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ABSTRACT

APPLICATIONS OF BOUNDARY VALUE PROBLEMS
by Annie Hien Nguyen

In this thesis, we solved the Saint-Venant's torsion problem for beams with
different cross sections bounded by simple closed curves using various methods. |
addition, we solved the flexure problem of beams with certain curvilineas seasions.

The first method was derived by Bassali and Obaid. We focused on cross
sections bounded by hyperbolas, circular groves, lemniscate of Booth, andhkeries
sections. The second method used Tchebycheff polynomials to solve the torsiom proble
corresponding to the circle and ellipse. The third method used conformal mapping to
derive the solution of different cross sections bounded by curvilinear edges.

The flexure problem has been reduced to six boundary value problems; three are
Dirichlet and three are Neumann problems. We derived the flexure functions

corresponding to a certain boundary.
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INTRODUCTION

The classical Saint-Venant’s torsion problem has been extensivearebed by
mathematicians because of its important effects in the real world. Brentproblem
deals with an elastic beam bounded by a cylinder. The cylinder’s surfaee of
external load; instead, the load is applied to the bases of the cylinder. When the beam is
twisted, the stresses cause the generators of the cylinder to becomlechehes and
might eventually lead to the failure of the beam. Therefore, the solution oflspecia
boundary value problems connected with potential theory, which governs this situgation, i
crucial not just to mathematicians but to engineers and physicists as well.

When the beam is being twisted there are different cross sections tha¢ emerg
from the beam; therefore, the torsion problem has many different types afmpsobl
Many mathematicians have solved the torsion problem with different uniformplysim
connected, cross sections of the cylinder bounded by closed curves such as a circl
ellipse, equilateral triangle, and cardioid. However, many othersasuBhssali [1], [2],
Bassali & Obaid [4], Sokolnikoff [13], Stevenson [14], Obaid and Rung [11], and Abassi
[1] have developed different methods to solve a torsion problem.

Like the preceding authors, we start with a prismatic beam bounded by a
cylindrical surface of finite lengthand bases perpendicular to the generators of the
cylinder where one of the bases lies inxtheplane and the other lies in the plane | .
Applying a pair of couples of equal magnitude and opposite directions to the bases of the
beam results in a twist of the beam, which produces displacements and shezsses s

We solve the problem for different cross sections bounded by simple closed curves.



Twisting the beam can result in beam breakage so a calculation of the tongjditslof

the beam, which measures the strength of the beam is needed. In order to solve the

torsion problem, a harmonic functian(x, y) is needed, which is the harmonic conjugate
of the torsion functionp(x, y) in the cross sectio§ that satisfies the boundary condition
w(x y)= %(x2 + y2) on the boundary o$.

In this thesis, we use four different methodsdives the two-dimensional
Dirichlet problem. In the first chapter, we shomotmethods to solve the torsion
problem. The first method was derived by Basgaldi @baid [4]. They use a complex

analytic functionF(z) in the domainS and find a corresponding harmonic function
w(x,y) that satisfies the boundary conditigrix, y)=1r*. We work with cross sections

bounded by hyperbolas, circular groves, lemnisca&ooth, and more. The second
method is to use Tchebycheff polynomials to soheetbrsion problem for cross sections
bounded by simple closed curves. In the third metive use conformal mapping to
derive the solutiono the torsion problem of different cross sectiboanded by
curvilinear edges. The last problem is an extensfdhe torsion function. Stevenson
[14] has reduced the flexure problem to solvinglsixndary value problems; three are
Dirichlet and three are Neumann problems, whereobtiee Dirichlet functions is a

torsion function. We derive the flexure functidos a certain boundary.



CHAPTER 1
SOLUTIONS TO SAINT-VENANT'S TORSION PROBLEM USING

BASSALI-OBAID METHOD AND TCHEBYCEFF POLYNOMIALS

In this chapter, we focus on two methods. Firg selve Saint-Venant’s torsion
problem using the Bassali-Obaid method [4]. Afters, we show the solution to the

torsion problem of a cylinder using Tchebycheffymamials.

Section 1.1 Essential Equations

Let S be a uniform cross section bounded by a s€mlplsed curvd'in the z-
plane, wherez= x+iy =re'’. We set Z = 0 to be perpendicular to the genesatbthe

cylinder, which is elastically isotropic. Twistittige cylinder along its axis at its two
bases by two couples of equal magnitude and ogpdséctions results in displacement

(u, v, w)and the non-vanishing stressgs r,, as notated by Sokolnikoff [13] to be

U+iv =iTzZ w=Tg(x, y) =3T|a(2) + Qlz) (1.1.1)
szzﬂT(%—YJZﬂT(%/— y} (1.1.2)
Ty = ,uT(%+ Xj = ,uT(—E;—Z+ Xj (1.1.3)
T —it, = uTQ(2) - iz (1.1.4)



where T is the constant twist per unit lengthis the rigidity of the material of the
cylinder, ¢(x, y) is the torsion function which is harmonic insidey&x, y) is the
harmonic function conjugate (%, y) and

Q(2) = (% y) +iy(xy) (1.1.5)
is the complex torsion function. The functigt{x, y) must be harmonic in S and it must

satisfy the boundary condition
1 2 2
w (X, y):E(x +y ) onT. (1.1.6)

To solve the torsion problem for a cross sectiom iS,more convenient to find the stress

function¥(x, y)

P(0y) =p(0y) - (¢ + ), (11.7)

wherey (x,y) and ¥ (X, y) must be finite and continuous in S.
Oncey(x,y) is determined we can use it in relations (1.1rf?) @.1.3) to

compute the stresses. Since the material of tliredey is isotropic as opposed to
orthotropic material, we are left with only two sii@ constants. Therefore, we only have
two stress components given as

rzxz,uT%P, sz=—yT%—\)I:. (1.1.8)

The torsional rigidity determines the strengthlef beam, which is represented by

D=2y j j ¥ (x, y)dxdy. (1.1.9)

In polar coordinate$r, @) the stresses are represented by



ut o oY
=T T, =T — 1.1.10
Tar r 00 T20 H or ( )

and the torsional rigidity is

D :ZyH‘I’(r,H)rdrdH. (1.1.11)

The shearing stress is given by

o(r,0) =1, +7,°, (1.1.12)

which provides the amount of force upon the cressien of the bar while being twisted.
Section 1.2 The Bassali-Obaid Method

The process of Bassali-Obaid’s method [4] is ta st&h a complex analytic
function F(2) in the domain S, enclosed Dy and writethe boundaryl" in terms of the
analytic function. The functioifr (z) would be used to find the stress functi‘daﬂéx, y)

corresponding to the given cross section S.

Assume the general equation of a given simple dlibseindaryl” has the form
ReF (2)—(ax? + By? +7)=0, (1.2.1)
wherea, S,y are given real constants with the condition thatg = 0. We assume that
the harmonic functiony (X, y) takes the form
w(x Y) = AReF(2) + B(x? - y?)+ C, (1.2.2)
whereA,B, andC are constants to be determined. We canAin,andC by

substituting the boundary condition (1.1.6) andebaation of the boundary (1.2.1) in

(1.2.2):



A(ax2 + By? +7/)+ B(x2 - y2)+C = %(x2 + y2) on T
which provides the following linear equations i ttnknownsA,B,andC:

aA+B:%, ﬂA—B:%, yA+C=0.

Solving these linear equations will provide

A-—t g Pz c_.__ 7V (1.2.3)
a+p 2+ p) a+p

Substituting (1.2.3) into (1.2.2), the harmonicdtion  becomes
w(xy) =L[ReF(z) X poa)x - y?)- 7}. (1.2.2)
a+pf 2
Substituting  from (1.2.4) into (1.1.7), the stress functionesikhe general form
1 2 2
P(x,y) =——[ReF (2) - (ax® + Ay* +7)] (1.2.5)
a+pf

We notice that the stress function in (1.2.5) msudtiple of the function that

appears in (1.2.1). Also it is obvious that thresd function satisfies Poisson’s equation

V?¥ = -2 in S and the boundary conditi3h=0 onT.
Section 1.3 Cross Section Bounded by a Hyperbola and a Straight-Line

To solve the torsion problem for a cylinder whosess section S is bounded by
the closed curvé’ is to use the Bassali-Obaid method [4] as discusssection 1.2. In

order to rewrite the equation of the closed cuiria the form (1.2.1) we need to find a



special analytic functior-(z) and numbersy, 3,y that corresponds 0. Once we are
able to do this, we use (1.2.5) to find the stresswl the torsional rigidity.
As an example, consider the cdse a> 0 and assume
F(z2)=2-a%z, a=b, p=-3b, y=-a’b (1.3.1)
to satisfy with the desirefl. Sincez = x+iy, ReF(z) = x® —3xy* —a®x. Substituting
F(2), a, g, y from (1.3.1) into (1.2.1), the Cartesian equabdi” becomes
x® —3xy* —a’x—bx* +3by* +a’h=0 (1.3.2)
or (x2 - 3y? —az)(x—b)zo. (1.3.3)
The cross section is bounded by one branch ofytherholax®* — 3y* = a® and a vertical

linex=Db as shown in Fig. 1.

¥

Fig. 1Section bounded by a hyperbola and a straight line.

This hyperbola has an eccentricity 3% Using (1.2.5), the stress function takes the

form



P(X,Y) :—2—1b(x3—3xy2 —azx—bx2+3by2+a2b). (1.3.4)

To find the torsional rigidity D, we substitute 314) into (1.1.9):

[h2 A2
A (20 — 9a%b? —8a* Wb —a? +15a‘bln VP =8 |
90b a
Since the computation of the torsional rigidity€Xime consuming and tedious, we refer
the reader to see [4].

To find the stresses, we first have to find thdipbdifferentiation of the stress

function¥, which becomes

3xy - 3by), v _ —i(sz -3y’ -a’- 2bx).

H_L
- ox 2b

b

Using the above partial derivatives, the stressethfs cross-section are determined by

_ =3uTy(b-x) - —,uT(3y2 —3x% + 2bx+ az).

1.3.5
Tax b zy 2b ( )

On the straight segment APB, we hawveb, so the stresses on APB are

2 a2 a2
7,,=0, sz=’UT( 3y a).
2b
Substituting the above stresses into (1.1.11)shigaring stress function on the line

segment is

o(Xy) = ATl ‘2? —a ). (1.3.6)

To determine the maximum value of shearing stragh® line segment, we differentiate

(1.3.6) with respect to y, which is



do __ 3uly _

dy b
Using the first derivative test, the maximum y-usabccurs aty=0. The maximum

value of the resultant shearing stress occursiat po(b, 0) where

o, :w. (1.3.7)

On the hyperbolic boundary of AQB in Fig. 1, we g , SO the stresses on

AQB are determined by

— uT(b—x)/3(x? —a? — 1Tx(b— x)
= b C Ty

Substituting the above stresses into (1.1.11)shiearing stress function becomes
o(x,Y) = w\/w —3a?. (1.3.8)

Differentiating (1.3.8) with respect togives

do _ 4T |8 -3a"—4bx|
dx b 4x? - 3a? ’

b++/b? + 6a?
4

SO the maximum Xx-value occursxat . The maximum value of the

shearing stress on the hyperbolic boundary is
o = /"L;/— (3b Jo? + 682 sz 3a + by/b? + 62’ )v (1.3.9)

and it occurs at two points with abscistavhere



_b+ Vb? + 6a?

