
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2011

RNA SECONDARY STRUCTURE
PREDICTION TOOL
Meenakshee Mali
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Bioinformatics Commons, and the Other Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Mali, Meenakshee, "RNA SECONDARY STRUCTURE PREDICTION TOOL" (2011). Master's Projects. 164.
DOI: https://doi.org/10.31979/etd.v9y6-uzac
https://scholarworks.sjsu.edu/etd_projects/164

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70408066?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/164?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

RNA SECONDARY STRUCTURE PREDICTION TOOL

A project

Presented to

The Faculty of the Computer Science Department

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Meenakshee Mali

May 2011

i

© 2011

Meenakshee Mali

ALL RIGHTS RESERVED

ii

SAN JOSÉ STATE UNIVERSITY

The Undersigned Project Committee Approves the Project Titled

RNA SECONDARY STRUCTURE PREDICTION TOOL

by
Meenakshee Mali

APPROVED FOR THE COMPUTER SCIENCE DEPARTMENT

Dr. Sami Khuri, Computer Science Department Date

Dr. Chris Pollett, Computer Science Department Date

Dr. Robert Fowler, Biology Department Date

iii

ABSTRACT

Ribonucleic Acid (RNA) is one of the major macromolecules essential to all forms of
life. Apart from the important role played in protein synthesis, it performs several
important functions such as gene regulation, catalyst of biochemical reactions and
modification of other RNAs. In some viruses, instead of DNA, RNA serves as the carrier
of genetic information. RNA is an interesting subject of research in the scientific
community. It has lead to important biological discoveries. One of the major problems
researchers are trying to solve is the RNA structure prediction problem. It has been found
that the structure of RNA is evolutionary conserved and it can help to determine the
functions served by them. In this project, I will be developing a tool to predict the
secondary structure of RNA using simulated annealing. The aim of this project is to
understand in detail the simulated annealing algorithm and implement it to find solutions
to RNA secondary structure. The results will be compared with the very famous tool
Mfold, developed by Michael Zuker, using the minimum free energy approach.

iv

ACKNOWLEDGEMENTS

I would like to thank Dr.Sami Khuri for his continuous guidance and support for
my academic journey at San Jose State University. I express my sincere gratitude towards
him as he was the one who introduced me to the field of Bioinformatics. He has
supported me constantly to accomplish my project successfully. I would also like to thank
Dr. Chris Pollett and Dr. Robert Fowler for serving on my defense committee.

Last but not the least, I would not have achieved this milestone without
continuous support of my husband and family. I also thank all my friends at San Jose
State University who have made my years as a graduate student unforgettable.

v

Table of Contents
1 INTRODUCTION.. 1

1.1 Project Scope...3
2 LITERATURE REVIEW..4

2.1 Dynamic Programming .. 4
2.2 Minimum Free Energy (MFE).. 6
2.3 Evolutionary Algorithm (EA) .. 6

2.3.1 Crossover:..7
2.3.2 Mutation:.. 8
2.3.3 Selection:.. 8

2.4 Simulated Annealing .. 8
2.4.1 Cost Function : ..11
2.4.2 Perturbation Function: ... 11
2.4.3 Cooling Schedule: ... 12

3 COMPUTING ENVIRONMENT.. 14
3.1 Hardware Environment... 14
3.2 Software Environment.. 14

4 MAPPING STRUCTURE PREDICTION INTO SA...15
4.1 State Representation: ..15
4.2 Perturbation/Mutation Function: ..17

4.2.1 Swap Mutation:.. 17
4.2.2 Percentage mutation operator:..17

4.3 Evaluation Function: .. 18
4.4 Decision Mechanism: ...19

5 EXPERIMENTS AND RESULTS..21
5.1 Energy flow of Simulated annealing:...22
5.2 Free Energy convergence variation with mutation parameter:...............................24
5.3 Results of Simulated Annealing for typical sequences:... 27

5.3.1 Alpha Proteobacterium 16s RNA (250 bases):..27
5.3.2 Sulfitobacter sp. 16S RNA (AF007254) with 400 nucleotide bases..............30
5.3.3 Bacillus subtilis (D11460) with 118 nucleotide bases....................................30
5.3.4 Secondary structure for S. cerevisiae (X67579) ...33

5.4 Comparison with Mfold :... 34
6 CONCLUSION...35
7 FUTURE WORK..36
8 REFERENCES... 37
9 Appendix .. 40

List of Figures
 Figure 1 Representation of different elements of RNA secondary structures [5].............2
 Figure 2 Representation of different tertiary structures [5]..3
 Figure 3 Initialization of dynamic programming matrix [7]...4
 Figure 4 Second step of dynamic programming algorithm [7]...5
 Figure 5 Traceback of the dynamic programming matrix and optimal structure[7].........5
 Figure 6 A potential helix generated by the helix generation algorithm[28]..................16
 Figure 7 Convergence of simulated annealing algorithm [30].......................................19
 Figure 8 Graph showing the energy convergence behavior for H.marismortui.............22
 Figure 9 Graph for temperature variation... 23
 Figure 10 Secondary structure H.marismortui using classical approach..........................25
 Figure 11 Secondary structure for sequence H.marismortui using modified...................26
 Figure 12 Secondary Structure of A.proteobacterium 16s RNA......................................28
 Figure 13 Energy plot for A.proteobacterium...29
 Figure 14 Secondary structure of S. sp. 16S RNA..31
 Figure 15 Secondary structure of B.subtilis..32
 Figure 16 Secondary structure for S.cerevisiae.. 33

List of Tables
Table 1 Hardware Environment Setup..14
Table 2 Test Sequences, number of helices found in each sequence................................17
Table 3 Test sequences, number of base pairs in known structures..................................21
Table 4 Results of varying mutation parameter and minimum free energy......................24
Table 5 Results of variation temperature decay factor and minimum free energy...........27
Table 6 Variation of temperature, mutation for S. sp. 16S RNA......................................30
Table 7 Variation of temperature, mutation for B. subtilis (D11460)...............................30
Table 8 Comparison with Mfold... 33

1 INTRODUCTION

The central dogma of molecular biology states that the genetic information of an
organism is transferred from Deoxyribonucleic Acid (DNA) to Ribonucleic Acid (RNA)
and then to Proteins. For a long time DNA was considered as the primary actor in storing
the genetic code with RNA cast into secondary role of carrier of this information. But a
string of discoveries in the last decade have proved that smaller RNA molecules operate
many cell controls. The knowledge about RNA is expanding rapidly. It is now known that
RNA catalyzes reactions, directs the site-specific modification of RNA nucleotides,
modulates protein expression and serves in protein localization. Therefore, understanding
the function of RNA molecules is key to unlocking the pathways of disease and biology.

Knowing the precise three dimensional structure of RNA is one of the foremost
goals of molecular biology, for it is this structure that determines the molecule's function
[1]. Nuclear Magnetic Resonance and X-ray crystallography are some of the available
experimental methods generally used for this purpose. But these are very costly, time
consuming and not always feasible methods. As a result, it is easy to determine the
sequence of RNA compared to the three dimensional structure. The gap between the
number of proteins whose sequence is known (in thousands) compared to whose
complete three dimensional structure is known (in hundreds) is widening on an yearly
basis. This has lead to intense research into structure predicting methods using
computational algorithms.

 The building blocks of DNA and RNA are nucleotides. Three components are
present in RNA nucleotides: the nitrogenous base, the sugar and the phosphate group.
The RNA backbone is made of ribose five atom carbon-sugar counted from 1' through 5'
and it is attached by two phosphate groups in 3' and 5', respectively [2]. The nitrogen
base in RNA are made of four different bases, Adenine(A), Guanine(G), Cytosine(C), and
Uracil(U). Uracil is replaced by Thymine(T) in DNA. The phosphate groups in the
backbone of RNA have a negative charge which makes RNA a charged molecule [3].
Due to this, the RNA molecule in a cell is not inherently stable and to gain stability, it
folds on itself. A nucleotide in one part of RNA can make base-pair with a
complementary nucleotide in another part of RNA. Furthermore a nucleotide sequence
uniquely determines the folding pattern and hence we can attempt to predict its structure.
Listing out all the base pairs given a nucleotide sequence is considered as secondary
structure prediction. The secondary structure of RNA is the scaffolding of its tertiary
structure. It is well known that RNA folding is hierarchical: "the primary sequence
determines the secondary structure and the secondary structure in turn determines the
tertiary folding."[4]

1

 The nucleotides form Watson-Crick base pairs namely, AU, GC, and their mirrors.
Also GU base pair is found in many RNAs. This base pair is called as wobble pair. With
these combinations of bases, RNA structure forms two large groups: Stem-loops and
Pseudoknots.

There are multiple motifs possible in RNA secondary structure. These are,

• Single strand

• Double strand / Stem

• Single-nucleotide bulge

• Three-nucleotide bulge

• Hairpin loop

• Internal loop

Figure 1 Representation of different elements of RNA secondary structures [5]

2

Figure 2 Representation of different tertiary structures [5]

When the secondary structures represented in Figure 1 form base pairs between them,
tertiary structures are formed. Tertiary structures are very difficult to predict. Figure 2
shows the different tertiary structures.

1.1 Project Scope

 In this project, we plan to implement the simulated annealing algorithm to predict the
secondary structure. In Chapter 2, we describe the methods used for secondary structure
prediction along with simulated annealing algorithm. Simulated annealing has been used
extensively to solve optimization problems in various disciplines. We will use efn2 model
as measure of acceptance criteria for new structures predicted from mutation operation.
In Chapter 3, we describe the computing environment we have setup for performing the
experiments. The GNU scientific library will be used to provide the framework for
simulated annealing whereas RNAStructure library will be used to compute the efn2
energy of a secondary structure. Chapter 4 explains the mapping of the secondary
structure problem into simulated annealing algorithm. We will be predicting secondary
structure for a set of sequences drawn from NCBI. The results will then be compared
with corresponding results from Mfold using a defined comparative measure. These
would be listed in Chapter 5. We will also describe in chapter 5 the effect of different
perturbation functions on the quality of the secondary structure. We also plan to study
different cooling schedules and its influence on the convergence rate of the algorithm.

