructions MOV A, B and ADD C, D can be swapped based on the above given 

rule as it would not impact the outcome of the program. 

 

4.3 Register Swapping 

This method modifies the current registers used in a particular instruction by swapping it with 

another equivalent register, which is helpful in evading signature detection as this changes the 

opcode pattern. W95/RegSwap virus [4] used this technique extensively. An example of two 

generations of RegSwap appears in Figure 5. 

 

 
Figure 5 : RegSwap Example [21] 

 

4.4 Instruction Substitution 

Metamorphic engines use this technique very commonly for generating highly morphed virus 

copies. The idea of this method is to replace instruction (even group of instructions) with an 

equivalent instruction [6]. In assembly language, instruction “add eax, 1” can be replaced with 

“inc eax”. A few examples used by W32/MetaPhor [1] are shown in Table 3. 

 



11 

 

 

Table 3 : W32 Example of Instruction Replacement [1] 

 

4.5 Insertion of Junk/Dead Code 

Most of the metamorphic engines insert junk or dead code in the virus file to vary the signatures 

of individual virus files morphed from a base virus file. This technique is very effective if used 

within a certain limit. Inserting dead code beyond a particular point triggers an abnormality 

which can be easily detected by intrusion detection systems. If an instruction or group of 

instructions has been inserted, which might be executed but does not alter the functionality of the 

program, it can be termed as “do nothing code”. Instructions like “push eax” followed by “pop 

eax”, if executed, will not affect the program’s normal functionality. And if an instruction or 

block of instructions which has been inserted after a unconditional “jmp” instruction to the next 

authentic/actual instruction, then this inserted code is called “dead code” as these instructions 

will never be executed.  

 

The Win95/Zperm is one of the virus which has used this technique in order to create 

metamorphic copies [1]. Figure 6 illustrates an example of instruction reordering. 
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Figure 6 : Win85 Instruction Reordering [1] 

 

5 Hidden Markov Model 

5.1 Introduction 

A Markov process in probability and statistics is a random phenomenon dependent upon time for 

which the phenomenon holds a specific property [19]. Hidden Markov Model (HMM) is a tool 

based on pattern analysis. In this analysis, the system which is being modeled is nothing but a 

Markov process. A few areas where HMM is used are bioinformatics, protein modeling, gesture 

recognition and speech recognition applications [10]. 

 

First, HMM is fed with an input/training data. HMM then tries to extract a list of unique symbols 

from the training data. In addition, it also identifies their respective positions in the training data. 

The data obtained by these extractions and identifications is treated as a model with which HMM 

will determine whether there is similarity of pattern between the model and a new set of input. 

  

The HMM makes use of the following notations [20]: 
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Figure 7 depicts the HMM in generic form [20]. The state at time t is represented by Xt and Ot 

represents the observation at time t. The dashed line shows the Markov process which is 

calculated based on State transition probability matrix and the initial state X0. For every state, we 

have an Observation sequence representing the Markov process’ actual states by the matrices - 

Observation probability distribution matrix (B) and State transition probability matrix (A). 

 

 

 

Figure 7 : Generic HMM [20] 

             

5.2 HMM Example 

The inner working of HMM is illustrated through an example in [8]. Lets assume about the 

annual temperature of any given place. It can be either cold (C) or hot (H). One can determine 

the annual temperature of any year in the future by observing the various size of the trees (size 

can be Large-L, Medium-M or Small-S). To solve this problem, we have the following 

information : 
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a. The probability of a hot year occurring before a cold year is 0.4 or the probability of two 

consecutive hot years is 0.7. The probability of a cold year occurring before a hot year is 

0.3 or the probability of two consecutive cold years is 0.6. Figure 8 shows the 

probabilities’ matrix. 

 

 

Figure 8 : Probability Based on Temperature Transition [8] 

 

b. This information deals with the temperature and tree size (Large-L, Medium-M or Small-

S). The probability of tree being small in a hot year is 0.1 and small in a cold year is 0.7. 

The probability of tree being medium in a hot year is 0.4 and medium in a cold year is 

0.2. And the probability of tree being large in a hot year is 0.5 and large in a cold year is 

0.1. The matrix representation is shown in Figure 9. 

 

 

Figure 9 : Probability Based on Tree Size [8] 

 

Now correlating the above information with the HMM notations here, its states are represented 

by the annual temperatures. The observable symbols are identified as tree sizes. In each state, the 

probability of observation symbols are represented by tree sizes at each temperature. Figure 10 

shows the resulting HMM model [20]. 
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Figure 10 : Resulting HMM Model [20] 

               

For a given observation like (S,M,S,L) having length T=4, to determine the state transition, the 

HMM would perform the following steps : 

1. Determine N
T
, which are the state transitions. 

2. N ow for each state transition (4 in this example), calculate observations sequence’s 

probability [8]. 

 

 

 

Table 4 shows all the probabilities. 
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Table 4 : Probabilities of all the State Sequences [20] 

 

3. From the Table 4, we can see that the maximum probability is 0.002822. This 

corresponds to “CCCH” which is the most probable annual temperature sequence. 

 

5.3 Detecting Metamorphic Virus using HMM 

To detect a metamorphic virus using HMM, we need training data. This training data is nothing 

but virus files generated from same virus generator, and converted to .asm file (assembly files) 

using IDA Pro [22]. HMM needs a unique observation sequence and observation symbols to 

train a model. Concatenating the opcodes of viruses will give the unique observation sequence 

and unique assembly opcodes forms the observation symbols. For example, considering the 

training data in Figure 11, HMM model can be constructed as shown in Figure 12. 
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Figure 11 : Training Data [21] 

                                  

 

 

Figure 12 : HMM Model [21] 
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After constructing the model for a particular virus family, now HMM is used to check whether a 

particular virus belongs to that family or not. The HMM would produce the result as shown in 

Figure 13. 

 

 

Figure 13 : HMM Output [21] 

                                     

 

Considering a threshold value of -4.38, the virus files IDAN0, IDAN1, IDAN2, IDAN3 and 

IDAN4 belongs to same virus family as their scores are greater than the threshold. The other files 

have scores less than the threshold, so they cannot be considered as belonging to the same virus 

family. 