4

f

Section 1.4 Cross Sections Bounded by Circular Grooves

To solve the torsion problem for a cross sectiaaicircular grove we choose

2 2
F(Z)Iz—b—, a:ﬁ:i' }/:—b— (141)
Z 2a 2a

with the condition0<b < 2a. SubstitutingF(2), «, g, y from (1.4.1) into (1.2.1), the

polar equation of” becomes

(r? —b? ﬁ—ijzo. (1.4.2)
r 2a

The cross section is bounded by two ciralesb andr = 2acos¢. Using (1.2.5), the

stress function takes the polar form

b? b —r?
¥(r,0)= a(rcos@——cosHJr 5 j (1.4.3)
r a

For the second cross section with a circular gree@ehoose in (1.2.1)

4

F(z):zz—b—

2%’

a=pf=m y=-ma’. (1.4.4)

We investigate this case in more detail. The petpration ofl” for the second case takes

the form

r.2

2 2
(rz—az{r ra cosZ&’—mj:O. (1.4.5)

The cross section is bounded by the circtea and the curve

10



2
(2o 8 €0S20 (1.4.6)

 m-cos26

2

. The conditionb > 0 leads tan—-1> 0.

Let r =bwhend = 0, which leads tb? = —& -
m_

In addition,a < b corresponds tm< 2. Therefore, we have<m< 2. If we putm=1Y,

in (1.4.6), we obtain Fig. 2 below.

Fig. 2Section bounded by a circular groove.

The curve (1.4.6) passes through the pole O. Trhle @nd the closed curve intersects at

Aa,¢) and B(a,— ¢) where0< ¢ = %cos‘lg < % The stress function in polar form is

4
‘P(r,@):i r2-2 |cos20+maZ —mr2|.  (1.4.7)
2 2

m r

Differentiating (1.4.7) with respect toandd, and substituting the results in (1.1.10), the

stresses for this cross section are given by

4 4
T, = —ﬂir —a—sjsin 20, rt,,= —ﬂ[(r + a—sj Cc0Ss20 — mr}
m r m r

respectively. Using the above stresses in (1.1th2)shearing stress is

11



o(r,0)= r/nl—:;[rg(l— 2mcosd + m? )+ 2a*r *(cos4d — mcos26) + a® ]%

2

Letting t = cos2d leads ta* = a tt . So the above shearing stress becomes
m_
2 1) |m*-2mt® +t*
Q)= uTa = -= , 1.4.8
o(0)=u a[m JJ (1) (1.4.8)

where—¢g<0<¢.

On the circle = a, the shearing stress is

a(6)= yTa(E - 1),

m

wheret = cos24. At C andG in Fig. 2we gett = 1, so the shearing stress becomes
2 2
oc =ula —=1Wm-1, o5 = ulTg ——
m m
respectively wheres; >o.. At A andB we gett = cos2¢ = ’p/ , SO the shearing stress

becomess, = o, = 0. Refer to [4] for the torsional rigidity D for dotases of the cross

sections with circular grooves.
Section 1.5 Cross Sections Bounded by Hyperbolic Arcs

To solve the classical torsion problem for the srasction bounded by hyperbolic

arcs we choose
F(2)=2',a=-4¢% B=ia, y=30+64+4)c* (15.1)
where is a parameterSubstituting (1.5.1) into (1.2.1) leads to the €sidgn equation

of the curverl as follows:

12



x* —6x°y* + y* + 4c*X + 44c%y? —%c“(l+ 64 + 12): 0. (1.5.2
The Cartesian equationlofmay be rewritten in the form

-3+ 2v2)y* + (%+ 2Je2{ x2 - (3- 2v2)y - (% ~2)?f=0.(15.3)

So, the cross section S is bounded by two hypesbola

3+ 1
3+ 242 2—xzz( +2Jc2, 1.5.4a
(3+212)y = (1.5.42)

3+ 4
x> —(3- 242 2:( —2ch. 1.5.4b
(B-242)y = = (1.5.4b)

Solving the systems of equations in (1.5.4a) arl4b) leads to

a=3cv1+31, b=1cVy3+41, (1.5.5)

Where(i a =t b) represents the intersection points of the twcehlyplas. To find the

asymptotes of the hyperbolas we set the right@id&.5.4a,b) equal to zero, which gives

y:i(\/i—l)x:ixtanl, (1.5.6a)

y:i(ﬁ+1)x:ixtan% (1.5.6b)
respectively.
Using (1.2.5) the stress function in polar formresponding td” becomes

B 1(1+ 64+ 22 )c* - 4c?r?(cos’ 6+ Asin? 0)-r*(cos' 6+ sin® 6 — 6cos’ Osin’ 0)
- 4c?(1+ A)

¥(r,0)

(L+64+ A2 c* —4c’r 2 {1+ A+ (1- 2)cos20} - 2r* cosAd

or - ¥(r.0)= 8c2(L+ A)

. (1.5.7)

In addition, the polar forms of the hyperbolasirb(4a,b) respectively become

13



r2 =c?A/[V2-2cos20), (1.5.8a)

r2 =c?B/(v2 + 2cos26), (1.5.8b)
where A= (1+ \/§)+ /1(\/5 —~ ): tan3Z + AtanZ and similarlyB = tanZ + Atan3Z. To
simplify our functions, we introduce two new paraens, k and ¢ , where

1+ 34
3+1

k=%= cotg = (1.5.9)

For the boundary of the cross section to becomenalinear rectangle, the right side of

(1.5.4b) needs to be greater than zero, so thectest onA is

22 -3<i<w. (1.5.10)

Whenl =0, k= 1 and ¢ =% the hyperbolas bounding the cross section are

NE
r2 = (V2 -1)/(V2 - 2cos20),
7 = cz(\/i —~ 2)/ (\/E + 2c0526’),
which are shown in Fig. 3.
Let (+a,,%=b,) corresponds t¢4,, c,) and(+a,,+b,) corresponds tdl,, ¢, ), SO
(1.5.5) can be rewritten as
a, =3¢,41+34,, b, =1c,3+4, (1.5.11)

for v=1, 2. Settinga, =b, anda, =b, leads to

G _ 3+ 4, _ 1+3/12' (1.5.12)
c, 1+ 34, 3+

Solving (1.5.12) gives

14



AA, =1. (1.5.13)

Using (1.5.13) in (1.5.12), it reduces to

C, 1
— =A== (1.5.14)
c, A

(-a.b) _P(r.0) (a,b)

v=-{2-1k

R(n.4)

Ty
et

(-a,-b) ! y= —(\E + 1)x (a,-b)

Fig. 3A curvilinear rectangle(/l =0,k=1/ \/5)
Due to (1.5.13) one of thies has to be less than or equal to 1, so the randge of
becomes2y2-3< A <1. Substituting the new values 4f into (1.5.9), the range &f

becomes\/§—1<k§1and%s¢<3%. Fori=1 a=b=c, k=1and¢=7%,the

curvilinear rectangle becomes a curvilinear sqdaeetor,” andr; intersecting at

(i C,* c). The corresponding hyperbolas have the foercz/(li \/500520). In the

special case oft =22 -3, k=+2-1and¢ =32, (1.5.4b) degenerates into two

15



straight linesy = i(\/i-i-l)x. The cross section in this case is bounded ksethees and

the hyperbola,” = 4c2(\/§ —~ )/(1— \/ECOSZH).
Substituting (1.5.7) into (1.1.11), the torsiongldity for cross sections bounded

by hyperbolic arcs is

D=1 1+Z o f{% (1+62+ 22 )2 —[1+ 4+1- Zcoo)™r,' — 11 costldo+
0

y B (1.5.15)
[fol+62+ 2)tr? 1+ 2 +1- A cook'r —1rf costglde |,
¢

wherer?,r7 are given by (1.5.8a,b) respectively. Settihg Ointo (1.5.15) the torsional

rigidity can be shown to be
D(c,0)= %yc4[6ln(x/§+ J3)-22In(2++3)-v6).  (15.16)

For 1 =1 and the special cade= 2./2 -3, the torsional rigidities are

D(c,1)= 4,uc4{|n(\/§ +1)—g}, (1.5.17)
D(c,2v2 -3)= g,ub“(B— 242)3In2-2) (1.5.18)

respectively. Refer to [4] for the computationeath torsional rigidity case.

For 4 =0, the stress function of (1.5.7) gives
¥(r,0)= 8%[(:2 —4c’r? —4cr?cos20 - 2r*cosAd].  (1.5.19)
C

Differentiating (1.5.19) with respect toand 8, and substituting the results into

(1.1.10), the stresses are given by
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= ﬂTr[Sin29+L—§sin49], T, = yTr[l+ 00529+L—§cos449] (1.5.20)

respectively. The distribution of shearing stnessults by replacing (1.5.20) into (1.1.12)

leads to

a(r,0)= ZyTr\/;—;+COSZ 6+ (cosfcos3s). (1.5.21)
Similarly, the general formula for the stresses tredshearing stress are

v, =2 1= 2)sin20+ Zsindg], 7, =T[4 2+ (1- 2)cos20+ 2 cosd]
1+4 ¢ 1+2 ¢

r.o 2” r\/—+coszt9+lzs|n 6+ (cosd cos3d — Asindsin30)

respectively.

Section 1.6 Cross Section with Two Linear Sides and Certain Curved Bases

In this section the boundary of the cross seatmmsist of two straight lines

0= i% and the curved base

n-2
c0s26 — cost
- N fl<n<ow,—-Z<O<E nz2). (16.1)
Co cosné(1- cos?)
This curve is symmetric with respect to the x-aisl crosses the poifi(c, 0) at a

90°angle. Before we can begin using Bassali-Obaidthod [4] to solve this torsion

problem, we need to find the Cartesian equatioh,of

It is well-known that ifn is an even integédm, then we have the following

identities

17



2m-1
cos2md = 2™* _]1_! (cosze— cos\zl—;;j, (m=23,..) (1.6.2)

2m-1

and H sin® — =2+°", (1.6.3)

v=13,..