3

2 LITERATURE REVIEW

2.1 Dynamic Programming

Pioneering work in RNA secondary structure prediction was done by Nussinov,R.
and Jacobson, A. Their dynamic programming algorithm finds an optimal structure
possible for a given sequence. The basic algorithm tries to find maximum base pairs in a
given nucleotide sequence. Later they incorporated rules for calculating loop stability
based on free energy into the algorithm [6]. The algorithm for maximal matching is based
on a rule that the stability of G-C pairs is equal to that of A-U pairs. The stabilizing
energy of stacking base pairs and destabilizing energy of single stranded loops is ignored
in this algorithm. The dynamic programming technique builds an optimal solution to the
problem by solving sub-problems. This approach applied to find structure, tries to find
sub-structure for different length of given sequence. The algorithm uses following
recurrence equation,

S (i+1, j-1) + w(i, j)
 S(i, j) = max S (i+1, j)
 S (i, j-1)

max i<k<j S(I, k) + S (k+1, j) (2.1.1)

w(i,j) is 1 if i and j form complementary base pair. It is assigned to 0 otherwise.
The 3 steps in this algorithm are initialization, recursion, and traceback. The sequence is
compared against itself and dynamic programming matrix is created. Figure 3 shows the
initialization step of Nussinov algorithm [7].

S(i,i) = 0 ∀i, 1≤ i ≤ L the main diagonal
S(i, i-1) = 0 ∀i, 2 ≤ i ≤ L the diagonal below

Figure 3 Initialization of dynamic programming matrix [7]

4

In the next step, this matrix is filled up using the recursion relation stated in (1).
Figure 4 is the matrix build with the recurrence.

Figure 4 Second step of dynamic programming algorithm [7]

After the matrix is complete, the last step is to traceback the matrix to get optimal
structure. Depending on the sequence the dynamic programming approach can also yield
different optimal structures. Figure 5 is the traceback of the matrix and resulting optimal
structure of the sequence.

 Figure 5 Traceback of the dynamic programming matrix and optimal structure[7]

5

2.2 Minimum Free Energy (MFE)

The basic dynamic programming algorithm was then modified to calculate
minimum free energy of the structure. Gibbs energy (also referred to as ∆G) is the
chemical potential that is minimized when a system reaches equilibrium at constant
pressure and temperature [8]. It is calculated by the following formula,

∆G = ∆H - T∆S (2.2.1)

where ∆H = enthalpy
 ∆S = entropy
 T = temperature in unit Kelvin

The different interactions (hydrogen bonds, van der Waals, and electrostatic)
between the molecules, define the enthalpy i.e ∆H of the system. Or in simple words, it is
the energy contained within the system. ∆S or entropy is the change in energy of the
system. When ∆G is 0 the system is said to be in an equilibrium state. If ∆G is greater
than 0, the system is in unfavorable process and if it is less than 0, system is in favorable
process [9].
 The minimum energy for structure is calculated by adding the experimentally pre-
determined values for each base pair found in the dynamic programming matrix. The free
energy of each motif depends only on the sequence of that motif and the most adjacent
base pairs. The total free energy is the sum of the increments. This algorithm is
implemented in the benchmark tool for RNA secondary structure prediction tool, MFold.
This approach is called as Minimum Free Energy (MFE) and was developed by M. Zuker
[10].

There are certain limitations to MFE method. In this method the energies of bulge
loops and single non-canonical pairs are not taken into account. RNA folding process
does not always occur at equilibrium. Kinetics of the process is also important. Because
of this, the structure obtained by MFE might not be the same as the native fold. Other
drawback of Mfold is lack of predicting pseudoknots in a structure.

2.3 Evolutionary Algorithm (EA)

 This type of algorithm is developed around an evolutionary model that mimics
the process of natural evolution. It gives a number of probable solutions at each
generation. When applied to RNA structure prediction, EA will give a set of low energy
structures at each generation. The initial population of solutions is generated randomly
before the algorithm commences. The next population of solutions is formed by
evaluating the solutions in previous generation with some criteria and discarding the
solutions which do not satisfy.

6

Wiese and Glen designed a serial EA, RnaPredict [11], which encodes RNA secondary
structures as permutations. The quality of the predictions by RnaPredict was compared
with the predictions of Nussinov dynamic algorithm. Initial step in RnaPredict is to
generate a set of valid helices. A valid helix has a minimum of three adjacent canonical
base pairs and a minimum hairpin of size three. To generate helices, first set of all base
pairs in a given sequence is found. The algorithm then iterates over this set of base pairs
and builds a helix by stacking valid base pairs. If the resulting helix meets or exceeds the
above requirement it is added to the set H of possible helices. Once the set of possible
helices is formed the structure prediction problem becomes combinatorial optimization
problem[11]. To ensure chemically feasible structure, no predicted structure may contain
helices that share bases. Depending on how the helices conflict, both permutations could
result in vastly different structures. Helix conflicts are eliminated by decoding the
permutation from left to right. The helix specified at each point in the permutation is
checked for conflicts with helices to its left.If no conflicts are found the helix is retained;
otherwise it is discarded[11]. For example, assuming set H contains five helices
(0,1,2,3,4) and (4,0,1,3,2) are two possible structures. Then for the second set, we start
with helix 4. Then if helix 0 does not share any bases with helix 4 it is considered part of
the final structure. We continue this process until the end of the set. RnaPredict attempts
to optimize the structures such that they are both chemically feasible and have free
energy close to ∆G. Since it yields, a population of candidate solutions it is possible to
investigate not only the minimum free energy structure but also other low energy
structures that may be close to native fold[11]. Each generation of EA has three key steps.

2.3.1 Crossover

In this step, offspring solutions are formed by combining the two parent solutions.
All solutions have parts that are favorable and unfavorable. Crossover operator is chosen
such that all favorable parts go into one solution and unfavorable into the other. There are
three different types of crossover operators.

• Order Crossover

Several helix positions are chosen randomly and the order in which these helices
appear in one parent is imposed on the other parent[11].

• Partially Mapped Crossover

Two crossover points are chosen randomly and a series of successive swapping is
done between the two parents[11].

7

• Cycle Crossover

In this type of crossover, any one parent and a random position in this permutation
is chosen. The offspring solution then inherits the helix in that position from selected
parent. This cycle of length 1 ≤ k ≤ l continues until the length of the permutation.
(xk = xl) All remaining helices are inherited from second parent[11].

2.3.2 Mutation

Random changes in the population are introduced via mutations. This step is used
to avoid premature genetic convergence in the population. It also maintains genetic
diversity in the solution.

2.3.3 Selection

This is a step where new solutions are chosen from old solutions. The choice is
made by scoring each solution against a fitness function. It is a task of an EA to select
good solutions and reject others based on their scores. Selection can act on parents, the
old population, and the new population. It can be local (within a subpopulation) or global
(within entire population)

These steps are repeated for a predetermined number of generations, a
predetermined amount of time or until the population converges[11].

2.4 Simulated Annealing

Physical annealing is the process of heating the metal to a temperature above it's
crystallization point and then gradually reducing the temperature to make the metal hard.
In an annealing process, a metal, initially at high temperature and disordered, is slowly
cooled so that the system at any time is approximately in thermodynamic equilibrium. As
cooling proceeds, the system becomes more ordered and approaches a "frozen" ground
state at T=0. Hence the process can be thought of as an adiabatic approach to the lowest
energy state. If the initial temperature of the system is too low or cooling is done
insufficiently slowly the system may become quenched forming defects or freezing out in
metastable states (that is trapped in a local minimum energy state) [32].
 The traveling salesman problem can be used as an example application of
simulated annealing. In this problem, a salesman must visit some large number of cities
while minimizing the total mileage traveled. If the salesman starts with a random
itinerary, he can then pairwise trade the order of visits to cities, hoping to reduce the
mileage with each exchange. The difficulty with this approach is that while it rapidly
finds a local minimum, it cannot get from there to the global minimum.

8

 Simulated annealing tries to improve this strategy through the introduction of two
approaches. The first approach is the Metropolis scheme. The original Metropolis scheme
was that an initial state of a thermodynamic system was chosen at energy E and
temperature T, holding T constant the initial configuration is perturbed and the change in
energy dE is computed. If the change in energy is negative the new configuration is
accepted. If the change in energy is positive it is accepted with a probability given by the
Boltzmann factor exp -(dE/T). This process is then repeated sufficient times to give good
sampling statistics for the current temperature, and then the temperature is decremented
and the entire process repeated until a frozen state is achieved at T=0. This allows the
solver to explore more of the possible space of solutions. If T is large, many "bad"
configurations are accepted, and a large part of solution space is thus accessed [12].

 The second approach is, again by analogy with annealing of a metal, to lower the
temperature. After making many choices for possible configuration and observing that the
cost function declines only slowly, one lowers the temperature, and thus limits the size of
invalid choices of configuration. After lowering the temperature several times to a low
value, one may then quench the process by accepting only "good" configurations in order
to find the local minimum of the cost function. There are various annealing schedules for
lowering the temperature, but the results are generally not very sensitive to the details.

 There is another faster strategy called threshold acceptance [13]. In this strategy, all
good configurations are accepted, as are any bad configurations that raise the cost
function by less than a fixed threshold. The threshold is then periodically lowered, just as
the temperature is lowered in annealing. This eliminates exponentiation and random
number generation in the Boltzmann criterion. As a result, this approach can be faster in
computer simulations.

Formally, there are four main parts of Simulated Annealing.
1. Initial State:

In this phase, problem and it's parameters are represented.
2. Mutation Function:

This phase, creates random changes in the state of problem.
3. Cost Function:

Cost function is used to determine how good the current solution is.
4. Decision Mechanism:

It is used to decide either to accept or reject the solution.

These parts can be understood by analyzing the basic structure of iteration
optimization algorithm described below. Initial design is formed using problem's
parameters and it is evaluated with cost function. Random changes are then introduced to
the design using mutation function and this new design is again evaluated.

9

If the cost of this new design is better (minimum or maximum) then this new design is
accepted as a solution and next solution is formed using this solution [14].

Design = InitialDesign;
Cost = Evaluate(Design);
while not done do

NewDesign = Mutate(Design);
NewCost = Evaluate(NewDesign);
DeltaCost = NewCost - Cost;
if appropriate then

Cost = NewCost;
Design = NewDesign;

end if
end while

The decision mechanism is a probabilistic function. The probability of accepting

the new solution is specified by an acceptance probability function [15].