 

5.4 HMM Results Observation 

200 viruses generated by Next Generation Virus Creation Kit in [8] were tested with HMM. In 

total, 25 models were trained and used to differentiate non-virus (normal files) from that of 200 

virus files. Out of 25 models, 23 were able to identify normal programs depending upon their 

scores, which meant NGVCK viruses were easily detected. Figure 14 shows an example of a 

result which shows the difference of scores between the normal files and the virus files [16]. 
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Figure 14 : Sample HMM Result [16] 

 

6 Metamorphic Engine 

A metamorphic engine was developed in [21], which used many code obfuscation techniques to 

produce highly morphed copies of any base virus file. These morphed copies were made by 

copying codes from normal files which were Cygwin utility files. The metamorphic generator 

used code obfuscation techniques such as dead code insertion, NOP sequence insertion, 

equivalent instruction substitution and transposition. Special algorithms were developed to 

incorporate the above discussed code obfuscation techniques. The morphed virus copies were 

then tested against the commercial virus scanners and later with the Hidden Markov Model 

developed in [8]. 

 

The experiments conducted with the commercial available anti-virus scanners were very 

successful. The tests showed that the base virus file was detected by the anti-virus products and 

thus quarantined. But when the anti-virus scanners were tested against the morphed copies, it 

failed. The scanners were not able to detect the morphed copies of the same base virus file which 
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was detectable and thus showing the high level of metamorphism created by the metamorphic 

generator. 

 

Then the morphed copies were tested against the virus detection tool based on HMM. For one of 

the test case, 90 virus files were used to make HMM model and then 30 virus files were tested 

against this generated model. Even with high degree of metamorphism involved, HMM was 

successful in differentiating between the normal files and the virus files as shown in Figure 15 

[21]. 

 

 

Figure 15 : HMM Results [21] 
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7 Improved Metamorphic Engine 

Even though the metamorphic engine developed in [21] as discussed in previous section was able 

to develop highly metamorphic virus files, HMM developed in [8] was able to classify the virus 

files into the same virus family. This drawback of the metamorphic engine developed in [21] was 

because the engine was randomly applying code obfuscation techniques. Therefore, an improved 

version of metamorphic engine was developed in [16] to remove this randomness feature. A 

scoring algorithm known as Dynamic Scoring Algorithm was developed [16], which basically 

made sure that the code obfuscation techniques are applied only if they make the virus file look 

like a normal file/program. 

 

7.1   Dynamic Scoring Algorithm 

The Dynamic Scoring Algorithm developed in [16] has been mainly divided into three steps : 

1. Algorithm Initialization - After passing a virus file and a normal file as parameters, four 

master lists are created. These lists maintains the information which are individual 

opcode count and opcode-pair counts of both the normal file and the virus file. Consider 

the opcodes as shown in Table 5 as present in the normal and virus files. 

 

 

Table 5 : Opcodes in Virus and Normal Files [16] 

 

Then the four lists generated by the algorithm will have the following contents as shown 

in Table 6. The algorithm also computes the difference between each opcode-pair and 

opcode count and adds them. 
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Table 6 : List Maintained by the Algorithm [16] 

                      

 

2. Score the Changes - Before making any change permanently, a new score is calculated to 

see whether the new change will bring the virus file closer to the normal file or not. A 

score less than 0 make the virus file closer to the normal file. An exact score of 0 means 

there is no change. A score more than 0 mean that the virus file and the normal file is less 

similar to each other. For example, if “add mov” is changed to “mov add” after 

transposition, the two opcode sequences passed will be “mov add mov pop” (which is 

original subsequence) and “mov mov add pop” (which is the new subsequence). 

 

A change in score is computed as following [16]: 

a. Calculate and save the to-be-affected-counts. Table 7 shows this calculation. 

The to-be-affected score in this case will be 5. 

 

 

 

Table 7 : Original Subsequence Score [16] 

                 

 

b. From the master list, subtract the original subsequence’s respective counts. 
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c.  Counts of the new subsequence should be added to the master lists. Table 8 

shows the steps b and c. Notice that the “Add_Pop” is the new counter in the 

table. 

 

 

 

Table 8 : Subtraction and Addition of New Count [16] 

    

 

d. Now compute the affected counts. Table 9 shows that the new score will be 3 

and the original score was 5, which indicates that if the transposition is done, 

then the virus file will become closer to the normal file by 2 points. 

 

 

Table 9 : New Score Calculation [16] 

      

 

3. Updating the changes - This step deals with making the changes in the master list 

permanently. The master score now will decrease from 8 to 6 as the score was improved 

by 2. Table 10 shows the updated master lists . 
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Table 10 : Updated Master Lists [16]                       

 

7.2   Experimental Results 

The improved metamorphic generator was successful in evading HMM detection. It was possible 

only by generating highly morphed viruses and also maintaining the similarity between the virus 

file and the normal file, based on the Dynamic Scoring Algorithm. Figure 16 shows one of the 

test case result, which depicts the failure of HMM to classify correctly between the virus and 

normal files.. 

 

 

Figure 16 : HMM Results with 30% Subroutines and 35% Dead Code [16] 
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8 Code Emulator for Metamorphic Code Detection 

8.1  Introduction 

In general, the code emulator should have the ability to run the virus code being analyzed in an 

emulated environment. In this way, there is a very high chance that the virus will expose itself 

about its functionalities. Using virtual flags and registers, the code emulator will run the 

instruction set of the CPU. Even though code emulation may be a costly solution, but given the 

task at hand to detect the metamorphic virus, it can be a very effective solution in the long run. 

 

In order to implement a metamorphic virus detector though code emulation, we had to make sure 

that most of the code obfuscation techniques were taken care of. Code obfuscation techniques 

such as equivalent code substitution, dead code insertion, junk block insertion and dead 

subroutine insertion were the primary targets of our code emulator. The aim of our code emulator 

is to bring the morphed copies of virus file as close (statistically) as possible to the base virus 

file. By doing this we can make sure that when these un-morphed copies are given as an input to 

the HMM, it will detect them with ease. 

