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ABSTRACT

Ribonucleic Acid (RNA) is one of the major macromolecules essential to all forms of 
life. Apart from the important role played in protein synthesis, it performs several 
important functions such as gene regulation, catalyst of biochemical reactions and 
modification of other RNAs. In some viruses, instead of DNA, RNA serves as the carrier 
of genetic information. RNA is an interesting subject of research in the scientific 
community. It has lead to important biological discoveries. One of the major problems 
researchers are trying to solve is the RNA structure prediction problem. It has been found 
that the structure of RNA is evolutionary conserved and it can help to determine the 
functions served by them. In this project, I will be developing a tool to predict the 
secondary structure of RNA using simulated annealing. The aim of this project is to 
understand in detail the simulated annealing algorithm and implement it to find solutions  
to RNA secondary structure. The results will be compared with the very famous tool 
Mfold, developed by Michael Zuker, using the minimum free energy approach. 
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1  INTRODUCTION

The central dogma of molecular biology states that the genetic information of an 
organism is transferred from Deoxyribonucleic Acid (DNA) to Ribonucleic Acid (RNA) 
and then to Proteins. For a long time DNA was considered as the primary actor in storing 
the genetic code with RNA cast into secondary role of carrier of this information. But a 
string of discoveries in the last decade have proved that smaller RNA molecules operate 
many cell controls. The knowledge about RNA is expanding rapidly. It is now known that 
RNA catalyzes reactions, directs the site-specific modification of RNA nucleotides, 
modulates protein expression and serves in protein localization. Therefore, understanding 
the function of RNA molecules is key to unlocking the pathways of disease and biology.

Knowing the precise three dimensional structure of RNA is one of the foremost 
goals of molecular biology, for it is this structure that determines the molecule's function 
[1]. Nuclear Magnetic Resonance and X-ray crystallography are some of the available 
experimental methods generally used for this purpose. But these are very costly, time 
consuming and not always feasible methods. As a result, it is easy to determine the 
sequence of RNA compared to the three dimensional structure. The gap between the 
number of proteins whose sequence is known (in thousands) compared to whose 
complete three dimensional structure is known (in hundreds) is widening on an yearly 
basis. This has lead to intense research into structure predicting methods using 
computational algorithms. 

           The building blocks of DNA and RNA are nucleotides. Three components are 
present in RNA nucleotides: the nitrogenous base, the sugar and the phosphate group. 
The RNA backbone is made of ribose five atom carbon-sugar counted from 1' through 5' 
and it is attached by two phosphate groups in 3' and 5', respectively [2].  The nitrogen 
base in RNA are made of four different bases, Adenine(A), Guanine(G), Cytosine(C), and 
Uracil(U). Uracil is replaced by Thymine(T) in DNA. The phosphate groups in the 
backbone of RNA have a negative charge which makes RNA a charged molecule [3]. 
Due to this, the RNA molecule in a cell is not inherently stable and to gain stability, it  
folds on itself. A nucleotide in one part of RNA can make base-pair with a 
complementary nucleotide in another part of RNA. Furthermore a nucleotide sequence 
uniquely determines the folding pattern and hence we can attempt to predict its structure.  
Listing out all the base pairs given a nucleotide sequence is considered as secondary 
structure prediction. The secondary structure of RNA is the scaffolding of its tertiary 
structure. It is well known that RNA folding is hierarchical: "the primary sequence 
determines the secondary structure and the secondary structure in turn determines the 
tertiary folding."[4]   

1



          The nucleotides form Watson-Crick base pairs namely, AU, GC, and their mirrors. 
Also GU base pair is found in many RNAs. This base pair is called as wobble pair. With 
these combinations of bases, RNA structure forms two large groups: Stem-loops and 
Pseudoknots. 

There are multiple motifs possible in RNA secondary structure. These are,

• Single strand

• Double strand / Stem 

• Single-nucleotide bulge

• Three-nucleotide bulge

• Hairpin loop

• Internal loop

Figure 1 Representation of different elements of RNA secondary structures [5]
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Figure 2 Representation of different tertiary structures [5] 

When the secondary structures represented in Figure 1 form base pairs between them, 
tertiary structures are formed. Tertiary structures are very difficult to predict. Figure 2 
shows the different tertiary structures. 

1.1  Project Scope

       In this project, we plan to implement the simulated annealing algorithm to predict the 
secondary structure. In Chapter 2, we describe the methods used for secondary structure 
prediction along with simulated annealing algorithm. Simulated annealing has been used 
extensively to solve optimization problems in various disciplines. We will use efn2 model 
as measure of acceptance criteria for new structures predicted from mutation operation. 
In Chapter 3, we describe the computing environment we have setup for performing the 
experiments. The GNU scientific library will be used to provide the framework for 
simulated annealing whereas RNAStructure library will be used to compute the efn2 
energy of a secondary structure. Chapter 4 explains the mapping of the secondary 
structure problem into simulated annealing algorithm. We will be predicting secondary 
structure for a set of sequences drawn from NCBI. The results will then be compared 
with corresponding results from Mfold using a defined comparative measure. These 
would be listed in Chapter 5. We will also describe in chapter 5 the effect of different 
perturbation functions on the quality of the secondary structure. We also plan to study 
different cooling schedules and its influence on the convergence rate of the algorithm.
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2  LITERATURE REVIEW

2.1  Dynamic Programming 

Pioneering work in RNA secondary structure prediction was done by Nussinov,R. 
and Jacobson, A. Their dynamic programming algorithm finds an optimal structure 
possible for a given sequence. The basic algorithm tries to find maximum base pairs in a 
given nucleotide sequence. Later they incorporated rules for calculating loop stability 
based on free energy into the algorithm [6]. The algorithm for maximal matching is based 
on a rule that the stability of G-C pairs is equal to that of A-U pairs. The stabilizing 
energy of stacking base pairs and destabilizing energy of single stranded loops is ignored 
in this algorithm. The dynamic programming technique builds an optimal solution to the 
problem by solving sub-problems. This approach applied to find structure, tries to find 
sub-structure for different length of given sequence. The algorithm uses following 
recurrence equation, 

S ( i+1, j-1 ) + w( i, j ) 
   S(i, j)  =     max        S ( i+1, j ) 
                                    S ( i, j-1 )

max i<k<j  S( I, k ) + S ( k+1, j )  (2.1.1)

w(i,j) is 1 if i and j form complementary base pair. It is assigned to 0 otherwise. 
The 3 steps in this algorithm are initialization, recursion, and traceback. The sequence is  
compared against itself and dynamic programming matrix is created. Figure 3 shows the 
initialization step of Nussinov algorithm [7].

S(i,i) = 0  ∀i, 1≤ i ≤ L    the main diagonal
S(i, i-1) = 0    ∀i,  2 ≤ i ≤ L    the diagonal below

Figure 3 Initialization of dynamic programming matrix [7]
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In the next step, this matrix is filled up using the recursion relation stated in (1). 
Figure 4 is the matrix build with the recurrence. 

Figure 4 Second step of dynamic programming algorithm [7]

After the matrix is complete, the last step is to traceback the matrix to get optimal  
structure. Depending on the sequence the dynamic programming approach can also yield 
different optimal structures. Figure 5 is the traceback of the matrix and resulting optimal 
structure of the sequence. 

        Figure 5  Traceback of the dynamic programming matrix and optimal structure[7]
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2.2  Minimum Free Energy (MFE)

The basic dynamic programming algorithm was then modified to calculate 
minimum free energy of the structure. Gibbs energy (also referred to as ∆G) is the 
chemical potential that is minimized when a system reaches equilibrium at constant  
pressure and temperature [8]. It is calculated by the following formula,

∆G = ∆H - T∆S                                                                                            (2.2.1)

where ∆H = enthalpy 
           ∆S = entropy
              T = temperature in unit Kelvin

The different interactions (hydrogen bonds, van der Waals, and electrostatic) 
between the molecules, define the enthalpy i.e ∆H of the system. Or in simple words, it is 
the energy contained within the system. ∆S or entropy is the change in energy of the 
system. When ∆G is 0 the system is said to be in an equilibrium state. If ∆G is greater 
than 0, the system is in unfavorable process and if it is less than 0, system is in favorable 
process [9].
            The minimum energy for structure is calculated by adding the experimentally pre- 
determined values for each base pair found in the dynamic programming matrix. The free 
energy of each motif depends only on the sequence of that motif and the most adjacent 
base pairs. The total free energy is the sum of the increments. This algorithm is 
implemented in the benchmark tool for RNA secondary structure prediction tool, MFold. 
This approach is called as Minimum Free Energy (MFE) and was developed by M. Zuker 
[10]. 

There are certain limitations to MFE method. In this method the energies of bulge 
loops and single non-canonical pairs are not taken into account. RNA folding process 
does not always occur at equilibrium. Kinetics of the process is also important. Because 
of this, the structure obtained by MFE might not be the same as the native fold. Other 
drawback of Mfold is lack of predicting pseudoknots in a structure. 

2.3  Evolutionary Algorithm (EA) 

        This type of algorithm is developed around an evolutionary model that mimics
the process of natural evolution. It gives a number of probable solutions at each 
generation. When applied to RNA structure prediction, EA will give a set of low energy 
structures at each generation. The initial population of solutions is generated randomly  
before the algorithm commences. The next population of solutions is formed by 
evaluating the solutions in previous generation with some criteria and discarding the 
solutions which do not satisfy. 