H. Tsang applied Simulated Annealing for RNA secondary structure prediction in
SARNA-Predict [16]. The main difference between the algorithm described above and
SARNA-Predict is in it's decision mechanism. For structure prediction the criteria for
accepting or rejecting a solution is based on it's energy. To avoid the problem getting
stuck in local minima at the beginning the solutions with higher energy are accepted with
some probability. The problem is encoded as an integer permutation of helices similar to
the Evolutionary Algorithm discussed in above section. The constraints under which a
helix is formed are,

1. A stem (stacked pairs) is formed only when three or more adjacent pairs form.
2. At least three nucleotides are required to form the loop connecting to the stem.
3. There should not be any conflicting base pairs in the helices, i.e one helix should

not share base pairs with others.

 Using permutation-based SA, we can view the problem of predicting the
secondary structure of RNA as one of picking the subset S of helices from the set of all
possible helices H, such that the free energy E(S) is minimized and that no helices in S
share one or more bases [17]. If the set of all helices, H, contains n helices, then use a
permutation of length n to represent a candidate solution. The order in which a helix
appears in the permutation is the order in which it is picked by the decoder to be inserted
into the final structure. Helices that are incompatible with any previously selected helices
are rejected.

10

Structure = InitialStructure;
FreeEnergy = Evaluate(Structure) ;
Temperature = InitialTemperature;
while (Temperature > FinalTemperature) do

for (i = 1 to NumberOfIterations) do
NewStructure = Mutate(Structure);
NewFreeEnergy = Evaluate(NewStructure);
∆Energy = NewFreeEnergy - FreeEnergy

 if (∆Energy ≤ 0) OR (with Probability[Accept]= e^-∆Energy/Temperature)then
 FreeEnergy = NewFreeEnergy;
 Structure = NewStructure;
end if

end for
decrease Temperature

end while

2.4.1 Cost Function

In SARNA-Predict, the energy of structure is calculated using three different
thermodynamic models namely, Individual Nearest Neighbor with Hydrogen Bonds
(INN-HB), efn2, and HotKnots[16]. The difference between these models is in how they
assign energies to different structure elements. INN-HB model doesn't consider the
structure elements such as bulge loop. efn2 and HotKnots are improved to take into
account the different structural elements. HotKnots model is used in the SARNA-Predict-
pk algorithm which can predict the structures with pseudoknots [18].

2.4.2 Perturbation Function

A novel combination of permutation based encoding and swap mutation is
implemented in SARNA-Predict as a mutation function. Swap mutation as the name
suggests chooses two random points in the permutation and swaps the two helices.For a
permutation vector, p = (HI,...Hi,...Hj,...Hn) , where n is the number of potential helices.
A swap mutation is defined as,
 Pold = { H1,Hi,......Hj,.....Hn) --> Pnew = {H1,........Hj,.......Hi,.......Hn) (2.4.2.1)
where i and j subset [1,n] are randomly chosen positions [17].In the classical SA sense,
each perturbation step will only swap by one swap mutation step. The difference between
the new conformation and the old conformation is one step. Another mutation operator
used is percentage swap mutation operator. The number of swap mutations is found by
taking the product of percentage of total number of helices and the current annealing
temperature.

11

2.4.3 Cooling Schedule

Annealing schedule makes use of temperature as the main controlling parameter.
The algorithm starts with very high temperature. At this stage, some solutions with high
energy are accepted with some probability. After the temperature reaches 0, this
probability should tend to 0 and thus accepting only the solutions with low energy. The
algorithm thus becomes greedy once temperature reaches 0. In this way the algorithm can
produce a global optimum solution. There are different types of annealing schedules.
Geometric schedule and Adaptive schedule are implemented in SARNA-Predict[16]. In
general, the choice of suitable cooling schedule have a profound effect on the
performance of the algorithm and it is highly problem dependent.

SARNA-Predict has implemented two methods to decrement the value of the
temperature parameters: geometric and adaptive rate schedulers. Geometric scheduler is
defined as Tnew = αTold, here α is the cooling ratio (set to 0.95) According to previous
research [19] , α should be set to between 0.8 and 0.99. Tnew and Told are the new and old
temperature values respectively. In the adaptive scheduler, the length of a subchain with
constant temperature is set to the number of the local neighborhood. The number of
iterations per temperature is reduced according to following equation [20].

-1
Tn = Tn-1 1 + ln(1+δ) Tn-1 (2.4.3.1)

 3σ(Tn-1)

where σ(Tn-1) is the standard deviation of the values of the cost function at the current
temperature and δ is the distance parameter. The size of δ determines the speed of the
reduction of the temperature and Aarts et. al suggest the value δ = 0.1.[20]

 The main advantages of SA over other local search optimization algorithms are
its flexibility and ability to approach global optimality. The algorithm is quite versatile
since it does not rely on any restrictive properties of the model. Although SA is a
powerful tool for finding the approximate solution to combinatorial optimization
problems, SA is slow to converge when compared to other deterministic algorithms, due
to the slow cooling schedule required [20]. As a result, the computationally intensive
nature of this algorithm has been its major drawback [21].

12

However, since this technique has proven to be so useful, and increases in
computational power are inevitable, it will only be a matter of time before a functionally
superior design for this technique is found. In fact, there is research being done on
implementing SA to run on parallel architecture. These parallel versions of the algorithm
definitely reduce the time spent in evaluating the solution [22].

 Other major weaknesses of SA include the tailoring work required to account for
different classes of constraints and the need to fine-tune the parameters of the algorithm,
which can be rather delicate [23]. Also, the precision of the numbers used in the
implementation of SA can have a significant effect upon the quality of the outcome.
Finally, there is a clear trade-off between the quality of the solutions and the time
required to compute them.

 In the next chapter, we describe the computing environment set up to implement
the simulated annealing algorithm described in section 2.4 and compute the results.

13

3 COMPUTING ENVIRONMENT

3.1 Hardware Environment

Simulated Annealing is computationally intensive. The original algorithm
developed by H. Tsang was evaluated on 128- node beowulf cluster [16], each node with
Pentium 4 running at 3GHz. These nodes were connected with a Gigabit Ethernet
Network.
The hardware environment we set up for the evaluation is a single desktop system with
following configuration.

Operating System Ubuntu 10.04

Processor AMD Athlon Quad-Core

Speed 3.0 GHz

RAM 8.0 GB

Table 1 Hardware Environment Setup

3.2 Software Environment

The algorithm was implemented using C++. The GNU Scientific Library (GSL) is
a collection of routines for numerical computing. It is free software under the GNU
General Public License[24]. The library implements C routines for simulated annealing.
Additionally we used 'Boost', which is a set of free peer-reviewed portable C++ source
libraries. [25]. Ten Boost libraries are already included in the C++ Standards Committee's
Library Technical Report (TR1) and will be in the new C++0x Standard now being
finalized.

RNAStructure [26] is another package we used to implement wrapper functions
and utilities. It is a package for RNA and DNA secondary structure prediction and
analysis developed at University of Rochester Medical Center. It provides multiple
algorithmic implementations for secondary structure prediction. It can also predict
secondary structures common to two, unaligned sequences, which is much more accurate
than single sequence secondary structure prediction. To build the software, we used
Scons, which is an Open Source software construction tool implemented in Python
designed to replace the classic Make utility. SCons is an easier, more reliable and faster
way to build software. The implementation is developed under Ubuntu 10.04 operating
system.

In the next chapter we describe the process of mapping the structure prediction
problem into simulated annealing framework.

14

http://www.open-std.org/jtc1/sc22/wg21/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1745.pdf

4 MAPPING STRUCTURE PREDICTION INTO SA

Here we describe the design details of mapping the secondary structure prediction into
simulated annealing framework. Formally, the problem can be broken into 4 different
steps.

4.1 State Representation

First task in applying the simulated annealing method to problem is representing the
problem's parameters. The algorithm implemented in this project uses the permutation of
integers (helices) to represent the secondary structure of RNA. In case of Traveling
Salesman Problem the solution can be represented as a permutation of integers where
each integer corresponds to a particular city. So, for example one of the solutions is
(1,3,2,6,4,5) represents a tour which starts at city number 1, following 3 and so on.

The secondary structure predicted by this algorithm is a permutation of integers.
Candidate helices are encoded as integers. There are three constraints on formation of
helix from all possible base pairs[17],

• A stack is formed only when three or more adjacent base pairs are formed.
• The loop connecting the stacked pair must be at least three nucleotides long.
• The helices should not conflict with each other i.e. they should not share bases

with each other.

The helix generation algorithm was first specified by Wiese K.C. and Hendriks. A during
the development of an evolutionary algorithm for RNA secondary structure prediction.
The details of this algorithm are stated in [27]. The algorithm tries to build a set H of all
helices which could form in a given sequence. This set H should agree to the constraints
listed above. The algorithm for generating potential helices starts with generating all
possible base pairs in a given sequence. Next, a stack of base pairs is formed by iterating
through the set of base pairs and adding base pairs on existing base pairs. This step is
repeated until first non-canonical base pair is encountered. The constraint to validate a
loop is checked at this point. A potential helix is shown in Figure 6 and the helix
generation algorithm is described below it.

15

Figure 6 A potential helix generated by the helix generation algorithm[28]

Generate set of possible base pairs from (ri,rj) from given sequence;
 Initialize helix h;
 for each pair (ri,rj) do

while (helix h is valid) and (helix h is incomplete) do
 if((ri,rj) is canonical base pair and (ri,rj) is not part of an existing helix then

add base pair (ri,rj) to helix h;
increment index i;
increment index j;

 else
if (helix h contains less than 3 base pairs) then
 helix h is invalid;
else if (helix h has less than 3 bases between the last base pair) then
 helix h is invalid;
else
 helix h is complete;
end if;

 end if;
 end while;
 if (helix h is valid) then

 insert helix h into set of all helices H;
 end if;
 end for;

Helix generation algorithm [14]

 16

With the help of permutational encoding of helices, the problem of RNA secondary
structure prediction can be viewed as one of picking the subset S of helices from the set
of all possible helices H, such that the free energy E(S) is minimized and that no helices
in S share bases with each other.

The table below describes the total number of helices found in each sequence.