 

8.2 Goals 

The main goals that we wanted to achieve through the implementation of code emulator are: 

1. The code emulator should implement as many assembly level language instructions 

as possible.  

2. The code emulator should have the capability to emulate all the important CPU 

registers. 

3. The emulator should be able to filter out or change the instructions/subroutines, 

which are because of code obfuscation techniques such as: equivalent code 

substitution, dead code insertion, junk block insertion and dead subroutine insertion. 

4. The emulator should also preserve the basic functionality of the virus program. 

5. The code emulator should try to bring the un-morphed copies closer to the base virus 

file “statistically”.   
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8.3 Experimental Process 

In an effort to detect the metamorphic virus or to generate the metamorphic virus, significant 

background research and work has been done previously. A logical gap was developed in the 

continued research between the developments of HMM [8] and the metamorphic code generator 

[16]. So where does exactly our code emulator will fit in? To get the complete picture, Figure 17 

shows the entire flow of actions that will be taken to test and validate the results. 

 

For our research, we need two types of data which are the virus files and normal files. For virus 

files, we used the Next Generation Virus Creation Kit (NGVCK – Version 0.3 stable released on 

June 2001) to create 200 virus files [25]. These generated virus files were named from “IDAN0” 

to “IDAN199”. For normal files, we chose Cygwin utility files [25] which were randomly 

chosen. These utility files have pretty much same low level system functionalities as the virus 

files and thus are ideal candidates for comparison and morphing. These normal files were named 

from “IDAR0” to “IDAR39”. 

 

1. We collected 200 virus files belonging to the same family generated by the NGVCK. 

These virus files are the base virus files which will be used in our project. 

2. IDA Pro [22] is used to dissemble the files into .asm virus files. 

3. Out of those 200, 160 virus files are used to make models for the HMM, which will 

be used later for detection. 

4. Remaining 40 virus files and 40 normal files are taken as an input to the metamorphic 

code generator developed in [16], which are used to create highly morphed copies of 

all the virus files with different morphing percentage. 

5. Once we have a collection of morphed virus files, we feed those files into our code 

emulator. 

6. The output of the code emulator will be un-morphed virus files which will be served 

as an input to the HMM. 

7. The HMM on its behalf will now try to distinguish these virus files based on the 

model which we had constructed in step 3. 

8. The last step will be to analyze the different scores given by the HMM. 
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Figure 17 : Code Emulator Process Flow 

  

8.4 Architecture  

8.4.1 Introduction  

One of the main goal for the development of code emulator was to have a robust architecture, 

where proper subsystems were identified. We tried to ensure that though implementing the code 
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emulator is complex, each layer or subsystem is built over relatively clean and simple concepts. 

Since the code emulator will be having lot of interaction with the files system and database, we 

chose to implement the emulator in JAVA because we needed a better hold and greater 

flexibility over the program and the data. The code emulator has been basically divided into 

seven main components like Execution Path Recorder, Equivalent Instruction Substitution 

Finder, etc. Figure 18 shows the overall architecture of our code emulator displaying the various 

components involved. 

 

 

Figure 18 : Code Emulator Architecture 
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8.4.2 Components 

The various components of our code emulator has the following functions: 

1. Database Access Layer – This layer has been implemented based on the Singleton 

Pattern [27] to have more efficiency. The data access layer provides a database 

connection to all the other requesting components. The singleton pattern makes 

sure that the only one instance of the class is created, and thus providing global 

point of access to the database’s object.  

2. File Handler – This component deals with the writing and reading of various virus 

files. These operations of accessing file system has been given exclusively to this 

component.  

3. Detector – This module is the main component where the instructions read from 

the file are passed. This component has been designed as per the Code Emulation 

Algorithm. The main task of this component is to act as a controller, which 

decides over which component will be executed next.   

4. Dead Code Finder – This module is responsible for finding the dead code as per 

the Code Emulation Algorithm. This module maintains a list of already known 

series of dead code instructions through which it finds the equivalent dead codes 

in the virus file.  

5. Equivalent Instruction Substitution Finder – This module is responsible for 

finding the equivalent instructions based on pattern matching. 

6. Junk Block/Junk Subroutine Finder – This component finds all the subroutines 

which are not called from anywhere and marks them appropriately.  

7. Execution Path Recorder – This module is the last one to be called by the 

Detector module. This is where the emulation takes place and along with, it also 

marks all the instructions which have been executed. 

 

8.5 Code Emulation: The Algorithm  

8.5.1 Introduction 

To make sure that our code emulator is following a specific path or process, we came up with an 

algorithm known as the Code Emulation Algorithm. This algorithm consists of steps specific for 
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a certain types of code obfuscation techniques. Keeping in mind the various code obfuscation 

techniques that needs to be handled, the algorithm is designed to make couple of parsing before 

the actual emulation of registers take place. The sections below explain the steps in detail. 

 

8.5.2 Initializing the Data Structure 

As a first logical step, virus file will be read into a particular data structure. So it was important 

to have a data structure defined for our emulator, which should be easy to handle and maintain. 

One observation which was very much evident from the disassembled virus files was the way the 

instructions were laid out. Every location/subroutine individually had a different set of 

instructions as shown in the Figure 19. 

 

 

Figure 19 : Sample Virus File 

So, we maintained a separate JAVA class for each location where it was populated with their 

respective instructions and opcodes saved as array lists. We also maintained separate flag for 

each location (at class level) and also for each instruction. The respective flags were made true if 

a particular location/subroutine is called and/or if a particular instruction is executed. This was 
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the optimal way to keep track of all the instructions being executed. Figure 20 shows a 

representation of the class with a few methods included. 

 

 

Figure 20 : Class Diagram for Data Structure Maintained 

 

8.5.3 First Pass - Finding Junk Blocks and Junk Subroutines 

This is a helper pass which is basically run to ensure that less strain is put over the execution 

recorder phase (where the emulation of registers take place). In this pass, the emulator will try to 

find any junk block or junk subroutine which has been embedded into the morphed virus file. 

This pass does not deal with the emulation of the registers, but it scans all the instructions 

looking for specific property related to junk block or junk subroutine code.  