6
       



Wiese and Glen designed a serial EA, RnaPredict [11], which encodes RNA secondary 
structures as permutations. The quality of the predictions by RnaPredict was compared 
with the predictions of Nussinov dynamic algorithm. Initial step in RnaPredict is to 
generate a set of valid helices. A valid helix has a minimum of three adjacent canonical  
base pairs and a minimum hairpin of size three. To generate helices, first set of all base 
pairs in a given sequence is found. The algorithm then iterates over this set of base pairs 
and builds a helix by stacking valid base pairs. If the resulting helix meets or exceeds the 
above requirement it is added to the set H of possible helices. Once the set of possible 
helices is formed the structure prediction problem becomes combinatorial optimization 
problem[11]. To ensure chemically feasible structure, no predicted structure may contain 
helices that share bases. Depending on how the helices conflict, both permutations could 
result in vastly different structures. Helix conflicts are eliminated by decoding the 
permutation from left to right. The helix specified at each point in the permutation is  
checked for conflicts with helices to its left.If no conflicts are found the helix is retained; 
otherwise it is discarded[11]. For example, assuming set H contains five helices 
(0,1,2,3,4) and (4,0,1,3,2) are two possible structures. Then for the second set, we start 
with helix 4. Then if helix 0 does not share any bases with helix 4 it is considered part of 
the final structure. We continue this process until the end of the set. RnaPredict attempts 
to optimize the structures such that they are both chemically feasible and have free 
energy close to ∆G. Since it yields, a population of candidate solutions it is possible to 
investigate not only the minimum free energy structure but also other low energy 
structures that may be close to native fold[11]. Each generation of EA has three key steps. 

2.3.1 Crossover

In this step, offspring solutions are formed by combining the two parent solutions. 
All solutions have parts that are favorable and unfavorable. Crossover operator is chosen 
such that all favorable parts go into one solution and unfavorable into the other. There are 
three different types of crossover operators.

• Order Crossover

Several helix positions are chosen randomly and the order in which these helices 
appear in one parent is imposed on the other parent[11]. 

• Partially Mapped Crossover

Two crossover points are chosen randomly and a series of successive swapping is 
done between the two parents[11]. 
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• Cycle Crossover

In this type of crossover, any one parent and a random position in this permutation 
is chosen. The offspring solution then inherits the helix in that position from selected 
parent. This cycle of length 1 ≤ k ≤ l continues until the length of the permutation. 
( xk = xl ) All remaining helices are inherited from second parent[11]. 

2.3.2  Mutation

Random changes in the population are introduced via mutations. This step is used 
to avoid premature genetic convergence in the population. It also maintains genetic 
diversity in the solution.
 

2.3.3  Selection

This is a step where new solutions are chosen from old solutions. The choice is 
made by scoring each solution against a fitness function. It is a task of an EA to select 
good solutions and reject others based on their scores. Selection can act on parents, the 
old population, and the new population. It can be local (within a subpopulation) or global 
(within entire population) 

These steps are repeated for a predetermined number of generations, a 
predetermined amount of time or until the population converges[11].

2.4  Simulated Annealing 

Physical annealing is the process of heating the metal to a temperature above it's 
crystallization point and then gradually reducing the temperature to make the metal hard. 
In an annealing process, a metal, initially at high temperature and disordered, is slowly 
cooled so that the system at any time is approximately in thermodynamic equilibrium. As 
cooling proceeds, the system becomes more ordered and approaches a "frozen" ground 
state at T=0. Hence the process can be thought of as an adiabatic approach to the lowest 
energy state. If the initial temperature of the system is too low or cooling is done 
insufficiently slowly the system may become quenched forming defects or freezing out in 
metastable states (that is trapped in a local minimum energy state) [32]. 
          The traveling salesman problem can be used as an example application of 
simulated annealing. In this problem, a salesman must visit some large number of cities 
while minimizing the total mileage traveled. If the salesman starts with a random 
itinerary, he can then pairwise trade the order of visits to cities, hoping to reduce the 
mileage with each exchange. The difficulty with this approach is that while it rapidly 
finds a local minimum, it cannot get from there to the global minimum. 
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      Simulated annealing tries to improve this strategy through the introduction of two 
approaches. The first approach is the Metropolis scheme. The original Metropolis scheme 
was that an initial state of a thermodynamic system was chosen at energy E and 
temperature T, holding T constant the initial configuration is perturbed and the change in 
energy dE is computed. If the change in energy is negative the new configuration is 
accepted. If the change in energy is positive it is accepted with a probability given by the 
Boltzmann factor exp -(dE/T). This process is then repeated sufficient times to give good 
sampling statistics for the current temperature, and then the temperature is decremented 
and the entire process repeated until a frozen state is achieved at T=0. This allows the 
solver to explore more of the possible space of solutions. If T is large, many "bad" 
configurations are accepted, and a large part of solution space is thus accessed [12]. 

        The second approach is, again by analogy with annealing of a metal, to lower the 
temperature. After making many choices for possible configuration and observing that the 
cost function declines only slowly, one lowers the temperature, and thus limits the size of 
invalid choices of configuration. After lowering the temperature several times to a low 
value, one may then quench the process by accepting only "good" configurations in order 
to find the local minimum of the cost function. There are various annealing schedules for 
lowering the temperature, but the results are generally not very sensitive to the details. 

          There is another faster strategy called threshold acceptance [13]. In this strategy, all 
good configurations are accepted, as are any bad configurations that raise the cost 
function by less than a fixed threshold. The threshold is then periodically lowered, just as 
the temperature is lowered in annealing. This eliminates exponentiation and random 
number generation in the Boltzmann criterion. As a result, this approach can be faster in 
computer simulations. 

Formally, there are four main parts of Simulated Annealing.
1. Initial State:

In this phase, problem and it's parameters are represented.
2. Mutation Function:

This phase, creates random changes in the state of problem.
3. Cost Function:

Cost function is used to determine how good the current solution is.
4. Decision Mechanism:

It is used to decide either to accept or reject the solution.

These parts can be understood by analyzing the basic structure of iteration 
optimization algorithm described below. Initial design is formed using problem's 
parameters and it is evaluated with cost function. Random changes are then introduced to 
the design using mutation function and this new design is again evaluated. 
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If the cost of this new design is better (minimum or maximum) then this new design is 
accepted as a solution and next solution is formed using this solution [14]. 

Design = InitialDesign;
Cost = Evaluate(Design);
while not done do

NewDesign = Mutate(Design);
NewCost = Evaluate(NewDesign);
DeltaCost = NewCost - Cost;
if appropriate then

Cost = NewCost;
Design = NewDesign;

end if
end while

              
The decision mechanism is a probabilistic function. The probability of accepting 

the new solution is specified by an acceptance probability function [15]. 

H. Tsang applied Simulated Annealing for RNA secondary structure prediction in 
SARNA-Predict [16]. The main difference between the algorithm described above and 
SARNA-Predict is in it's decision mechanism. For structure prediction the criteria for 
accepting or rejecting a solution is based on it's energy. To avoid the problem getting 
stuck in local minima at the beginning the solutions with higher energy are accepted with 
some probability. The problem is encoded as an integer permutation of helices similar to 
the Evolutionary Algorithm discussed in above section. The constraints under which a 
helix is formed are,

1. A stem (stacked pairs) is formed only when three or more adjacent pairs form.
2. At least three nucleotides are required to form the loop connecting to the stem.
3. There should not be any conflicting base pairs in the helices, i.e one helix should 

not share base pairs with others. 

           Using permutation-based SA, we can view the problem of predicting the 
secondary structure of RNA as one of picking the subset S of helices from the set of all 
possible helices H, such that the free energy E(S) is minimized and that no helices in S 
share one or more bases [17]. If the set of all helices, H, contains n helices, then use a 
permutation of length n to represent a candidate solution. The order in which a helix 
appears in the permutation is the order in which it is picked by the decoder to be inserted 
into the final structure. Helices that are incompatible with any previously selected helices  
are rejected.
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Structure = InitialStructure; 
FreeEnergy = Evaluate(Structure) ; 
Temperature = InitialTemperature; 
while (Temperature > FinalTemperature) do

for (i = 1 to NumberOfIterations) do 
NewStructure = Mutate(Structure); 
NewFreeEnergy = Evaluate(NewStructure); 
∆Energy = NewFreeEnergy - FreeEnergy

 if (∆Energy ≤ 0) OR (with Probability[Accept]= e^-∆Energy/Temperature)then
    FreeEnergy = NewFreeEnergy;
    Structure = NewStructure; 
end if

end for
decrease Temperature

end while

2.4.1  Cost Function  

In SARNA-Predict, the energy of structure is calculated using three different 
thermodynamic models namely, Individual Nearest Neighbor with Hydrogen Bonds 
(INN-HB), efn2, and HotKnots[16]. The difference between these models is in how they 
assign energies to different structure elements. INN-HB model doesn't consider the 
structure elements such as bulge loop. efn2 and HotKnots are improved to take into 
account the different structural elements. HotKnots model is used in the SARNA-Predict-
pk algorithm which can predict the structures with pseudoknots [18].

