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ABSTRACT

AN ITERATED FORCING EXTENSION IN WHICH ALL
ℵ1-DENSE SETS OF REALS ARE ISOMORPHIC

by Michael H. Vartanian

If κ is an infinite cardinal, then X ⊆ R is called κ-dense if between any a < b,

both in R, there are exactly κ elements of X. In these terms, a famous result of

Cantor says that in every model of set theory all ℵ0-dense sets of reals are

isomorphic (to Q). This result cannot be directly extended, however, since for

κ = ℵ1 there exist models of set theory in which not all ℵ1-dense sets are

isomorphic. On the other hand, Baumgartner has shown by the method of iterated

forcing that assuming the consistency of set theory, there does exist at least one

model of set theory in which all ℵ1-dense subsets are isomorphic. We present here a

detailed, yet expository, account of Baumgartner’s result and discuss its relevance to

the Proper Forcing Axiom of contemporary set theory.
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CHAPTER 1

INTRODUCTION

1.1 Main problem

Let R be the continuum, expressed as the ordered set of reals, and let ℵ0 be

the cardinality of the naturals. We begin with two theorems by Cantor.1 The first

tells us the cardinality of R is greater than ℵ0, so there is a least cardinal ℵ1 > ℵ0.

The second is:

There is a Q0 ⊆ R such that between every two elements of R there
are exactly ℵ0 elements of Q0, and all X ⊆ R with this property are
order-isomorphic to Q0.

For the property mentioned, we say that Q0 is ℵ0-dense. Probably the

simplest question one can ask is: What happens when ℵ1 is substituted for ℵ0 in the

displayed statement? More exactly: Is there, or at least could there be, a Q1 ⊆ R

which, substituted for Q0, preserves the theorem? Should there be?

If we assume that our set-theoretic universe is described by only the

Zermelo-Fraenkel axioms with Choice (ZFC), then there is no way to know whether

such a Q1 actually exists or not. In fact, Sierpinski (c. 1950) showed that any model

of set theory in which the Continuum Hypothesis (CH) is true contains at least ℵ1
1 See [Jech03].
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pairwise non-isomorphic ℵ1-dense sets. On the other hand, Baumgartner, using the

modern method of forcing, established the following result, sufficient for

Q1 [Baum73]:

(∗) If any model of set theory exists, then a model of set theory
(and ¬CH) exists in which all ℵ1-dense sets are order-isomorphic.

Thus, there could be a Q1. From these brief remarks, the place of (∗) in the

high tradition of set theory should already be clear, and for this reason a full

exposition, unavailable elsewhere, is the subject here. We also wish to comment on

the importance of (∗) for certain recent developments in set theory, but the reader

who is not particularly interested in these may now skip to the next section.

As to whether there should be a Q1, Baumgartner subsequently proposed (∗),

as well as several other interesting results, as evidence for adopting the Proper

Forcing Axiom (PFA) as a strengthening of Martin’s Axiom(ℵ1) in set

theory [Baum84]. This initiative came about after Shelah’s introduction of proper

forcing (c. 1978) by which he was able to give a simpler, albeit more sophisticated,

proof of (∗).

One such recent result (c. 2006) concerns the basis problem for the

uncountable linear orders. We say that a subclass Y of a class X of linear orders is a

basis for X if every member of X contains an isomorphic copy of some element of Y .

Assuming PFA and building on key combinatorial lemmas by Todorc̆ević [Tod98], J.

T. Moore produced a five-element basis for the uncountable linear orders [Mo06].

This result actually incorporates a corollary of (∗) noted by Baumgartner even

before the advent of PFA [Baum73]. Call a linear order real-type if it is isomorphic

to an uncountable subset of R. Then (∗) implies that
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{Q1} is a basis for the real-type linear orders.

Moore’s main result is his proof of Shelah’s Conjecture that, under PFA, there exists

a two-element basis for the class of uncountable linear orders whose type is neither

real, ω1 nor ω∗1. We shall not discuss this further, except for the personal comment

that an understanding of (∗) and its proof is required for a full appreciation and

confident application of PFA itself.

1.2 Overview of this work

Our objective here is to present a full, and relatively complete, proof of

Baumgartner’s result (∗). In Chapter 2, we give our set-theoretic conventions and a

brief introduction to the theory of simple (as opposed to iterated) forcing. We

follow the development of forcing as given in the text by Kunen [Kun80]. The

natural endpoint of this discussion is the existence of a ground model of set theory

M over which, for any fixed ℵ1-dense sets A,B ∈M , another model of set theory (a

generic extension of M) can be forced in which A and B are isomorphic. However,

in order to motivate the construction of a countable chain condition (c.c.c.) partial

order that follows in Chapter 3, a final section is appended covering both the c.c.c.

and the related topic of nice names for subsets.

Chapter 3 addresses the hard part of the problem, and for this we

follow [Baum73] but with much added detail. Assuming that the ground model M

also satisfies CH, we construct for any fixed ℵ1-dense sets A,B ∈M a c.c.c. partial

order P(AB) by which is forced another model in which A and B are isomorphic.

Chapter 4 presents a general discussion of iterated forcing by which the

forcings by individual P(AB)’s are exhaustively iterated to finally produce a model

M∗ for which (∗) holds. Due to the technicalities associated with the method of
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forcing, a complete and rigorous presentation of this subject is beyond the scope of

this thesis; still, it is worth noting that [Baum73] devotes just one paragraph to

iterated forcing, and the reader is referred instead to the now somewhat dated paper

by Solovay and Tennenbaum (1971) on this subject. For our presentation, we have

adapted for our purposes Kunen’s more modern proof by iterated forcing of the

consistency of Martin’s Axiom [Kun80].

In Chapter 5, we conclude by discussing how use of the Proper Forcing Axiom

simplifies the proof of Baumgartner’s result.
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CHAPTER 2

SIMPLE FORCING

Our main purpose in this chapter is to establish that assuming there is any

model of set theory at all, then there is a model M of set theory with the property

that for any given pair of ℵ1-dense sets A,B ∈M , there exists by the method of

forcing yet another model of set theory in which A and B are isomorphic. Of

course, this does not guarantee a model of set theory in which all ℵ1-dense sets are

isomorphic. As a first step towards this latter goal, however, we introduce in the

last section the notions of countable chain condition for partial orders and nice

names for subsets in generic extensions.

2.1 Set theory conventions

“Set theory” here means Zermelo-Fraenkel set theory with Choice (ZFC),

which we assume consistent. The letters α, β, γ denote ordinals, κ, λ cardinals, and

0 = ∅, the empty set. κ× κ is the set of all pairs 〈α, β〉 with α, β < κ. If S is a set,

|S| denotes the cardinality of S. ℵ0 is the least infinite cardinal; a set A is countable

iff |A| ≤ ℵ0, and uncountable otherwise. ℵ1 is the least uncountable cardinal, and ℵ2

is the least cardinal greater than ℵ1. We use ω = ω0, and ω1, ω2 to denote the

corresponding orderings, i.e., ω = 〈ℵ0, <〉, etc. The Continuum Hypothesis 2ℵ0 = ℵ1

is denoted CH, and the statement 2ℵ1 = ℵ2 by CH1. [A]κ is the collection of subsets
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of A of cardinality κ.

The method of forcing was originally discovered by P. Cohen (1963), and

much of the subsequent development in the 1960’s is due to R. Solovay. We follow in

general the development of forcing with arbitrary partial orders as given

in [Kun80].1

2.2 Cardinality lemmas

We state for reference the following results which will be basic for Chapters 3

and 4 (see [Kun80]):

Lemma 2.2.1. Let κ be an infinite cardinal. Then a union of ≤ κ sets each of

cardinality ≤ κ has cardinality ≤ κ. �

In the sequel, we refer to this consequence of the Axiom of Choice as the

pigeonhole principle.

Lemma 2.2.2. If κ is an infinite cardinal, and n > 1 a natural number, then there

exists a function f : κ→ κ× · · · × κ (n times) that is 1-1 and onto. �

This follows from the Gödel well-ordering on κ× κ.

2.3 ℵ1-dense sets of reals

A linear order is a pair 〈A,<A〉, where <A is a subset of A× A that is an

irreflexive, transitive, and total relation. Where it will not cause confusion, we often

refer to 〈A,<A〉 as simply A. If A and B are linear orders, then a (linear order-)

isomorphism from A to B is a function f : A→ B that is 1-1, onto, and preserves

the order relation, i.e., ∀a, a′ ∈ A (a <A a
′ ↔ f(a) <B f(a′)). An isomorphism

f : A→ B will often be abbreviated f : A ' B below.