Settingn = 2mand substituting (1.6.2) and (1.6.3) into the cdribase, (1.6.1) becomes

2m-1 sz ?r?(c0s26 — coSZ-
r2m 7 | cos20 - cos ™ o b . (1.6.4)
2 2"
v=13... m S|n Zﬁﬁ

Note the left side of (1.6.4) becom@sproducts ofr (00320 cos"—”) so (1.6.4) gives

2m-1 c2m ’\r?cos20 —r? cos.Z-

[T | r2cos20-r2cos || =2 ( Zm) (1.6.5)
2 2m

iz m sin® /L.

Converting the polar coordinates into Cartesiarrdioates in (1.6.5), we get

V. -1
1-cospm " sin® am ﬁ(l COS*)

v=13,..

v=13,...

zﬁl [xz y [1+ cosggﬂ 2rrF2[X (1 CO%) y (1+ CO%)]

After a lot of meticulous substitutions, (1.6.1xbmes

= 2 VT om2
H x* —y?cot* — am =C; (1.6.6)
v=35,..

for the case ofi being an even integer.

If nis an odd intege2m+1, then we can use the following identities

2m-1

cod2m+1)9 =2"cosd [ ] (cosZ@ cosﬁj (m=123..)

v=13,..

2m-1

and H sin® am,

v=13,..

Similarly, the curved base for the odd integ&ecomes
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2m-1

VI
X x> — y? cot? =c>m™, 1.6.7
13_5[[ y o (1.6.7)

For n=3, (1.6.1) reduces to a vertical line= c,and T, is the equilateral triangl®R,P,
in Fig. 4 below. In addition, Fig. displays the Cartesian equation of the curved hase

the hyperbolax® — y* tan” £ = ¢; whenn=4. The Cartesian equation bf becomes
the cubic curvex(x2 — y? tan® %): c;. The curved base simplifies to the quartic curve
(x2 - yZsz —y? tan’ i): cs forn=6

12)= %o '

P3."2

F
716 >z/8I * 5

Pir
Fig. 4 Sectorial cross sections corresponding $03/2, 3, and 4.
From Fig. 4, it can be proven that when 3 the curved base extends to the right of the

vertical line x = ¢, whereas fom < 3 the curved base lies on the left of the line.
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To continue with the Bassali-Obaid method [4], veedh to find the stress

function by choosing the righkt(z). For n= 2, let

t2 1
a:——, =
1-t? P 1-t?

, =0, F(2=C,Z" (1.6.8)

whereC, is a constant. Replacing= tanzlinto (1.6.8) and using the new values for
n

(1.2.5), the stress function becomes

x* tan® Z — y?

Y. (x,y)=C,r" cosné +
(%, y) 2-sec [

(1.6.9)

Using a few trigonometric substitutions, the stifesgtion in polar form is

n r?seck
¥ (r,0)= (005249— coszj Cur_cosng_ n (1.6.10)
n )| cos26 — cosf 2
with condition ofl<n< oo, n# 2.
Using the boundary condition, we foudld= i% and
C0S260 — cos™ )seck
r"2 =—( A)sect : (1.6.11)

2C, cosné

To keep (1.6.11) consistent with (1.6.1) we Ggt= %cg’”(l—sec%), which leads to

1-seck)z"
F(2) = ﬂ . (1.6.12)
2c; "
SubstitutingC,, into (1.6.10) we obtain
2\ 00529—(%)”’2 cosné
¥ (r,0)=—|| —| cosnd+ -1]. (1.6.13)
2 (¢, cosF
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Substituting the partial derivatives of (1.6.13jwiespect to and ¢ into (1.1.10), the

stress components at any paintd) are given by

0

n-2
T, = ’UT{%(CLJ sin nH(sec%l)sinZHsec%},

n-2
T,y = ,uT{l cos2dseck +%(ch cosnd(1- sec%)] (1.6.14)

0
respectively. Using (1.6.14) in (1.1.12), the shepstress is

o,(r.0)= ,uTr[1+ sec Z — 2seck cos20 + 1 (secZ - 1) (é)znf“
(1.6.15)
n(sec% — 1)(&)“‘2 {cosné — secZ codn - 2)6’}]% .

The amount of force upon the cross section of #reoh the x-axis while being twisted is

given by

o,(r,0)=[1- sec%|-1—g(é)"2 : (1.6.16)
The shearing stress at any paintZ) of OP, is

o, (r2)= yTr‘tan%Jrg(l—sec%)(é)“’z . (1.6.17)

Substituting (1.6.1) into (1.6.15) gives the shegstress at any poifit,d) of P,P,as

o.(0)= 2|5TT;”| [(n —2)’(cos26 - cos= )’ + {ntann@(cos26 — cosz)— 2sin Ze}z]yZ .

To find the torsional rigidity, we substitute (1L8) into (1.1.11) to obtain

n-2
T cosnglcosz -1 COSZ — c0Ss2¢
Dn_4yj0/r4HLJ { (cos; )}— n }d@. (1.6.18)
C0

2(n+ 2)cos= 8cos®
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C0S20 —CcoS~
cosné(1-cos®

Further simplifyingD, by using (1.6.1) and* = c{}{ J leads to

n+2

4(A~ in2 .z o ,, n-2 4
D, = #e3(n 2)(23|n 2”) jé"(cosze—coszj (cosn@)=~ d@. (1.6.19)
(n+2)cosz 0 n

To find the torsional rigidity fom =4 we start with (1.6.18), which gives

D :Hcg(3+2\/§)J/(\/_COSZH 1)3

(1.6.20)
6 cos“ 40

Using the substitution rule whepe= 26 and dx=2dé#, (1.6.20) becomes

b _yc§(3+2\/§){ 7% ~2cosx—1 }

6 (\/_ COSX+1)2 (1.6.21)
_ ,uc(‘)‘!3+ 2\/5?(\] . K)
6 1
7 1 % 1 :
where J = jo ———dxandK = IO — - dx. To solve for the integrdl
J2cosx+1 (\/E cosx+1)2
we need to apply Weierstrass’ method wheretan¥ , which leads ta:osx_ . So,
3=2" du (1.6.22)

SR
Factoring out/2 -1 allows us to use a well-known Calculus formﬂ]lg% In|aJru

which (1.6.22) becomes
J==In2. (1.6.23)

Similarly, we have
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-l R

Letting b® = ?fl and using the substitution rule for=bsing forK leads to

K = AJ‘@(].-‘F bz)seé’ ¢ —b’seapdg
=% [% (1+ b?seaptang + Insea + tang]) - b? Inseap + tan¢5|]¢l
where ¢, = sin’l(% tan%). EvaluatingK gives

K :%(1—In 2). (1.6.24)

Substituting (1.6.23) and (1.6.24) into (1.6.2kh§ torsion rigidity ah = 4 is denoted as
=2 3+22)uc;(3In2-2). (1.6.25)

Refer to [6] for the proof of other torsion rigiidis.
Section 1.7 Cross Section Bounded by the Lemniscate of Booth

In the previous sections, we guesbéd) to obtain solutions to the torsion
problem. In this section, we firk( z) that corresponds to a cross section of the

lemniscate of Booth". This is the opposite of what we have done bedockit is more

difficult. To do so, we need to derive the equatid the lemniscate of Booth.
Given the ellipsd™": x'?/a’? + y'? /b’ =1 with &’ > b’ its polar form is

cosd s 1
arZ + br2 _rTZ'
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where its centdD is set as the pole ar(d',&') is a polar coordinate of any poiRt on
the ellipse. LetP(r,d) be the inverse ¥ with respect to the circlg = f . Therefore,

the inverse of the ellipsg’ is the lemniscate of Booth with polar equation

2 g 4(0052 0 . sin? 0]
- a!2 er

or r? =a®—b?cos20 (1.7.1)

where

1 1 1 1
aZZ%le(F-f‘?j, bz:%f“[F_?j'

From the ellips&’, the foci are(i Ja'? -b'’? ,O) wherec'” =a'> —b’?. The inverted foci
of ['is (+c,0). By inversion,cc’ = f 2 impliesc® = f*/c'?, so we must have

o f4 _at-p
arZ_er 2b2

(1.7.2)

Next we need to develop a relationship betweemdta coordinates oP to the center
Oand the two fociO,,0, of " as poles as shown in Fig. 5 on the following page.
Based on law of cosines, we have
rZ=r?+c’-2crcosd, ri=r*+c’*+2crcosd. (1.7.3)

Furthermore, we have

rr, =r*+c*—2c’r?cos20 . (1.7.9)
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Fig. 5 The lemniscate of Booth section

Substitutingcos26 = (az_r% from (1.7.1) andf% =1+ 20%2 from (1.7.2) into (1.7.4) we

get rr,=—r?-c?=b*+c’-a’cos26. (1.7.5)

Using (1.7.3) we establish further properties:

r,—1, =2cosda’—b?, r,+r, =r/21+ e ). (1.7.6)

. iné. in@ 0, -0 - 0, +6 :
The law of smess,m—l :Sm—z, leads tdar( L Zj _L~h tar( 1t 2). Setting
r, r r,+r, 2

p=r-(0,+6,) givestar(e1 ;sz _27h cot[ﬁj.

r,+r 2

Using trigonometric identities, it can be shownttha

tar(el sz_rz rl\/(r2+rl) 4c 1.7.7)

2 B r +1 4C2 —(I’2 - rl)z

at any poinP. If P lies onI" we have
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a 0,-0,) b’sin20
2 r

r.2

by substituting (1.7.6) into (1.7.7). The abovatiens implyco{ﬂj =

2 ) byar,’
0,-0, r? :
Therefore, we can deduger, co = , Which leads to
2 bv/2
ReyVc? - 7% = x4y (1.7.8)
bvV2  by2 -
Comparing (1.7.8) with (1.2.1), we find
1
F(2)=vc?-2°,a=8=—=,y=0. 1.7.9
(2) B ovz (1.7.9)
Substituting these values into (1.2.5), the sti@sstion in polar form becomes
b 1
Y(r,0)=—=Revc® —z* - =r?, 1.7.10
(r.0)="5Rev > (17.10)

It is well-known thatRevu +iv = 4+/u +(u?+v?)* . We will setu =c? —x* + y>and

v =-2xy. Using the given formula and replacingv into (1.7.10) we have

¥(r, 9):%[b\/cz —1r2cos20 + (c* - 2¢%r? cos20 + 1) —rz] (1.7.11)

Differentiating (1.7.11) with respect@andr , and substituting the results in

(1.1.10), the stresses for this cross section i@sndy

. 1Ta’b?r sin20 o uTa’r? (1.7.12)
“ a*+b*-2a%h%cos20’ *  a*+b*-2a’b’cos26

respectively. Substituting (1.7.12) into (1.1.1the resultant tangential stress is
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Lra’r

olr.6)- Jo* —a* +2a%r?