2.4.2  Perturbation Function    

A novel combination of permutation based encoding and swap mutation is 
implemented in SARNA-Predict as a mutation function. Swap mutation as the name 
suggests chooses two random points in the permutation and swaps the two helices.For a 
permutation vector, p = ( HI,...Hi,...Hj,...Hn ) , where n is the number of potential helices. 
A swap mutation is defined as,
      Pold = { H1, ....Hi,......Hj,.....Hn) --> Pnew = {H1,........Hj,.......Hi,.......Hn )            (2.4.2.1)
where i and j subset [1,n] are randomly chosen positions [17].In the classical SA sense, 
each perturbation step will only swap by one swap mutation step. The difference between 
the new conformation and the old conformation is one step. Another mutation operator 
used is percentage swap mutation operator. The number of swap mutations is found by 
taking the product of percentage of total number of helices and the current annealing 
temperature. 
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2.4.3  Cooling Schedule

Annealing schedule makes use of temperature as the main controlling parameter. 
The algorithm starts with very high temperature. At this stage, some solutions with high 
energy are accepted with some probability. After the temperature reaches 0, this 
probability should tend to 0 and thus accepting only the solutions with low energy. The 
algorithm thus becomes greedy once temperature reaches 0. In this way the algorithm can 
produce a global optimum solution. There are different types of annealing schedules. 
Geometric schedule and Adaptive schedule are implemented in SARNA-Predict[16]. In 
general, the choice of suitable cooling schedule have a profound effect on the 
performance of the algorithm and it is highly problem dependent. 

SARNA-Predict has implemented two methods to decrement the value of the 
temperature parameters: geometric and adaptive rate schedulers. Geometric scheduler is  
defined as Tnew =  αTold, here α is the cooling ratio (set to 0.95) According to previous 
research [19] , α should be set to between 0.8 and 0.99. Tnew and Told are the new and old 
temperature values respectively. In the adaptive scheduler, the length of a subchain with 
constant temperature is set to the number of the local neighborhood. The number of 
iterations per temperature is reduced according to following equation [20].

-1 
Tn  =  Tn-1 1 +        ln(1+δ) Tn-1  (2.4.3.1)

            3σ( Tn-1 )

where σ( Tn-1 ) is the standard deviation of the values of the cost function at the current 
temperature and δ is the distance parameter. The size of δ determines the speed of the 
reduction of the temperature and Aarts et. al suggest the value δ = 0.1.[20]

             The main advantages of SA over other local search optimization algorithms are 
its flexibility and ability to approach global optimality. The algorithm is quite versatile  
since it does not rely on any restrictive properties of the model. Although SA is a 
powerful tool for finding the approximate solution to combinatorial optimization 
problems, SA is slow to converge when compared to other deterministic algorithms, due 
to the slow cooling schedule required [20]. As a result, the computationally intensive 
nature of this algorithm has been its major drawback [21].
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However, since this technique has proven to be so useful, and increases in 
computational power are inevitable, it will only be a matter of time before a functionally  
superior design for this technique is found. In fact, there is research being done on 
implementing SA to run on parallel architecture. These parallel versions of the algorithm 
definitely reduce the time spent in evaluating the solution [22].

         Other major weaknesses of SA include the tailoring work required to account for 
different classes of constraints and the need to fine-tune the parameters of the algorithm, 
which can be rather delicate [23]. Also, the precision of the numbers used in the 
implementation of SA can have a significant effect upon the quality of the outcome. 
Finally, there is a clear trade-off between the quality of the solutions and the time 
required to compute them.
        
             In the next chapter, we describe the computing environment set up to implement 
the simulated annealing algorithm described in section 2.4 and compute the results.
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3  COMPUTING ENVIRONMENT

3.1  Hardware Environment

Simulated Annealing is computationally intensive. The original algorithm 
developed by H. Tsang was evaluated on 128- node beowulf cluster [16], each node with 
Pentium 4 running at 3GHz. These nodes were connected with a Gigabit Ethernet 
Network. 
The hardware environment we set up for the evaluation is a single desktop system with 
following configuration.

Operating System Ubuntu 10.04

Processor AMD Athlon Quad-Core 

Speed 3.0 GHz

RAM 8.0 GB 

Table 1 Hardware Environment Setup

3.2  Software Environment

The algorithm was implemented using C++. The GNU Scientific Library (GSL) is 
a collection of routines for numerical computing. It is free software under the GNU 
General Public License[24].  The library implements C routines for simulated annealing. 
Additionally we used 'Boost', which is a set of free peer-reviewed portable C++  source 
libraries. [25]. Ten Boost libraries are already included in the C++ Standards Committee's 
Library Technical Report (TR1) and will be in the new C++0x Standard now being 
finalized.   

RNAStructure [26] is another package we used to implement wrapper functions 
and utilities. It is a package for RNA and DNA secondary structure prediction and 
analysis developed at University of Rochester Medical Center. It provides multiple 
algorithmic implementations for secondary structure prediction. It can also predict 
secondary structures common to two, unaligned sequences, which is much more accurate 
than single sequence secondary structure prediction. To build the software, we used 
Scons, which  is an Open Source software construction tool implemented in Python 
designed to replace the classic Make utility. SCons is an easier, more reliable and faster 
way to build software. The implementation is developed under Ubuntu 10.04 operating 
system. 

In the next chapter we describe the process of mapping the structure prediction 
problem into simulated annealing framework.

14

http://www.open-std.org/jtc1/sc22/wg21/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1745.pdf


4  MAPPING STRUCTURE PREDICTION INTO SA

Here we describe the design details of mapping the secondary structure prediction into 
simulated annealing framework.  Formally, the problem can be broken into 4 different 
steps.

4.1  State Representation

First task in applying the simulated annealing method to problem is representing the 
problem's parameters. The algorithm implemented in this project uses the permutation of 
integers (helices) to represent the secondary structure of RNA. In case of Traveling 
Salesman Problem the solution can be represented as a permutation of integers where 
each integer corresponds to a particular city. So, for example one of the solutions is 
(1,3,2,6,4,5) represents a tour which starts at city number 1, following 3 and so on. 

The secondary structure predicted by this algorithm is a permutation of integers. 
Candidate helices are encoded as integers. There are three constraints on formation of 
helix from all possible base pairs[17],

• A stack is formed only when three or more adjacent base pairs are formed. 
• The loop connecting the stacked pair must be at least three nucleotides long.
• The helices should not conflict with each other i.e. they should not share bases 

with each other.

The helix generation algorithm was first specified by Wiese K.C. and Hendriks. A during 
the development of an evolutionary algorithm for RNA secondary structure prediction. 
The details of this algorithm are stated in [27]. The algorithm tries to build a set H of all  
helices which could form in a given sequence. This set H should agree to the constraints 
listed above. The algorithm for generating potential helices starts with generating all  
possible base pairs in a given sequence. Next, a stack of base pairs is formed by iterating 
through the set of base pairs and adding base pairs on existing base pairs. This step is 
repeated until first non-canonical base pair is encountered. The constraint to validate a 
loop is checked at this point. A potential helix is shown in Figure 6 and the helix 
generation algorithm is described below it.
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Figure 6  A potential helix generated by the helix generation algorithm[28]

Generate set of possible base pairs from (ri,rj) from given sequence;
     Initialize helix h;
         for each pair (ri,rj) do

while (helix h is valid) and (helix h is incomplete) do
     if((ri,rj) is canonical base pair and (ri,rj) is not part of an existing helix then

add base pair (ri,rj) to helix h;
increment index i;
increment index j;

     else
if (helix h contains less than 3 base pairs) then 
  helix h is invalid;
else if (helix h has less than 3 bases between the last base pair) then
  helix h is invalid;
else
  helix h is complete;
end if;

       end if;
           end while;
           if (helix h is valid) then

  insert helix h into set of all helices H;
           end if;
         end for;

Helix generation algorithm [14]
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With the help of permutational encoding of helices, the problem of RNA secondary 
structure prediction can be viewed as one of picking the subset S of helices from the set 
of all possible helices H, such that the free energy E(S) is minimized and that no helices 
in S share bases with each other. 

The table below describes the total number of helices found in each sequence.

Organism RNA 
Class 

Number 
of 
Nucleotid
es

Base pairs in 
known structure

Number of 
Helices

B. subtilis 5s rRNA 118 70 188

S. cerevisiae (X67579) 5s rRNA 118 37 213

H. marismortui (AF034620) 5s rRNA 122 38 211

A. proteobacterium 
( L13132)

16s rRNA 250 85 891

R. sp. (UNP00394) 16s rRNA 261 155 1343

M anisopliae (3) 
(AF197120)

Group I 
Intron 

375 120 2004

S. sp. (AF007254) 16s rRNA 400 199 2438

N. subterraneum(U20773) I intron 573 311 4327
 Table 2 Test Sequences, number of helices found in each sequence.

4.2  Perturbation/Mutation Function

The purpose of mutation function is to alter the structures in a controlled and intuitive 
fashion [14]. Different types of mutations are,

4.2.1  Swap Mutation

In this type of mutation, two random points in a permutation are chosen and the 
two digits at these positions are interchanged. For example, if we have a permutation of 
helices such as, p1 = (3,4,2,1,5) and the random points chosen are 1 and 3 then it gives a 
new permutation as p2 = (3,1,2,4,5)

4.2.2  Percentage mutation operator

In this case the number of mutations is calculated as the product of the percentage 
of total number of available helices and the current annealing temperature. This operator 
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is more efficient as it guarantees a different structure after the mutations. Single swap 
operator may not be effective as the resulting structure again goes through the validation 
of helices phase. 

4.3  Evaluation Function

Gibbs free energy is a measure of energy available in a system to do work. It can 
be expressed by following equation,

∆G = ∆H - T∆S                                                                    (4.3.1)
where ∆G is the change in free energy, ∆H is the change in enthalpy, a measure of the 
heat content of a chemical system, T is temperature in degree Kelvin, and ∆H is the 
change in entropy, a measure of the disorder in a chemical system[29].