1 [Jech03] presents an alternative development of forcing using complete Boolean algebras.
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Definition 2.3.1. Let A = 〈A,<A〉 be a linear order with A ⊆ R and where <A is a

subset of (A×A) ∩ <R with <R the standard order on R. Then A is ℵ1-dense iff for

all a, b ∈ R, |(a, b) ∩ A| = ℵ1. �

Lemma 2.3.2. If A is ℵ1-dense, then |A| = ℵ1.

Proof. R, being separable, is the union of countably many open rational intervals

(qn, rn), n < ω. Thus, applying Lemma 2.2.1 with κ = ℵ1 gives:

|A| = |A ∩ R| =

∣∣∣∣∣A ∩ ⋃
n<ω

(qn, rn)

∣∣∣∣∣ =

∣∣∣∣∣⋃
n<ω

[(qn, rn) ∩ A]

∣∣∣∣∣ = ℵ1.

�

As a corollary, we remark that every ℵ1-dense set 〈A,<A〉 is isomorphic to a

linear order 〈ℵ1,≺A〉, where ≺A is the image of <A under f × f with f : A→ ℵ1 a

bijection as guaranteed by the Lemma. The study of isomorphisms between

ℵ1-dense sets may thus be reduced to the study of isomorphisms between certain

orderings of ℵ1. We will return to this topic in Chapter 4.

2.4 Forcing

2.4.1 Ground model

We work in V, the universe of well-founded sets. If Φ is a set of sentences and

M a structure in the language of set theory, then M |= Φ means that every sentence

in Φ is true in M . Unless stated otherwise, all theorems and lemmas below are

deductions from ZFC alone and thus hold in any model of ZFC.2

The method of forcing assumes a suitable ground model M of ZFC (and

possibly other axioms) over which is forced a generic extension of M , also a model

of ZFC. Although the simple application of forcing discussed in this Chapter only

2 However, a set defined in V by a formula φ may not be the same as the set defined by φ in an
inner model M ; we avoid a discussion of absoluteness.
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requires a countable, transitive model of ZFC3 as the ground model, in Chapter 3 we

will need a model in which CH also holds, and in Chapter 4, one in which both CH

and CH1 also hold. We will therefore remark on the existence of a suitable ground

model M of ZFC + CH + CH1.

Lemma 2.4.1. Assume that φ1, . . . , φn are axioms of ZFC. Then there exists a

model M such that |M | = ℵ0, M is transitive, and M |=
∧n
i=1 φi ∧ CH ∧ CH1. �

Remark. Gödel’s constructible universe L satisfies the axioms, and applying the

Skolem-Lowenheim Theorem and the Mostowski Collapsing Theorem gives a

countable transitive model M of the same. See [Kun80].

2.4.2 Forcing apparatus

We now fix an M as given by the previous Lemma, and a pair A,B of

ℵ1-dense sets in M . By forcing over a certain partial order P ∈M , we can extend

M to a generic extension M [G] in which A ' B. These terms are defined as follows.

Definition 2.4.2. A partial order is a triple 〈P,≤, 1P〉 such that (i) P 6= 0; (ii) ≤ is

a reflexive and transitive relation on P; (iii) 1P is a largest element of P under ≤. If

p ≤ q, we say that p extends q. D ⊆ P is dense in P iff ∀p ∈ P∃q ∈ D (q ≤ p). �

Definition 2.4.3. Let M be a transitive model of ZFC and P ∈M a partial order.

G ⊆ P is a filter on P iff (i) ∀p, q ∈ G ∃r ∈ G (r ≤ p ∧ r ≤ q) and (ii)

∀p ∈ G ∀q ∈ P (p ≤ q → q ∈ G). Furthermore, G is P-generic over M iff G is a filter

on P and for all dense D ∈M , G ∩D 6= 0. �

An important fact is:

3 More precisely, a finite fragment of ZFC.
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Lemma 2.4.4. If M is a countable transitive model of ZFC and P ∈M is a partial

order, then there exists a G which is P-generic over M . �

Remark. G is constructed by induction on ω using a countable enumeration of the

dense sets in M .

Now let P be a partial order in M . A generic extension by P over M is

constructed by first defining in V the class of P-names. A P-name τ is any relation

satisfying the recursive condition

For all 〈σ, p〉 ∈ τ, σ is a P-name and p ∈ P,

but in practice we only consider the set MP of P-names in M . Now fix a G P-generic

over M . If τ ∈MP, then τG, the value of τ under G, is defined recursively by:

τG = {σG : ∃p ∈ G 〈σ, p〉 ∈ τ},

and the generic extension M [G] of M by G by:

M [G] = {τG : τ is a P-name in M}.

It may be shown that M ⊆M [G] (so M [G] is indeed an extension of M), and that

also G ∈M [G]. In order to show that M [G] is a model of ZFC, one defines the

forcing relation p  φ between elements p ∈ P and sentences φ involving P-names as

follows:

p  φ(τ1, . . . , τn) iff ∀G[(G is P-generic over M ∧ p ∈ G) =⇒

M [G] |= φ(τ1G, . . . , τnG)]. (2.1)

In words, p  φ exactly when φ(τ1G , . . . , τnG
) is satisfied in every generic extension

M [G] for which G contains p.

A crucial property of  is that although this relation is defined in V, it is

equivalent to a relation definable in M ; by this means, therefore, one can define
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P-names in M whose images in M [G] have desired properties. This forms part of

the Forcing Theorem:

Theorem 2.4.5. Let φ(x1, . . . , xn) be a formula in the language of set theory. Then

for all G P-generic over M ,

M [G] |= φ(τ1G, . . . , τnG) iff ∃p ∈ G (p  φ(τ1, . . . , τn)) .

�

We note in passing that since 1P, the greatest element in P, belongs to every

generic G, the relation

1P  φ(τ1, . . . , τn)

means that φ(τ1G , . . . , τnG
) is satisfied in all generic extensions of M by P.

Using the Forcing Theorem, one can now prove:

Theorem 2.4.6. If M is a countable transitive model of ZFC, P a partial order in

M , and G P-generic over M , then M [G] is also a countable transitive model of

ZFC. �

Remark. Besides Extensionality, which is true in any transitive model, the axioms

of ZFC assert that, given certain sets (and possibly formulas), there exist certain

other sets (e.g., given a and b, there is the pair {a, b}). Since

M [G] = {τG : τ ∈MP}, the proof of the Theorem is reduced to showing that given

certain P-names, there exists a P-name for the desired set in M [G]. Generally, the

fact that each axiom is already satisfied in M forces its satisfaction in M [G]. We

give the following concrete example of how the forcing relation is used to define a

suitable P-name (see [Kun80]):

Comprehension Axiom Scheme in M [G]. Let M, P and G be as above. Given

σG in M [G] and any formula φ(x), a name ρ ∈MP for the set of elements a ∈ σG
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satisfying φ(a) in M [G] is

ρ = {〈π, p〉 : π ∈ dom(σ) ∧ p ∈ P ∧ p  (π ∈ σ ∧ φ(π))}.

In this case, Comprehension in M has already been used to show that the forcing

relation is definable in M (which thus gives ρ ∈MP).

2.4.3 Generic isomorphisms

Suppose A and B are fixed ℵ1-dense sets in M . To obtain an extension M [G]

in which A is isomorphic to B, it is natural to consider the partial order Fn<(AB)

consisting of all finite approximations to such isomorphisms.

Definition 2.4.7. Suppose A = 〈A,<A〉, B = 〈B,<B〉 are ℵ1-dense sets. Let

Fn<(AB) = {p : p is a function ∧ |p| < ℵ0 ∧ dom(p) ⊆ A ∧ rng(p) ⊆ B ∧

∧ ∀a, a′ ∈ dom(p) [a <A a
′ ↔ p(a) <B p(a

′)]}, (2.2)

and define the partial order 〈Fn<(AB),≤〉 ∈M by setting for all p, q ∈ Fn<(AB),

p ≤ q iff p ⊇ q. �

That Fn<(AB) is a partial order is easily confirmed; moreover, taking

P = Fn<(AB) gives the result we seek:

Theorem 2.4.8. Let A,B ∈M be ℵ1-dense, and let G be Fn<(AB)-generic over

M . Then
⋃
G is an isomorphism from A to B in M [G].