(1.7.13)

To find the extreme values of the shearing stresk pwe use (1.7.1) in (1.7.13); then

we solve% o(0)=0for . The critical points occur & = 0, J_r%, 7. The maximum

2

ura

vJa? -b?

value iSGAl =0, = at 8 = 0,  whereas the minimum value is

T 2
Og =0g, =Lat9=i%.

va%+b?

Substituting (1.7.10) into (1.1.11) where-re'’ thge torsional rigidity becomes

v ST e b — 1
D=8yJ-OA J'O (ﬁRe\/cz—rze”—Erzjrdrdﬁ. (1.7.14)

Simplifying (1.7.14) and using the substitutionesuihe torsional rigidity becomes
D=4u(l,-1,) (1.7.15)

where
B % a’-b?cos20 o T 4 4
L=[" [ drd9_1—6(2a +b*), (1.7.16)
b % a’-b’cos20 ”
Ilz—ReJ' .[ Ve —ue’ dudg
,\/E 0 0
__bv2 Rej'% e?[c? - (a® - b? cosZ@)]yd&.
3 0
Substitutingc?from (1.7.2) andcos20 = %(ezm + e‘z“g) into 1, we have
|, = L Rej?(a%’m —3a’b® +3a’b’e”’ —b%e*’) db.

6b?
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Since we only want the real value f we get

ra*

1 ’7 4,2
|1:6b7j023a b2do = (1.7.17)

Substituting (1.7.16) and (1.7.17) into (1.7.1% thsultant torsional rigidity is

D= %/M(Za“ - b4).
Section 1.8 Tchebycheff Polynomials and their Applications

Another method to solve Saint-Venant Torsion Pnabie through the use of
Tchebycheff polynomials developed by Mohammed Mbassi [1]. This method offers,

in many cases, a simpler and direct approach tedhgion of the torsion equation:

’Y  0°Y
+
aXZ ayZ

= 2ua (1.8.1)

where¥ represents the stress functigns the modulus of rigidity of the material of the

cylinder, andx is the angle of twist per unit length of the b@he solution of the torsion
problem¥ must satisfy the boundary condition tHais a constant on the boundary of the
cross section of the cylinder.

The torsional rigidity is defined a bit differentlyrhe reason is that Abbasi® is

ua times theBassali- Obaid¥ . We decided to keep Abbasi’s notation, so itaSreed

as the magnitude of the torqiw,, of any cross section given as
M, = 2[[ ¥ dxdy. (1.8.2)

The non-vanishing stresses are determined by
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oY oY

T= 8y, sz— & (183)

using Sokolnikoff's notation in [13]. The solutiém (1.8.1) is denoted as
W = —2ualt (X2 + y? )+ 4], (1.8.4)

where ¢ satisfies Laplace’s equation:
2 2

99,99, (1.8.5)
ox~ oy

Twice diﬁerentiating¢(r(x, Y),0(X, y)) with respect tx andy then substituting

these values into (1.8.5), we obtain the well-kndwaplace’s equation in polar form as

ﬁdriﬁ-kiaz(ﬁ 0. (1.8.6)

or? reor r?oe?
A solution of (1.8.6) using separation of varialikegiven by
¢ =F,(0)F,(r) (1.8.7)
with conditions ofg(r,z) = ¢(r,—z) and ¢, (r,z)=4,(r,—7). Hence
P = F1F2"’ ¢ = Fle‘, Poo = F1"F2- (1.8.8)

Substituting (1.8.8) into (1.8.6) and dividing baides byF, F, leads to
r _J,-r—:——:/lzl (1.8.9)
F F,

From the case foF, we determine the paramet&t and substitute the boundary
conditions into the solution of the differentialuegjon F, + 2°F, = 0. The case of

A2 <0 gives a contradiction to the solution of the difetial equation; therefore, we

have the parameter to € > 0. Hence, we have
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F,(0)=E, cosnd+H, sinng, (1.8.10)
where E, and H, are arbitrary constants amd« 0. For the case &1, , we
letF,(r) = r”, which givesF,(r)=yr’™* andF, (r)= (y —1r’~?. Substituting these
derivatives intor °F, +rF, - A°F, = Oeads to(;/2 - /12)r7 =0. Sincer =0, we
havey =+ . Therefore, we obtain

F(r)=K.r*+L,r?, (1.8.11)
where K, and L, are arbitrary constants amd«0. Forn=0, (1.8.10) and (1.8.11)
becomes

F,=a,+b,d, F,=clogr+d, (1.8.12)
respectively witha,, b, ¢,, andd, as arbitrary constants. Substituting (1.8.108.(11),

and (1.8.12) into (1.8.7) the solution to (1.86Yyiven by
¢=A, +B,0+(C,+D,0)logr +i[(A1r” +B,r ")cosnd + (C,r" + Dnr‘”)sinne].
n=1

Replacing the above function into (1.8.4), thessteinction is determined by

W = —2ua { 1r? + Ay + B,0 + (C, + D,d)logr +

[(A]r” +B.r" )cosne + (Cnr "+ D, r" )sinnﬁ] ) (1.8.13)

M

T
L

(1.8.13) can be re-written in terms of Tchebyclpeffynomials. Before we do so, let’s
introduce a few properties. The first type of Tlyeheff polynomials is denoted by

T (cosd) = cosnd. (1.8.14)
Sincecogn+1)9 +cogn-1)8 = 2cosndcosd and using (1.8.14), we have proven the

following recurrence relation
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T..,(cosf)—2cosAT, (cosd)+T, ,(cosd) = 0. (1.8.15)

The second type of Tchebycheff polynomials is gilgn
U, (cosd)=sinng. (1.8.16)
Sincesin(n+1)@ + sin(n-1)¢ = 2sinndcosd , the recurrence relation becomes
U,.,(cosd)-2cosaU  (cosd)+U, ,(cosd)=0.  (1.8.17)
Using (1.8.14) and (1.8.16), the stress functio(liB.13) leads to
W = —2ua { 1r? +A, +B,0 + (C, + D,d)logr +

i[(Aqr” + Bnr‘”)'l'n(cos@)+ (Cnr“ + Dnr‘“)Jn(sine)] 3

n=1

(1.8.18)

wherer = /x’+y* and@ =tan™ Y4 . Using Abbassi’'s method, the solutions witfy

(C, + D, )logr, and i(cnr“ + Dnr‘”)dn(sine) are usually not needed, so we will set
n=1

B, =C, =Dy =C,, = D, =0. With these new conditions, (1.8.18) becomes

¥ = —2u0 {1r2 43 [(Ar"+B,r )T, (cos) ] . (1.8.19)

n=0

Therefore, if the equation of the cross sectionlmanewritten as

1124 3 [(A "), (cost) ]= 0 (1.8.20)
or 1124 3 [(Ar" +B,r )T, (cost) = 0, (1.8.21)

then the stress function of (1.8.19) is the sotufmr the torsion problem.
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1.9Cross Section Bounded by a Circle, or Ellipse, or Equilateral Triangle

In this section, we use Abbassi’'s method for tliiferent cross sections: circle,
ellipse, and equilateral triangle. First we needdnvert the Cartesian equationlointo
the form of (1.8.20). Once this is verified, we able to use the stress function formula

indicated in (1.8.19).

Given the cross section of any given cirgfey y* = a, with radiusa, the polar
form becomes ? —a® = 0. To keep the cross section consistent with (0)8\2e
multiply both sides byt . Thus, lettingA, = —1a® and the other constants as zero. So
the stress functioff becomes

W = —1ualr? -a?)

or W= —1ua(x? + y? —a?).

In an elliptic cross section, converting the Ce’uallelesaquationg—zJFI?J/—Z2 =1, of
I"into the form of (1.8.20) requires the use of Tglutleff polynomials. From (1.8.14),
we can deducd, (cosd)=1-2sin’ @ = 2cos’ # 1. Converting the Cartesian equation

into polar coordinates and using Tchebychet dggree polynomial gives

T2(0039)+1+ 1-T,(cosd) 1

2a’ 2b® r2
Simplifying the above equation and keeping it cetesit with (1.8.20), we need to divide

both sides by}(a? +b?) leading to

2 a’b? _rz(az—bz)l'z(cose)_o
2a? +b?) 4a? +b?) e

FNITY
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. . a’b’ a’—b’
The above equation matches with (1.8.20) ngﬁe—T—), A =- ,
2la’ + b? 4a® +b?

and all the other constants are zero; therefoecstitess functio¥ is

2 2b2 2_b2
Y= —%,ua{rz - (a2a+ bz)_ EZZ N bZ;rZTZ(COSH)} .

To convert the stress functihback to Cartesian coordinates, we substitdte x* + y°

2 2

and T,(cosf)= ))zz J_r 3;2 , which leads to

a2b2 X2 y2
Y=—pug—— | 1.
# aZerzL2 b

To find the stress functioH for a specific equilateral triangle cross sectianneed to

use the 8 degree Tchebycheff polynomiaTS(cose)z 4cos 6-3cosd. The equation of

the boundary of the triangular section we are sgl¥$ given by
(x+%a)(x—\/§y—§aXx+\/§y—%a):O

or 1(x+y?)-%a® -+ (X -3xy?)=0.

Converting the above equation into polar coordimgiges
1r?-La’-Lr°T,(cosd)=0,

which leads toA, = -2, A, =—-2, and the rest of the constants as zero. Theref@re

are able to use the stress functibformula in (1.8.19), which is denoted by

¥ =~ palr® - 42’ - 17T, (cost)|

or W= —1ualr? —£a? —1(x* - 3xy?)|.
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The stress function in all three cases is condisteéh the Bassali-Obaid method in [4].
1.10 Cross Section Bounded by Special Curves

In this section, we follow Abbassi’'s method derivedection 1.8 for two cases.
The first case is a cross section bounded by tvarsacting circles and the second case is
a cardioid. In both cases, we rewrite the Cantesguation ofl" to the form in (1.8.20)
or (1.8.21) so that we can apply the stress funatiq1.8.19).

The first special curve case gives: bto have a center on the circumference of

the circler = 2acosf, where b < a. Substitutingpst :7)5 intor = 2acosd and

completing the square leads(to-a)* + y? = a®, which is shown in Fig. 6 below.

Fig. 6 A circle of radius a with a notch whose boundarg @rcle of radius b

The cross section is given by

or 1r? - 1p? —larT,(cosd)+ 1T, (coss) = 0.
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So, in this case (1.8.21) has valuespgf= —1b? A =-1a, andB, = {ab?, which leads
(1.8.19) to become
¥ =—10(r? —b? J1- 227, (cost)].
In the second case, the cross section is boundadbsdioid of the form

_1+cosf
2a’

or (2a2r - cos@)2 =1.
Multiplying the above equation bg’r *we have
2r?(2a’r — cosf)=1r(1+cosg) =r rcos’ 4

or 2a’r?* —arcosd —r’ cos§ = 0.
To keep the above equation consistent with (1.8\@8)divide both sides bgl—s
a

leading to
1r? - 10T, (cosf) - 25 17T, ,(cos0) = 0.