The quality of a structure is determined in terms of free energy. There are several 
thermodynamic models available to determine the free energy. Individual Nearest 
Neighbor (INN), Individual Nearest Neighbor with Hydrogen Bonds (INN-HB), efn2, 
and HotKnots are the thermodynamic models widely used in Bioinformatics applications. 
For the purpose of this project, we have used efn2 energy model. The basic assumption in 
this model is that energy contributions by neighboring base pairs are independent and 
additive [14]. This model has been developed at University of Rochester and the energy 
parameters are calculated by performing large number of experiments. This model takes 
into account the INN-HB parameters as well as tandem GU pairs. Tandem GU pairs are 
two pairs of GU that are located side by side of each other. Also appropriate bonuses or 
penalties are given to terminal mismatches or dangling ends . 

The efn2 model uses a more precise free energy computation that takes into 
account coaxial stacking and Jacobson-Stockmeyer theory[14] for multi-branched loops. 
Coaxial stacking is a result of a bend in the axis of helix, because of which helices are 
stacked on each other[16] . It is found to be associated with large favorable free energy 
change. The study by Jacobson and Stockmeyer showed that the free energy's dependence 
on the size of the loop should be logarithmic. The equation used for approximating the 
multi-branch loop free energy depends on the number of unpaired nucleotides. For less 
than seven unpaired nucleotides, the equation is, 

 ∆GL = a + bn + ch + ∆Gstack                                                                                                       (4.3.2) 
where a,b,c are empirically derived parameters ( a =offset, b = base penalty, and c = helix 
penalty), n is the number of unpaired nucleotides, h is the number of helices in the multi-
branch loop. ∆Gstack calculates the free energy of stacking interactions [14].
When the number of unpaired nucleotides is more than seven, efn2 uses more realistic 
parameters for the equation above and recalculates the energy. The new equation in this 
case is, 

∆GL =a +6b + 1.75 * RT * ln( ls (L) /6) + c * ld (L) + ∆Gstack                   (4.3.3)
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This is still an active area of research with new and modified parameters being 
published.  The accuracy of secondary structure prediction is supposed to improve as the 
accuracy of energy parameters improves[14]. 

4.4   Decision Mechanism

The decision mechanism of simulated annealing algorithm plays an important role as it  
makes sure that system doesn't get stuck into local minimum. This is achieved by 
accepting solutions even with higher energy change with some probability. This 
probability is referred as Acceptance probability. This probability is calculated as a 
function of energy and temperature. If the change in energy is less than or equal to zero, 
the solution is accepted. Also the solution for which change in energy is greater than 0 
will be accepted with some probability. The acceptance probability in this 
implementation is calculated by following equation[14], 
                      Probability[Accept] = e - (Enew - Eold)/ T     =   e - ∆Energy / T                                                      (4.4.1)
This equation models the probability as Boltzmann distribution. The idea behind 
Boltzmann distribution is that every specific state of system at equilibrium has equal 
probability. This function will accept low energies most of the times, and sometimes high 
energies. When temperature is reduced slowly enough, theoretically simulated annealing 
will give best solution. The tradeoff here is the number of iterations it will take and 
computational time. In general the convergence of simulated annealing can be 
represented as in the following figure, 

Figure 7  Convergence of simulated annealing algorithm [30]. 
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In the current chapter, we described the main steps in mapping the structure 
prediction problem into simulated annealing framework. We also described the energy 
function and the decision mechanism in detail. In the next chapter, we discuss the 
experiments and results obtained with our implementation of the simulated annealing 
algorithm.
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5  EXPERIMENTS AND RESULTS
In this chapter, we describe the RNA sequences used. We also list out the 

experiments we performed as well as comparison with other algorithms.

Sequences :  We chose a set of  8 sequences with known secondary structure from 
the Comparative RNA Website[31]. SARNA-Predict has  used sequences with maximum 
lengths up to 1494. But because of lack of computational resources, we kept the 
maximum length of the sequence to around 500. We have used 5 of the same sequences 
used in [14] to verify the correct functioning of the algorithm. Although for most of the 
sequences the data base has been updated with latest results available from the 
Comparative RNA Website. This set of sequences represent a good cross-section of 
organisms and the types of RNA.

Organism RNA 
Class 

Number of Nucleotides Base pairs in known 
structure

B. subtilis (D11460) 5s rRNA 118 70

S. cerevisiae (X67579) 5s rRNA 118 37

H. marismortui (AF034620) 5s rRNA 122 38

A. proteobacterium 
( L13132)

16s rRNA 250 85

R. sp. (UNP00394) 16s rRNA 261 155

M anisopliae (3) 
(AF197120)

Group I 
Intron 

375 120

S. sp. (AF007254) 16s rRNA 400 199

N. subterraneum(U20773) Group I 
intron

573 311

 Table 3 Test sequences, number of base pairs in known structures 

The performance of the simulated annealing is compared with other state of the 
art secondary structure folding algorithms. We have used Mfold to do a relative 
comparison. Mfold is chosen as a representative from the dynamic programming 
language.The metrics used for evaluation is described below. We also report the results of 
experiments with various annealing schedules and different sets of permutation 
parameters.
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5.1   Energy flow of Simulated annealing

Figure 8 shows the energy minimization path for a typical run of H. marismortui 
(AF034620) sequence. This sequence has 122 nucleotide bases. The total number of 
helices found for this particular RNA sequence is 211.  As we can see from the plot in 
figure 8, during the initial phase of the algorithm, energy accepted is fluctuating heavily.  
This is because the algorithm allows to take steps which don't necessarily decrease the 
energy. As the number of iterations increase, the probability that the a bad step is 
accepted decreases and after 1500 iterations the algorithm reaches a stable state.

Figure 9 shows the flow of temperature as the number of iterations increases. 
The damping factor for the geometric cooling schedule is set at 0.99.  The temperature 
approaches the final value in about 600000 iterations.

Figure 8  Graph showing the energy convergence behavior for                            
                            H. marismortui  (AF034620)
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Figure 9  Graph for temperature variation
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5.2  Free Energy convergence variation with mutation parameter

The mutation  step in the simulated algorithm implements a change in the 
problem structure in a gradual fashion. This allows a type of control on the direction of 
the step. By swapping only one element of the helix set, the classical algorithm would 
allow only minor modification to the final permutation encoding. Most of the time this  
one step gets lost when the permutation is decoded. This happens when we swap 
elements in the middle of the set and they are discarded because they conflict with the 
helices in the beginning of  the set. The result is an increase in the number iterations that 
are needed to converge to a lower free energy of the secondary structure. The increase is 
more prominent with larger sequences as they produce a very large number helices.

An alternative is to use the modified permutation function developed in [12]. Here 
a large number of swaps are allowed initially (when the temperature is high) .  These 
large number of swaps enable the algorithm to explore significantly greater area in the 
problem space. As a result, the algorithm converges to minimum free energy much faster 
than the classical simulated annealing perturbation function.

Figure 10 shows the secondary structure detected using the classical approach. 
After 300,000 iterations the free energy achieved is -35.1Kcal/mol. The number of 
correctly identified base pairs is 68%. Figure 11 shows the secondary structure achieved 
with modified perturbation function. The swap parameter is set to 0.1. This results into 
600 swaps for initial temperature of 6000. In same number of iterations, this run 
converges to -48.6 Kcal/mol. We observe the same pattern with greater intensity as the 
number of bases in a sequence increases, i.e. the bigger the sequence, the perturbation 
function is more effective.
         Following table shows the experimental results on two of the sequences with 
varying lengths.

Number of Swaps
(Initial – Final )

Correct Base Pairs Minimum Free 
Energy

Haloarcula 
marismortui 
(AF034620)

1200    –  1 
 600     –  1
 300    –   1

74.23%
70.31%
53.67%

-49.3Kcal/mol
-48.6Kcal/mol
-44.1Kcal/mol

Acanthamoeba 
grifini 
(U02540) 

1200    –  1 
 600     –  1
 300    –   1

59.40%
58.3%
54.23%

-151.2Kcal/mol
-147.5Kcal/mol
-141.1Kcal/mol

Table 4 Results of varying mutation parameter and minimum free energy 
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Figure 10  Secondary structure predicted using classical mutation approach for 
sequence H. marismortui (AF034620)

This structure is produced using the draw method from RNAStructure package described 
in section 3.
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Figure 11 Secondary structure predicted using the modified mutation approach for 
sequence H. marismortui (AF034620). Image produced using draw method from 

RNAStructure package.
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5.3   Results of Simulated Annealing for typical sequences

In this section we describe the results obtained for A. proteobacterium (L13132),
S. sp.(AF007254) and M. anisopliae var.(AF197120).

5.3.1  Alpha Proteobacterium 16s RNA ( 250 bases)

Table 5 shows the results obtained for A. Proteobacterium. The results were obtained 
with using two different sets of temperature decay factors and combinations of varying 
amounts of swaps. The best results were obtained with decay factor of 0.95 and 1200 
initial swaps in the perturbation step. 65.40% of base pairs were identified correctly. 
Note. even though there are structures which have lower minimum free energy, they don't 
have better performance in terms of correctly identified base pairs. The results became 
better with increasing number of swaps. This could be attributed to the fact that Alpha 
Proteobacterium is a relatively small sequence. Thus a large number of swaps allow a 
greater proportion of helix structures to formed and explored.

Figure 12 shows the structure obtained with 65.4% correct base pairs whereas the 
Figure 13 shows the energy convergence flow over this particular run. This particular 
energy plot exemplifies the principle of simulated annealing. It shows that during initial  
phase of the algorithm a conformation of helix stacks is formed whose free energy is 
couple of order of magnitude more than the best achievable energy. But the algorithm 
picks this as the possible structure and thus jumps away from the local minima. The 
algorithm then stabilizes around -73.2 Kcal/mol.