Proof. Since G ∈M [G],
⋃
G ∈M [G]. We need to show that

⋃
G maps A onto B,

and if a, a′ ∈ A with a <A a
′, then

⋃
G (a) <B

⋃
G (a′). First, we claim that

Da = {p ∈ Fn<(AB) : a ∈ dom(p) and Rb = {p ∈ Fn<(AB) : b ∈ rng(p)} are dense

in Fn<(AB). In fact, let q ∈ Fn<(AB) and assume a 6∈ dom(q). Then, since
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between every distinct b′, b′′ ∈ B there is a b ∈ B, we can adjoin a pair

〈a, b〉 ∈ A×B so that p = q ∪ {〈a, b〉} is order-preserving; this gives p ∈ Da and

p ≤ q, and similarly for Rb. Since G is generic, G ∩Da 6= 0 6= G ∩Rb for all

a ∈ A, b ∈ B so we have
⋃
G : A→ B is onto. Moreover, if a <A a

′, there is a

p ∈ G with a, a′ ∈ dom(p), so p(a) <B p(a
′), giving

⋃
G (a) <B

⋃
G (a′). �

Remarks. Note that we do not claim that A and B are ℵ1-dense in M [G], and that

the proof only requires that A and B be dense in R (rather than ℵ1-dense).

2.5 C.c.c. and nice names

We have just seen that there is a model of set theory M with the property

that for any A,B ℵ1-dense in M , there exists a generic extension M [G] in which

A,B are isomorphic. However, nothing guarantees that A,B are ℵ1-dense in M [G],

so the forcing we used, Fn<(AB), does not get us far towards our goal of a model in

which all such sets are isomorphic. Moreover, even if A,B were ℵ1-dense in M [G],

we must still exhaust all such pairs by (presumably) iterating the above

construction in some manner; but since new ℵ1-dense sets may appear at successive

stages, this process may still not “converge” to the model we seek.

It is clear we need more control over the properties of M [G], and for this, the

forcing partial order must have a certain property that Fn<(AB) does not: namely,

the countable chain condition (c.c.c.). This condition not only preserves cardinals in

extensions over M , but also gives an upper bound (= ℵ2) to the number of nice

names for (certain copies of) ℵ1-dense sets at any stage in the iteration. These

properties will enable us to define in Chapter 4 a suitable iterated forcing structure

to force the desired model. We introduce these ideas here in order to motivate our

construction of a c.c.c. partial order P(AB) in the next Chapter. In what follows, M
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denotes a fixed countable transitive model of ZFC.

2.5.1 Countable chain condition

Definition 2.5.1. If P is a partial order, then A ⊆ P is called an antichain in P iff

for all p, q ∈ A (p 6= q → ¬∃r ∈ P such that r ≤ p and r ≤ q). P satisfies the

countable chain condition (c.c.c.) iff |A| ≤ ℵ0 for all antichains A ⊆ P.

We will need the following:

Lemma 2.5.2. Let M and P be as above, G P-generic over M , A ∈M , A ⊆ P.

Then either

G ∩ A 6= 0 or ∃q ∈ G ∀p ∈ A (p 6= q → ¬∃r (r ≤ p ∧ r ≤ q)) ;

hence, if A is a maximal antichain in P, then G ∩ A 6= 0. �

2.5.2 Nice names for subsets

If c ∈M , then we can use antichains in P to define a set of nice names for the

subsets of c in a generic extension M [G]. The names are “nice” because every such

subset has a nice name and if P happens to satisfy the c.c.c., then an upper bound

exists for the number of nice names. Fix M , P, and G as above.

Definition 2.5.3. For any a ∈M , ǎ - the canonical P-name of a - is defined

recursively by ǎ = {〈b̌, 1P〉 : b ∈ a}.4

Definition 2.5.4. Suppose a, µ ∈M , where µ is P-name. Suppose also that Aa is a

maximal antichain in P with the property that for all p ∈ Aa, either p  ǎ 6∈ µ or

p  ǎ ∈ µ. Partition Aa by defining A0
a = {p ∈ Aa : p  ǎ 6∈ µ} and

A1
a = {p ∈ Aa : p  ǎ ∈ µ}.
4 Clearly, ǎ is a P-name, and a ∈ M gives ǎ ∈ M by absoluteness; then by induction, (ǎ)G = a,

so in fact M ⊆M [G] as previously claimed.
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Definition 2.5.5. A nice P-name is any set of the form τ =
⋃
{ {ǎ} × A1

a : a ∈ c},

for some c ∈M and a sequence of A1
a defined for some P-name µ as above.

It is easily seen that a nice P-name τ is in fact a P-name. We also have that

every subset in M [G] of a c ∈M has a nice name whose domain is a set:

Lemma 2.5.6. Suppose µ is a P-name for a subset in M [G] of c ∈M . Then there

exists a nice name τ such that dom(τ) ⊆ {ǎ : a ∈ c} and µG = τG.

Proof. By Zorn’s Lemma in M , for all a ∈ c there exist maximal antichains Aa (for

µ) as assumed in Definition 2.5.4. Define τ by Definition 2.5.5; then

dom(τ) ⊆ {ǎ : a ∈ c}. By Lemma 2.5.2, we know that if G is P-generic over M , then

G ∩ Aa 6= 0 for all a ∈ c.

Suppose now x ∈ µG. Then x = aG for some a ∈ c. Since M [G] |= aG ∈ µG, by

the Forcing Theorem 2.4.5 in one direction there exists p ∈ G such that p  ǎ ∈ µ.

Since the elements of G are compatible, ¬∃p ∈ G with p  ǎ 6∈ µ. Thus G ∩ A0
a = 0,

so that G ∩ A1
a 6= 0. Since τG = {aG : ∃p ∈ G ∩ A1

a (〈ǎ, p〉 ∈ τ)}, we have

x = aG ∈ τG. On the other hand, suppose x ∈ τG. Let a ∈ dom(τ) be such that

x = aG and G ∩ A1
a 6= 0. If p ∈ G ∩ A1

a, then p  ǎ ∈ µ. Therefore, by the Forcing

Theorem in the other direction, x = aG ∈ µG. �

Finally, we discuss how the c.c.c. gives an upper bound to the number of nice

names for certain copies of ℵ1-dense sets in generic extensions of M . In Chapter 4,

the ground model M will satisfy CH1 as well as CH; furthermore, we will be

concerned with c.c.c. P’s of size ℵ1 and subsets of ℵ1 × ℵ1. The following will then

be applicable:

Lemma 2.5.7. Assume that CH and CH1 hold in M , and that partial order P ∈M

is c.c.c. with |P| = ℵ1. Then for any generic G ⊆ P, there are ≤ ℵ2 nice P-names in
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M for the subsets of ℵ1 × ℵ1 in M [G].

Proof. Let A denote the collection of antichains of P, and fix a generic G. Since

each antichain is a countable subset of P and |P| = ℵ1, |A| ≤ [ℵ1]≤ℵ0 = ℵℵ01 . By

Lemma 2.5.6 with c = ℵ1 × ℵ1, each nice P-name τ for a subset of ℵ1 × ℵ1 in M [G]

is determined by a function f : dom(τ)→ A and |dom(τ)| ≤ |ℵ1 × ℵ1| = ℵ1. Since

there are ≤ |A|ℵ1 such functions, the number of nice P-names for subsets of ℵ1 × ℵ1

in M [G] is at most:

(ℵℵ01 )ℵ1 = ℵℵ11 = 2ℵ1 = ℵ2.

�
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CHAPTER 3

PARTIAL ORDER P(AB)

3.1 Partitions of ℵ1-dense sets

We now turn to the core of the problem, which is to show there is a ground

model M of set theory such that for any two ℵ1-dense sets A,B ∈M there exists a

c.c.c. partial order P(AB) which forces an isomorphism between A and B in any

generic extension by P(AB) over M . As we have already discussed, and shall

further see in Chapter 4, the c.c.c. property of P(AB) is crucial for proving (among

other things) the convergence of the overall iterated forcing construction.

Let M be any countable transitive model of ZFC + CH,1 and consider again

Fn<(AB) = {p ∈M : p is a finite, order-preserving function from A to B},

ordered by reverse inclusion. In Section 2.4 we saw that Fn<(AB) does in fact force

the desired isomorphism between A and B in any extension over M , even without

CH. However, because A and B are uncountable, Fn<(AB) is certainly not c.c.c.,

since any set of the form {{〈a, b〉} : b ∈ B} for fixed a ∈ A is an uncountable

antichain in Fn<(AB). In fact, the elements of such antichains are incompatible

even as functions, not to mention order-preserving functions.

1 That such an M exists was discussed in Section 2.2.
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On the other hand, an obvious way to avoid at least this kind of antichain is

to restrict to a countable set the b ∈ B that are paired with a fixed a ∈ A. Since this

requirement should be symmetric in A and B, one is led to the idea of partitioning

of A and B into countable pieces and then defining a suborder P(AB) by restriction

to those p ∈ Fn<(AB) that respect this partition. This idea will be made precise

below.