8a

Since the equation has the form in (1.8.20) wiigge-—_, A =—_=, and the rest of
the constants are zeros, the stress function steléiy

¥ = —%yalr 2 — L1 Ty 5 (cos0) - 5L rTl(cose)J.
Note that when we used separation of variable®gti@ 1.8 we defineth € Z based on

acircle. Since the above case is a cardioid,r@ellowed to lein = 3 whereT,,, is

considered a Tchebycheff function not a polynomial.
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CHAPTER 2
SOLUTIONS TO SAINT-VENANT'S TORSION PROBLEM

USING CONFORMAL MAPPING

In this chapter, we solve the Saint-Venant's targooblem for two different
cross sections in which the boundary is a regulariknear polygon oh sides anch
rounded vertices using conformal mapping. To dov&will map the boundary curves

in thez-plane to the unit circle in the ¢ —plane under the conformal
transformatiorz = o(¢). To solve the torsion problem for we will need to derive and

use Schwarz and Poisson’s formulas. Refer tori@][&3].
2.1 Fundamental Equations

The complex function

Q(2) =p(x.y)+iw(xy) (2.1.1)
is analytic if it has a unique derivative at evpomt in the given region S and it must

satisfy the conditions of the Cauchy-Riemann eguati

9 _oy oy _ 0p (2.1.2)

ox oy  ox oy
where the partial derivatives are continuous fumgtiofx andy. If Q(z) does not have a

derivative at some poiret,, then we call it a singular point of the analytiaction. If

Q(z) is analytic, then we know (2.1.2) exists in S #elhigher order derivatives as

well. If all of these conditions are met, thgrandy satisfy the Laplace’s equation
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V=0 Vi =0 (2.1.3)
respectively. If the functio®2(z) is analytic and continuous in S bounded by a smpl
closed contout”, then Cauchy’s Integral Theorem is applicable chhs

[o(z)dz=0. (2.1.4)

We can further generalize Cauchy’s Integral Thedi@an closed, multiply connected

region S. IfQ(z) is analytic and continuous in S bounded by theréxt simple contour

I, and by the interior simple contours,I,,....,I,, then

IQ(z)dz: jQ(z)dz+ J'Q(z)dz+A + J.Q(z)dz. (2.1.5)

o n I n
If z=ais an interior point of S bounded BBy, Q(z) is continuous in a closed region S,

and Q(z) is analytic at any interior poimt S, then Cauchy’s Integral Formula is
Q(a)=—_j%dz. (2.1.6)
r

Cauchy’s Integral Formula is differentiable giveto be any interior pointin S. To keep

the formula consistent we will change the variadflentegration in (2.1.6) tg , which

leads to

Q"(z)- I ;f(f))mld:- (2.1.7)

With the use of Cauchy’s Integral formula, we capand the analytic functiof(z) as

aTaylor’s series such as

Q(z)=0(a)+Q'(a)fz-a)+---+ Q‘”r)l!(a)(z_ a)+--. (2.1.8)
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The functionQ(z) can also be rewritten as a Laurent series. Taogdf(z) has
to be continuous in the closed annular region farmetwo concentric circlef; and
I,, wherel, andT, also bounds the region S. In additi6¥(z) has to be analytic at

every interior point between the circles. If &kése conditions are satisfied, then we have

(z)= > b (z-a), (2.1.9)

k=—x

whereb, = 1, I Q(Z)kﬂdz, k=0,£1+2,...,andz=ais the center of’, and[T,.
27i | (z—-a)

There are two cases f6}(z) in (2.1.9). The first case is there exist a @miumber of
the coefficients with negative subscripts thatrasezero, but in the second case there
exist an infinite number of them. Given the ficase,Q(z) has a pole of orderat

2= a, then (2.1.9) becomes

__Man b_, b, B A
Q(z)_(z_a)n+ +(Z_a)2+z_a+bo+bl(z a)+b,(z—a)’ +---. (2.1.10)

Substitutingz—a = ¢ into (2.1.10) and integrating arourtenclosed byz = a with no
other singularity of leads to

[(z)dz = 27ib ;. (2.1.11)

Tr

The quantityb , is known as the residue OI(Z) at the polez=a. To evaluate the

residue ofQ(z) at a pole of ordem we need to use the following formula
n-1
b, =lim—2 4 {;_aya(2). (2.1.12)
At a simple polen=1, (2.1.12) becomes
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b, =lim(z-a) Q(z). (2.1.13)

Z—>a
If I"encompasseaspoles at singularities,, a,,...,a, with residuesc ,,d ,,...,q ,, (2.1.11)
leads to

jQ(z)dz=27zi x(c,+d +---+0,). (2.1.14)

T

If each pole is known in the Laurent expansiofXj#), then another way to evaluate

(2.1.14) is to multipl2zi with the sum of the coefficients %f_lfalﬁ

The last fundamental equation needed is the Theoféfarnack. This theorem

uses functions of a complex variable that is applie to elasticity. The region bounded

by the unit circle|z| < 1transformed into the compleX - plane, wherel” =& +in and

& eR. So,|¢| <1are points inside the unit circle, ando =€ are points on the
boundary ofy . All functions with & are to be periodic. So Theorem of Harnack states
that if f (9)andg(6) are continuous real functions, all values(odre insidey and

(0

1 fO0)y 1 e0)
2m£a—gda_2m£a (da (2.1.15)

are satisfied , therf (8) = p(@). If the points¢ are outside of instead, but the rest are

the same, therf (9) = ¢(#)+ constant.For proofs of all of these known theorems and

formulas refer to [13].
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2.2 Schwarz's and Poisson Formulas

In this section, we find the torsion functigiix, y) and its conjugates(x, y), the

problems of Dirichlet and Neumann, based on a laraegion. These types of problems
usually involve lots of difficulties, so we can gigome formulas to help with finding the
solution. In other words, we use the formulas diarz and Poisson to solve the
torsion problem with a circular cross section.

Let S be the region bounded by a unit circle asipusly described in

Section 2.1. Let the harmonic functi@ﬁ(ﬁ,n) be determined when the boundary

condition on the circler satisfies

g =1(9), (2.2.1)
wheref (9) is a continuous real function &f. The conjugate of the harmonic function
#(£,n) is w(&,n7) wherew(&,7) is found to be within an arbitrary constant freid, 7).
So we have

QS)=g(&n)+iw(én) (2.2.2)

is an analytic function of the complex varialdle= £ +in for all values oﬂ§| <1. Letus
assume(z(g) is continuous in the closed regipﬂg 1, then (2.2.1) becomes

O(0)+Qlo)= 21 () (2.2.3)
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on y whereQ(c)= f(6)+iy andQ(c)= (0)-iy. We defineQ(c)=Q(c) and

1da

( ) Q(c) based on Sokolnikoff's notation [13]. So when Wlﬂ!ltl'p|y ;
G f—

by

both sides of (2.2.3) and integrate upave have

1 jQ( )d Iﬂi} mj f(6) do . (2.2.4)

27 4 27r| -

Based on Theorem of Harnack, (2.2.4) is equivate®.2.3). Furthermore, based on

Cauchy’s Integral Formula the first integral became

Q(§)=2iml¥da. (2.2.5)

The second integral in (2.2.4) requires a littlerencalculation. Using (2.1.8) with the

origin as the center of the expansion give us

(n)
. 2"()
nl

Q)= (0)+ ' (0)g)+ )+ (226)

Since|¢] =1 and the points on the boundary of the unit ciecke{ =€’ = o, we have

Zz e’ :l. Multiplying (2.2.6) withi_ do and integrating it upow leads to
(@2

27l o —

The first integral on the right side above?&O). By the Residue theorem, the rest of the

integrals on the right side are zero. Using tHegbngs, (2.2.4) becomes

Q(£)+9(0)=2 jaf(gg do . (2.2.7)
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Let Q(0)=a, —ib,. Rewriting (2.2.7) leads to

Q(g)—i_j@da—ao +iby. (2.2.8)

i L0 —¢
If we set; =0, thenQ(0) = a, +ib,, which leads to

1110y, (2.2.9)

27iY o
V4

E

Replacing (2.2.8) into (2.2.9) gives

Q(e) =12 t()do ij@dmibo. (2.2.10)

_myo—é’ _272'i7 o
Combining the two integrals in (2.2.10) provide$\Barz’s formula as

Q(¢)= -1 [ ZFE ¢ (6)do +ib, . (2.2.11)
2 o—-¢

Note b, is undetermined becausdé, ) is found to be within an arbitrary constant of
#(£,17). Substituting? = pe® = p(cos® +isin®) and =€ = cosd +isiné into
(2.2.11) gives

1 (2x f (01— p*+ 2 psin(© - 0)]

A)=5. 1, 1-2pcod0-0)+ p?

d6 +ib,. (2.2.12)

To obtain the Poisson’s formula, we will get thalneart of (2.2.12) to be

i @]
ReQ(g)—zﬂ (. T 5pcodd-6)7 7 do. (2.2.13)

Poisson’s formula determines the solution of thecBblet problem where the region is

bounded by a circle. These formulas are restricestblving a boundary which is a
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circle. In the next section, we expand the forrauttasolve potential theory problems for

different boundaries.
2.3 The Conformal Mapping Method

In this section, we generalize the formulas of Satzvand Poisson to solve
boundary value problente any simply connected region by using conformapping.
The mapping functiorz = co({) corresponds tpoints ¢ = & +in of the complexé/-
plane to points = x + iy of the complexz - plane. co({) is a conformal transformation if
o(¢) is analytic in the circles in the £ - plane andw'(¢) # 0. If (<) is a conformal

mapping, then it will preserve the angle measutésing conformal mapping, we can
solve a torsion problem, which is also explainethia section.