Temperature Decay 
Factor

Number of Swaps
(Initial – Final )

Correct Base Pairs Minimum Free 
Energy

0.93 1200    –  1 
 600     –  1
 300    –   1

65.12%
62.64%
61.67%

-74.3Kcal/mol
-76.6Kcal/mol
-70.1Kcal/mol

0.95 1200    –  1 
 600     –  1
 300    –   1

65.40%
63.3%
61.23%

-73.2Kcal/mol
-75.5Kcal/mol
-71.6Kcal/mol

Table 5 Results of variation of temperature decay factor and minimum free energy
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Figure 12  Secondary Structure of A.proteobacterium 16s RNA produced using 
draw method provided by RNAStructure package
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                        Figure 13 Energy plot for A.proteobacterium. The algorithm allows a        

                        structure with very large free energy (1341Kcal/mol) and thus does not get 

                        stuck in local minima. Algorithm then converges to -73.2Kcal/mol.
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5.3.2  Sulfitobacter sp. 16S RNA (AF007254) with 400 nucleotide bases

Table 6 shows the results obtained after running 40 random seeds for each of the 
combination of temperature decay and initial number of swaps. Compared to A. 
proteobacterium whose results are described previously, this particular sequence is larger 
and results into 2438 different helices. This warranted a jump in the number of swaps as 
possible number of configurations became exorbitantly large. The runs show that we 
large initial swaps, the algorithm is allowed to explore a rather large problem space.   The 
algorithm showed best results at -131.23 Kcal/mol with 57.34% correct base pairs. 
matches. Figure 14 shows the secondary structure obtained for this particular RNA 
sequence.   
Temperature Decay 
Factor

Number of Swaps
(Initial – Final )

Correct Base Pairs Minimum Free 
Energy

0.93 2400    –  1 
1200     –  1
 600    –   1

57.12%
54.64%
51.67%

-131.3Kcal/mol
-124.5Kcal/mol
-121.7Kcal/mol

0.95 2400    –  1 
1200     –  1
 600    –   1

55.82%
54.21%
50.23%

-130.4Kcal/mol
-129.1Kcal/mol
-122.6Kcal/mol

0.97 2400    –  1 
1200     –  1
 600    –   1

57.40%
55.23%
51.38%

-131.3Kcal/mol
-128.5Kcal/mol
-123.6Kcal/mol

Table 6 Variation of temperature, mutation for S. sp. 16S RNA (AF007254)

5.3.3  Bacillus subtilis (D11460) with 118 nucleotide bases

Table 7 shows the results with 40 random seeds for the B. subtilis sequence. This 
is a relatively small sequence and the algorithm found 83.12% of the correct base pairs. 
There is no significant variation in correct base pairs detected when the swap number for 
the permutation step is changed. The restriction of defining a helix with at least 3 pairs of 
nucleotides stops the algorithm from correctly predicting intermediate base pairs. The 
minimum free energy achieved in this case is -37.2 Kcal/mol. Figure 15 shows the 
secondary structure obtained for B. subtilis sequence.

Temperature Decay 
Factor

Number of Swaps
(Initial – Final )

Correct Base Pairs Minimum Free 
Energy

0.95 600    –  1 
300    –  1
150    –  1

83.12%
82.64%
84.67%

-37.2Kcal/mol
-36.5Kcal/mol
-37.8Kcal/mol

Table 7 Variation of temperature, mutation for B.subtilis (D11460)
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Figure 14 Secondary structure of S. sp. 16S RNA (AF007254) produced using 
draw method provided by RNAStructure package.

31



Figure  15 Secondary structure of B. subtilis (D11460) produced using draw 
method provided by RNAStructure package.
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5.3.4 Secondary structure for S. cerevisiae (X67579) 

Figure 16 Secondary structure for  S.cerevisiae produced using draw method provided by 
RNAStructure package
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5.4   Comparison with Mfold 

Michael Zuker developed Mfold algorithm to predict the secondary structure. This 
is a dynamic programming algorithm which also produces sub-optimal structures as 
result. A web implementation has been made available at http://mfold.rna.albany.edu. 
The version of Mfold that was used is 3.2. To compare the results with simulated 
annealing, we chose the structure which gave the lowest free energy. The tests were run at 
37 degree Celsius setting with other attributes in the form set to default.

We found comparable and in some cases better results than Mfold. Table  8 
describes the comparison.

Organism RNA 
Class 

Number 
of 
Nucleoti
des

Base 
pairs in 
known 
structure

Simulated 
Annealing 
(%BP)

Mfold 
(% BP)

B. subtilis 5s rRNA 118 70 83.17 84.00%

S. cerevisiae 
(X67579) 

5s rRNA 118 37 89 89

H. marismortui 
(AF034620) 

5s rRNA 122 38 74.23 71.45

A. proteobacterium 
( L13132)

16s 
rRNA

250 85 81.2 79.3

R. sp. (UNP00394) 16s 
rRNA

261 155 65.23 62.34

M. anisopliae var. 
(3) (AF197120)

Group I 
Intron 
23S 
rRNA

375 120 77.89 76.66

S. sp. (AF007254) 16s 
rRNA

400 199 54.77 59.63

N. subterraneum
(U20773)

I intron 573 311 52.54 53.12

Table 8 Comparison with Mfold
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6  CONCLUSION

We studied one of the heuristic approaches to solve the problem of RNA 
secondary structure prediction, that is, simulated annealing. The algorithm was 
implemented using C++  and tested on a quad-core AMD machine. The method of 
mapping the secondary structure determination into simulated annealing framework is 
realized. Various experiments in helix generation and perturbation functions were 
performed in order to expedite the convergence of the algorithm. We compared the results 
obtained from simulated annealing with Mfold. We found the results similar for shorter 
sequences in general and in some cases a little better as the length of the sequence 
increased. The experiments were restricted to RNA sequences with length shorter than 
600 nucleotides because of lack of computational resources.
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7  FUTURE WORK

We suggest multiple directions in which this work can be extended. 

1. The current implementation does not work well if there are pseudo-knots in the 
native structure. This could be done with improved thermodynamic model which takes 
into account the effect of pseudo-knots. The Hotknots software implements one such 
thermodynamic model which could be integrated into current energy calculating function.

2.  The algorithm could be improved with weighted helix set approach. During the 
repair of the helix set, we can choose helices within a defined range of stacked pair with 
greater probability. This would allow more stable structures to be formed more easily. 

3. There exists significant opportunity to optimize the code-base. The focus for 
the implementation was correctness of the algorithm rather than optimality. Especially the  
memory intensive data movement could be reduced to increase the efficiency of the 
program.

4. Also, the code could be mapped to a parallel processing architecture. This way 
the runtime could be significantly reduced by taking advantage of the efficiency of 
parallel machines. 
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9  Appendix 

Here we describe the source code.
**********************************************************************
File : base_class.h

/*
   Defines the data types used by the final implementation.  
*/
**********************************************************************
 #if !defined(BASE_CLASS_H) 
#define BASE_CLASS_H 

#include <vector> 
#include <string> 

/ * The most basic data type is nucleotide with location and base_type */

class nucleotide_base 
{ 
private: 
        int base_location; 
        string base_type; 
        int helix_id; 
public: 
        nucleotide_base(string s, int i); 
        int    get_base_location(void) const; 
        string get_base_type(); 
}; 

/* Define the base pair of rna. */

class base_pair 
{ 

private: 
int associated_with_helix; 

        nucleotide_base i_loc,j_loc; 

public: 
        base_pair(string s_i,string s_j,int i, int j); 
        ~base_pair(); 
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        bool is_partof_other_helix(); 
        bool associate_with_helix(int i); 
        bool is_canonical_base_pair(); 
        int  get_i_loc(); 
        int  get_j_loc(); 
        string  get_i_base(); 
        string  get_j_base(); 
}; 

/* Define helix structure along with suitable access function. */
class helix 
{ 

private: 
        bool valid,complete; 
        int  helix_id; 
public: 

vector<base_pair> bases_in_helix; 
        vector<int> stack_bases; 
        vector<int> loop_bases; 
        vector<nucleotide_base> loop; 
        helix(); 
        ~helix(); 
        bool is_valid(); 
        bool is_complete(); 
        bool add_to_loop(const nucleotide_base& b); 
        void add_base_pair(base_pair& bp); 
        void set_valid(bool v); 
        void set_complete(bool c); 
        int  get_num_bases(); 
        int  get_loop_size(); 
        int  get_helix_id(); 
        void set_helix_id(int id); 
        void display_helix(); 
        bool intersects_with( helix& h); 
}; 

#endif
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**********************************************************************
File : base_class.cpp

/*
   Defines the class implementation of data types used by the final implementation.  
*/
**********************************************************************
#include <fstream> 
#include <cmath> 
#include <cstdlib> 
#include <cstring> 
#include <iostream> 
#include <algorithm> 
#include <string> 
#include <set> 

using namespace std; 

#include "base_class.h" 

//---------------------------------------------------------------------------------------------------- 
// Nucleotide base class 
//---------------------------------------------------------------------------------------------------- 
nucleotide_base::nucleotide_base(string s,int i) 
{ 
    base_location =  i; 
    base_type     =  s; 
    helix_id      =  -1; 
} 

int nucleotide_base::get_base_location()const 
{ 
   if (base_location < 0){ 
      cerr << "Base location not set yet." << endl; 
   } 
   else{ 
      return base_location; 
   } 
} 
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string nucleotide_base::get_base_type() 
{ 
  return base_type; 
}