Of course, the partitioning must be done in such a way so that all uncountable

antichains in Fn<(AB) are eliminated, while the property that P(AB) forces A and

B to be isomorphic is retained. Regarding this latter requirement, however, there is

reason to hope, since the proof in Section 2.4 that Fn<(AB) forces an isomorphism

required only that A and B be dense linear orders. Thus, it should be possible to

partition the ℵ1-dense sets A and B into ℵ1 countable pieces each dense in A or B,

and expect that the induced P(AB) will still force the desired isomorphism. That

this is indeed the case will be proved below.

The preceding suggests that the construction of P(AB) will involve two

distinct methods. In fact, we will first use a back-and-forth method in order to

partition A and B into ℵ1 countable sets Aα and Bα, each of which is dense in A or

B. We may think of this method as eliminating uncountable antichains whose

elements are incompatible as functions. The second is a variation of the

diagonalization method that, roughly speaking, excludes from Aα and Bα any

element of A or B that would form an element of a partial function lying in an

uncountable antichain indexed by some β < α. This method serves to elimininate

antichains whose elements are incompatible as order-preserving functions. Although

these methods will be discussed separately, they are applied simultaneously in the

recursive definition of Aα and Bα below.



18

3.2 Back-and-forth method

Let A and B be ℵ1-dense sets of reals. Since |A|, |B| = ℵ1 (Lemma 1.3.3), let

〈aα : α < ω1〉 and 〈bα : α < ω1〉 be enumerations of A and B, respectively.

Furthermore, let 〈rn : n < ω〉 enumerate the rational open intervals in R.

Lemma 3.2.1. For all α < ω1, there exist Aα and Bα such that:

(i) A =
⋃
{Aα : α < ω1} and B =

⋃
{Bα : α < ω1};

(ii) Aα ∩ Aβ = 0 = Bα ∩Bβ if α 6= β;

(iii) For all α < ω1, Aα and Bα are countable and dense in A and B,

respectively.

Proof. We define sequences Aα, Bα by transfinite recursion on α < ω1 with a

subrecursion on ω at each α. Suppose Aβ and Bβ have been defined for all β < α.

Set

Aα = {kα0, . . . , kαn, . . .}, Bα = {la0, . . . , lαn, . . .},

where the kαn and lαn for n < ω are defined as follows. We can always write

α = β +m, with β either 0 or a limit and m < ω. Call α even (odd) if m is even

(odd).

If α is even, then using the enumeration 〈aα〉 define first kα0 = aγ where

γ < ω1 is the least index such that aγ /∈ Aβ for all β < α. Since every αγ is

eventually in some Aα, it is clear that A =
⋃
Aα. If α is odd, define lα0 in a similar

manner using 〈bα〉; then also B =
⋃
Bβ.

The successive kαn and lαn are then chosen in a back-and-forth manner. For

concreteness, assume α is even. If kαn for some n is the last element defined, then

choose lαn so that

lαn ∈ B ∩ rn −
⋃
{Bβ : β < α},
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and if lαn is the last element defined, then choose kαn+1 so that

kαn+1 ∈ A ∩ rn+1 −
⋃
{Aβ : β < α}.

To see that these definitions make sense, note that since B is ℵ1-dense, |B∩ rn| = ℵ1,

while on the other hand |
⋃
Bβ| = ℵ0; thus such a lαn exists, and similarly for kαn+1.

Furthermore, since B ∩ rn is a basis element of the space B, the definition

guarantees that each Bα is dense in B; and similarly for Aα in A. Finally, it is clear

the definition also gives that if α 6= β then Bα ∩Bβ = 0; similarly for A. Thus the

Aα and Bα have properties (i), (ii) and (iii). �

3.3 Diagonalization method

The partitions of A and B defined above eliminate uncountable antichains of

the form {{〈a, b〉} : b ∈ B} for fixed a ∈ A, but do not necessarily eliminate

uncountable antichains involving incompatibility as order-preserving functions. For

this, we need an additional restriction on the elements of A and B from which the

kαn and lαn may be selected.

We have not yet exploited the fact that A and B are uncountable, separable

subspaces of R. As will be shown below, every uncountable antichain contains

contains an uncountable antichain consisting of elements p with |p| = n for some

fixed n. As such, U will be separable as a subspace of R2n and will therefore be

contained in the closure of some countable dense subset. By applying CH these

closures may be enumerated by 〈cα : α < ω1〉.

In the second step of our definition of Aα and Bα, we will then use the cβ for

β < α to exclude any element of A or B that would form a p ∈ U ⊆ cβ. Of course,

in order not to upset the results obtained already in Lemma 3.2.1, we need to make

sure that only countable sets are excluded.
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3.3.1 Topology

We now make these ideas precise. As indicated above, we need only consider

those U ⊆ Fn<(AB) such that |p| = n for all p ∈ U . Since U ⊆ (A×B)n, and since

(A×B)n is essentially a subset of R2n, U contains a countable subset dense in the

relative topology on U . It is therefore enough to discuss the topology on

Fn<(AB) ∩ (A×B)n as a subspace of R2n.

Let I denote the set of all closed rectangles in R2 whose corners have rational

coordinates. It is clear that |I| = ℵ0. If r, r′, s, s′ are closed rational intervals in R,

then two pairs r × s, r′ × s′ in I are called separated if r ∩ r′ = 0 = s ∩ s′.

Let S be the collection of all finite subsets of I all of whose elements are

pairwise separated. If x ∈ S and |x| = n, fix an enumeration x = {ij : j < n}, where

each ij is a closed rectangle in R2. We see

Lemma 3.3.1. |S| = ℵ0.

Proof. Using the fact that |I| = ℵ0, we have

|S| ≤ |[I]<ℵ0 | = |ℵ<ℵ00 | = ℵ0;

on the other hand, enumerating the rational rectangles in R2 shows that ℵ0 ≤ |S|. �

Now for each x ∈ S, define

P (x) = {p ∈ Fn<(AB) : |p| = |x| and p ∩ ij = 1 for each j < n}.

Intuitively, P (x) consists of all finite functions from A to B that have exactly one

element 〈a, b〉 in each rectangle of x.

Lemma 3.3.2. For all x ∈ S, |P (x)| = ℵ1.

Proof. Let x = {ij : j < n}. For each j < n, |ij ∩ (A×B)| = ℵ1 × ℵ1 = ℵ1 since A

and B are ℵ1-dense. It follows that |P (x)| = |ℵn1 | = ℵ1. �
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3.3.2 Enumeration

We will eventually show that, given an uncountable U ⊆ P(AB), it may be

assumed that U ⊆ P (x) for some x ∈ S. Since each such U countains a dense

countable subset, we seek an enumeration for the collection of countable subsets of

P (x) taken over all x ∈ S. Accordingly, let

C = { d : ∃x ∈ S (d is a countable subset of P (x))}.

Lemma 3.3.3. (CH) |C| = ℵ1.

Proof. First, fix x ∈ S. Since |P (x)| = ℵ1 (Lemma 3.3.2), we claim that the

collection of countable subsets of P (x), i.e., [P (x)]≤ℵ0 , has cardinality ℵ1. In fact,

by CH,

|[P (x)]≤ℵ0 | = |[ℵ1]≤ℵ0| ≤ (2ℵ0)ℵ0 = 2ℵ0 = ℵ1,

while the collection of singletons of elements in P (x) shows that ℵ1 ≤ |[P (x)]≤ℵ0|.

Thus, since |S| = ℵ0 (Lemma 3.3.1), we have

|C| =
∣∣∣⋃{[P (x)]≤ℵ0 : x ∈ S}

∣∣∣ = ℵ1.

�
With this result in hand, we now fix an enumeration 〈dα : α < ω1〉 for C, and a

sequence 〈xα : α < ω1〉 in S such that each dα is a countable subset of P (xα).

3.3.3 Closure

Here we show that any uncountable U ⊆ P (x) for x ∈ S can be “closed off” in

a following sense. For each α < ω1, define

cα = {p ∈ Fn<(AB) : ∀x ∈ S (p ∈ P (x)→ P (x) ∩ dα 6= 0)}.
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This definition coincides with that of the closure of dα in the usual topological

sense [Mun00].2

Lemma 3.3.4. Let x ∈ S and suppose U ⊆ P (x). Then there exists α < ω1 such

that

dα ⊆ U ⊆ cα.

Proof. Letting n = |x|, we have the following inclusions:

U⊆P (x)⊆Fn<(AB) ∩ (A×B)n⊆R2n.