As stated previously, the complex torsion funci®n

Q(2) = (X, y) +iw(x,y), (2.3.1)
where z= x+1y, ¢(x, y) is torsion function, and/(x, y) Is the conjugate torsion function
of ¢(x,y). The functionQ(z) is analytic in the cross section region of thenbeznoted
by S. Let S be a simply connected region, so warmae we have the function

2= () (2.3.2)

conformally maps S onto the unit ciquﬁ <1. Using (2.3.2) we can rewril@(z) in
terms of =& +inas

lw(¢)]=(&n)+ip(En)=1(S), (2.3.3)

where f(¢) is analytic inside the unit circlg;.
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As stated previously, the conjugate torsion fundip satisfies the boundary

condition

(o 2\ Z
w(x,y):z(x +y )_ 5" (2.3.4)
Substituting (2.3.2) into (2.3.4) leads to
y = @lE) (2.3.5)

which is the boundary condition gnthat needs to be satisfied by the imaginary pfart o

f(g”). Solving the torsion problem requires finding thal part of the analytic function
1 .
i—f(C)=vx—|¢, (2.3.6)

while still satisfying the boundary condition in32). Puttingf (0):%{0)(0)5(5)} and

Q(¢)=11(¢) into (2.2.8) leads to

7Tl

1 1 ol .
i—f(§)=2 _J“’(;_“;(")da—aoﬂbo. (2.3.7)

Sinceo =€’ ando =e? =1/o, (2.3.7) can be written as

f(¢)

L jolollUo)y, oy @ag

_27ry o—-¢

which is the solution to the torsion problem. Tosional rigidity can be expressed in

terms of f (¢):

D= yjsj(xz +y? Jdxdy+ ﬂfsj(x%i_ y%jdxdy (2.3.9)

=l + uD,
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where

I, = —iz [[olo)f olo)delo) (2.3.10)

and D, = —% [[te)+ Tlo)|alo(o)elo)] (2.3.11)

Refer to [13] for proofs of the above known theoseand formulas.

2.4 Cross Sectionsl’,, Defined by z= Co 5
(L+mg™+ pg™)

Stevenson [14] used conformal mapping to solvebinehlet problem for cross
sections in which the boundary is a regular curegir polygon oh sides anah rounded

vertices. He mapped the boundary curves iregplane to the unit circle in the

¢ —plane under the conformal transformating o(¢)= c§(1+ mg”“) with the conditions
c>0and0< |n1(n+1)sl. In this section, we use Cauchy integral metheribed in
Section 2.3 to solve the torsion problem for th@ssrsections bounded by, in the z -

plane which are mapped to the unit cirglen the ¢ — plane under a different mapping
function from that of Stevenson. Let the confortnahsformation be

Z= Co
L+ mgn + pg®

) c>0, ¢=¢E+in=p€?, (2.4.1)

where ne N"and m, p are real parameters. To ensure the mapping itidnformal
everywhere inside the curves,and p will be chosen so that'($) will not be zero or

infinite within I',. See Bassali [2] for the details of the paranseter
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To determine ifl", is a regular curvilinear polygons o&ides ancdh vertices, we
need to obtain the parametric equations of theesury. Multiplying (2.4.1) with its

conjugate gives us

C2

1+ m? + p? + 2mcosné + 2mpcosné + 2pcos2né

2

= 2Z=

which gives the polar equation bf,.

Using z+ z=2x and dividing both sides of the above equatiorn byeads to

%: = 2cosf + mcodn—1)9 —isin(n—1)6 + cosp—1)0 + i sin(n—1)0]+

p[cog2n-1)9 —isin@n-1)0 + cos@n-1)6 +isin(2n-1)4].

Let n, =n—-1andn, =2n- 1 Then simplifying the above equation to

;(—S = cosf + mcosn, @+ pcosn,fb . (2.4.2)

Similarly, we have

ycC
—2:

singd —msin, € — psinn,é. (2.4.3)
r

The parametric equations Df from (2.4.2) and (2.4.3) can be shown to be regular

curvilinear polygons of sides ancdh vertices, so we can continue to find the complex

torsion function as shown in Fig. 7 in the follogipage.
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e =116, p = 1356, n =4

Fig. 7Cross Section bounded by four arcs and approxigna&hi-circular arcs

The complex torsion function is
Qz)=f(¢)=d(xy)+ip(xy), (2.4.4)
where f(£) is the function that solves the torsion problerthia circle and satisfies the
boundary condition in (2.3.4). Let be a point on the boundary of the circle. Thus

o =1/c . Substitutinge(c)= co .
1+ mo" + po"

— clo
andw(l/o)=
oll/o) 1+ml/o)" + p(L/ o)™

into (2.3.8) leads t6(¢)

()= i

do + tant. 2.4.5
. (pO'Z“ +mo" -1-1XO'2n +mo" + pXO' -¢) o Tconsian ( )

Forzto be conformal everywhere inside the cirglecannot be infinite in the

interior of z, in other wordé+ m¢" + p&>" = OTherefore,

pc® +mo"+1=0 (2.4.6)
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gives points outside the cirgle Let A' and A" be the two roots of the quadratic
equation

pt? + mt+1=0, (2.4.7)

n

wheret=c". Using special formulas for the sum and the pcbdiiroots, we have

A== 1A= (2.4.8)

ol

The 2n roots of (2.4.6) arel,, A, wheres=12,..n, A" =1 and A =1 . Sincel is a
root of (2.4.7), its factor will bé— 1 or " - 1. So, we have

oc"-A 2(0'—/1'1X0'—/1'2)---(0'—/1'n). (2.4.9)
Taking the logarithm of both sides of (2.4.9) ahert differentiating both sides with

respect ter leads to

ne™ & 1
o"—-A _;a—/’{ B

S

+iz A - (2.4.10)
(o2

=1 0 — A

n
= (o}

The last equality above is obtained by a simplelaigic trick. Rewriting (2.4.10) we

n-1

havelz 4 — = no , —E. Multiplying both sides of this equality by and
cHdo-A, o"-1 o

combining the two fractions gives the following peoty:

noo4 nA
E . Sﬁ, = PN (2.4.11)
s=1 — /g -

To evaluatg2.4.5) we add the residues outside the circlels thig residue at

infinity. However, it can be shown that the resid infinity is equal to zero since the

denominator of the integrand in (2.4.5) has a Ipigver; therefore, we only need the sum

of the residues at the simple poles outside otitode. In the case o’ = 4p, the
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simple poles are outside the circle. We shallarsextension of the residue theorem to

evaluate the contour integral (2.4.5). Thus weshav

f(¢)= —czizn:(R's + R;) + constant, (2.4.12)

s=1
whereR,,R_ are the residues of the integrand in (2.4.5).afl, respectively. Using the

formula for the residue at a simple pole we have

. o) . o
= lim R -lim : 2.4.13
R o=i 1+ Mo + po?” o (p+ mo" + 02”)(0 ~<) ( )

Sincel, is a root of (2.4.6), applying L’ Hopital's Rule the first limit in (2.4.13) and

simplifying the limits gives

p) 27

S

- mi," + 2np/1's2n ' (p+ mi, + Z:nXZS - {) '

S

Simplifying the above equation with the use of thpeopertiesn= —p(/l' +/1") and

A0 =2 leads to

. W)
= — O . 2.4.14
& nplZ -2 \p+md +22)¢ - 4,) ( )
Similarly, we also get
A2
(2.4.15)

R Aot + 2 —A)
Taking the summation of both sides of (2.4.14) give

n , 2: n
2R T A e mi s )=

A
—A

J
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Using (2.4.11) into the above equation leads to

VR = ~ 2.4.16

;‘&_ plA -2 p+mi+ %) -4 ) (2:4.16)
Similarly,

il{ 4 (2.4.17)

= pA - p+rmA + 22N =4 )

Substituting (2.4.16) and (2.4.17) into (2.4.12) amplifying it leads to

B czi(mp§”+ p+1)
f(¢)= i p)(p{z" e +1){(1+ oF - mz} + constant  (2.4.18)

for the casem® = 4p. In the case of® =4p, it turns out that it coincides with (2.4.18)
because even though we have- 2 we still havel + 4 =—f.and 22 =%. In

addition, there ar@double poles that lie outside of the circle, sowaeild still need to
find R andR.. When findingf (¢) all the A, 2" ends up canceling each other anyway;
therefore, the solution of (¢') becomes the same formula as in (2.4.18). Thetaohis
(2.4.22) is given as

—c%i(l+p)

2(1- p){a+ p) - m?y

by using the formula in (2.2.9). Substituting (29) into (2.4.18) gives the complex

constant (2.4.19)

torsion function as follows:

c?i(mpg" + p+1) [(1+ p)-m¢"(1— p)- p¢* 1+ p)
f(o)= . (2.4.20
) 2(1- p){L+ pf —m?y pe* +me" +1 ( )
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Let g= (L+ p)/(1- p) andk = (1+ p)’—m’. Replacing the new values g@andk

into (2.4.20) leads to

_cfilg-mg" - pgg®
f(¢)= Zk[ pgzumguJ' (2.4.21)

Let p=1, so we have, =€, which sets (2.4.21) as

) 2: _ é‘ne _ pqezine
flge)=SL 9=Mm . . 2.4.22
( ) 2k { pe™’ + me"’ +1 ( )

Multiplying the numerator and denominator of (26).By 1+ me™’ + pe?"’ gives

f(em)_c_zi q- p°q—m?—2pgisin20 + misinnd(p-q- pg—1)
2k 1+ m? + p® + 2m(1+ p)cosné + 2pcos2nd '

The imaginary part off (em) is the solution to the torsion problem. So, thaginary

part of the above equation is

2 L n24 2
p=o|— 97 POU7M . (24.29)
2k | 1+ m? + p® + 2m(1+ p)cosné + 2pcos2nd

Substituting the value df and r from the polar equation for the curve into (2.4.8Bes
W= Im{f(e”)}:—rz. (2.4.24)
as expected.

cg

2.5 Cross SectionsI', Defined by z =
1+mg"

In the previous section, we found that the solutathe torsion problem by using

Cauchy integral methods. To find the solutionh® tiorsion problem using different
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conformal transformations is a similar processeéot®n 2.4. Since it is repetitive, we
are not discussing the details of finding the sotuagain. Instead, we are deciphering

the torsional rigidity for a cross section corrasgiag to the following conformal

mapping

7= (2.5.1)
L+ m{“i
wheren= 2,34...and|m(n-1) <1.

Following the same procedures we used in Sectifo? the conformal

transformation in (2.5.1), the functiof(¢') becomes

2 o"
!(Gn N mXa” N m*1Xa— g)da+ constant. (2.5.2)

()=

- 2rm
Integrating (2.5.2) as in the methods in Sectidn &e get

cii 1-mg"

f(¢)= : 2.5.3
) 2-m?)1+mg" (253)
Then the imaginary part of the complex torsion figrcin (2.5.3) is
2(1_ 2 20
= c*fi-m?p™) (2.5.4)

2[1- m? J1+ 2mp" cosnd + m?p?")’
As in the earlier section, (2.5.4) equalsttc’ on the boundary’, of the cross section.