//---------------------------------------------------------------------------------------------------- 
// Nucleotide base pair class 
//---------------------------------------------------------------------------------------------------- 
base_pair::base_pair(string s_i, string s_j, int i, int j): 
           i_loc(s_i,i), 
           j_loc(s_j,j) 
{ 
    associated_with_helix = -1; 
} 

base_pair::~base_pair() 
{ 

} 

bool base_pair::is_partof_other_helix() 
{ 
    return (associated_with_helix != -1); 
} 

bool base_pair::associate_with_helix(int i) 
{ 
    associated_with_helix = i; 
} 

bool base_pair::is_canonical_base_pair() 
{ 
   bool val = false; 
   string i_t = i_loc.get_base_type(); 
   string j_t = j_loc.get_base_type(); 
   std::transform(i_t.begin(), i_t.end(),i_t.begin(), ::toupper ); 
   std::transform(j_t.begin(), j_t.end(),j_t.begin(), ::toupper ); 

   if( 
      ( 
        !strcmp ( i_t.c_str(), "A" ) && 
        !strcmp ( j_t.c_str(), "U" )  
                                                                   43



      ) 
      ||   
      ( 
        !strcmp ( i_t.c_str(), "U" ) && 
        !strcmp ( j_t.c_str(), "A" )  
      ) 
      || 
      ( 
        !strcmp ( i_t.c_str(), "A" ) && 
        !strcmp ( j_t.c_str(), "T" )  
      ) 
      ||   
      ( 
        !strcmp ( i_t.c_str(), "T" ) && 
        !strcmp ( j_t.c_str(), "A" )  
      ) 
      || 
      ( 
        !strcmp ( i_t.c_str(), "G" ) && 
        !strcmp ( j_t.c_str(), "C" ) 
      ) 
      ||   
      ( 
        !strcmp ( i_t.c_str(), "C" ) && 
        !strcmp ( j_t.c_str(), "G" ) 
      ) 
      || 
      ( 
        !strcmp ( i_t.c_str(), "G" ) && 
        !strcmp ( j_t.c_str(), "U" ) 
      ) 
      || 
      ( 
        !strcmp ( i_t.c_str(), "U" ) && 
        !strcmp ( j_t.c_str(), "G" ) 
      ) 
      || 
      ( 
        !strcmp ( i_t.c_str(), "G" ) && 
        !strcmp ( j_t.c_str(), "T" ) 
      ) 
      || 
      ( 
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     !strcmp ( i_t.c_str(), "T" ) && 
        !strcmp ( j_t.c_str(), "G" ) 
      ) 

    ) 
    {   
      val = true; 
    } 
   
   //cout << " I = " << i_t << " i = " << i_loc.get_base_location() << "||| J = " << j_t << " j 
= " << j_loc.get_base_location() << " || " << val << endl; 
     
   return val;         
} 

int base_pair::get_i_loc() 
{ 
  return i_loc.get_base_location(); 
} 

int base_pair::get_j_loc() 
{ 
  return j_loc.get_base_location(); 
} 

string base_pair::get_i_base() 
{ 
  return i_loc.get_base_type(); 
} 

string base_pair::get_j_base() 
{ 
  return j_loc.get_base_type(); 
} 

//---------------------------------------------------------------------------------------------------- 
// Helix  class 
//---------------------------------------------------------------------------------------------------- 
helix::helix() 
{ 
    valid    = true; 
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    complete = false; 

} 

helix::~helix() 
{ 

} 

void helix::add_base_pair(base_pair& bp) 
{ 
  bases_in_helix.push_back(bp); 
  stack_bases.push_back(bp.get_i_loc()); 
  stack_bases.push_back(bp.get_j_loc()); 
} 

void helix::set_valid(bool v) 
{ 
  valid = v; 
} 

void helix::set_complete(bool c) 
{ 
  complete = c; 
} 

bool helix::is_valid() 
{ 
  return valid ; 
} 

 
bool helix::is_complete() 
{ 
  return complete; 
} 

int helix::get_num_bases() 
{ 
  return bases_in_helix.size(); 
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} 

bool helix::add_to_loop(const nucleotide_base& b) 
{ 
  loop.push_back(b); 
  loop_bases.push_back(b.get_base_location()); 
} 

int helix::get_loop_size() 
{ 
  return loop.size(); 
} 

void helix::set_helix_id(int id) 
{ 
  helix_id = id; 
} 

int helix::get_helix_id() 
{ 
  return helix_id; 
} 

void helix::display_helix() 
{ 
  vector<base_pair>:: iterator h_i = bases_in_helix.begin(); 
  while(h_i != bases_in_helix.end()){ 
     cout << "         " <<  h_i->get_i_base()  <<  "   " << h_i->get_i_loc() + 1 << 
"--------------------" << h_i->get_j_loc() + 1 << "   " << h_i->get_j_base() << endl; 
     h_i++; 
  } 
 
} 

bool helix::intersects_with( helix& h) 
{ 

  
  sort(h.stack_bases.begin(),h.stack_bases.end()); 
  //cout << " H = " ; 
  //for(int i = 0; i < h.stack_bases.size() ; i++) 
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  sort(this->stack_bases.begin(),this->stack_bases.end());  

  bool stacked_pair = (fabs( this->stack_bases.back() - h.stack_bases.front()) < 5) | 
                      (fabs( this->stack_bases.front() - h.stack_bases.back()) < 5);    
 
  //cout << " S = " ; 
  //for(int i = 0; i < this->stack_bases.size() ; i++) 
  //    cout << " " << this->stack_bases.at(i) ; 
  //cout << endl; 
  vector<int> z(1000); 
  vector<int>::iterator z_i = z.begin(); 
  vector<int> y(1000); 
  vector<int>::iterator y_i = y.begin(); 
  vector<int> t(1000); 
  vector<int>::iterator t_i = t.begin(); 
  vector<int>::iterator r; 
  vector<int>::iterator s; 
  vector<int>::iterator i; 
  
  r = set_intersection(h.stack_bases.begin(),h.stack_bases.end(),this-
>stack_bases.begin(),this->stack_bases.end(),z_i); 
  
  sort(this->loop_bases.begin(),this->loop_bases.end()); 
  s = set_intersection(h.stack_bases.begin(),h.stack_bases.end(),this-
>loop_bases.begin(),this->loop_bases.end(),y_i); 

  sort(h.loop_bases.begin(),h.loop_bases.end()); 
  i = set_intersection(h.loop_bases.begin(),h.loop_bases.end(),this-
>stack_bases.begin(),this->stack_bases.end(),t_i); 
   return ( ( int(r - z_i) > 0 ) || ( (int(s - y_i) > 0) && ( int (i-t_i)>0) )); 
  
}
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**********************************************************************
File : test_base.cpp

/*
   Defines the main algorithm helix generation and simulated annealing.  
*/
**********************************************************************
#include <iostream> 
#include <fstream> 
#include <string> 
#include <cstdlib> 
#include <cstring> 
#include <algorithm> 
#include <boost/bind.hpp> 
#include <boost/lexical_cast.hpp> 
#include <gsl/gsl_rng.h> 
#include <gsl/gsl_math.h> 
#include <assert.h> 
#include <gsl/gsl_machine.h> 
#include <gsl/gsl_siman.h> 
#include <gsl/gsl_ieee_utils.h> 
#include "RNA.h" 
#include "ErrorChecker.h" 

using namespace std; 

#include "base_class.h" 

/* set up parameters for this simulated annealing run */ 
     
/* how many points do we try before stepping */ 
#define N_TRIES 5             

/* how many iterations for each T? */ 
#define ITERS_FIXED_T 1000 

/* max step size in random walk */ 
#define STEP_SIZE 1.0            

/* Boltzmann constant */ 
#define K 1.0                   
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/* initial temperature */ 
#define T_INITIAL 6000         

/* damping factor for temperature */ 
#define MU_T 1.075              
#define T_MIN 2.0e-6 

/* Number of Stacked bases */ 
#define STACK_BASE 3 
/* Number of bases in loop */ 
#define NUM_LOOP 3 
#define MAX_LOOP 4000 
/* Number of swaps per perturbation step */ 
#define SWAPS 1 
#define GUIDE_NUM 3 

gsl_siman_params_t params = {N_TRIES, ITERS_FIXED_T, STEP_SIZE,K, 
T_INITIAL, MU_T, T_MIN}; 

struct data_type_Helix{ 
   float curr_temp; 
   RNA* a; 
   vector<helix>* Helix_Set; 
   vector<helix>* Final_Set; 
   vector<helix>* Guide_Set; 
   int seed; 
}; 