Organism RNA
Class

Number
of
Nucleotid
es

Base pairs in
known structure

Number of
Helices

B. subtilis 5s rRNA 118 70 188

S. cerevisiae (X67579) 5s rRNA 118 37 213

H. marismortui (AF034620) 5s rRNA 122 38 211

A. proteobacterium
(L13132)

16s rRNA 250 85 891

R. sp. (UNP00394) 16s rRNA 261 155 1343

M anisopliae (3)
(AF197120)

Group I
Intron

375 120 2004

S. sp. (AF007254) 16s rRNA 400 199 2438

N. subterraneum(U20773) I intron 573 311 4327
 Table 2 Test Sequences, number of helices found in each sequence.

4.2 Perturbation/Mutation Function

The purpose of mutation function is to alter the structures in a controlled and intuitive
fashion [14]. Different types of mutations are,

4.2.1 Swap Mutation

In this type of mutation, two random points in a permutation are chosen and the
two digits at these positions are interchanged. For example, if we have a permutation of
helices such as, p1 = (3,4,2,1,5) and the random points chosen are 1 and 3 then it gives a
new permutation as p2 = (3,1,2,4,5)

4.2.2 Percentage mutation operator

In this case the number of mutations is calculated as the product of the percentage
of total number of available helices and the current annealing temperature. This operator

17

is more efficient as it guarantees a different structure after the mutations. Single swap
operator may not be effective as the resulting structure again goes through the validation
of helices phase.

4.3 Evaluation Function

Gibbs free energy is a measure of energy available in a system to do work. It can
be expressed by following equation,

∆G = ∆H - T∆S (4.3.1)
where ∆G is the change in free energy, ∆H is the change in enthalpy, a measure of the
heat content of a chemical system, T is temperature in degree Kelvin, and ∆H is the
change in entropy, a measure of the disorder in a chemical system[29].

The quality of a structure is determined in terms of free energy. There are several
thermodynamic models available to determine the free energy. Individual Nearest
Neighbor (INN), Individual Nearest Neighbor with Hydrogen Bonds (INN-HB), efn2,
and HotKnots are the thermodynamic models widely used in Bioinformatics applications.
For the purpose of this project, we have used efn2 energy model. The basic assumption in
this model is that energy contributions by neighboring base pairs are independent and
additive [14]. This model has been developed at University of Rochester and the energy
parameters are calculated by performing large number of experiments. This model takes
into account the INN-HB parameters as well as tandem GU pairs. Tandem GU pairs are
two pairs of GU that are located side by side of each other. Also appropriate bonuses or
penalties are given to terminal mismatches or dangling ends .

The efn2 model uses a more precise free energy computation that takes into
account coaxial stacking and Jacobson-Stockmeyer theory[14] for multi-branched loops.
Coaxial stacking is a result of a bend in the axis of helix, because of which helices are
stacked on each other[16] . It is found to be associated with large favorable free energy
change. The study by Jacobson and Stockmeyer showed that the free energy's dependence
on the size of the loop should be logarithmic. The equation used for approximating the
multi-branch loop free energy depends on the number of unpaired nucleotides. For less
than seven unpaired nucleotides, the equation is,

 ∆GL = a + bn + ch + ∆Gstack (4.3.2)
where a,b,c are empirically derived parameters (a =offset, b = base penalty, and c = helix
penalty), n is the number of unpaired nucleotides, h is the number of helices in the multi-
branch loop. ∆Gstack calculates the free energy of stacking interactions [14].
When the number of unpaired nucleotides is more than seven, efn2 uses more realistic
parameters for the equation above and recalculates the energy. The new equation in this
case is,

∆GL =a +6b + 1.75 * RT * ln(ls (L) /6) + c * ld (L) + ∆Gstack (4.3.3)

18

This is still an active area of research with new and modified parameters being
published. The accuracy of secondary structure prediction is supposed to improve as the
accuracy of energy parameters improves[14].

4.4 Decision Mechanism

The decision mechanism of simulated annealing algorithm plays an important role as it
makes sure that system doesn't get stuck into local minimum. This is achieved by
accepting solutions even with higher energy change with some probability. This
probability is referred as Acceptance probability. This probability is calculated as a
function of energy and temperature. If the change in energy is less than or equal to zero,
the solution is accepted. Also the solution for which change in energy is greater than 0
will be accepted with some probability. The acceptance probability in this
implementation is calculated by following equation[14],
 Probability[Accept] = e - (Enew - Eold)/ T = e - ∆Energy / T (4.4.1)
This equation models the probability as Boltzmann distribution. The idea behind
Boltzmann distribution is that every specific state of system at equilibrium has equal
probability. This function will accept low energies most of the times, and sometimes high
energies. When temperature is reduced slowly enough, theoretically simulated annealing
will give best solution. The tradeoff here is the number of iterations it will take and
computational time. In general the convergence of simulated annealing can be
represented as in the following figure,

Figure 7 Convergence of simulated annealing algorithm [30].

19

In the current chapter, we described the main steps in mapping the structure
prediction problem into simulated annealing framework. We also described the energy
function and the decision mechanism in detail. In the next chapter, we discuss the
experiments and results obtained with our implementation of the simulated annealing
algorithm.

20

5 EXPERIMENTS AND RESULTS
In this chapter, we describe the RNA sequences used. We also list out the

experiments we performed as well as comparison with other algorithms.

Sequences : We chose a set of 8 sequences with known secondary structure from
the Comparative RNA Website[31]. SARNA-Predict has used sequences with maximum
lengths up to 1494. But because of lack of computational resources, we kept the
maximum length of the sequence to around 500. We have used 5 of the same sequences
used in [14] to verify the correct functioning of the algorithm. Although for most of the
sequences the data base has been updated with latest results available from the
Comparative RNA Website. This set of sequences represent a good cross-section of
organisms and the types of RNA.

Organism RNA
Class

Number of Nucleotides Base pairs in known
structure

B. subtilis (D11460) 5s rRNA 118 70

S. cerevisiae (X67579) 5s rRNA 118 37

H. marismortui (AF034620) 5s rRNA 122 38

A. proteobacterium
(L13132)

16s rRNA 250 85

R. sp. (UNP00394) 16s rRNA 261 155

M anisopliae (3)
(AF197120)

Group I
Intron

375 120

S. sp. (AF007254) 16s rRNA 400 199

N. subterraneum(U20773) Group I
intron

573 311

 Table 3 Test sequences, number of base pairs in known structures

The performance of the simulated annealing is compared with other state of the
art secondary structure folding algorithms. We have used Mfold to do a relative
comparison. Mfold is chosen as a representative from the dynamic programming
language.The metrics used for evaluation is described below. We also report the results of
experiments with various annealing schedules and different sets of permutation
parameters.

21

5.1 Energy flow of Simulated annealing

Figure 8 shows the energy minimization path for a typical run of H. marismortui
(AF034620) sequence. This sequence has 122 nucleotide bases. The total number of
helices found for this particular RNA sequence is 211. As we can see from the plot in
figure 8, during the initial phase of the algorithm, energy accepted is fluctuating heavily.
This is because the algorithm allows to take steps which don't necessarily decrease the
energy. As the number of iterations increase, the probability that the a bad step is
accepted decreases and after 1500 iterations the algorithm reaches a stable state.

Figure 9 shows the flow of temperature as the number of iterations increases.
The damping factor for the geometric cooling schedule is set at 0.99. The temperature
approaches the final value in about 600000 iterations.

Figure 8 Graph showing the energy convergence behavior for
 H. marismortui (AF034620)

22

Figure 9 Graph for temperature variation

23

5.2 Free Energy convergence variation with mutation parameter

The mutation step in the simulated algorithm implements a change in the
problem structure in a gradual fashion. This allows a type of control on the direction of
the step. By swapping only one element of the helix set, the classical algorithm would
allow only minor modification to the final permutation encoding. Most of the time this
one step gets lost when the permutation is decoded. This happens when we swap
elements in the middle of the set and they are discarded because they conflict with the
helices in the beginning of the set. The result is an increase in the number iterations that
are needed to converge to a lower free energy of the secondary structure. The increase is
more prominent with larger sequences as they produce a very large number helices.

An alternative is to use the modified permutation function developed in [12]. Here
a large number of swaps are allowed initially (when the temperature is high) . These
large number of swaps enable the algorithm to explore significantly greater area in the
problem space. As a result, the algorithm converges to minimum free energy much faster
than the classical simulated annealing perturbation function.

Figure 10 shows the secondary structure detected using the classical approach.
After 300,000 iterations the free energy achieved is -35.1Kcal/mol. The number of
correctly identified base pairs is 68%. Figure 11 shows the secondary structure achieved
with modified perturbation function. The swap parameter is set to 0.1. This results into
600 swaps for initial temperature of 6000. In same number of iterations, this run
converges to -48.6 Kcal/mol. We observe the same pattern with greater intensity as the
number of bases in a sequence increases, i.e. the bigger the sequence, the perturbation
function is more effective.
 Following table shows the experimental results on two of the sequences with
varying lengths.

Number of Swaps
(Initial – Final)

Correct Base Pairs Minimum Free
Energy

Haloarcula
marismortui
(AF034620)

1200 – 1
 600 – 1
 300 – 1

74.23%
70.31%
53.67%

-49.3Kcal/mol
-48.6Kcal/mol
-44.1Kcal/mol

Acanthamoeba
grifini
(U02540)

1200 – 1
 600 – 1
 300 – 1

59.40%
58.3%
54.23%

-151.2Kcal/mol
-147.5Kcal/mol
-141.1Kcal/mol

Table 4 Results of varying mutation parameter and minimum free energy

24

Figure 10 Secondary structure predicted using classical mutation approach for
sequence H. marismortui (AF034620)

This structure is produced using the draw method from RNAStructure package described
in section 3.

25

Figure 11 Secondary structure predicted using the modified mutation approach for
sequence H. marismortui (AF034620). Image produced using draw method from

RNAStructure package.

26

5.3 Results of Simulated Annealing for typical sequences

In this section we describe the results obtained for A. proteobacterium (L13132),
S. sp.(AF007254) and M. anisopliae var.(AF197120).

5.3.1 Alpha Proteobacterium 16s RNA (250 bases)

Table 5 shows the results obtained for A. Proteobacterium. The results were obtained
with using two different sets of temperature decay factors and combinations of varying
amounts of swaps. The best results were obtained with decay factor of 0.95 and 1200
initial swaps in the perturbation step. 65.40% of base pairs were identified correctly.
Note. even though there are structures which have lower minimum free energy, they don't
have better performance in terms of correctly identified base pairs. The results became
better with increasing number of swaps. This could be attributed to the fact that Alpha
Proteobacterium is a relatively small sequence. Thus a large number of swaps allow a
greater proportion of helix structures to formed and explored.

Figure 12 shows the structure obtained with 65.4% correct base pairs whereas the
Figure 13 shows the energy convergence flow over this particular run. This particular
energy plot exemplifies the principle of simulated annealing. It shows that during initial
phase of the algorithm a conformation of helix stacks is formed whose free energy is
couple of order of magnitude more than the best achievable energy. But the algorithm
picks this as the possible structure and thus jumps away from the local minima. The
algorithm then stabilizes around -73.2 Kcal/mol.