Refer to Bassali [3] for the details of the soluatio the torsion problem.
As stated previously, the torsional rigidity is fmuby the following formulas
D=ul,+uD,, (2.5.5)

where
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I, = —iz [[olo)f olo)delo) (2.5.6)

4

and D, = [[f(0)+ Tlo Jalole)alo)] (2.5.7)

Let o be a point on the boundary of the circle where 1/ . On the boundary

of the circley, (2.5.3) becomes

2; n
f (O') _ (ol 1-mo

2-m?)1+mo"’ (2.5.8)

Substitutingg =1/0o into (2.5.8) and combining it with (2.5.8) leads to

— Czi(l— 0'2”)
f flo)= : 259
O o) Yo s m) 259
Since z= w(¢), on the boundary of the circle we have
Co —(=\ co"*
= = : 251
olo)= 2 and olo) s (2.5.10)

Given the product of the two equations in (2.5.183n using the product rule gives

dlo(c)elo)|= —S - B (2.5.11)

Substituting (2.5.9) and (2.5.11) into (2.5.7) &l

ic’n j (1— UZ")ZO'”’l

D, =
0 4m(m2 _1)7(O'n +m)3(o_n +m—1)3

do. (2.5.12)

Set H(a) to be the integrand of (2.5.12). L&t be a root ofo" + m=Qyhich implies
A =-m. Similar to the previous section, integratings(22) using the residue theorem

< —

gives us
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w'n &
_ , 25.13
Py ;Qs ( )
whereQ, is the residue oH (o) at A.. ExpandingH (A, +t) in powers ot helps

in finding the residue as explained below.

Finding the coefficient of * gives the desired resu@,. So, we have

(2 +)" — 202+ + (A + DT

[(/1 +1) +m]3[/1 +t)" m]g

To find the coefficient ot ™, we consider the case=2. Finding the result requires lots

H(As +t)= (2.5.14)

of calculations, so we expand it as a sum of thegts. The first fraction in (2.5.14) is

| = As (2.5.15)

[(l +1) +m]3[i +1)? m]3

Using/Z = -mto expand (2.5.15) leads to

Ag +1

| = -
t3(t+ 24, (% + 24 + L~ m)

Factoring out24, from the first parenthesis and= %— m from the second parenthesis in

the denominator from the above equation gives us

A+t

| = .
8r3/1§t3(1+ 2%3) 3(1+ tz*fﬁst)i

Raising the quantities of the denominator to the@ator gives each parenthesis a

power of -3. Expanding each parenthesis with geaf Binomial theorem

n(n 1)

(1+ y) =1+ny+ 222 y? ... and pulling only the coefficients af* which is given by
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3
Coefficient of (11) in | :T%[%} -3 (2519

r
Following the same procedure to simplify the dentor, the second fraction in
(2.5.14)is

0= —2(4, +tf

- : 2517
8r 3/7,§t3(1+ i) 3(1_,_ %)3 ( )

Repeating the same process as earlier, the ceeffscoft ' of (2.5.7) is

r

-1 ( s 2473 241;] -1 64 61
Ae— +——|=—+ -,
r r

IR 2 SO R
m2

Simplifying the above equation further, we uke=-mandr =1‘Tgiving us

il

Coefficient of (1f) in 1l = _r%_ 5 (2.5.18)
The third fraction of (2.5.14) is
9
= (4 +3t) — . (2.5.19)
3,33 t >+
8rit QHZZS) [1+ - Sj
Similarly, (2.5.19) is reduced to
. . 3
Coefficient of (1t) in Il =— . (2.5.20)
r
The sum of (2.5.16), (2.5.18), and (2.5.20) for¢hsen = 2 is
1 m’®
Q. :_F:_(l 2)3 . (2.5.21)
-m

Thus, Dyfor the case = 2, is given by
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4.2
D, = - 2rcC m4 .
(1-m?)

Similarly, we can use (2.5.6) to finld for the case = 2, which is

| < ac'[m? + anv? +1]
’ 2(1— m? )4

Referring to Bassali [3] for the computation of tieneral result with any= 2, 3, 4...

leads to
D, = —% (2.5.22)
and
= e m4+m2(:"2 +2)”]. (2.5.23)

2(1— m2)

Adding (2.5.22) and (2.5.23) gives the torsiongidity for any valuen as follows:

D= ,wzc“(l— m* + m“n)

A (2.5.24)

2.6 Cross SectiorT’, Defined by r = acoé‘% , (——<6<—)

In this section, we use conformal mapping and feswweries to solve a torsion
problem for special curves whefe< n< 2. To derive the polar equation, we let the

conformal transformation be

z=0(l)=cl+¢) (2.6.1)
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wherec = 2% . On the boundary of the unit circte=€" , so we have
w(c)=c(l+cosy +isiny)". Sincez=re'is a point on the contoul§, , (2.6.1)
becomese”’ = c(2 cos%)n e"”. Therefored = ~and

r= c[zcos%jn . (2.6.2)

Note we change the contours as C, to avoid confusion of the gamma functidfix).

Substitutingy =22 into (2.6.2) gives

r= a(cosgjn, (2.6.3)
n

wherea=2"c. Notice whenn=1/2, equation (2.6.3) gives the lemniscate of Bermoull

and whenn =2 we have a cardioid as shown in Fig. 8 below.

Fig. 8Cross Sections correspondingie %2 andn = 2
To derive the complex torsion function for (2.6 8¢ use the Fourier expansion

of the function
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f(0)= 0052”% (-L<o<L), (2.6.4)

whereL =12 . Sincef (9) is even, we knovp, = @nd f(0)=1a,+ > a cos’.
k7
Substituting (2.6.4) anid= "% into the formulaa, =ﬂ:f(0)cos'%d9 gives

J' co§“—cos¥d9 (2.6.5)

Using the substitutio = % (2.6.5) becomes

a =2 [ ‘cos" pood2Kg)dg. (2.6.6)
/ 0

To evaluate (2.6.6), we need Cauchy’s formula wimeblves the gamma functioﬂ(x):

D+ )2
M+ la+iprA+ia-1p)

jf(cost)“ codAt)dt = (2.6.7)

whereRea >-1. Using (2.6.7) withe =2n and g = 2k, then (2.6.6) is simplified to

n r'(2n)

. 2.6.8
777 T{irne KF(1s n—k) (268)

ak:

for k= 0,1 2... Using the properties of the gamma function
[(x+1)= x(x) or T*(x+1)= x’I"*(x)

and substituting (2.6.8) into the Fourier seriggagsion leads to

6 nr(2n) = cosZ?
g = . (2.6.9
e {nz kz 1+ n+k) (1+n—k)} (2:6.9)

Squaring (2.6.3) and substituting the equivaleiptression into (2.6.9) yields
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0 k

1 2 2
Sre=nc r'(2n)R e{ kz Lnik) (1+n_k)}. (2.6.10)

The complex torsion functiori (;) at any point inside or on the unit circteis

f(¢)=nic’r(2n ){ i & } (2.6.11)

ST+ n+k Jr(@+n—k)
where its imaginary part also satisfies the boupndandition of%rz. Isolating ¢ from

(2.6.1) gives¢ = (%)" —1. Substituting it into (2.6.11) gives

Q(z)—niczr(z){ i {( l } ] (2.6.12)

(-1
= T(@+n+k)C(1+n-k)

For 0<n<1, we haveQ'(0)=0; therefore,Q(z) is analytic. Fol<n<2, we have
Q'(0)= where the pointz=0 lies on the contou€,. However, the poinz=0 lies
inside the contou€, andQ'(0)= for n> 2; therefore,Q(z) is not analytic. So, we

only use the rangé<n<2.

The torsion rigidity is defined as

D, = u(l +J), (2.6.13)

where | = 2[[¥(x, y)dxdy and J = %J‘a)(o)z)(a’l)f "(o)do .

/4

Evaluating the first integral in (2.6.13) gives

_ oz sacos'$ 3 _a4 oz 4n0
|_2j0 jo r duro|¢9_7jo cos"-do. (2.6.14)

Using substitutionp = 9 |nto (2.6.14) and (2.6.7), becomes
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nat (s . .. 7c'T(4n)
I =7jocos4 ¢ dg = ar

“(2n)

Replacingd by o in (2.6.1) and (2.6.11) and evaluating the sedntagyral of (2.6.13)

(2.6.15)

gives

—net N KL,
J=nc r(zn); Mm@ n k)’ (2.6.16)

whereL, =i|(1+ o) "o*"*do . Using the substitution rule far =€, L, is given by
k k
Ve

2n 2n
L = —Zznjjﬁ[cos%j edy =- 22“+1j”(cos%J cosky dy .

0

Using substitution again fap =4 and applying (2.6.7), the above equation becomes

—47nl(2n)
@+n+Kr@+n-k)’

_ o222 2n B
L, =-2 j *(cosy) cos2kgdg = —

ReplacingL, into (2.6.16) leads to

< k

. 2.6.17
2 @k 20D

J =—4zn’c*r?*(2n)

Let H be the summation in (2.6.17). To evaluate (2.6.4@)need to use

Pochhammer’s formula for the hypergeometric fumdio

2,88 |_ < (2),(8)n(3),
S D i) e

and Dixon’s Forumla

a,p.y L Ta+ia)r@+ia-p-y)l+a-BrQ+a-y)
YUlva-plra-y | TA+a)lQ+a-pf-yA+ia-pQ+ia—-y)

First we need to introduce Pochhammer’s symbol
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F(a+ m) .

F(a)

Using Pochhammer’s Symbol, it is obvious that weehla= k!/(k-1)=(2),_,/(k-1},

(a), =ala+DA (@ +m-1)= (2.6.19)

I(1+n+k)=(1+n)2+n),_,[(1+n)and F{1+n-k)= (-1 T@+n)/{(-n)1-n).,}.

Applying these three expressions, we have

H= 1 i(z)k {((;”)k T. (2.6.20)

n?(1+nyT*(n)= K n)

- 1 i .
Letd = P Applying (2.6.18) to the above summation, (20§ 2ecomes
21-nl-
H = M) (2.6.21)
2+n,2+n
Using Dixon’s Formula in (2.6.21), we have
2
H - AT(2)r(2n)r §2+ n) | (2.6.21)
(3)(1+ 2n)r'?(1+ n)
Simplifying (2.6.21) we get
1
= 2.6.22
4n°r?(n) ( )
Substituting (2.6.22) into (2.6.17) leads to
. 42
J= M (2.6.23)
nC*(n)

Replacing (2.6.15) and (2.6.23) into (2.6.13) githestorsional rigidity to be

_pm'| T(4n) T?(2n)
Pn =" [4r2(2n) a4 (n) | (2.6.24)
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CHAPTER 3

SOLUTIONS TO THE FLEXURE PROBLEM

Stevenson [14] was able to simplify the flexurelgpeon of an isotropic beam to
six functions noted as the three Dirichlet boundaatye problems and three Neumann
boundary value problems. One of the three Dirichteblems turns out to be a torsion

function. In this chapter, we solve the flexurelgem for cross sections bounded by
r = 2'bsin*(%), (- z,z], ando> 0. The process we use to solve for #pgcific

boundary can be applied to the general form whemtimber 4 in the equation is

replaced by any positive integer
3.1 Essential Equations

In the flexure problem for a cylindrical elasticame, we set the-axis to be along
the beam parallel to the generators of the cyliaaher thex-axis is along the axis of
symmetry of the cross secti@ If the external forces are equivalent to IoéW;, W, O)
acting at the centroid = h, y = 0of the end of the beam, then Stevenson [14] prdived

flexure problem is solved by finding six analytimttions corresponding to

each cross section:
w, =¢ +iy,, Q =0, +i¥ -(r=123). (3.1.1)
To determine the harmonic functiops and ®, we find the solutions to Laplace’s

equations with the boundary conditions

v, =F, %(q)r - Fr): 0, (3.1.2)
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where

F, ==, |:2:y_, F, = , (3.1.3)

and n is normal to the boundar@ of the cross-section S.