 

To improve efficiency, we are maintaining a list known as “CalledSubroutine”. While reading 

the data from the file into the data structure, this list was being populated with the names of any 

subroutine which has been called. So, whenever we encountered with the instruction “call”, the 

subroutine name or the location name was fed into the CalledSubroutine list. This step provided 

us with the information about the subroutines which “might” never be called for any given 

scenario. Once the “CalledSubroutine” list is populated, we will delete the subroutines from the 

data structure whose names are not included in our list. 

 

The second part of this pass is to find the probable junk blocks of code. This part deals with the 

searching of unconditional “jmp” instructions. If there are any unconditional jump instructions, 
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then we can mark the remaining instructions in any subroutine/location as “probables” for being 

never executed. Note that at this stage, we do not delete these instructions from the data 

structure, but we just mark them so that later in execution recorder stage, we can cross check 

whether these instructions are executed or not through register emulation. The Figure 21 shows 

a similar condition. 

 

 

 

Figure 21 : Sample Junk Block 

 

To sum up, the algorithm to be followed for this round is shown in Figure 22. 
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Figure 22: First Pass Algorithm 

 

8.5.4 Second Pass: Find Equivalent Instruction Substitution  

One of the steps to make morphed copies of the base virus file was to substitute an equivalent 

instruction [16]. The equivalent instruction substitution does make a lot of difference for 

scanners, which are based on signature detection and HMM, too. Since substitution of an 

equivalent instruction will not make any difference to the existing functionality, catching it 

through the emulation process solely will be very tough as we cannot impose any general logic 

behind it. To overcome this problem, we used the list of instructions and their equivalent 

instructions listed in [21] and used them in our implementation (See Appendix A for a complete 

list of instructions and their equivalent instructions ). There are close to 50 instructions and their 

substitute instructions in this list. 

 

In order to implement this scenario, we did pattern matching of various instructions and their 

operands to reverse it back to the original instruction. For example, consider the following 

instruction substitution for instruction “dec R” in the Table 11. 
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Table 11 : Equivalent Substitution Example 

    

Now in this pass, as the emulator goes through all the instructions, it will try to match all the new 

patterns with the patterns of the equivalent instructions already saved in the emulator. Referring 

from the Table 11, it can be seen that a simple instruction of “dec R” or “dec mem” can be 

replaced with “neg R” followed by “not R”  or “neg mem” followed by “not mem”. So the job of 

emulator at this stage will be to find the matching patterns and replacing those instructions with 

their original counterparts. In this case, wherever the emulator finds “neg R not R” as the two 

consecutive instructions for a particular location or subroutine, these instructions will be replaced 

with “dec R”.        

 

8.5.5 Finding Dead Code and Recording Execution Path 

This is the last and the most important step in the execution of a virus file. Till this step, the virus 

file which has been put into the data structure, has been cleaned up of “most” of the instructions 

which was result of various code obfuscation techniques. But there will be still many more 

instructions left to be found, whether they are actually impacting over the functionality of the 

virus program or not.  

 

As a first part of this step, while the code emulator goes instruction by instruction, it tries to find 

out the dead code (instruction which executes but will not impact over the functionality). We 

took the list of possible dead codes [21] (See Appendix B for a complete list) and the code 

emulator will keep looking for them during the execution of the virus file. If any of the sequence 

of instructions were found in the file, the code emulator will simply block them from being 

executed and mark them as unvisited. 

 

The next phase of this step was the actual emulation of a virus file. In order to run this step, we 

emulated the various registers present in the 8086 architecture in our database. All the registers 
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were created as a new column inside a table of our database. For example, if we have 2 registers 

EAX and EBX to be emulated, then we will have 2 columns named EAX and EBX in our 

database’s table. So whenever the emulator will encounter instructions handling these two 

registers, database table will be updated appropriately. Our emulator is supporting most of the 

registers (See Section 8.6 for list of Supported Registers).  

 

Other emulation that our code emulator is dealing with is the emulation of different kind of 

instructions. We implemented the functionality of many instructions (See Section 8.7 for list of 

Supported Instructions). For example, if the emulator encounters “mov eax,ebx”, then the 

emulator will use database query to remove the value of ebx (from the database table’s column 

ebx) and then insert it into the column eax. Each instruction was implemented separately based 

on their functionality in our emulator, so that they perform the same operation with our emulated 

registers as it would have done with the real CPU registers.  

 

To get a complete picture of emulation, consider an example where the emulator encounters two 

instructions as “mov ebp, esp” and then “dec ebx”. We have a separate implementation of these 

instructions in our emulator. So in this case, the emulator will pick up the value from column 

“esp” in the database and insert it into the column “ebp”. Then the code emulator will decrement 

the value present in the column “ebx” . Figure 23 depicts this scenario. 
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Figure 23 : Register Emulation through Database 

 

The code emulator while executing these instructions, also keeps updating in the data structure 

whether or not any particular instruction has been visited/executed. In this way, when the 

emulation stops, the code emulator would have marked all the possible instructions which were 

executed for a particular path. Basically the code emulator tries to follow a particular path and 

record all subroutines/locations/instructions that have been executed.  

 

At the end of this step, the code emulator will produce a .asm file which will have the 

instructions that were marked as visited/executed in our data structure.  
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8.6 List of Registers Supported  

 

For performing an effective code emulation, the code emulator will attempt to capture as many 

registers as possible so that most of the .asm file of Intel 8086 could be executed. Registers are 

fast memory, almost always connected to circuitry that allows various arithmetic, logical, 

control, and other manipulations, as well as possibly setting internal flags [24]. Implementation 

of various registers will be based over the functionalities of individual register set. Below are the 

register sets which have been identified for implementation: 

1. Accumulators : All the operations such as rotate, logical, arithmetic shift or similar 

operations are done by the registers known as Accumulators. In 8086, AX is the one 

word accumulator of size 16 bits. Variation is that higher order byte of AX is called 

AH, whereas lower order byte is called AL. 

2. General Purpose Registers : General Purpose Registers in 8086 are BP, BX, AX, CX, 

SP and DI. To cover these, we needed to have both the lower order and the higher 

order bytes variations. Higher order for general purpose registers are called BH, AH, 

DH, and CH and the lower order bytes are named as BL, AL, DL, and CL.  