Temperature Decay
Factor

Number of Swaps
(Initial – Final)

Correct Base Pairs Minimum Free
Energy

0.93 1200 – 1
 600 – 1
 300 – 1

65.12%
62.64%
61.67%

-74.3Kcal/mol
-76.6Kcal/mol
-70.1Kcal/mol

0.95 1200 – 1
 600 – 1
 300 – 1

65.40%
63.3%
61.23%

-73.2Kcal/mol
-75.5Kcal/mol
-71.6Kcal/mol

Table 5 Results of variation of temperature decay factor and minimum free energy

27

Figure 12 Secondary Structure of A.proteobacterium 16s RNA produced using
draw method provided by RNAStructure package

 28

 Figure 13 Energy plot for A.proteobacterium. The algorithm allows a

 structure with very large free energy (1341Kcal/mol) and thus does not get

 stuck in local minima. Algorithm then converges to -73.2Kcal/mol.

29

5.3.2 Sulfitobacter sp. 16S RNA (AF007254) with 400 nucleotide bases

Table 6 shows the results obtained after running 40 random seeds for each of the
combination of temperature decay and initial number of swaps. Compared to A.
proteobacterium whose results are described previously, this particular sequence is larger
and results into 2438 different helices. This warranted a jump in the number of swaps as
possible number of configurations became exorbitantly large. The runs show that we
large initial swaps, the algorithm is allowed to explore a rather large problem space. The
algorithm showed best results at -131.23 Kcal/mol with 57.34% correct base pairs.
matches. Figure 14 shows the secondary structure obtained for this particular RNA
sequence.
Temperature Decay
Factor

Number of Swaps
(Initial – Final)

Correct Base Pairs Minimum Free
Energy

0.93 2400 – 1
1200 – 1
 600 – 1

57.12%
54.64%
51.67%

-131.3Kcal/mol
-124.5Kcal/mol
-121.7Kcal/mol

0.95 2400 – 1
1200 – 1
 600 – 1

55.82%
54.21%
50.23%

-130.4Kcal/mol
-129.1Kcal/mol
-122.6Kcal/mol

0.97 2400 – 1
1200 – 1
 600 – 1

57.40%
55.23%
51.38%

-131.3Kcal/mol
-128.5Kcal/mol
-123.6Kcal/mol

Table 6 Variation of temperature, mutation for S. sp. 16S RNA (AF007254)

5.3.3 Bacillus subtilis (D11460) with 118 nucleotide bases

Table 7 shows the results with 40 random seeds for the B. subtilis sequence. This
is a relatively small sequence and the algorithm found 83.12% of the correct base pairs.
There is no significant variation in correct base pairs detected when the swap number for
the permutation step is changed. The restriction of defining a helix with at least 3 pairs of
nucleotides stops the algorithm from correctly predicting intermediate base pairs. The
minimum free energy achieved in this case is -37.2 Kcal/mol. Figure 15 shows the
secondary structure obtained for B. subtilis sequence.

Temperature Decay
Factor

Number of Swaps
(Initial – Final)

Correct Base Pairs Minimum Free
Energy

0.95 600 – 1
300 – 1
150 – 1

83.12%
82.64%
84.67%

-37.2Kcal/mol
-36.5Kcal/mol
-37.8Kcal/mol

Table 7 Variation of temperature, mutation for B.subtilis (D11460)
30

Figure 14 Secondary structure of S. sp. 16S RNA (AF007254) produced using
draw method provided by RNAStructure package.

31

Figure 15 Secondary structure of B. subtilis (D11460) produced using draw
method provided by RNAStructure package.

32

5.3.4 Secondary structure for S. cerevisiae (X67579)

Figure 16 Secondary structure for S.cerevisiae produced using draw method provided by
RNAStructure package

33

5.4 Comparison with Mfold

Michael Zuker developed Mfold algorithm to predict the secondary structure. This
is a dynamic programming algorithm which also produces sub-optimal structures as
result. A web implementation has been made available at http://mfold.rna.albany.edu.
The version of Mfold that was used is 3.2. To compare the results with simulated
annealing, we chose the structure which gave the lowest free energy. The tests were run at
37 degree Celsius setting with other attributes in the form set to default.

We found comparable and in some cases better results than Mfold. Table 8
describes the comparison.

Organism RNA
Class

Number
of
Nucleoti
des

Base
pairs in
known
structure

Simulated
Annealing
(%BP)

Mfold
(% BP)

B. subtilis 5s rRNA 118 70 83.17 84.00%

S. cerevisiae
(X67579)

5s rRNA 118 37 89 89

H. marismortui
(AF034620)

5s rRNA 122 38 74.23 71.45

A. proteobacterium
(L13132)

16s
rRNA

250 85 81.2 79.3

R. sp. (UNP00394) 16s
rRNA

261 155 65.23 62.34

M. anisopliae var.
(3) (AF197120)

Group I
Intron
23S
rRNA

375 120 77.89 76.66

S. sp. (AF007254) 16s
rRNA

400 199 54.77 59.63

N. subterraneum
(U20773)

I intron 573 311 52.54 53.12

Table 8 Comparison with Mfold

34

http://mfold.rna.albany.edu/

6 CONCLUSION

We studied one of the heuristic approaches to solve the problem of RNA
secondary structure prediction, that is, simulated annealing. The algorithm was
implemented using C++ and tested on a quad-core AMD machine. The method of
mapping the secondary structure determination into simulated annealing framework is
realized. Various experiments in helix generation and perturbation functions were
performed in order to expedite the convergence of the algorithm. We compared the results
obtained from simulated annealing with Mfold. We found the results similar for shorter
sequences in general and in some cases a little better as the length of the sequence
increased. The experiments were restricted to RNA sequences with length shorter than
600 nucleotides because of lack of computational resources.

35

7 FUTURE WORK

We suggest multiple directions in which this work can be extended.

1. The current implementation does not work well if there are pseudo-knots in the
native structure. This could be done with improved thermodynamic model which takes
into account the effect of pseudo-knots. The Hotknots software implements one such
thermodynamic model which could be integrated into current energy calculating function.

2. The algorithm could be improved with weighted helix set approach. During the
repair of the helix set, we can choose helices within a defined range of stacked pair with
greater probability. This would allow more stable structures to be formed more easily.

3. There exists significant opportunity to optimize the code-base. The focus for
the implementation was correctness of the algorithm rather than optimality. Especially the
memory intensive data movement could be reduced to increase the efficiency of the
program.

4. Also, the code could be mapped to a parallel processing architecture. This way
the runtime could be significantly reduced by taking advantage of the efficiency of
parallel machines.

36

8 REFERENCES

[1] Setubal, J. & Meidanis, J. (1997). Introduction to Computational Molecular Biology.
 Boston, MA: PWS Publishing Company

[2] Al-Khatib, R., Abdullah, R., Rashid, N. (2010) A Comparative Taxonomy of Parallel
 Algorithms for RNA Secondary Structure Prediction.Evolutionary Bioinformatics, 6,
 27-45.

[3] Draper D. E. (2004). A guide to ions and RNA structure. RNA, 10(3), 335-443

[4] I. Tinoco Jr., C. Bustamante. (1999). How RNA folds. J. Molecular Biology, 293,
 271-281.

[5] Alberts B., Johnson A. , Lewis. J, et al. (2002). Molecular biology of the cell.
 New York: Garland Science.

[6] Nussinov, R., Jacobson AB. (1980) Fast algorithm for predicting the secondary
 structure of single-stranded RNA.Proc Natl Acad Sci U S A. 77(11) , 6309-13.

[7] Ye, Y. RNA folding and ncRNA finding [PowerPoint slides]. Retrieved from
 http://mendel.informatics.indiana.edu/~yye/lab/teaching/fall2010-I519.php

[8] RNA structure determination Experimental techniques & Computational prediction
 [PDF document]. Retrieved from
 http://www.ibi.vu.nl/teaching/masters/prot_struc/2008/ps-lec12-2008.pdf

[9] Gibbs Free Energy Retrieved from
 http://en.wikipedia.org/wiki/Gibbs_free_energy

[10] Zuker,M. (2003) Mfold web server for nucleic acid folding and hybridization
 prediction. Nucleic Acids Res. 31 (13), 3406-3415.

[11] Wiese, K.C., Deschenes, A.A., Hendriks, A.G.,(2008). RnaPredict—An Evolutionary
 Algorithm for RNA Secondary Structure Prediction. IEEE/ACM Transactions on
 Computational Biology and Bioinformatics, 5, 25-41,2008.

[12] Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P. (1983). Optimization by Simulated
 Annealing. Science, 220(4598), 671-680.

37

[13] Dueck, G., Scheuer,T. (1990). Threshold accepting: A general purpose optimization
 algorithm appearing superior to simulated annealing. Journal of Computational
 Physics, 90 (1),161-175.

[14] Tsang, H.H., (2007) SARNA-Predict: A Permutation-based Simulated Annealing
 Algorithm for RNA Secondary Structure Prediction [PDF document]. Retrieved from
 http://ir.lib.sfu.ca/bitstream/1892/9613/1/etd3184.pdf

[15] Simulated Annealing (n.d.) Retrieved from
 http://en.wikipedia.org/wiki/Simulated_annealing

[16] Tsang,H.H., and Wiese, K.C. (2006). SARNA-Predict: A simulated annealing
 algorithm for RNA secondary structure prediction. IEEE Symposium on
 Computational Intelligence in Bioinfomatics and Computational Biology.
 CIBCB'O6, 466-475.

[17] Tsang, H.H.; Wiese, K.C. (2010). SARNA-Predict: Accuracy Improvement of RNA
 Secondary Structure Prediction Using Permutation-Based Simulated Annealing.
 Computational Biology and Bioinformatics, IEEE/ACM Transactions , 7, 727-740.

[18] Tsang, H.H.; Wiese, K.C. (2008). SARNA-Predict-pk: Predicting RNA secondary
 structures including pseudoknots. Computational Intelligence in Bioinformatics and
 Computational Biology. CIBCB '08. IEEE Symposium on , vol., no., pp.1-8, 15-17.

[19] Yinghao, Li. (1997). Directed Annealing Search In Constraint Satisfaction and
 Optimization. PhD thesis, University of London, Imperial College of Science,
 Technology and Medicine, London.