/* Generate the helix set using the helix-generation algorithm */      

void generate_helix_set(vector<base_pair>& all_bps,vector<helix>& Helix_Set,int 
mode, vector<nucleotide_base>& all_bases ) 
{ 
    vector<base_pair>::iterator locator_bp ; 
    vector<base_pair>::iterator abp = all_bps.begin(); 
    vector<nucleotide_base>::const_iterator nb; 
   
    int helix_id = 0; 
    base_pair dummy("X","X",0,0); 
    int bp_n = 0; 
    while(abp != all_bps.end()) 
    { 
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    if (abs(abp->get_i_loc() - abp->get_j_loc()) < 9){ 
         abp++; 
         continue; 
      } 
       
       if (bp_n % 1000 == 0) 
          cout << " Bp = " << bp_n << endl; 
       bp_n++; 
       helix h; 
       int i,j; 
       base_pair bp = *abp; 
       while ( h.is_valid() && !h.is_complete() ) 
       { 
         //cout << "Begin BP " << endl; 
         if(bp.is_canonical_base_pair() && !bp.is_partof_other_helix()) 
         { 
           h.add_base_pair(bp); 
           i = bp.get_i_loc() + 1 ; 
           j = bp.get_j_loc() - 1 ; 
           if(i >= j) 
           {   
             bp = dummy ; 
           } 
           else 
           { 
              locator_bp = find_if(all_bps.begin(),all_bps.end(),
(boost::bind(&base_pair::get_i_loc,_1) == i) && (boost::bind(&base_pair::get_j_loc,_1) 
== j ) ); 
              if(  (locator_bp == all_bps.end()) && (mode == 0) ) 
                 cerr << "ERROR : Can not locate base for ri = " << i << " rj = " <<  j << endl; 
              else if( mode == 0 ) 
                 bp = *locator_bp; 
              else if( (locator_bp == all_bps.end()) && ( mode == 1 ) ) 
                 bp = dummy; 
              else  
                 bp = *locator_bp; 
              //cout << " Next bp i = " << bp.get_i_loc() << " j = " << bp.get_j_loc() << endl; 
           } 
         } 
         else{ 
               
            if (h.get_num_bases() < STACK_BASE){ 
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              h.set_valid(false); 
               //cout << " STACK_BASE INVALID " << endl; 
            } 
            else if ( ( (j-i) < NUM_LOOP) || ( (j-i) > MAX_LOOP ) ){ 
               h.set_valid(false); 
               //cout << " NUM_LOOP INVALID " << endl; 
            } 
            else{ 
               for (int x = i ; x < j ; x++) 
               {  
                  nb = find_if(all_bases.begin(),all_bases.end(),
(boost::bind(&nucleotide_base::get_base_location,_1) == x)) ; 
                  if(nb == all_bases.end()) 
                    cerr << "ERROR : Cannot find all bases" << endl; 
                  h.add_to_loop(*nb); 
               } 
               h.set_complete(true); 
            } 
         } 
       } 
    
       if (h.is_valid()) 
       { 
         vector<base_pair>::iterator i = h.bases_in_helix.begin(); 
         h.set_helix_id(helix_id); 
         while(i != h.bases_in_helix.end()) 
         { 
           locator_bp = find_if(all_bps.begin(),all_bps.end(),
(boost::bind(&base_pair::get_i_loc,_1) == i->get_i_loc()) && 
(boost::bind(&base_pair::get_j_loc,_1) == i->get_j_loc() ) ); 
           if(locator_bp == all_bps.end()) 
             cerr << "ERROR: h_is_valid not located" << endl; 
           else 
               locator_bp->associate_with_helix(helix_id);  
  
           i++; 
         } 
         Helix_Set.push_back(h); 
         helix_id++; 
         if(helix_id % 100 == 0) 
          cout << " Found valid = " << helix_id  << endl; 
       } 
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       abp++; 
      
  
    } 
  
    int sizeofhelix; 
    sizeofhelix = Helix_Set.size(); 
    cout << "Number of helices found is  " << sizeofhelix << endl; 
    vector<helix>::iterator h_i = Helix_Set.begin(); 
    while(h_i != Helix_Set.end()) 
    { 
      h_i->display_helix(); 
      cout << 
"----------------------------------------------------------------------------------------------------------
------" << endl; 
      h_i++; 
    } 
    cout << "DONE : Number of helices found is  " << sizeofhelix << endl; 

} 
 

/* Repair the permuation of helix set by discarding any helixes that conflict with earlier  
used helixes. */

void repair_permuatation(vector<helix>& Helix_Set,vector<helix>& Uniq_Set) 
{ 
   bool uniq_v; 
   vector<helix>:: iterator h_i = Helix_Set.begin(); 
   vector<helix>:: iterator u_i; 
   Uniq_Set.clear(); 
   Uniq_Set.push_back(*h_i); 
   h_i++; 
   while(h_i != Helix_Set.end()){ 
       uniq_v = true; 
       u_i = Uniq_Set.begin(); 
       //cout << 
"----------------------------------------------------------------------------------------------------------
------" << endl; 
       //cout << " iterator " << endl; 
       //h_i->display_helix(); 
       while(u_i != Uniq_Set.end()){ 
       //cout << " Uniqe " << endl; 
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 //u_i->display_helix(); 
          if(h_i->intersects_with(*u_i)){ 
            //cout << " Not chosen" <<endl; 
            uniq_v = false; 
            break; 
          } 
          u_i++; 
       } 
       if(uniq_v){ 
          //cout << " Chosen " << endl; 
          //h_i->display_helix(); 
          Uniq_Set.push_back(*h_i); 
          //cout << 
"----------------------------------------------------------------------------------------------------------
------" << endl; 
       } 
       h_i++; 
   } 

} 

/* Create RNA data structure from the helix set generated. This is done so that we can use 
the efn2 energy calculation function. */
void map_helix_to_RNA(vector<helix>& Repaired_Set,RNA& a) 
{ 
   a.RemovePairs(); 
   int error; 
   vector<helix>::iterator h_u = Repaired_Set.begin(); 
   while(h_u != Repaired_Set.end()) 
   { 
     
     //cout << 
"----------------------------------------------------------------------------------------------------------
------" << endl; 
     //h_u->display_helix(); 
     //cout << 
"----------------------------------------------------------------------------------------------------------
------" << endl; 
     vector<base_pair>:: iterator b_h_u = (*h_u).bases_in_helix.begin(); 
     while(b_h_u != (*h_u).bases_in_helix.end()) 
     { 
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        error = a.SpecifyPair((*b_h_u).get_i_loc()+1,(*b_h_u).get_j_loc()+1,1); 
         //error = a.ForcePair((*b_h_u).get_i_loc()+1,(*b_h_u).get_j_loc()+1); 
         if(error!=0) { 
                 //check to make sure that the return is zero, or else an error has occured 
                 std::cerr << a.GetErrorMessage(error); 
                 exit(0); 
         } 
         b_h_u++; 

     } 
     h_u++; 
   } 

} 

/* Energy calculation function whose pointer is given to simulated annealing routine.
    First repair the permutation and then calculate the energy of structure.                        */

double E1(void *xp) 
{ 
   static int x = 0; 
   int s = 1; 
   int error;  
   //vector<helix> Repaired_Set; 
   //repair_permuatation( (*( ((data_type_Helix *)xp)->Helix_Set) ),Repaired_Set); 
   //int tmp_size1 = (*( ((data_type_Helix *)xp)->Helix_Set) ).size(); 
   //cout << "Number of helices Original found is  " << tmp_size1 << endl; 
   repair_permuatation( (*( ((data_type_Helix *)xp)->Helix_Set) ),(*( ((data_type_Helix 
*)xp)->Final_Set) )); 
   //int tmp_size2 = (*( ((data_type_Helix *)xp)->Final_Set)).size(); 
   //cout << "Number of helices Used  is  " <<  tmp_size2 << endl; 
   map_helix_to_RNA((*( ((data_type_Helix *)xp)->Final_Set) ),(*( ((data_type_Helix 
*)xp)->a) )); 
   if ((*( ((data_type_Helix *)xp)->a) ).ContainsPseudoknot(1)) 

cerr << " Yes contains ps" << endl; 
   
    double free_energy = (*( ((data_type_Helix *)xp)->a) ).CalculateFreeEnergy(s); 
    error = (*( ((data_type_Helix *)xp)->a) ).GetErrorCode(); 
    if (error==0) { 
            //Note that when calculate energy is called the first time, RNA reads parameter 
files from 
            //disk at the location specified by environment variable DATAPATH. 
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            //These are the .dat files found in the data_tables directory of RNAstructure 
            std::cout << "Free energy change is: "<<(*( ((data_type_Helix *)xp)-
>a) ).CalculateFreeEnergy(s)  << "    GetFree = " << (*( ((data_type_Helix *)xp)-
>a) ).GetFreeEnergy(s) << "\n"; 
    } 
    else { 
            std::cerr << (*( ((data_type_Helix *)xp)->a) ).GetErrorMessage(error); 
    } 
     if(free_energy < -25){ 
       string x_s    =  boost::lexical_cast<string>(x); 
       string seed_s =  boost::lexical_cast<string>( ((data_type_Helix *)xp)->seed); 
       string energy_s = boost::lexical_cast<string>(free_energy); 
       const string f_s = "File_seed" + seed_s + "i_" +   x_s + "Free_EN" + energy_s; 
       const string t_s = "Thermo_seed" + seed_s + "i_" + x_s + "Free_EN" + energy_s; 
       (*( ((data_type_Helix *)xp)->a) ).WriteCt(f_s.c_str()); 
       (*( ((data_type_Helix *)xp)->a) ).WriteThermodynamicDetails(t_s.c_str()); 
     } 
     x++; 
     //exit(0); 
    return free_energy; 
} 