3. Index Registers : In 8086, index registers are nothing but use of general purpose 

registers. So we have used the general purpose registers as index registers itself. A 

more complicated version can be made by combining the index register and the 

address register. 

4. Base Registers : These are used to segment memory. In 8086, there are six of them : 

GS- data segment, SS- stack segment, , ES- extra segment, FS- data segment register, 

CS- code segment and DS- data segment. 

5. Program Counter : We did not emulate the program counter as we had other 

mechanism to follow the execution path. Program Counter basically stores the next 

executable instruction’s address. 

6. Stack Pointer : In 8086, SP- stack pointer combined with SS - stack segment pointer 

is used to create address of the stack. 
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8.7 Instructions Supported 

 

For the implementation of our code emulator, target was to include most of  the 8086/8088 

instructions sets. Refer to Appendix C  for a complete list of instructions [23] supported by the 

8086/8088 architecture. There are close to 100 individual instructions with many instructions 

having different variations (which meant different approach for each variation). So to avoid 

unnecessary implementation of less used instructions, we wrote a utility java program, which 

took input as 15 of the virus files and created a list of most frequently used instructions in these 

virus files. So we implemented close to 30 instructions in total based on the figures thus 

collected. Figure 24 shows the list of those instructions and their average frequency of 

occurrence in those 15 virus files.     

 

 

Figure 24 : Opcode Frequency of 15 Virus Files 
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9 Experiments and Analysis 

9.1 HMM Test for Base Virus Files 

 

To make sure that HMM is detecting our 40 base virus files; we ran a test for HMM detection. If 

the scores obtained by HMM for the virus files are lower than the scores obtained for the normal 

files, then the HMM will be able to distinguish between them. This is because, HMM maintains 

a threshold value. Score of any file lower than the threshold is considered as a normal file and 

score of file higher than the threshold is considered as a virus file.   

 

Figure 25 shows the HMM result for our 40 base virus files. The HMM was successfully able to 

differentiate between the normal files from the virus files.  

 

 

Figure 25 : HMM Results for 40 Base Virus Files 
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It can be observed from the above figure that the minimum score of virus family is -4.38473 and 

the maximum score of normal file is -8.90711, so the HMM was able to make a clear distinction 

of both type of files (Refer to Appendix F for the complete list of HMM scores).  

 

9.2 HMM Test without Code Emulation 

 

To conduct this step in the experiment process, we took the 40 base virus files and morphed them 

using Metamorphic Virus Generator Engine [16]. The engine will take one normal file and one 

virus file as input and apply various code obfuscation techniques in an effort to make the base 

virus file closer to the normal file. For our experiment, we have 40 base virus files and 40 normal 

files. So, we took the 1
st
 virus file with 1

st
 normal file, 2

nd
 virus file with 2

nd
 normal file and so 

on. At this stage we expect that there will be many morphed virus files which would not be 

detected by the HMM. We morphed the base virus files with different settings (different 

percentage of morphing). 

 

9.2.1 HMM Test with 15% Morphing 

We started our experiments by morphing the base virus files by 15%, which was having 5% 

subroutine copied into from the normal file. Then we ran the HMM test again for these set of 

morphed virus files. The HMM was not able to detect all the morphed virus files as it did before 

the morphing had happened. Figure 26 shows the result of our HMM test. With the maximum 

score of normal files being -8.90711, we found that there were 20 virus files whose score was 

less than the maximum score of the normal file (Refer to Appendix G for a complete list of 

HMM scores). 
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Figure 26: HMM Test with 15% Morphing 

 

9.2.2 HMM Test with 25% Morphing 

For this round, we started our experiments by morphing the base virus files by 25%, which was 

having 15% subroutine copied into from the normal file. Then we ran the HMM test again for 

these set of morphed virus files. The HMM was not able to detect the entire morphed viruses. 

Figure 27 shows the result of our HMM test. With the maximum score of normal files being -

8.90711, we found that there were 20 virus files whose score was less than the maximum score 

of the normal file (Refer to Appendix H for a complete list of HMM scores). 
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Figure 27 : HMM Test with 25% Morphing 
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morphed virus files. The HMM was not able to detect all the virus files as it did before the 

morphing had happened. Figure 28 shows the result of our HMM test. With the maximum score 

of Normal Files being -8.90711, we found that there were 16 virus files whose score was less 

than the maximum score of the normal file (Refer to Appendix I for a complete list of HMM 

scores).  
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Figure 28 : HMM Test with 35% Morphing 

 

9.3 HMM Tests with Code Emulation 

 

From the tests conducted in the previous section, we got sure that HMM was not able to detect 

all the virus files after morphing. Now we took the 40 morphed virus files generated from the 

above tests (for various morphing percentage) to run with our Code Emulator. The code emulator 

will try to remove as much as code obfuscation techniques applied to the virus files and create 

“Un-Morphed” virus copies. We will test these un-morphed virus copies with the HMM tool. 

The expectation was that as the HMM was able to detect base virus files, it will also detect the 

corresponding un-morphed virus files.  

 

9.3.1 HMM Test with 15% Morphing 

We took the 40 morphed virus files (having 15% morphing and 5% subroutine copying) and run 
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minimum score of un-morphed virus files is -6.39854 and the maximum score for the normal file 

was -8.90711. Thus from the HMM scores generated, we can show that the code emulator was 

successful in detecting the code obfuscation techniques (Refer to Appendix J for a complete list 

of HMM scores).  

 

 

 

Figure 29 : HMM Test with 15% Morphing 

 

9.3.2 HMM Test with 25% Morphing 

In this step, we took the 40 morphed virus files (having 25% morphing and 15% subroutine 

copying) and run them in our code emulator, whose output was un-morphed virus files. We now 

tested these 40 un-morphed virus files to see whether HMM can now detect these or not. Figure 

30 shows that the HMM was able to distinguish between the un-morphed virus files and the 

normal files. The minimum score of un-morphed virus files is -6.26291 and the maximum score 

for the normal file was -8.90711 (Refer to Appendix K for a complete list of HMM scores). 
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Figure 30 : HMM Test with 25% Morphing  

  

9.3.3 HMM Test with 35% Morphing 

The Figure 31 shows that the HMM was able to distinguish between the un-morphed virus files 

and the normal files. This test was aimed to see whether the code emulator can remove code 

obfuscation techniques from virus files, which have been morphed as high as 35% with 25% 

subroutine copying. The minimum score of un-morphed virus files is -6.73408 and the maximum 

score for the normal file was -8.90711 (Refer to Appendix L for a complete list of HMM scores). 