Thus, there exists a countable d ⊆ U which is dense in the relative topology on

U ⊆ R2n. Since U ⊆ P (x), there exists α < ω1 such that dα = d ⊆ U . On the other

hand, if dα is the closure of dα relative to U , we have dα ⊆ cα, since cα is the closure

of dα relative to Fn<(AB) ∩ (A×B)n. Hence, U = dα ⊆ cα. �

3.3.4 Exclusion

For each α < ω1, we now use the closures cβ for β < α to exclude additional

elements of A and B from the definitions of Aα and Bα.3 At each stage in the

recursion indexed by 〈α, n〉, we need the cumulative suborder

Pαn = {p ∈ Fn<(AB) : p respects the partition up through stage 〈α, n〉},

where the defining condition means that if 〈a, b〉 ∈ p ∈ Pαn, then 〈a, b〉 = 〈kβm, lβm′〉

for some β ≤ α and m,m′ ≤ n. We note that Pαn is a countable union of countable

sets and therefore countable.

2 To see that cα is the closure of dα, note that (i) the p ∈ Fn<(AB) forming cα are actually
taken from Fn<(AB)∩ (A×B)n, where n = |xα|; and (ii) the collection {P (x)∩ (A×B)n : x ∈ S}
forms a basis for this space.

3 Recall that Aα = {kαn : n < ω} and Bα = {lαn : n < ω} where 〈kαn, lαn〉 are defined by
recursion on ω.



23

Now define, for each β < α, m ≤ n, i ∈ xβ and p ∈ Pαn, the “exclusion sets”

Xβmip = {l ∈ B : p ∪ {〈kαm, l〉} ∈ cβ and 〈kαm, l〉 ∈ i} (3.1)

Yβmip = {k ∈ A : p ∪ {〈k, lαm〉} ∈ cβ and 〈k, lαm〉 ∈ i}, (3.2)

when Xβmip (resp., Yβmip) is countable; otherwise set Xmβip (resp., Ymβip) equal to 0.

Intuitively, Xβmip consists of all b ∈ B that would form an element 〈a, b〉 in the i-th

rectangle of xβ, which when adjoined to some p ∈ Pαn, would form an element of cβ.

Finally, in place of our earlier selection of lαn (resp., kαn) (see Section 3.2), we

now exclude in addition any element in any Xβmip (resp., Yβmip). Specifically, if kαn

is the last-defined, select

lαn ∈ (B ∩ rn) −

(⋃
β<α

Bβ ∪
⋃
βmip

Xβmip

)
, (3.3)

and if lαn is the last-defined, select

kαn+1 ∈ (A ∩ rn+1) −

(⋃
β<α

Aβ ∪
⋃
βmip

Yβmip

)
. (3.4)

Since by definition each Xβmip and Yβmip is countable, so are their unions; thus our

earlier argument that such selections are possible remains valid. In addition,

because the back-and-forth and diagonalization methods are applied simultaneously,

we still have A =
⋃
Aα and B =

⋃
Bβ (Lemma 3.2.1).

3.4 Definition of P(AB)

We now make

Definition 3.4.1.

P(AB) = {p ∈ Fn<(AB) : ∀α < ω1 ∀a ∈ A [a ∈ dom(p)→ (a ∈ Aα ↔ p(a) ∈ Bα)]}.
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As we intended, P(AB) consists of all elements p in Fn<(AB) that respect the

partitions of A and B, i.e., if 〈a, b〉 ∈ p ∈ P(AB), then 〈a, b〉 = 〈kαm, lαm′〉 for some

α < ω1 and m,m′ < ω.

3.5 P(AB) satisfies c.c.c.

In this section we will show

Theorem 3.5.1. P(AB) satisfies the countable chain condition.

Proof. Suppose to the contrary there exists an uncountable antichain U ⊆ P(AB).

The proof will be given in a series of lemmas.

Lemma 3.5.2. If there exists an uncountable antichain U ⊆ P(AB), then there

exists an uncountable antichain U ′ ⊆ P(AB) with the following properties:

(i) For all p ∈ U ′, |p| = n for some n < ω, and n is the least number with this

property among all antichains in P(AB).

(ii) For all p1, p2 ∈ U ′, dom (p1) ∩ dom (p2) = 0 = rng (p1) ∩ rng (p2).4

(iii) U ′ ⊆ P (x) for some x ∈ S.

(iv) There exists α < ω1, and a rectangle i0 ∈ xα, such that

dα ⊆ U ′ ⊆ cα,

and for every p ∈ U ′, if 〈a, b〉 is the last-constructed element of p, then 〈a, b〉 lies in

i0, and (uniformly over U ′) either b is constructed after a, or a is constructed after b.

Proof. We use throughout the pigeonhole principle (Lemma 2.2.1): if an

uncountable set can be expressed as a countable union of sets, then at least one of

the sets of the union must be uncountable.

4 In this case, we will say that U ′ is pairwise disjoint.
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(i) Let U = {U : U is an uncountable antichain in P(AB)}; by assumption, U

is not empty. Each U ∈ U can be partitioned according to the finite cardinality of

its elements. By the pigeonhole principle there is a least n′ = n′(U) such that

{p ∈ U : |p| = n′} is uncountable. Let n = min{n′(U) : U ∈ U}, and let U ′ be an

uncountable antichain with |p| = n for all p ∈ U ′. Then U ′ has property (i).

(ii) Assume U has property (i) and define U ′ = {pα : α < ω1} ⊆ U by

recursion as follows. Suppose pβ has been defined for all β < α, and choose

pα ∈ U − {p ∈ U : ∃a ∈ dom (p) (a ∈
⋃
β<α

dom (pβ)) ∨

∨ ∃b ∈ rng (p) (b ∈
⋃
β<α

rng (pβ))}. (3.5)

This definition makes sense, since for each of the countably many

a ∈
⋃
β<α dom (pβ), only countably many b ∈ B exist such that 〈a, b〉 lies in some

p ∈ U ; similarly countably many a ∈ A exist for each b ∈
⋃
β<α rng (pβ);

furthermore, each 〈a, b〉 occurs in only countably many elements of U (otherwise,

U ′ = {p− {〈a, b〉} : 〈a, b〉 ∈ p ∈ U} is an uncountable antichain of P(AB) of

cardinality n− 1, contradicting (i)). Thus, it follows that the set of p ∈ U whose

domain contains some a ∈
⋃
β<α dom (pβ) or whose range contains some

b ∈
⋃
β<α rng (pβ) is only countable, so such a choice for pα is in fact possible. It is

now clear that U ′ satisfies property (ii).

(iii) Since
⋃
x∈S P (x) = Fn<(AB), we can write U =

⋃
x∈S [U ∩ P (x)]. Since

U is uncountable but S is countable, by the pigeonhole principle there is an x ∈ S

such that U ′ = U ∩ P (x) ⊆ P (x) is uncountable.

(iv) Assume U ′ already has properties (i), (ii), and (iii). Fix x and n

satisfying U ⊆ P (x) with x ∈ S and |x| = n. Since each element of U ′ consists of n

pairs of reals, U ′ is essentially a subset of R2n. Since R2n is separable, U ′ contains a
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countable subset d which is dense in the relative topology on U ′. Recalling from

Section 3.3.2 the enumeration of all countable sets in all P (x), there exists α < ω1

such that d = dα, and by Lemma 3.3.4, we have dα ⊆ U ′ ⊆ cα.

Each p ∈ U ′ has a last-constructed element 〈a, b〉, and each such 〈a, b〉 lies in

one of the n rectangles of xα. By the pigeonhole principle, there exists a rectangle

i0 ∈ xα that contains an uncountable number of these last-constructed elements.

Let U ′′ = {p ∈ U : the last-constructed element of p lies in i0}.

Again, if 〈a, b〉 ∈ p is the last-constructed element, then either a or b is

last-constructed, and so we may assume that for an uncountable number of p, b is

constructed after a (the argument that follows is symmetric in a and b). Reverting

to earlier notation, let U ′ stand for all p in U ′′ for which the second coordinate of

the last-constructed element is constructed last. Then U ′ has property (iv). �

Proof of Theorem 3.5.1 (continued). Without loss of generality we may now assume

that U has properties (i), (ii), (iii), (iv) above. Indeed, since Lemma 3.5.2 shows

that if U exists, then U ′ exists, any contradiction obtained assuming the existence of

U ′ serves to contradict the existence of U . Accordingly, let n < ω satisfy property

(i), and fix α < ω1, i0 ∈ xα satisfying properties (iii) and (iv).

We will return to the proof of Theorem 3.5.1 after introducing certain

auxiliary sets (namely, Q,R,L below) and associated lemmas. To provide some

motivation, we will at the same time preview the use of these sets.