/* Metric function to determine the difference between two structures. */
double M1(void *xp, void *yp) 
{ 
   double free_energy_xp = E1(xp); 
   double free_energy_yp = E1(yp); 
   
   return fabs(free_energy_yp - free_energy_xp); 
} 

/* Step function. Here we implement helix swap in classical sense as well as the multiple 
swaps dependent on temperature. */

void S1(const gsl_rng * r, void *xp, double step_size) 
{ 
  
  int Helix_Size = (*( ((data_type_Helix *)xp)->Helix_Set) ).size(); 
  int Guide_Size = (*( ((data_type_Helix *)xp)->Guide_Set) ).size(); 
   

  int n1 = gsl_rng_uniform_int(r,Helix_Size); 
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 int n2 = gsl_rng_uniform_int(r,Helix_Size); 
  if(Guide_Size > 0){ 
       n1 = n1 < GUIDE_NUM ? GUIDE_NUM + 1 : n1; 
       n2 = n2 < GUIDE_NUM ? GUIDE_NUM + 1 : n2; 
  } 
  int num_swaps = ( (( ((data_type_Helix *)xp)->curr_temp) )*0.1 < 1 ) ? 1 : 
(( ((data_type_Helix *)xp)->curr_temp) )*0.1 ; 
  for(int num_mu = 0; num_mu < num_swaps; num_mu++){ 
    swap((*( ((data_type_Helix *)xp)->Helix_Set) )[n1],(*( ((data_type_Helix *)xp)-
>Helix_Set) )[n2]); 
    n1 = gsl_rng_uniform_int(r,Helix_Size);    
    n2 = gsl_rng_uniform_int(r,Helix_Size); 
    if(Guide_Size > 0){ 
       n1 = n1 < GUIDE_NUM ? GUIDE_NUM + 1 : n1; 
       n2 = n2 < GUIDE_NUM ? GUIDE_NUM + 1 : n2; 
    } 
  } 

} 

/* Print the helix set  function*/
void P1(void *xp) 
{ 
  ((data_type_Helix *)xp)->curr_temp /= MU_T; 
  vector<helix>::iterator h_i = (*( ((data_type_Helix *)xp)->Final_Set) ).begin(); 
  cout << endl <<  " Final Helix Set Begin " << endl; 
  while(h_i !=  (*( ((data_type_Helix *)xp)->Final_Set) ).end()) 
  { 
    cout << 
"----------------------------------------------------------------------------------------------------------
------" << endl; 
    h_i->display_helix(); 
    cout << 
"----------------------------------------------------------------------------------------------------------
------" << endl; 
    h_i++; 
  } 

  cout << endl <<  " Final Helix Set End " << endl; 
} 
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/* The main loop of the implementation */

int main(int argc, char* argv[]) 
{ 
   
    char chr; 
    string s1,s2,orig_nucleotide; 
    ifstream myfile(argv[1]); 
    
    if (myfile.is_open()) 
    { 
      cout << "Opened file = " << argv[1] << endl; 
    } 
    else{ 
      cout << "Can not open file" << endl; 
    } 
    
    int mode = 0; 
    
    vector <nucleotide_base> all_bases; 
    vector<base_pair> all_bps; 
    int i = 0; 
    while(myfile) 
    { 
      myfile.get(chr); 
      string s; 
      s.insert(0,1,chr); 
      orig_nucleotide.append(1,chr); 
      nucleotide_base b(s,i++); 
      all_bases.push_back(b); 
    } 
   
    if(mode == 0) { 
        if (all_bases.size() < 1){ 
          cout << "ERROR : Empty base list " << endl; 
        } 
        else{ 
          //FIXME Crude method of dealing with null terminated string. 
          all_bases.pop_back(); 
          all_bases.pop_back(); 
          cout << " number of bases = " << all_bases.size() << endl; 
        }
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        vector<base_pair> all_canonical_bps; 
         
        for ( int i = 0 ; i < all_bases.size()-1 ; i++ ){ 
            for ( int j = i+1; j < all_bases.size(); j++ ) { 
                base_pair 
bp(all_bases[i].get_base_type(),all_bases[j].get_base_type(),all_bases[i].get_base_locatio
n(),all_bases[j].get_base_location()); 
                if (bp.is_canonical_base_pair()) 
                   all_canonical_bps.push_back(bp); 
                
                all_bps.push_back(bp); 
            } 
        } 
    cout << "Size of canonical bps = " << all_canonical_bps.size() << endl; 
    } 
    
   cout << "Size of all       bps = " << all_bps.size() << endl; 
   vector<helix> Helix_Set; 
   vector<helix> Final_Set; 
   generate_helix_set(all_bps,Helix_Set,mode,all_bases); 
   
   vector<helix> Guide_Set;  
   mode = 1; 
   if(mode){ 
         vector<base_pair> guide_bps; 
         string line; 
         int i1,i2,i3,i4,i5; 
         ifstream mybpfile(argv[2]); 
         while(mybpfile){ 
           mybpfile >> i1 >> s1 >> i2 >> i3 >> i4 >> i5  ; 
           if ( i4 != 0 ){ 

      s1 = all_bases[i1-1].get_base_type(); 
                  s2 = all_bases[i4-1].get_base_type(); 
                  base_pair bp(s1,s2,i1-1,i4-1); 
                 guide_bps.push_back(bp); 
           } 
         } 
         generate_helix_set(guide_bps,Guide_Set,1,all_bases); 
    } 
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   const gsl_rng_type * T; 
   gsl_rng * r; 
   gsl_rng_env_setup(); 
   T = gsl_rng_default; 
   r = gsl_rng_alloc(T); 
      
   printf ("seed = %lu\n", gsl_rng_default_seed); 
   srand (gsl_rng_default_seed ); 
   random_shuffle ( Helix_Set.begin(), Helix_Set.end() ); 
  
 
   const char* orig_string = orig_nucleotide.c_str(); 
   cout << " String="<<orig_nucleotide << endl; 
   RNA a(orig_string,true); 
   float init_temp = T_INITIAL; 
   

   data_type_Helix xp = 
{init_temp,&a,&Helix_Set,&Final_Set,&Guide_Set,gsl_rng_default_seed}; 
   if ( mode ){ 
      int Guide_Size = (*( ((data_type_Helix )xp).Guide_Set) ).size(); 
      cout << " Guide Size = " << Guide_Size << endl; 
      if(Guide_Size > 0){ 
          for ( int i = 0; i < GUIDE_NUM ; i++ ){ 
              (*( ((data_type_Helix )xp).Helix_Set) )[i] = (*( ((data_type_Helix )
xp).Guide_Set) )[i]; 
             
              cout << " First Helix " << endl; 
              cout << " --------------------------------------------------------------------- " << endl; 
              ((*( ((data_type_Helix )xp).Helix_Set) )[i]).display_helix(); 
              cout << " --------------------------------------------------------------------- " << endl; 
          } 
        } 
      gsl_siman_solve(r,&xp,E1,S1,M1,P1,NULL,NULL,NULL,64,params); 
   } 
   else{ 
      gsl_siman_solve(r,&xp,E1,S1,M1,P1,NULL,NULL,NULL,64,params); 
   } 
  

}
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**********************************************************************
File : evaluate.pl

/*
   Calculate the evaluation metric between predicted structure and native strucure.  
*/
**********************************************************************
#!/usr/bin/perl 
use strict; 
use warnings; 

print (scalar(@ARGV)!=2 ? die "Please specify two ct files\n" : "\n"); 
if ( -z $ARGV[0] || -z $ARGV[1]) 
{ 
die( "File is empty\n"); 
} 

my %hash = (); 
for (my $i=1; $i<3; $i++ ) 
{ 
  my $firstline = 0; 
  open( IN, $ARGV[$i-1] ) or die "Cannot open the file\n"; 
  while( my $line = <IN>) 
  { 

chomp($line); 
chop ($line) if ( $line =~/\r/ ); 
if($firstline == 0) 
{ 
  $firstline = 1; 
}  
else 
{ 

my @base_pairs = split(" ", $line); 
#print "@base_pairs\n"; 
if ( $base_pairs[4] != 0 ) 
{ 
  $hash{$i}{$base_pairs[0]} = $base_pairs[4]; 
} 
else 
{ 
  $hash{$i}{$base_pairs[0]} = -1; 
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                    } 
} 

 
  } 
close(IN); 
} 

my @keys = sort {$a <=> $b } keys(%hash); 
my $key; 
foreach $key (@keys) 
{ 
        #print "$key\n"; 

#print "*" x 10 ; 
#print "\n"; 
my @bases = keys(%{$hash{$key}}); 
foreach my $pair (@bases) 
{ 
 #   print "$pair => $hash{$key}{$pair}\n"; 
} 

  
#print "*" x 10 ; 
#print "\n"; 
 

} 
my $TP = 0; 
my $FP = 0; 
my $FN = 0; 
my $pre; 
my $nav; 
my @predict_bases = sort {$a <=> $b} keys(%{$hash{1}}); 
my @native_bases  = sort {$a <=> $b} keys(%{$hash{2}}); 

foreach $pre (@predict_bases) 
{ 

if ( exists($hash{1}{$pre}) &&  exists($hash{2}{$pre}) ) 
{ 

if( $hash{1}{$pre} == $hash{2}{$pre} ) 
{ 
    print " TP $hash{1}{$pre}  $hash{2}{$pre}\n"; 
    $TP = $TP+1; 
} 
elsif ( $hash{1}{$pre} !=  $hash{2}{$pre}) 
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                          { 

   if ( $hash{1}{$pre} == -1 && $hash{2}{$pre} != -1) 
   { 
      print " FN $hash{1}{$pre}  $hash{2}{$pre}\n"; 
      $FN = $FN +1; 
   } 
   elsif ( $hash{1}{$pre} != -1 && $hash{2}{$pre} == -1) 
   { 
      print " FP $hash{1}{$pre}  $hash{2}{$pre}\n"; 
      $FP = $FP+1; 
   } 
   else 
   { 
      print " FN $hash{1}{$pre}  $hash{2}{$pre}\n"; 

$FN = $FN + 1; 
   } 
} 

} 

} 

print "TP = $TP\n"; 
print "FP = $FP\n"; 
print "FN = $FN\n";
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