Thus from the HMM scores generated, we can show that the code emulator was successful in 

detecting the code obfuscation techniques.   
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Figure 31 : HMM scores with 35% Morphing 

 

 

9.4 Performance Analysis of Code Emulator 

To analyze the performance of our code emulator, we conducted two tests which have been 

discussed in this section. The first analysis deals with the execution time of the virus file by our 

code emulator. In the second analysis, we tried to ascertain the percentage of actual code 

(undead), which our code emulator missed during emulation of a virus file.  

9.4.1 Execution Time Analysis 

 We wanted to get an idea about the performance of our code emulator. Figure 32 shows the time 
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-60

-50

-40

-30

-20

-10

0

0 10 20 30 40 50

Un-Morphed Virus File

Normal File



47 

 

 

Figure 32 : Execution Time Analysis 

 

9.4.2 Instruction Count Comparison  

The code emulator tries to remove those instructions from the virus file which can be present due 

to various morphing techniques. While performing emulation, there can be instructions which are 

legitimate (undead), but are still removed by the code emulator. So, we compared the number of 

instructions in the base virus file to the number of instructions left in the virus files after 

emulation. According to Figure 33, we lost an average of 25 instructions per virus file after 

emulation (Refer to Appendix N for the exact values) i.e. around average 3.35% of original 

instructions. There were cases where no difference in the instruction count was found (like the 

virus files IDAN127 and IDAN139), but at the same time there were cases where the number of 

instructions lost due to emulation was 116 like the virus file IDAN125.         
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Figure 33 : Instruction Count Comparison 
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10 Attacks on Code Emulator  

The implemented code emulator does have certain limitations which a virus writer can exploit to 

make the virus more complicated for any code emulator. The NGVCK generated viruses had one 

entry point from where our code emulator starts its process. Virus writers can introduce multiple 

entry points for any virus for which an advanced emulator will have to perform its operations 

from all the respective entry points. In our code emulator, we took the exception of Dummy 

Loops Detection. Based on some conditions, these loops are inserted to make the emulator run 

thousands of instruction unnecessarily thus preventing it from rebuilding the original base virus 

file. 

 

In the Code Execution Recording phase, we followed the path of the instructions being executed. 

But there can be viruses where the instructions are based over the CPU properties. The overhead 

will be that the emulator will have to run over different kind of CPU to detect the virus’s actual 

behaviors.   

 

11 Conclusions and Future Work 

The emulator we developed was able to emulate the execution of virus files and remove the 

unexecuted instructions/subroutines successfully. The code emulator was also able to remove or 

change the instructions which were result of various code obfuscation techniques such as 

equivalent instruction substitution, junk code/block insertion and dead code insertion. Once the 

virus files were un-morphed by our code emulator, the HMM tool which was not able to classify 

the virus files from the normal files (after the virus files were morphed by the metamorphic 

engine) are now able to classify them. 

 

The virus files which were morphed up to as high as 35% (with 15% to 25% subroutine copying) 

also exposed themselves in our code emulator. We also showed that though code emulator is 

complex to implement, but with a good design and algorithm it can be a very powerful tool to 

detect not only metamorphic viruses but also any kind of virus.       
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The code emulator can be made a real powerful tool once many new techniques have been 

incorporated to the existing one. We listed few of our weaknesses with which our code emulator 

can be attacked. Handling these issues could be the next logical step in an attempt to improve the 

code emulator. One very challenging task what we anticipate is to make the code emulator very 

efficient. Our code emulator had a few steps which was a kind of “add on” to help the actual 

emulation. To remove these steps will be a beneficial step towards increasing its efficiency. 

 

Other very interesting work which can be done is to combine the HMM and the code emulator in 

one package. The automation of processes like disassembling .exe files and making HMM 

models would be very beneficial. This will be full of new challenges, but end product, if 

achieved, can be a wonderful tool to find metamorphic viruses. The present code emulator did 

not take care of I/O devices emulation. Even though special treatments are required for each I/O 

device, which will be very comprehensive to implement, few common features like managing 

interrupts (both hardware and software) and physical memory access can be implemented.   
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Appendix A: Equivalent instruction substitution [21] 

Notations: 

R – Register (eax, ax, ah, al) 

RR – Random register 

mem, [mem] – Memory address ([esi]) 

imm – Immediate value (12h) 

op1 – To-operand with length more than 1 including R and mem 

op2 – From-operand with length more than 1 including R, mem, and imm 
loc – any location or label 
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Table 12 : Equivalent Instruction Substitution [21] 
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Appendix B: Dead Code Instructions [21] 

 
 

Figure 34 : Dead Code Instructions [21] 
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Appendix C: List of 8086 Instructions [23] 
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Table 13 : List of 8086 Instructions [23] 
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Appendix D: HMM Model Trained N=2 

Model  

N=2, M=76, T=67032 

I: 

1.00000000000000 0.00000000000000  

A: 