[20] Emile H. L. Aarts, F. M. J. de Bont, J. H. A. Habers, and Peter J. M. van
 Laarhoven. (1986). Parallel implementations of the statistical cooling algorithm.
 Integration, the VLSI Journal, 4(3):209-238.

[20] Gruener, W., Giegerich, R., Strothmann,D., et al. (1996). Analysis of
 RNA sequence structure maps by exhaustive enumeration structures of neutral
 networks and shape space covering. Monath. Chem., 127:375-389, SF1
 preprint 95-10-099.

[21] Trosset, M.W. (2001). What is simulated annealing? Optimization and
Engineering, 2(2):201- 213.

38

[22] Robic,B., and Silc, J., (1995). Algorithm mapping with parallel simulated
 annealing. Technical Report CSD-TR-95-1, Jozef Stefan Institute, Computer
 Science Department.

[23] M. Irgens. (1997). Why simulated annealing works and why it doesn't. T R 97-17,
 Department of Computer Science, Simon Fraser University.

[24] GSL- GNU Scientific Library Retrieved from,
 http://www.gnu.org/software/gsl/

[25] boost C++ Libraries Retrieved from,
 http://www.boost.org/doc/libs/1_46_1/libs/bind/bind.html#Purpose

[26] RNAStructure, Version 5.2 Retrieved from
 http://rna.urmc.rochester.edu/RNAstructure.html

[27] Wiese, K.C and Hendriks, A., (2006) Comparison of P-RnaPredict and mfold—
 algorithms for RNA secondary structure prediction Bioinformatics (2006) 22(8):
 934-942 doi:10.1093/bioinformatics/btl043

[28] Wiese, K.C and Glen, E., (2003) A permutation based genetic algorithm for the
 RNA folding problem: a critical look at selection strategies, crossover operators,
 and representation issues. 72:49-41 BioSystems - Special Issue on Computational
 Intelligence in Bioinformatics.

[29] Wiese, K.C and Hendriks, A., Analysis of Thermodynamic Models and Performance
 in RnaPredict - An Evolutionary Algorithm for RNA Folding. IEEE Xplore.

[30] Akella. P. Simulated Annealing [PowerPoint slides]. Retrieved from
 www.ecs.umass.edu/ece/labs/vlsicad/.../SimulatedAnnealing.ppt

[31] Comparative RNA Website And Project Retrieved from,
 http://www.rna.ccbb.utexas.edu/

[32] Flechsig, M., Bohm, U., Nocke,T., et al. The Multi-Run Simulation Environment
 SimEnv Retrieved from,
 http://www.pik-potsdam.de/research/research-domains/transdisciplinary-concepts-
 and-methods/modsimenv/simenv/simenv124.pdf

39

9 Appendix

Here we describe the source code.
**
File : base_class.h

/*
 Defines the data types used by the final implementation.
*/
**
 #if !defined(BASE_CLASS_H)
#define BASE_CLASS_H

#include <vector>
#include <string>

/ * The most basic data type is nucleotide with location and base_type */

class nucleotide_base
{
private:
 int base_location;
 string base_type;
 int helix_id;
public:
 nucleotide_base(string s, int i);
 int get_base_location(void) const;
 string get_base_type();
};

/* Define the base pair of rna. */

class base_pair
{

private:
int associated_with_helix;

 nucleotide_base i_loc,j_loc;

public:
 base_pair(string s_i,string s_j,int i, int j);
 ~base_pair();
 40

 bool is_partof_other_helix();
 bool associate_with_helix(int i);
 bool is_canonical_base_pair();
 int get_i_loc();
 int get_j_loc();
 string get_i_base();
 string get_j_base();
};

/* Define helix structure along with suitable access function. */
class helix
{

private:
 bool valid,complete;
 int helix_id;
public:

vector<base_pair> bases_in_helix;
 vector<int> stack_bases;
 vector<int> loop_bases;
 vector<nucleotide_base> loop;
 helix();
 ~helix();
 bool is_valid();
 bool is_complete();
 bool add_to_loop(const nucleotide_base& b);
 void add_base_pair(base_pair& bp);
 void set_valid(bool v);
 void set_complete(bool c);
 int get_num_bases();
 int get_loop_size();
 int get_helix_id();
 void set_helix_id(int id);
 void display_helix();
 bool intersects_with(helix& h);
};

#endif

 41

**
File : base_class.cpp

/*
 Defines the class implementation of data types used by the final implementation.
*/
**
#include <fstream>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <string>
#include <set>

using namespace std;

#include "base_class.h"

//--
// Nucleotide base class
//--
nucleotide_base::nucleotide_base(string s,int i)
{
 base_location = i;
 base_type = s;
 helix_id = -1;
}

int nucleotide_base::get_base_location()const
{
 if (base_location < 0){
 cerr << "Base location not set yet." << endl;
 }
 else{
 return base_location;
 }
}

 42

string nucleotide_base::get_base_type()
{
 return base_type;
}

//--
// Nucleotide base pair class
//--
base_pair::base_pair(string s_i, string s_j, int i, int j):
 i_loc(s_i,i),
 j_loc(s_j,j)
{
 associated_with_helix = -1;
}

base_pair::~base_pair()
{

}

bool base_pair::is_partof_other_helix()
{
 return (associated_with_helix != -1);
}

bool base_pair::associate_with_helix(int i)
{
 associated_with_helix = i;
}

bool base_pair::is_canonical_base_pair()
{
 bool val = false;
 string i_t = i_loc.get_base_type();
 string j_t = j_loc.get_base_type();
 std::transform(i_t.begin(), i_t.end(),i_t.begin(), ::toupper);
 std::transform(j_t.begin(), j_t.end(),j_t.begin(), ::toupper);

 if(
 (
 !strcmp (i_t.c_str(), "A") &&
 !strcmp (j_t.c_str(), "U")
 43

)
 ||
 (
 !strcmp (i_t.c_str(), "U") &&
 !strcmp (j_t.c_str(), "A")
)
 ||
 (
 !strcmp (i_t.c_str(), "A") &&
 !strcmp (j_t.c_str(), "T")
)
 ||
 (
 !strcmp (i_t.c_str(), "T") &&
 !strcmp (j_t.c_str(), "A")
)
 ||
 (
 !strcmp (i_t.c_str(), "G") &&
 !strcmp (j_t.c_str(), "C")
)
 ||
 (
 !strcmp (i_t.c_str(), "C") &&
 !strcmp (j_t.c_str(), "G")
)
 ||
 (
 !strcmp (i_t.c_str(), "G") &&
 !strcmp (j_t.c_str(), "U")
)
 ||
 (
 !strcmp (i_t.c_str(), "U") &&
 !strcmp (j_t.c_str(), "G")
)
 ||
 (
 !strcmp (i_t.c_str(), "G") &&
 !strcmp (j_t.c_str(), "T")
)
 ||
 (
 44

 !strcmp (i_t.c_str(), "T") &&
 !strcmp (j_t.c_str(), "G")
)

)
 {
 val = true;
 }

 //cout << " I = " << i_t << " i = " << i_loc.get_base_location() << "||| J = " << j_t << " j
= " << j_loc.get_base_location() << " || " << val << endl;

 return val;
}

int base_pair::get_i_loc()
{
 return i_loc.get_base_location();
}

int base_pair::get_j_loc()
{
 return j_loc.get_base_location();
}

string base_pair::get_i_base()
{
 return i_loc.get_base_type();
}

string base_pair::get_j_base()
{
 return j_loc.get_base_type();
}

//--
// Helix class
//--
helix::helix()
{
 valid = true;
 45

 complete = false;

}

helix::~helix()
{

}

void helix::add_base_pair(base_pair& bp)
{
 bases_in_helix.push_back(bp);
 stack_bases.push_back(bp.get_i_loc());
 stack_bases.push_back(bp.get_j_loc());
}

void helix::set_valid(bool v)
{
 valid = v;
}

void helix::set_complete(bool c)
{
 complete = c;
}

bool helix::is_valid()
{
 return valid ;
}

bool helix::is_complete()
{
 return complete;
}

int helix::get_num_bases()
{
 return bases_in_helix.size();
 46

}

bool helix::add_to_loop(const nucleotide_base& b)
{
 loop.push_back(b);
 loop_bases.push_back(b.get_base_location());
}

int helix::get_loop_size()
{
 return loop.size();
}

void helix::set_helix_id(int id)
{
 helix_id = id;
}

int helix::get_helix_id()
{
 return helix_id;
}

void helix::display_helix()
{
 vector<base_pair>:: iterator h_i = bases_in_helix.begin();
 while(h_i != bases_in_helix.end()){
 cout << " " << h_i->get_i_base() << " " << h_i->get_i_loc() + 1 <<
"--------------------" << h_i->get_j_loc() + 1 << " " << h_i->get_j_base() << endl;
 h_i++;
 }

}

bool helix::intersects_with(helix& h)
{

 sort(h.stack_bases.begin(),h.stack_bases.end());
 //cout << " H = " ;
 //for(int i = 0; i < h.stack_bases.size() ; i++)
 47

 sort(this->stack_bases.begin(),this->stack_bases.end());

 bool stacked_pair = (fabs(this->stack_bases.back() - h.stack_bases.front()) < 5) |
 (fabs(this->stack_bases.front() - h.stack_bases.back()) < 5);

 //cout << " S = " ;
 //for(int i = 0; i < this->stack_bases.size() ; i++)
 // cout << " " << this->stack_bases.at(i) ;
 //cout << endl;
 vector<int> z(1000);
 vector<int>::iterator z_i = z.begin();
 vector<int> y(1000);
 vector<int>::iterator y_i = y.begin();
 vector<int> t(1000);
 vector<int>::iterator t_i = t.begin();
 vector<int>::iterator r;
 vector<int>::iterator s;
 vector<int>::iterator i;

 r = set_intersection(h.stack_bases.begin(),h.stack_bases.end(),this-
>stack_bases.begin(),this->stack_bases.end(),z_i);

 sort(this->loop_bases.begin(),this->loop_bases.end());
 s = set_intersection(h.stack_bases.begin(),h.stack_bases.end(),this-
>loop_bases.begin(),this->loop_bases.end(),y_i);

 sort(h.loop_bases.begin(),h.loop_bases.end());
 i = set_intersection(h.loop_bases.begin(),h.loop_bases.end(),this-
>stack_bases.begin(),this->stack_bases.end(),t_i);
 return ((int(r - z_i) > 0) || ((int(s - y_i) > 0) && (int (i-t_i)>0)));