In order to obtain a contradiction, we intend to construct distinct compatible

elements p1, p2 in U . To this end, consider the set Q of restrictions of elements in U

to all but their last-constructed element:

Q = {q ∈ Fn<(AB) : q = p− i0 ∧ p ∈ U}.

Assume n > 1 (the case n = 1 is handled separately). By minimality of n = |xα|, Q
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is not an antichain in P(AB). Our strategy will be to choose distinct compatible

q1, q2 ∈ Q, find suitable a1, a2, b1, b2, and finally set p1 = q1 ∪ {〈a1, b1〉} and

p2 = q2 ∪ {〈a2, b2〉}. “Suitable” in this context means that {〈a1, b1〉} and {〈a2, b2〉}

are compatible, i.e., a1 < a2 ↔ b1 < b2.

To obtain the strict ordering, we consider

A′ = A−
⋃
{dom(p) : p ∈ dα}.

Since dα is countable, A′ is uncountable. A′ is used in conjunction with the sets of

right (R) and left (L) “projected” limit points of dα, defined as follows. For any

p ∈ U , let a(p) satisfy p ∩ i0 = {〈a(p), b(p)〉}. Let

R = {p ∈ cα : ∀x ∈ S [p ∈ P (x)→

∃p′ ∈ dα ∩ P (x) ∃a′ ∈ A ∃b′ ∈ B (p′ ∩ i0 = {〈a′, b′〉} ∧ a′ < a(p).)]}, (3.6)

L = {p ∈ cα : ∀x ∈ S [p ∈ P (x)→

∃p′ ∈ dα ∩ P (x) ∃a′ ∈ A ∃b′ ∈ B (p′ ∩ i0 = {〈a′, b′〉} ∧ a′ > a(p).)]}. (3.7)

The following lemma will then guarantee that we can find compatible 〈a1, b1〉,

〈a2, b2〉 in i0.

Lemma 3.5.3. If p ∈ cα is such that p ∩ i0 = {〈a, b〉} and a ∈ A′, then p is either

in R or L, or both.

Proof. Suppose p /∈ R. Then for some x ∈ S such that p ∈ P (x), all p′ ∈ dα ∩ P (x)

have the property that if p′ ∩ i0 = {〈a′, b′〉} then a′ ≥ a. But a ∈ A′ implies

a /∈ dom(p′), so a′ > a and thus p ∈ L. �

The following lemma is basic.



28

Lemma 3.5.4. (i) If n = 1, then for all a ∈ A′ the set {b ∈ B : {〈a, b〉} ∈ cα} is

countable. (ii) If n > 1, then there are uncountably many q ∈ Q such that for all

a ∈ A′, the set {b ∈ B : p = q ∪ {〈a, b〉} ∈ cα} is countable.

Proof. (i) Suppose not. Then for some a ∈ A′, the set {b ∈ B : {〈a, b〉} ∈ cα} is

uncountable; this gives us an uncountable set of p ∈ cα each of which is in either in

R or L (Lemma 3.5.3). Then by the pigeonhole principle, either R or L is

uncountable. Assume R is uncountable; a similar argument applies if L is

uncountable. Since |R| ≥ 2, there exist distinct {〈a, b1〉}, {〈a, b2〉} in R and disjoint

rational intervals s1, s2 such that b1 ∈ s1, b2 ∈ s2, as well as a rational interval r

such that a ∈ r.

Assume b1 < b2; otherwise, switch subscripts 1 and 2 in what follows. Let

x ∈ S be such that x ∩ i0 = r × s1. Since {〈a, b1〉} ∈ R, there exists a

p′1 = {〈a′1, b′1〉} ∈ dα ∩ P (x) with a′1 < a. Since p′1 ∈ dα ∩ (r1 × s1) ⊆ U ∩ i0 = U ,

p′1 ∈ U . Now let r′ be a rational interval with a ∈ r′ but a′1 /∈ r′. Since {〈a, b2〉} ∈ R,

there exists p′2 = {〈a′2, b′2〉} ∈ dα ∩ (r′ × s2) with a′2 < a. As above, p′2 ∈ U . But by

construction, a′1 < a′2 and b′1 < b′2. Thus p′1 ∪ p′2 ∈ P(AB) is order-preserving, so

p′1, p
′
2 ∈ U are compatible, a contradiction.5

(ii) If not, then only countably many q ∈ Q have the stated property, which

implies that uncountably many q have the complementary property, namely, that

for some aq ∈ A′ the set {b ∈ B : p = q ∪ {〈aq, b〉} ∈ cα} is uncountable. As in part

(i), for each such q we may pick bq1, bq2 such that if p1 = q ∪ {〈aq, bq1〉} and

p2 = q ∪ {〈aq, bq2〉}, then both p1, p2 lie in R.

Furthermore, setting i0 = r0 × s0, since the set of rational intervals is

5 Both p1 and p2 must be taken from either R or L: for if p1 = {〈a, b1〉} ∈ R and p2 = {〈a, b2〉} ∈
L, then for a contradiction we would need b1 < b2; however, nothing guarantees such a choice is
possible.



29

countable, we can pass again to an uncountable subset Q′ ⊆ Q and find disjoint

rational intervals s, t ⊆ s0, such that bq1 ∈ s and bq2 ∈ t for all q ∈ Q′. As before,

assume bq1 < bq2 (otherwise, switch 1 and 2 in what follows).

Since Q′ is uncountable and |q| = n− 1 for all q ∈ Q′, by minimality of n, Q′

is not an antichain in P(AB). Choose distinct compatible q1, q2 ∈ Q′ with aq1 < aq2 .

Since U , and hence q1, q2, is pairwise disjoint, there are x1, x2 ∈ S so that

q1 ∈ P (x1) and q2 ∈ P (x2) with all i ∈ x1 ∪ x2 pairwise separated and with each i a

subset of some i′ ∈ xα. By the separation property, it follows from the compatibility

of q1, q2 that any element of P (x1) is compatible with any element of P (x2).

Now let p1 = q1 ∪ {〈aq1, bq1〉} ∈ cα and p2 = q2 ∪ {〈aq2, bq2〉} ∈ cα. Since both

p1, p2 ∈ R, we can repeat the procedure in part (i) to find 〈a′1, b′1〉 ∈ i0 and

q′1 ∈ P (x1) so that p′1 = q′1 ∪ {〈a′1, b′1〉} ∈ dα ∩ P (xα), and also 〈a′2, b′2〉 ∈ i0 and

q′2 ∈ P (x2) so that p′2 = q′2 ∪ {〈a′2, b′2〉} is in dα ∩ P (xα), and a′1 < a′2. But since

b′1 < b′2 and q′1, q
′
2 are compatible, we have that p′1, p

′
2 ∈ dα ⊆ U are compatible, a

contradiction. �

Lemma 3.5.5. There exists q ∈ Q with the properties: (i) ∀a′ ∈ A′

{b ∈ B : p = q ∪ {〈a′, b〉} ∈ cα} is countable. (ii) ∃a ∈ A′ ∃b ∈ B such that

p = q ∪ {〈a, b〉} ∈ U and 〈a, b〉 is constructed after stage α.

Proof. If n = 1, let q = 0 ∈ Q. By Lemma 3.5.4, q satisfies property (i). Since U is

uncountable and U is pairwise disjoint, the sets {a ∈ A′ : ∃b ∈ B {〈a, b〉} ∈ U} and

{b ∈ B : ∃a ∈ A′ {〈a, b〉} ∈ U} are also uncountable. Since
⋃
β<αAβ and

⋃
β<αBβ

are only countable, some p = {〈a, b〉} ∈ U must be constructed after stage α. Thus

q satisfies property (ii).

If n > 1, then by Lemma 3.5.4 (ii), uncountably many q ∈ Q satisfy property

(i). Again, because U , and thus Q, is disjoint,
⋃
q∈Q dom(q) and

⋃
q∈Q rng(q) are
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also both uncountable. Thus, as before some q must contain an element 〈r, s〉

constructed after stage α. By definition of Q, there exist a ∈ A′ and b ∈ B such that

p = q∪{〈a, b〉} ∈ U . Since 〈a, b〉 is constructed after 〈r, s〉, q satisfies property (ii). �

Proof of Theorem 3.5.1 (concluded). Fix q ∈ Q, a ∈ A′, and b ∈ B satisfying part

(ii) of the previous Lemma. Then in part (i) take a′ = a. This gives a p ∈ cα

containing 〈a, b〉 ∈ i0, where b ∈ {b′ ∈ B : q ∪ {〈a, b′〉} ∈ cα}, and this latter set is

countable. Moreover, b is constructed at a stage β > α and after a. But this means

that b = lβm belongs to the exclusion set Xαm′i0q for some m, m′, m′ ≤ m (see

Section 3.3.4). Since this contradicts the definition of b, P(AB) satisfies the

countable chain condition. �

3.6 P(AB) forces A ' B

Finally, we check that P(AB) forces an order-isomorphism between A and B

in any generic extension of M :

Theorem 3.6.1. 1P(AB)  A ' B.