0.31213745192201 0.68786254807796  

0.99999374304194 0.00000625695803  

B: 

call 0.08218503496863 0.03371900087267  

sub 0.06417040292496 0.02231340405298  

pop 0.02997515656273 0.09260052958416  

mov 0.19554566095211 0.25090974189873  

or 0.01377346911843 0.00000000000000  

jz 0.00000000000000 0.08610033301483  

push 0.14347589399134 0.07921793237216  

lea 0.01597360820614 0.01796039785637  

xor 0.02014892699289 0.01342772980439  

rol 0.00158144088397 0.00472946366722  

add 0.16496314877007 0.10651431749596  

cmp 0.06473782285829 0.00000000000000  

jnz 0.00000000000000 0.06058505575661  

test 0.00982020650126 0.00000000000000  

jmp 0.03524565445683 0.00074140491387  

sar 0.00130327978519 0.00077759378900  

dec 0.03017438600252 0.00159803441059  

pusha 0.01946415288583 0.00000000000000  

popa 0.02102429536802 0.00406488936664  

jb 0.00000000000000 0.01797417666253  

movzx 0.00633346740711 0.00602089047992  

imul 0.00000000000000 0.00585716551121  

shl 0.00468050134375 0.01245081165768  

movsb 0.00000000000000 0.00391697943562  

lodsw 0.00056746394289 0.00104197944089  

ror 0.00406322284121 0.00170710881670  

stosw 0.00000000000000 0.00175714965336  

clc 0.01198568793487 0.00000000000000  

retn 0.00017857316316 0.07980051733038  

stc 0.00808278535104 0.00000000000000  

ja 0.00000000000000 0.00285536818672  

and 0.00982310629799 0.01811639000946  

jnb 0.00000000000000 0.00483216154675  

inc 0.01471252036211 0.02030629820452  

stosd 0.00000000000000 0.00248929534227  

div 0.00000000000000 0.00582055822677  
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rcl 0.00111653269881 0.00716250747895  

adc 0.00453676494134 0.00251956113741  

cld 0.00449021197316 0.00152562965895  

shr 0.00183230442523 0.00440135979471  

rcr 0.00151080100019 0.00000000000000  

not 0.00397610573962 0.00366412587481  

neg 0.00337886115374 0.00233597665418  

loop 0.00023144348474 0.00035906057008  

start 0.00237618465993 0.00145082448129  

jbe 0.00000000000000 0.00545448538232  

xchg 0.00000000000000 0.00424644499563  

lodsb 0.00059653230453 0.00045060992486  

stosb 0.00000000000000 0.00135446952447  

rep 0.00000000000000 0.00219643706670  

sbb 0.00129044575376 0.00083285948202  

lodsd 0.00021804863447 0.00122050185215  

popf 0.00000000000000 0.00003660728445  

bound 0.00000000000000 0.00003660728445  

in 0.00000000000000 0.00010982185334  

jnp 0.00005036003334 0.00000000000000  

ins 0.00002397489038 0.00007496660907  

fnstenv 0.00002518001667 0.00000000000000  

scasb 0.00000000000000 0.00003660728445  

retf 0.00004811051560 0.00003987768482  

cmc 0.00000000000000 0.00003660728445  

aad 0.00002518001667 0.00000000000000  

enter 0.00002518001667 0.00000000000000  

movsd 0.00005036003334 0.00000000000000  

jp 0.00000000000000 0.00003660728445  

repe 0.00000000000000 0.00010982185334  

jns 0.00002518001667 0.00000000000000  

fild 0.00002518001667 0.00000000000000  

icebp 0.00002518001667 0.00000000000000  

jecxz 0.00002518001667 0.00000000000000  

std 0.00003128771775 0.00002772776885  

jle 0.00002518001667 0.00000000000000  

out 0.00002518001667 0.00000000000000  

hlt 0.00002518001667 0.00000000000000  

cmpsb 0.00000000000000 0.00003660728445  

fidiv 0.00000000000000 0.00003660728445 
Table 14 : HMM Model Trained N=2 
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Appendix E: HMM Model Trained N=3 

N=3, M=76, T=67032 

I: 

1.00000000000000 0.00000000000000 0.00000000000000  

A: 

0.05276957768954 0.32624506516877 0.62098535714169  

0.99351380535297 0.00648619464703 0.00000000000000  

0.00000000000000 0.19527911680493 0.80472088319506  

B: 

call 0.10758113770840 0.08648240197820 0.04102623878677  

sub 0.00000000000000 0.03581588477658 0.06531482231911  

pop 0.18166133767637 0.00000000000000 0.03246089973430  

mov 0.00000000000000 0.00214018531199 0.35144683990257  

or 0.00012871267202 0.02145703596697 0.00669954940899  

jz 0.18012165403566 0.00000000000000 0.00000000000000  

push 0.12363627514111 0.38829768090538 0.03403992656142  

lea 0.00587430282473 0.00000000000000 0.02524571594103  

xor 0.00000000000000 0.00758730122965 0.02582966139870  

rol 0.00015627484036 0.00000000000000 0.00457472755101  

add 0.00012882190291 0.01315385159534 0.22386179377281  

cmp 0.00000000000000 0.20651418412296 0.00000000000000  

jnz 0.12674376591370 0.00000000000000 0.00000000000000  

test 0.00008500730552 0.03123737790837 0.00000000000000  

jmp 0.01849599396451 0.00227467727887 0.02769900085102  

sar 0.00012832115939 0.00055517619690 0.00155122999419  

dec 0.00000000000000 0.04816595322001 0.01546967979789  

pusha 0.00000000000000 0.00000000000000 0.01861589698618  

popa 0.00994806263832 0.06471620675649 0.00025081700451  

jb 0.03760192692666 0.00000000000000 0.00000000000000  

movzx 0.00000000000000 0.00000000000000 0.01001838699385  

imul 0.00000000000000 0.00000000000000 0.00385322576687  

shl 0.00082072400712 0.00000000000000 0.01240938862476  

movsb 0.00000000000000 0.00000000000000 0.00257684473159  

lodsw 0.00000000000000 0.00000000000000 0.00122821571319  

ror 0.00063405649312 0.00000000000000 0.00480980329256  

stosw 0.00000000000000 0.00000000000000 0.00115596773006  

clc 0.00000000000000 0.03823444249029 0.00000000000000  

retn 0.15195076882412 0.00000000057476 0.00488519056093  

stc 0.00000000000000 0.02578415134324 0.00000000000000  

ja 0.00597342220016 0.00000000000000 0.00000000000000  

and 0.00000000000078 0.00257744170986 0.02054039345274  

jnb 0.01010886833874 0.00000000000000 0.00000000000000  

inc 0.00016599922965 0.01407682673458 0.02315747361172  

stosd 0.00000000000000 0.00000000000000 0.00163762095092  

div 0.00558348927739 0.00000000000000 0.00207331680300  
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rcl 0.01434107987383 0.00017317118835 0.00121811440210  