}

 48

**
File : test_base.cpp

/*
 Defines the main algorithm helix generation and simulated annealing.
*/
**
#include <iostream>
#include <fstream>
#include <string>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <boost/bind.hpp>
#include <boost/lexical_cast.hpp>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_math.h>
#include <assert.h>
#include <gsl/gsl_machine.h>
#include <gsl/gsl_siman.h>
#include <gsl/gsl_ieee_utils.h>
#include "RNA.h"
#include "ErrorChecker.h"

using namespace std;

#include "base_class.h"

/* set up parameters for this simulated annealing run */

/* how many points do we try before stepping */
#define N_TRIES 5

/* how many iterations for each T? */
#define ITERS_FIXED_T 1000

/* max step size in random walk */
#define STEP_SIZE 1.0

/* Boltzmann constant */
#define K 1.0
 49

/* initial temperature */
#define T_INITIAL 6000

/* damping factor for temperature */
#define MU_T 1.075
#define T_MIN 2.0e-6

/* Number of Stacked bases */
#define STACK_BASE 3
/* Number of bases in loop */
#define NUM_LOOP 3
#define MAX_LOOP 4000
/* Number of swaps per perturbation step */
#define SWAPS 1
#define GUIDE_NUM 3

gsl_siman_params_t params = {N_TRIES, ITERS_FIXED_T, STEP_SIZE,K,
T_INITIAL, MU_T, T_MIN};

struct data_type_Helix{
 float curr_temp;
 RNA* a;
 vector<helix>* Helix_Set;
 vector<helix>* Final_Set;
 vector<helix>* Guide_Set;
 int seed;
};

/* Generate the helix set using the helix-generation algorithm */

void generate_helix_set(vector<base_pair>& all_bps,vector<helix>& Helix_Set,int
mode, vector<nucleotide_base>& all_bases)
{
 vector<base_pair>::iterator locator_bp ;
 vector<base_pair>::iterator abp = all_bps.begin();
 vector<nucleotide_base>::const_iterator nb;

 int helix_id = 0;
 base_pair dummy("X","X",0,0);
 int bp_n = 0;
 while(abp != all_bps.end())
 {
 50

 if (abs(abp->get_i_loc() - abp->get_j_loc()) < 9){
 abp++;
 continue;
 }

 if (bp_n % 1000 == 0)
 cout << " Bp = " << bp_n << endl;
 bp_n++;
 helix h;
 int i,j;
 base_pair bp = *abp;
 while (h.is_valid() && !h.is_complete())
 {
 //cout << "Begin BP " << endl;
 if(bp.is_canonical_base_pair() && !bp.is_partof_other_helix())
 {
 h.add_base_pair(bp);
 i = bp.get_i_loc() + 1 ;
 j = bp.get_j_loc() - 1 ;
 if(i >= j)
 {
 bp = dummy ;
 }
 else
 {
 locator_bp = find_if(all_bps.begin(),all_bps.end(),
(boost::bind(&base_pair::get_i_loc,_1) == i) && (boost::bind(&base_pair::get_j_loc,_1)
== j));
 if((locator_bp == all_bps.end()) && (mode == 0))
 cerr << "ERROR : Can not locate base for ri = " << i << " rj = " << j << endl;
 else if(mode == 0)
 bp = *locator_bp;
 else if((locator_bp == all_bps.end()) && (mode == 1))
 bp = dummy;
 else
 bp = *locator_bp;
 //cout << " Next bp i = " << bp.get_i_loc() << " j = " << bp.get_j_loc() << endl;
 }
 }
 else{

 if (h.get_num_bases() < STACK_BASE){
 51

 h.set_valid(false);
 //cout << " STACK_BASE INVALID " << endl;
 }
 else if (((j-i) < NUM_LOOP) || ((j-i) > MAX_LOOP)){
 h.set_valid(false);
 //cout << " NUM_LOOP INVALID " << endl;
 }
 else{
 for (int x = i ; x < j ; x++)
 {
 nb = find_if(all_bases.begin(),all_bases.end(),
(boost::bind(&nucleotide_base::get_base_location,_1) == x)) ;
 if(nb == all_bases.end())
 cerr << "ERROR : Cannot find all bases" << endl;
 h.add_to_loop(*nb);
 }
 h.set_complete(true);
 }
 }
 }

 if (h.is_valid())
 {
 vector<base_pair>::iterator i = h.bases_in_helix.begin();
 h.set_helix_id(helix_id);
 while(i != h.bases_in_helix.end())
 {
 locator_bp = find_if(all_bps.begin(),all_bps.end(),
(boost::bind(&base_pair::get_i_loc,_1) == i->get_i_loc()) &&
(boost::bind(&base_pair::get_j_loc,_1) == i->get_j_loc()));
 if(locator_bp == all_bps.end())
 cerr << "ERROR: h_is_valid not located" << endl;
 else
 locator_bp->associate_with_helix(helix_id);

 i++;
 }
 Helix_Set.push_back(h);
 helix_id++;
 if(helix_id % 100 == 0)
 cout << " Found valid = " << helix_id << endl;
 }
 52

 abp++;

 }

 int sizeofhelix;
 sizeofhelix = Helix_Set.size();
 cout << "Number of helices found is " << sizeofhelix << endl;
 vector<helix>::iterator h_i = Helix_Set.begin();
 while(h_i != Helix_Set.end())
 {
 h_i->display_helix();
 cout <<
"--
------" << endl;
 h_i++;
 }
 cout << "DONE : Number of helices found is " << sizeofhelix << endl;

}

/* Repair the permuation of helix set by discarding any helixes that conflict with earlier
used helixes. */

void repair_permuatation(vector<helix>& Helix_Set,vector<helix>& Uniq_Set)
{
 bool uniq_v;
 vector<helix>:: iterator h_i = Helix_Set.begin();
 vector<helix>:: iterator u_i;
 Uniq_Set.clear();
 Uniq_Set.push_back(*h_i);
 h_i++;
 while(h_i != Helix_Set.end()){
 uniq_v = true;
 u_i = Uniq_Set.begin();
 //cout <<
"--
------" << endl;
 //cout << " iterator " << endl;
 //h_i->display_helix();
 while(u_i != Uniq_Set.end()){
 //cout << " Uniqe " << endl;
 53

 //u_i->display_helix();
 if(h_i->intersects_with(*u_i)){
 //cout << " Not chosen" <<endl;
 uniq_v = false;
 break;
 }
 u_i++;
 }
 if(uniq_v){
 //cout << " Chosen " << endl;
 //h_i->display_helix();
 Uniq_Set.push_back(*h_i);
 //cout <<
"--
------" << endl;
 }
 h_i++;
 }

}

/* Create RNA data structure from the helix set generated. This is done so that we can use
the efn2 energy calculation function. */
void map_helix_to_RNA(vector<helix>& Repaired_Set,RNA& a)
{
 a.RemovePairs();
 int error;
 vector<helix>::iterator h_u = Repaired_Set.begin();
 while(h_u != Repaired_Set.end())
 {

 //cout <<
"--
------" << endl;
 //h_u->display_helix();
 //cout <<
"--
------" << endl;
 vector<base_pair>:: iterator b_h_u = (*h_u).bases_in_helix.begin();
 while(b_h_u != (*h_u).bases_in_helix.end())
 {
 54

 error = a.SpecifyPair((*b_h_u).get_i_loc()+1,(*b_h_u).get_j_loc()+1,1);
 //error = a.ForcePair((*b_h_u).get_i_loc()+1,(*b_h_u).get_j_loc()+1);
 if(error!=0) {
 //check to make sure that the return is zero, or else an error has occured
 std::cerr << a.GetErrorMessage(error);
 exit(0);
 }
 b_h_u++;

 }
 h_u++;
 }

}

/* Energy calculation function whose pointer is given to simulated annealing routine.
 First repair the permutation and then calculate the energy of structure. */

double E1(void *xp)
{
 static int x = 0;
 int s = 1;
 int error;
 //vector<helix> Repaired_Set;
 //repair_permuatation((*(((data_type_Helix *)xp)->Helix_Set)),Repaired_Set);
 //int tmp_size1 = (*(((data_type_Helix *)xp)->Helix_Set)).size();
 //cout << "Number of helices Original found is " << tmp_size1 << endl;
 repair_permuatation((*(((data_type_Helix *)xp)->Helix_Set)),(*(((data_type_Helix
*)xp)->Final_Set)));
 //int tmp_size2 = (*(((data_type_Helix *)xp)->Final_Set)).size();
 //cout << "Number of helices Used is " << tmp_size2 << endl;
 map_helix_to_RNA((*(((data_type_Helix *)xp)->Final_Set)),(*(((data_type_Helix
*)xp)->a)));
 if ((*(((data_type_Helix *)xp)->a)).ContainsPseudoknot(1))

cerr << " Yes contains ps" << endl;

 double free_energy = (*(((data_type_Helix *)xp)->a)).CalculateFreeEnergy(s);
 error = (*(((data_type_Helix *)xp)->a)).GetErrorCode();
 if (error==0) {
 //Note that when calculate energy is called the first time, RNA reads parameter
files from
 //disk at the location specified by environment variable DATAPATH.
 55

 //These are the .dat files found in the data_tables directory of RNAstructure
 std::cout << "Free energy change is: "<<(*(((data_type_Helix *)xp)-
>a)).CalculateFreeEnergy(s) << " GetFree = " << (*(((data_type_Helix *)xp)-
>a)).GetFreeEnergy(s) << "\n";
 }
 else {
 std::cerr << (*(((data_type_Helix *)xp)->a)).GetErrorMessage(error);
 }
 if(free_energy < -25){
 string x_s = boost::lexical_cast<string>(x);
 string seed_s = boost::lexical_cast<string>(((data_type_Helix *)xp)->seed);
 string energy_s = boost::lexical_cast<string>(free_energy);
 const string f_s = "File_seed" + seed_s + "i_" + x_s + "Free_EN" + energy_s;
 const string t_s = "Thermo_seed" + seed_s + "i_" + x_s + "Free_EN" + energy_s;
 (*(((data_type_Helix *)xp)->a)).WriteCt(f_s.c_str());
 (*(((data_type_Helix *)xp)->a)).WriteThermodynamicDetails(t_s.c_str());
 }
 x++;
 //exit(0);
 return free_energy;
}