Proof. Consider Da = {p ∈ P(AB) : a ∈ dom(p)} and

Eb = {p ∈ P(AB) : b ∈ rng(p)} for fixed a ∈ A, b ∈ B. We first show that Da is a

dense subset of P(AB) (see Section 2.3.1); the same is true of Eb by a similar

argument.

Suppose q ∈ P(AB); clearly, we may assume that q 6∈ Da. Then for some

n < ω, we have

q = {〈a1, b1〉, . . . , 〈an, bn〉},

where for all m < n, am 6= a, and for all 1 ≤ i < j ≤ n, ai < aj ↔ bi < bj. Suppose

a ∈ Aα and that j, k are such that aj < a < ak. Since Bα is dense in B, we can find
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b ∈ Bα such that bj < b < bk. Let p = q ∪ {〈a, b〉}. Then p ∈ Da and for all

a, a′ ∈ dom(p) (a < a′ ↔ p(a) < p(a′)), so that p ≤ q. Thus, Da (and similarly, Eb)

is dense in P(AB).

If G is P(AB)-generic over M , then we claim that f =
⋃
G is an

order-isomorphism from A to B in M [G]. Indeed, that f is bijective is clear since

the Da and Eb are dense. Furthermore, suppose a, a′ ∈ A are such that a < a′ but

f(a) ≮ f(a′); then there are p1, p2 ∈ G such that a ∈ dom (p1) and a′ ∈ dom (p2).

But since G is a filter, there exists p ∈ G with p ≤ p1 ∪ p2. Thus, we have

f(a) < f(a′), a contradiction. �
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CHAPTER 4

ITERATED FORCING

4.1 Overview

In this chapter we discuss the method of iterated forcing by which is

constructed a model M∗ of set theory in which all ℵ1-dense sets are isomorphic.

This iteration may be seen as an additional outer recursion on ω2 defining in M a

partial order P forcing M∗, with each step based on some P(AB) as constructed in

the last chapter. P = Pω2 is the last in a sequence of c.c.c. partial orders 〈Pη〉,

η ≤ ω2, called an iterated forcing structure.1 The following properties of 〈Pη〉 convey

the basic idea behind iterated forcing:

(1) There exists a sequence of extensions 〈Mη〉 ordered by inclusion:

M = M0 ⊆M1 ⊆ · · · ⊆Mη ⊆ · · · ⊆Mω2 = M∗,

such that each Pη forces Mη over M .

(2) Every pair of ℵ1-dense sets A,B in M∗ appears in some Mη.

(3) Pη+1 is defined in terms of some P(AB) in such a way that Pη+1 is c.c.c. and

forces Mη+1 |= A ' B. From this, it follows that M∗ |= A ' B.

1 Such structures may be defined on any limit ordinal α, but we will assume α = ω2 and often
leave the condition η ≤ ω2 implicit.
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(4) The structure 〈Pη〉 exhausts all ℵ1-dense pairs A, B ∈M∗, i.e., for each

such A, B there is an η < ω2 such that A, B appear in Mη and Pη+1 is

defined by P(AB) according to (3). This exhaustiveness property is

particularly important since new ℵ1-dense sets may appear at any stage of

the iteration; it is here that the c.c.c. property of the Pη is used.

(5) (a) For η ≤ ω2, the cardinals of all Mη’s are the same; and (b) if CH and

CH1 hold in M , then CH and CH1 hold in all Mη with η ≤ ω2, with the sole

exception that in Mω2 , 2ℵ0 = ℵ2.

In what follows, we will focus on properties (1) and (4). The basic structure

giving rise to (1) is the set of complete embeddings, discussed in the following

section, which essentially order the Pη by forcing strength. For property (4), the

basic structure is the bookkeeping function (Section 4.4). Property (2), that every

ℵ1-dense A ∈M∗ appears in some Mη, will be discussed summarily in Section 4.3.2

4.2 Complete embeddings

The structure 〈Pη〉 forces a sequence of extensions 〈Mη〉 ordered by inclusion

and with M∗ = Mω2 . For this to be true, the Pη must themselves be ordered by

forcing strength, i.e.,

P0 ⊆c P1 ⊆c · · · ⊆c Pη ⊆c · · · ⊆c Pω2 = P,

where the relation ⊆c expresses that the forcing structure of each Pη “embeds” into

its successors. More precisely, P ⊆c Q if and only if there exists a complete

2 For property (3), in a rigorous presentation Pη+1 is defined in terms of Pη and a Pη-name for
P(AB) (see Section 4.2), but the technicalities associated with the method of forcing tend to obscure
the main ideas. Therefore, we will simply assume property (3); furthermore, little will be said about
limit stages, except to mention the notion of finite support at limits, which is important for property
(2) and crucial for proving that each Pη is in fact c.c.c. Property (5a) is a consequence of Pη being
c.c.c. (see [Kun80]); the first part of (5b) can be shown using nice names, and 2ℵ0 = ℵ2 in Mω2 is a
consequence of Sierpinski’s result mentioned on page 1.
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embedding i : P→ Q where the latter term is defined as follows:

Definition 4.2.1. Suppose P = 〈P,≤P, 1P〉 and Q = 〈Q,≤Q, 1Q〉 are partial orders

in M . A function i : P→ Q is a complete embedding iff (i)

∀p, p′ ∈ P (p ≤P p′ → i(p) ≤Q i(p′)); (ii) ∀p, p′ ∈ P (p ⊥ p′ ↔ i(p) ⊥ i(p′)); (iii)

∀q ∈ Q ∃p ∈ P ∀p′ ∈ P (p′ ≤ p→ i(p′) and q are compatible in Q). �

The idea is that the conditions (ii) and (iii) guarantee that i preserves generic

sets in the following sense:

Lemma 4.2.2. Suppose i : P→ Q is a complete embedding and H is Q-generic

over M . Then G = {p ∈ P : i(p) ∈ H} is P-generic over M and M [G] ⊆M [H]. �

To obtain a chain 〈Mη〉, we need complete embeddings iηξ : Pη → Pξ for all

η < ξ ≤ ω2. To discuss these, we sketch some relevant features of the construction of

〈Pη〉, which involves an auxiliary sequence 〈πη〉, as follows:

(1) P0 = {0}.

(2) Pη is a partial order consisting of η-sequences of names for partial orders,

and πη is a Pη-name for a partial order P(AB).

(3) If p ∈ Pη, then p = 〈ρµ : µ < η〉 and ρµ ∈ dom(πµ) for all µ < η.

(4) An (η + 1)-sequence of names for partial orders belongs to Pη+1 iff it

extends some η-sequence in Pη by some ρ ∈ dom(πη).

(5) Finite support, i.e., if p ∈ Pη, then for all but finitely many µ < η,

p � µ  pµ = 1.

Under this scheme, an iterated forcing structure 〈Pη〉 is fully determined once

〈πη〉 is specified; this, in turn, is carried out using a bookkeeping function discussed

later.
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The complete embeddings iηξ we need are now given by:

Definition 4.2.3. Suppose η < ξ ≤ ω2 and p = 〈ρµ : µ < η〉 ∈ Pη. Then

iηξ(p) = 〈ρµ : µ < η〉_〈1µ : η ≤ µ < ξ〉 ∈ Pξ,

where the symbol _ denotes concatenation. The function i “pads out” each

element of Pη with ξ − η many 1µ’s, where 1µ is strictly speaking a name for the

largest element in Pµ. The complete embedding property follows from this

definition, and Lemma 4.2.2 can now be extended as follows.

Assume M∗ = M [G] and that G is Pω2-generic over M . For each η < ω2, define

Gη = {p ∈ Pη : iηω2(p) ∈ G},

and set Mη = M [Gη]; then 〈Pη〉 and 〈Mη〉 satisfy property (1) of Section 4.1.

4.3 Appearance at intermediate stages

For the method of iterated forcing to work, every pair of ℵ1-dense sets in M∗

must appear in some intermediate Mη. But although the 〈Mη〉 forms a chain under

inclusion, it is not true that M∗ =
⋃
η<ω2

Mη. Nonetheless, every ℵ1-dense set in M∗

does appear in some Mη; to see this, we need the following fact.