adc 0.00219209464094 0.00181431389863 0.00476327726245  

cld 0.00306595152299 0.00000000000000 0.00433404310556  

shr 0.00035094525423 0.00010394120584 0.00450642931023  

rcr 0.00000000000000 0.00481946754079 0.00000000000000  

not 0.00000000000000 0.00000000000000 0.00621332654907  

neg 0.00000000000000 0.00000000000000 0.00476836688650  

loop 0.00000000000000 0.00000000000000 0.00045757055982  

start 0.00000000000000 0.00349429548412 0.00217942640244  

jbe 0.01141076804903 0.00000000000000 0.00000000000000  

xchg 0.00000000000000 0.00000000000000 0.00279358868098  

lodsb 0.00000000000000 0.00000000000000 0.00086697579755  

stosb 0.00000000000000 0.00000000000000 0.00089105845859  

rep 0.00000000000000 0.00000000000000 0.00144495966258  

sbb 0.00057683585006 0.00000000000000 0.00160072074936  

lodsd 0.00000000000000 0.00000000000000 0.00101147176380  

popf 0.00000000000000 0.00000000000000 0.00002408266104  

bound 0.00007658233590 0.00000000000000 0.00000000000000  

in 0.00000000000000 0.00000000000000 0.00007224798313  

jnp 0.00015250381015 0.00000069315403 0.00000000000000  

ins 0.00000000000000 0.00000000000000 0.00007224798313  

fnstenv 0.00000000000000 0.00000000000000 0.00002408266104  

scasb 0.00000000000000 0.00000000000000 0.00002408266104  

retf 0.00007456857443 0.00005653792738 0.00003184753700  

cmc 0.00000000000000 0.00000000000000 0.00002408266104  

aad 0.00000000000000 0.00008032445901 0.00000000000000  

enter 0.00000000000000 0.00000000000000 0.00002408266104  

movsd 0.00000000000000 0.00006517720536 0.00002862406947  

jp 0.00007658233590 0.00000000000000 0.00000000000000  

repe 0.00000000000000 0.00000000000000 0.00007224798313  

jns 0.00000000000000 0.00000000000000 0.00002408266104  

fild 0.00000000000000 0.00008032445901 0.00000000000000  

icebp 0.00000000000000 0.00000000000000 0.00002408266104  

jecxz 0.00000000000000 0.00008032445901 0.00000000000000  

std 0.00000000000000 0.00000000000000 0.00004816532209  

jle 0.00000000000000 0.00000000000000 0.00002408266104  

out 0.00000000000000 0.00008032445901 0.00000000000000  

hlt 0.00000000000000 0.00008032445901 0.00000000000000  

cmpsb 0.00007658233590 0.00000000000000 0.00000000000000  

fidiv 0.00007658233590 0.00000000000000 0.00000000000000  

Table 15 : HMM Model Trained N=3 
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Appendix F: Scores of Base Virus Files vs Normal Files  

 

 

Table 16 : Scores of Base Virus Files vs Normal Files 
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Appendix G: HMM Test with 15% Morphing 

  

 

Table 17 : HMM Test with 15% Morphing 
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Appendix H: HMM Test with 25% Morphing 

 

Table 18 : HMM Test with 25% Morphing 
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Appendix I: HMM Test with 35% Morphing 

 

 

Table 19 : HMM Test with 35% Morphing 
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Appendix J: HMM Test with 15% Morphing after Code Emulation 

 

Table 20: HMM Test with 15% Morphing after Code Emulation 
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Appendix K: HMM Test with 25% Morphing after Code Emulation 

 

Table 21 : HMM Test with 25% Morphing after Code Emulation 
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Appendix L: HMM Test with 35% Morphing after Code Emulation 

 

Table 22 : HMM Test with 35% Morphing after Code Emulation 
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Appendix M: Code Emulator – Execution Time Analysis  

 

Table 23: Execution Time Analysis 
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Appendix N: Instruction Count Comparison  

 

 

Table 24: Instruction Count Comparison 
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Appendix O: HMM Tests with Models Built with x% Morphed Virus Files 

Considering the fact that the base virus files may not be always available, we performed few 

additional tests to see whether the code emulator and HMM can distinguish between the 

morphed virus and normal files. Idea was to make HMM models based on the morphed virus 

copies rather than using base virus files.  We collected 200 morphed viruses having 15% 

morphing. HMM model was made using 160 of these morphed copies and the remaining 40 were 

used for HMM scoring. We repeated this process for 35%, 55% and 75% morphing too. We then 

also analyzed the detection rate before and after the emulation.      

HMM Tests without Code Emulation  

 

 

Figure 35 : HMM Test with 15% Morphing 
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Figure 36 : HMM Test with 35% Morphing 

 

 

 

Figure 37 : HMM Test with 55% Morphing 
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Figure 38 : HMM Test with 75% Morphing 

 

 

HMM Tests with Code Emulation 

 

 

Figure 39 : HMM Test with 15% Morphing 
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Figure 40 : HMM Test with 35% Morphing 

 

 

 

Figure 41 : HMM Test with 55% Morphing 
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Figure 42 : HMM Test with 75% Morphing 
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Virus Detection Rate Comparison  

 

Figure 43 : Virus Detection Rate Comparison 
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Appendix P: HMM Tests with Training Files 

HMM Tests without Code Emulation  

 

 

Figure 44 : HMM Test with 15% Morphing 

 

 

Figure 45 : HMM Test with 35% Morphing 
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Figure 46 : HMM Test with 55% Morphing 

 

 

Figure 47 : HMM Test with 75% Morphing 

 

 

 

 

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

0 10 20 30 40 50

Morphed Training 
Virus Files

Normal Files

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

0 10 20 30 40 50

Morphed Training 
Virus Files

Normal Files



82 

 

HMM Tests with Code Emulation 

 

 

Figure 48 : HMM Test with 15% Morphing 

 

 

Figure 49 : HMM Test with 35% Morphing 
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Figure 50 : HMM Test with 55% Morphing 

 

 

 

Figure 51 : HMM Test with 75% Morphing 
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Virus Detection Rate Comparison  

 

 

Figure 52 : Virus Detection Rate Comparison 
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