/* Metric function to determine the difference between two structures. */
double M1(void *xp, void *yp)
{
 double free_energy_xp = E1(xp);
 double free_energy_yp = E1(yp);

 return fabs(free_energy_yp - free_energy_xp);
}

/* Step function. Here we implement helix swap in classical sense as well as the multiple
swaps dependent on temperature. */

void S1(const gsl_rng * r, void *xp, double step_size)
{

 int Helix_Size = (*(((data_type_Helix *)xp)->Helix_Set)).size();
 int Guide_Size = (*(((data_type_Helix *)xp)->Guide_Set)).size();

 int n1 = gsl_rng_uniform_int(r,Helix_Size);
 56

 int n2 = gsl_rng_uniform_int(r,Helix_Size);
 if(Guide_Size > 0){
 n1 = n1 < GUIDE_NUM ? GUIDE_NUM + 1 : n1;
 n2 = n2 < GUIDE_NUM ? GUIDE_NUM + 1 : n2;
 }
 int num_swaps = (((((data_type_Helix *)xp)->curr_temp))*0.1 < 1) ? 1 :
((((data_type_Helix *)xp)->curr_temp))*0.1 ;
 for(int num_mu = 0; num_mu < num_swaps; num_mu++){
 swap((*(((data_type_Helix *)xp)->Helix_Set))[n1],(*(((data_type_Helix *)xp)-
>Helix_Set))[n2]);
 n1 = gsl_rng_uniform_int(r,Helix_Size);
 n2 = gsl_rng_uniform_int(r,Helix_Size);
 if(Guide_Size > 0){
 n1 = n1 < GUIDE_NUM ? GUIDE_NUM + 1 : n1;
 n2 = n2 < GUIDE_NUM ? GUIDE_NUM + 1 : n2;
 }
 }

}

/* Print the helix set function*/
void P1(void *xp)
{
 ((data_type_Helix *)xp)->curr_temp /= MU_T;
 vector<helix>::iterator h_i = (*(((data_type_Helix *)xp)->Final_Set)).begin();
 cout << endl << " Final Helix Set Begin " << endl;
 while(h_i != (*(((data_type_Helix *)xp)->Final_Set)).end())
 {
 cout <<
"--
------" << endl;
 h_i->display_helix();
 cout <<
"--
------" << endl;
 h_i++;
 }

 cout << endl << " Final Helix Set End " << endl;
}

 57

/* The main loop of the implementation */

int main(int argc, char* argv[])
{

 char chr;
 string s1,s2,orig_nucleotide;
 ifstream myfile(argv[1]);

 if (myfile.is_open())
 {
 cout << "Opened file = " << argv[1] << endl;
 }
 else{
 cout << "Can not open file" << endl;
 }

 int mode = 0;

 vector <nucleotide_base> all_bases;
 vector<base_pair> all_bps;
 int i = 0;
 while(myfile)
 {
 myfile.get(chr);
 string s;
 s.insert(0,1,chr);
 orig_nucleotide.append(1,chr);
 nucleotide_base b(s,i++);
 all_bases.push_back(b);
 }

 if(mode == 0) {
 if (all_bases.size() < 1){
 cout << "ERROR : Empty base list " << endl;
 }
 else{
 //FIXME Crude method of dealing with null terminated string.
 all_bases.pop_back();
 all_bases.pop_back();
 cout << " number of bases = " << all_bases.size() << endl;
 }
 58

 vector<base_pair> all_canonical_bps;

 for (int i = 0 ; i < all_bases.size()-1 ; i++){
 for (int j = i+1; j < all_bases.size(); j++) {
 base_pair
bp(all_bases[i].get_base_type(),all_bases[j].get_base_type(),all_bases[i].get_base_locatio
n(),all_bases[j].get_base_location());
 if (bp.is_canonical_base_pair())
 all_canonical_bps.push_back(bp);

 all_bps.push_back(bp);
 }
 }
 cout << "Size of canonical bps = " << all_canonical_bps.size() << endl;
 }

 cout << "Size of all bps = " << all_bps.size() << endl;
 vector<helix> Helix_Set;
 vector<helix> Final_Set;
 generate_helix_set(all_bps,Helix_Set,mode,all_bases);

 vector<helix> Guide_Set;
 mode = 1;
 if(mode){
 vector<base_pair> guide_bps;
 string line;
 int i1,i2,i3,i4,i5;
 ifstream mybpfile(argv[2]);
 while(mybpfile){
 mybpfile >> i1 >> s1 >> i2 >> i3 >> i4 >> i5 ;
 if (i4 != 0){

 s1 = all_bases[i1-1].get_base_type();
 s2 = all_bases[i4-1].get_base_type();
 base_pair bp(s1,s2,i1-1,i4-1);
 guide_bps.push_back(bp);
 }
 }
 generate_helix_set(guide_bps,Guide_Set,1,all_bases);
 }

 59

 const gsl_rng_type * T;
 gsl_rng * r;
 gsl_rng_env_setup();
 T = gsl_rng_default;
 r = gsl_rng_alloc(T);

 printf ("seed = %lu\n", gsl_rng_default_seed);
 srand (gsl_rng_default_seed);
 random_shuffle (Helix_Set.begin(), Helix_Set.end());

 const char* orig_string = orig_nucleotide.c_str();
 cout << " String="<<orig_nucleotide << endl;
 RNA a(orig_string,true);
 float init_temp = T_INITIAL;

 data_type_Helix xp =
{init_temp,&a,&Helix_Set,&Final_Set,&Guide_Set,gsl_rng_default_seed};
 if (mode){
 int Guide_Size = (*(((data_type_Helix)xp).Guide_Set)).size();
 cout << " Guide Size = " << Guide_Size << endl;
 if(Guide_Size > 0){
 for (int i = 0; i < GUIDE_NUM ; i++){
 (*(((data_type_Helix)xp).Helix_Set))[i] = (*(((data_type_Helix)
xp).Guide_Set))[i];

 cout << " First Helix " << endl;
 cout << " --- " << endl;
 ((*(((data_type_Helix)xp).Helix_Set))[i]).display_helix();
 cout << " --- " << endl;
 }
 }
 gsl_siman_solve(r,&xp,E1,S1,M1,P1,NULL,NULL,NULL,64,params);
 }
 else{
 gsl_siman_solve(r,&xp,E1,S1,M1,P1,NULL,NULL,NULL,64,params);
 }

}

 60

**
File : evaluate.pl

/*
 Calculate the evaluation metric between predicted structure and native strucure.
*/
**
#!/usr/bin/perl
use strict;
use warnings;

print (scalar(@ARGV)!=2 ? die "Please specify two ct files\n" : "\n");
if (-z $ARGV[0] || -z $ARGV[1])
{
die("File is empty\n");
}

my %hash = ();
for (my $i=1; $i<3; $i++)
{
 my $firstline = 0;
 open(IN, $ARGV[$i-1]) or die "Cannot open the file\n";
 while(my $line = <IN>)
 {

chomp($line);
chop ($line) if ($line =~/\r/);
if($firstline == 0)
{
 $firstline = 1;
}
else
{

my @base_pairs = split(" ", $line);
#print "@base_pairs\n";
if ($base_pairs[4] != 0)
{
 $hash{$i}{$base_pairs[0]} = $base_pairs[4];
}
else
{
 $hash{$i}{$base_pairs[0]} = -1;

 61

 }
}

 }
close(IN);
}

my @keys = sort {$a <=> $b } keys(%hash);
my $key;
foreach $key (@keys)
{
 #print "$key\n";

#print "*" x 10 ;
#print "\n";
my @bases = keys(%{$hash{$key}});
foreach my $pair (@bases)
{
 # print "$pair => $hash{$key}{$pair}\n";
}

#print "*" x 10 ;
#print "\n";

}
my $TP = 0;
my $FP = 0;
my $FN = 0;
my $pre;
my $nav;
my @predict_bases = sort {$a <=> $b} keys(%{$hash{1}});
my @native_bases = sort {$a <=> $b} keys(%{$hash{2}});

foreach $pre (@predict_bases)
{

if (exists($hash{1}{$pre}) && exists($hash{2}{$pre}))
{

if($hash{1}{$pre} == $hash{2}{$pre})
{
 print " TP $hash{1}{$pre} $hash{2}{$pre}\n";
 $TP = $TP+1;
}
elsif ($hash{1}{$pre} != $hash{2}{$pre})
 62

 {

 if ($hash{1}{$pre} == -1 && $hash{2}{$pre} != -1)
 {
 print " FN $hash{1}{$pre} $hash{2}{$pre}\n";
 $FN = $FN +1;
 }
 elsif ($hash{1}{$pre} != -1 && $hash{2}{$pre} == -1)
 {
 print " FP $hash{1}{$pre} $hash{2}{$pre}\n";
 $FP = $FP+1;
 }
 else
 {
 print " FN $hash{1}{$pre} $hash{2}{$pre}\n";

$FN = $FN + 1;
 }
}

}

}

print "TP = $TP\n";
print "FP = $FP\n";
print "FN = $FN\n";

63

	San Jose State University
	SJSU ScholarWorks
	Spring 2011

	RNA SECONDARY STRUCTURE PREDICTION TOOL
	Meenakshee Mali
	Recommended Citation

	1 INTRODUCTION
	1.1 Project Scope

	2 LITERATURE REVIEW
	2.1 Dynamic Programming
	2.2 Minimum Free Energy (MFE)
	2.3 Evolutionary Algorithm (EA)
	2.3.1 Crossover
	2.3.2 Mutation
	2.3.3 Selection

	2.4 Simulated Annealing
	2.4.1 Cost Function
	2.4.2 Perturbation Function
	2.4.3 Cooling Schedule

	3 COMPUTING ENVIRONMENT
	3.1 Hardware Environment
	3.2 Software Environment

	4 MAPPING STRUCTURE PREDICTION INTO SA
	4.1 State Representation
	4.2 Perturbation/Mutation Function
	4.2.1 Swap Mutation
	4.2.2 Percentage mutation operator

	4.3 Evaluation Function
	4.4 Decision Mechanism

	5 EXPERIMENTS AND RESULTS
	5.1 Energy flow of Simulated annealing
	5.2 Free Energy convergence variation with mutation parameter
	5.3 Results of Simulated Annealing for typical sequences
	5.3.1 Alpha Proteobacterium 16s RNA (250 bases)
	5.3.2 Sulfitobacter sp. 16S RNA (AF007254) with 400 nucleotide bases
	5.3.3 Bacillus subtilis (D11460) with 118 nucleotide bases
	5.3.4 Secondary structure for S. cerevisiae (X67579)

	5.4 Comparison with Mfold

	6 CONCLUSION
	7 FUTURE WORK
	8 REFERENCES
	9 Appendix