Lemma 4.3.1. Let 〈Pη : η ≤ ω2〉 be an iterated forcing structure with finite support

with M∗ as above. If X ∈M∗ and X ⊆ S ∈M where |S| < ℵ2 in M∗, then for

some η < ω2, X ∈Mη. �

Corollary 4.3.2. Every ℵ1-dense set in M∗ appears in some Mη, η < ω2.

Proof. Let A be ℵ1-dense in M∗, and suppose f : ω1 → P(ω) is a bijection onto A in

M∗ (we are identifying P(ω) with R). Let X =
⋃
{{α} × f(α) : α < ω1} ∈M∗.

Since X ⊆ ω1 × ω, by the Lemma, X ∈Mη for some η < ω2. It follows that

A = rng(f) is also in Mη. �
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4.4 Bookkeeping function

Finally, we consider the property that 〈Pξ〉 is exhaustive, i.e., Pω2 forces

isomorphisms between all ℵ1-dense sets A,B in M∗. To accomplish this, 〈Pξ〉 is

constructed using a bookkeeping function b defined on ℵ2. The value b(ξ) indicates

names of the ℵ1-dense sets A,B ∈M∗ by which we define Pξ+1 using a name for

P(AB). Exhaustiveness follows from two facts about the function b: (i) every such

A,B have names in the range of b; and (ii) there exist ordinals η and ξ such that:

(a) η ≤ ξ < ω2; (b) A,B appear in Mη; and (c) b(ξ) is a name for the pair A,B.

First, we must revisit our ground model M . For such a b to exist, we will need

a collection of names for (at least) isomorphic copies of all ℵ1-dense sets in each Mη,

with the size of each collection at most ℵ2. For this to be true, the number of such

sets themselves must, of course, be ≤ ℵ2. We can guarantee this result by now

assuming that M satisfies CH1 as well as CH.

Secondly, recall that Lemma 2.5.7 gives such a bound for the nice names for

subsets in Mη of ℵ1 × ℵ1. This is enough for our purposes, since if A = 〈A,<〉 is

ℵ1-dense in Mη, a bijection f : A→ ℵ1 exists in Mη by Lemma 2.3.2. Thus, A is

isomorphic to the linear order 〈ℵ1,≺〉, where ≺ ⊆ ℵ1 × ℵ1 is the image of < under

f × f . In the sequel, we sometimes refer to ℵ1-dense sets when we actually mean

subsets of ℵ1 × ℵ1. With this in hand, we can now establish the existence of a

bookkeeping function.

Lemma 4.4.1. There exists a function b : ℵ2 → ℵ2 × ℵ2 × ℵ2 such that b is onto

and if b(ξ) = 〈η, γ, δ〉, then η ≤ ξ.

Proof. By Lemma 2.2.2, let g : ℵ2 → ℵ2 × ℵ2 × ℵ2 × ℵ2 be onto. Given ξ < ℵ2 and
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g(ξ) = 〈η, γ, δ, ρ〉, define b : ℵ2 → ℵ2 × ℵ2 × ℵ2 by

b(ξ) =


〈η, γ, δ〉 if η ≤ ξ

〈0, 0, 0〉 if η > ξ.

Clearly, if b(ξ) = 〈η, γ, δ〉 then η ≤ ξ. To see that b is onto, fix

〈η, γ, δ〉 ∈ ℵ2 × ℵ2 × ℵ2 and consider the set

S = {ξ < ℵ2 : ∃ρ < ℵ2 (g(ξ) = 〈η, γ, δ, ρ〉)}. Since the cardinality of S is ℵ2, and ℵ2

is a regular cardinal, S is unbounded in ℵ2. Thus there exists ξ ≥ η such

g(ξ) = 〈η, γ, δ, ρ〉, and so b(ξ) = 〈η, γ, δ〉. �

To construct 〈Pη〉, a bookkeeping function b as provided by Lemma 4.4.1 is

first prescribed. Pξ+1 is built from Pξ and a Pξ-name for a P(AB), where A,B

appear in Mη for some η ≤ ξ. Index η, and A,B ∈Mη are determined by the value

b(ξ) = 〈η, γ, δ〉; more precisely, γ < ℵ2 indicates a Pη-name for A, and δ < ℵ2 a

Pη-name for B.

For b to be exhaustive, all ℵ1-dense sets in a given Mη must have Pη-names

enumerable by ℵ2. But Pη satisfies the c.c.c., so that Lemma 2.5.7, giving just such

a bound on the cardinality of nice Pη-names, is applicable as soon as we confirm

that |Pη| = ℵ1 for all η < ω2. This in fact follows by induction on the construction

of Pη+1 from Pη; to see this, recall that an (η + 1)-sequence of names belongs to

Pη+1 iff it extends some η-sequence in Pη by some ρ ∈ dom(πη), where πη names

some P(AB); now observe that |ρ ∈ dom(πη)| = |P(AB)| ≤ |Fn<(AB)| = ℵ1.

Lastly, we need a function i∗ηξ in M from the set of nice Pη-names to the set of

Pξ-names such that if σ is a nice Pη-name for a set A, then i∗ηξ(σ) is a Pξ-name for

the same set A. In fact, such a function may be defined in terms of the complete

embedding iηξ discussed in Section 4.2; we omit the details. Then, if b(ξ) = 〈η, γ, δ〉,
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i∗ηξ gives Pξ-names for the A,B whose nice Pη-names are indexed by γ, δ, and from

these a Pξ-name for P(AB) may be found; thus Mξ+1 |= A ' B.

4.5 Summary

Collecting our results, we can finally show Baumgartner’s result (∗):

Theorem 4.5.1. If there exists a model of set theory, then there exists a model of

set theory in which all ℵ1-dense sets are isomorphic.

Proof. If there exists a model of ZFC, let M be a countable transitive model of ZFC

+ CH + CH1. Let 〈Pη, η ≤ ω2〉 be an iterated forcing structure in M , and let M∗

be a generic extension by Pω2 over M . If A,B ∈M∗ are ℵ1-dense, then they appear

in some Mη and are isomorphic to subsets of ℵ1 × ℵ1 (also denoted by A,B). These

A,B have nice names with indices in the range of the bookkeeping function b. Since

b is onto, there exists ξ ≥ η such that Pξ+1 forces Mξ+1 |= A ' B, and hence

M∗ |= A ' B. �
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CHAPTER 5

CONCLUSION

Using iterated forcing in ZFC, we have argued with some effort that if there

exists any model of set theory at all, then there exists a model of set theory in

which all ℵ1-dense sets are isomorphic. It happens there are other interesting results

derivable by similar methods, and the question arises whether there exists some

general and natural principle of forcing of which these various results are simpler

consequences.

In fact, the Proper Forcing Axiom (PFA) is such a principle, though it is not

usually presented in its most natural form (see below). PFA applies to forcing by

proper partial orders, and to avoid entering into an extended discussion, we merely

note that all c.c.c. partial orders are proper,1 and that compositions of proper orders

are proper. A natural formulation of the Proper Forcing Axiom is as follows [Bag99]:

Let M be a transitive model of set theory, and let A, B ∈M be any
two structures with |A| = ℵ1. If in a forcing extension over M by a
proper partial order P there exists an isomorphism of A onto a
substructure of B, then such an isomorphism already exists in M .

We conclude by showing that use of PFA avoids the technicalities appearing (and

not appearing) in Chapter 4 related to infinite-stage iterated forcing. In fact,

1 So PFA is a strengthening of Martin’s Axiom(ℵ1).
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suppose that PFA holds and that M is a countable transitive model of ZFC. If for

any A,B ℵ1-dense in M , we can find a proper forcing extension M(AB) in which

A ' B, then PFA will give us directly that A ' B in M . The important thing is

that we can obtain M(AB) with only a two-stage iterated proper forcing.

Theorem 5.0.2. (PFA) In any model M of set theory, all ℵ1-dense sets are

isomorphic.

Proof. Suppose A,B are ℵ1-dense in M . Stage 1: Force over M using Q = the set of

countable partial functions from ℵ1 to 2ℵ0 ordered by reverse inclusion. Q (it may

be shown) is proper and collapses 2ℵ0 onto ℵ1, so that CH is true in every generic

extension MQ of M by Q. Stage 2: Since MQ satisfies CH, there exists a c.c.c.

partial order P(AB) in MQ as found in Chapter 3. If we let M(AB) = MQ◦P(AB),

where Q ◦ P(AB) denotes composition of Q and P(AB), then A ' B in M(AB).

Since Q ◦ P(AB) is proper, by PFA we obtain A ' B in M . �
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