Here we consider the flexure problem correspontbrtfge boundarie§s, which

are denoted as = dsin(%)/sin(+)", -7 <@ <z, andn = 2,34... as shown in the

Fig. 9 below.

Fig. 9Cross sections correspondingte 2, 4, and 6

The boundary conditions ap; andy, can be written in complex form as

. x} oy z*¥ 7%z
+1i =—+|—= + . 3.14
v, Ty, 3 3 12 4 ( )

Note z* is the conjugate of. We can rewrite (3.1.4) as

w, +iy, = f(2)+ F(z*) (3.1.5)
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such that
v, =Rd f(2)+F(z*)], (3.1.6)
w, = Im[f(2) - F(z*)], (3.1.7)
where[f(z)F = f *(z*). From (3.1.1), we can rewrite the complex flexiunections as
w, =i[f(2)+F*(2), (3.1.8)
and w, =[f(2)-F*(2)]. (3.1.9)
By (3.1.2) and (3.1.3), we have, = F, = r?, which is the same boundary

condition of a torsion function. As stated prewiythe solution to the torsion function
is given by

ﬁ{Reh(z)Jr%(ﬁ—ag)(x2 - yz)—;f} (3.1.10)

Stevenson [14] has found that the third complexuite function is a special case of

(3.1.10) wherexr = =1 andy =0. Therefore, the complex flexure functiopis also

a complex torsion function denoted as
@, ﬂ@. (3.1.11)

The two boundary conditions ah, and ®, for the flexure function€2;, andQ, are
given by

0

o vio,)- (B2 +12727))=0. (3.1.12)

Since the equation of the boundary is

Im¢ =Im(&+i7n)=ImH(z)=constant, (3.1.13)
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the boundary conditions in (3.1.12) is reduced to

0 . i dz i dz*
%(CDl +ICD2):§ZZ*E—Z(Z*2 +Zz)d§* :

(3.1.14)

Similarly, the boundary conditions of the flexumm€tions can be rewritten in a separable

form of given functionsg, (z) andG,(z*) denoted as

ai(cbl+iq>2): 91(Z)+Gl(2*)- (3.1.15)
n

Let @, and ®, be determined by
@, +iD, =t(2)+T(z*), (3.1.16)
wheret(z) andT(z*) are found through the boundary condition of (H)..1

Substituting (3.1.16) into (3.1.15) leads to

. dt dz
|——= z)-C,, 3.1.17
dzdz 91( ) 1 ( )
. dT dz*
and —1i =G, (z*)+C,, 3.1.18
el AT (3.1.18)

whereC, is a constant. Onc€z) andT(z*) are determined from (3.1.17) and (3.1.18),
the flexure functions are given by

Q, =t(2)+T*(2), (3.1.19)
and Q, =-i[t(2)-T*(2). (3.1.20)

Finding the flexure functiof2, is a similar process. The boundary conditiondonis

o, :i(lzz*j: im(z542*), (3.1.21)
on on\ 2
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becausel = | (Q —L*) and (3.1.13).
on ¢ o

n

Using @, = %[QS +Q’;] and the boundary equation, we can obtain (3.1

8 ! 5/4
PR ImlQ; (2)2°¢]. (3.1.22)

Rewriting the right side of (3.1.21) in a separdblen of z and z* gives us the right
side of (3.1.22). From there, we need to integf2téz) in terms ofz to get the third

flexure function. For all the details see Obaid][1
To find the torsional rigidityD of the beam we use

D=urM,, (3.1.23)

where y is the rigidity, 7 is the twist , andM, = M, +J"|'(x2 + yz)dSWith
S

d;)s dS. Refer to [10] in order to decipher the twist,
z

M ,, = realpartof ”iz
S

3.2 Cross SectiorG, Defined by r = 24bsin4%

In this section, we find the flexure functions fbe cross section bounded by the
closed curveG, with the polar equation

r= 2“bsin“% (3.2.1)

with the conditions of 7 < <7 andb>0. Givenz=x+iy and¢ =&+in, let

=CErin=2z"", (3.2.2)

66



If z=re'?, then the above relation gives the curve —1b™* as (3.2.1), i.e
n =constant is the same boundary (3.2.1). To fincctmeplex torsion functiong,, we
need to first find the boundary conditign, = 1 zz* . The boundary equation (3.2.1) can
be rewritten in the complex separable form as
7 UA _ -4 _ 14 (3.2.3a)
or (zz)"* = —ib¥4(24 — z¥*). (3.2.3b)
Simplifying (3.2.3b) leads to
72 = b[(z+ z*)— 4(zz*)1/4(z”2 + 2*1’2)+ 6(22*)1’2]. (3.2.4)
To evaluate (3.2.4), we need to break down eatheofermsn it. So, we have
(zz*)" = —20"2 cos? + 4b¥* sin¢ = Rd— 2b"27"% - 4ib¥*7"*], (3.2.5)
and  (zz¢)"*(z"? + 2#V2)= Rd- 2ib¥*2¥* + 20"%7" + 4ib¥*2*].  (3.2.6)
Replacing (3.2.3b), (3.2.5), and (3.2.6) into (B)2eads to
Re20z+8ib%“ 7% — 200¥27Y% — 400724 |- (x* + y?)=0.  (3.2.7)
Since (3.2.7) is consistent with (3.1.10) o= g =1 andy =0, (3.1.11) applies to give
the complex torsion function to be
w, =ibz—40%*z%* ~10b%?2"% + 200""*2"*. (3.2.8)

To find (3.1.14), we multiplyz to (3.2.4), so we get

*3

+iy, =
i +ly, 12

_1033/2(23/2 n ZZ*IIZ)— 20-b7/4(25/4 . ZZ*M).

+b(zz+zz*)+ 4ib5’4(z7’4—zz*3’4) (3.2.9)

Similarly, we have

67



775314 _ipn347_ 3734 L bz ¥4 _Gih54 712 _ 4jp®4 7+ 12 +1(b3/2(z1/4 _ 2*1/4)'
77¥Y2 _ _pl25 g 2 | phz* 2 i34 34 4 4ib5/4(21/4 . 2*1/4),
and 77514 _ _ipl47 4 pl2434 | i34 412 _ b(ZlM _ 2*1/4)'
Substituting the above 3 equations into (3.2.9¢gius

f(Z): %bZZ _3bZ3/4 + ib5/4z7/4 _%bS/ZZS/Z _5ib7/425/4

+35n274 14ib%4 234 — 21p5/2 72 (3.2.10)
4

and  F(z*)=242z**+1b%z* -2ib”*z*¥* —9p>?z*"? 300" 2*¥*. (3.2.11)

Replacing (3.2.10) and (3.2.11) into (3.1.8) and.& gives the complex functions to be

B 1_1223 +%ib22 _b5/4z7/4 _%ib3/223/2 +5b7/425/4
o, =1 . (3.2.12)
+9ib22—16b9/423/4 _30b5/221/2 +6(bll/4zl/4
~ ]_-_3_23 +%b22 +ib5/4z7/4 _%b3/223/2 _5ib7/425/4
and @ = 2 112 9/4,3/4 5/21/2 - (8213
+8b°z+12b" 27" -12b7""z

Substituting (3.2.2) into the boundary conditior{3ril.14) gives us

%(@1 FiD,)=i[z*1* 4222+ 27%4 7], (3.2.14)

Following the procedures to find (3.1.19), (3.1,20)d (3.1.22) as described in Section

3.1, we obtain the following

Ql :1_1223 +%b22 +%ib5/4z7/4 _%bS/ZZS/Z _11ib7/425/4 +%b22

. (3.2.15)
+64ib%* 7% —174°"?7"% —660b"*z"* + 33W°%In z,

Qz — i[l_]_223 +%b22 +%ib5/4z7/4 _%b3/223/2 _11ib7/425/4 +¥b22 (3216)
+64ib%4 7% —174°"27"% —660b™"*z"* + 33M° In 7],

and Q. =bz+2ib**z¥* -300%?2"* -140b""*z"* + 707 In (3.2.17)
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Since the process of finding the three Neumanrufiexunctions is tedious and similar
to the earlier process of finding the three Dirstldomplex flexure functions, refer to

[10] for all details.

To solve the flexure problem for cross sectionsnoleal by any curve of the

family of the form

{Fn}:rzacos“%, a>0, —7<f<m, n=234,.

n

and {Cn}:rza‘sing , a>0, —7<@<7x, n=234,..,

n

we need to apply the following two identities:

2" (cos)"™ cogn—k)p =3 2{(” k_v_1j+ (m k_v_lﬂ(cosqﬁ)v cosvg

v=1 k_l n_l

and

2"*(cosd)™* sin(n—k)p = Zn: ZVKn i E:I_lJ - (n+ ::I_lﬂ(cos;/})v sinvg .

Rung and Obaid have proven the above identitiégsandifferent ways. Refer to [11]
and [12] for the proof of the identities and thengdete solution of these flexure

problems.
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CONCLUSION

We have solved a flexure problem with a particblanndary equation and found
the solution to the torsion problem for variousssrgections by different methods.
However, we touched only the “tip of the icebeng'the world of potential theory. We
know that, given a closed curve, where- 5 =0 cannot be solved using the Bassali-
Obaid method. However, there is a solution tottigion problem where the closed
curve satisfiear + = 0. We wonder if it is possible to find a simplewgain to the
torsion problem for the casemf # =0. In addition, it is desirable to discover if ther
IS an easy way to solve the torsion problem fanmgpke closed boundary of the form
ReF(2) —(ax“ + By" +7)= 0, wherea + f#0,andn=3, 4,5K . We can also try to
solve the torsion problem for other forms of theseld boundary curve. These are all

areas of interest for future research.
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