
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2010

Security in Peer-to-Peer SIP VoIP
Richa Marwaha
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Marwaha, Richa, "Security in Peer-to-Peer SIP VoIP" (2010). Master's Projects. 160.
DOI: https://doi.org/10.31979/etd.hum3-25xy
https://scholarworks.sjsu.edu/etd_projects/160

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70407917?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/160?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu


1 

 

 

 

 

 

 

 

Security in Peer-to-Peer SIP VoIP 
 
 
 
 
 
 
 
 

A Writing Project 
Presented to 

the Faculty of the Department of Computer Science 
San José State University 

 
 
 
 
 
 
 

In Partial Fulfillment 
of the Requirements for the Degree 

Master of Science 
by 
 
 
 

Richa Marwaha 
 

September  2010 
 
 
 

 



2 

Abstract 
 
VoIP (Voice over Internet Protocol) is one of the fastest growing technologies in 

the world. It is used by people all over the world for communication. But with the 

growing popularity of internet, security is one of the biggest concerns. It is 

important that the intruders are not able to sniff the packets that are transmitted 

over the internet through VoIP. 

Session Initiation Protocol (SIP) is the most popular and commonly used protocol 

of VoIP. Now days, companies like Skype are using Peer-to-Peer SIP VoIP for 

faster and better performance. Through this project I am improving an already 

existing Peer-to-Peer SIP VoIP called SOSIMPLE P2P VoIP by adding 

confidentiality in the protocol with the help of public key cryptography. 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3 

Contents 
 
1. Abstract …………………………………………………………………………….2 

2. Introduction ………………………………………………………………………..6 

2.1 Existing Architectures in VoIP………………………………………….7 

  2.1.1H.323 Architecture ………...................................................7 

     2..1.1.1H.323 Protocol ……….....................................................7 

     2.1.1.2H.225 Protocol……….....................................................10 

     2.1.1.3H.245 Signaling ………..................................................12 

 2.2 SIP Architecture ………………………………………......................13  

3. Peer-to-Peer VoIP……………………………………………………………….15 

 3.1 Introduction……………………………………………………………..15 

 3.2 Structure Overlay/Distributed Hash Tables ………………………...15 

 3.3 Chord Algorithm………………………………………………………..16 

     3.3.1 Chord ……………………………………………………………...16 

     3.3.2 Finger Table……………………………………………………....16 

     3.3.3 Predecessor Peer …………………………………....................16 

     3.3.4 Successor Peer…………………………………………………...16 

     3.3.5 Hash Algorithm and Identifier…………………………………....16 

     3.3.6 DHT Linker Header………………………………......................16 

     3.3.7 Link Type and Depth Value……………………………………...16 

 3.4 Chord Overlay Algorithm……………………………………………..19 

     3.4.1 Finger Table, Predecessor Peer, and Successor Peer………20 

 3.5 Peer-to-Peer Overlay Structure………………………………………...20 



4 

 3.6 Session Establishment………………………………………………….20 

4. Initial Proposal ……………………………………………………………………20 

5. Security Threats…………………………………………………………………..22 

5.1 Security Threats in VoIP………………………………………………...22 

5.2 Security Threats in SIP………………………………………………….23 

6. SOSIMPLE: A Serverless, Standard-based P2P SIP VoIP…………………24 

 6.1 Introduction……………………………………………………………….24 

 6.2 Background Challenges………………………………………………...25 

      6.2.1 SIP and SIMPLE…………………………………………………...25 

      6.2.2 Scenarios Requiring a New Approach……………………………25 

 6.3 Requirements…………………………………………………………….25 

 6.4 SOSIMPLE P2P SIP VoIP Architecture……………………………….26 

       6.4.1 Structure and Message…………………………………………...26 

       6.4.2 Node-Level Operation ……………………………………………27 

       6.4.3 User Operation ……………………………………………………28 

       6.4.5 Security and Authentication ……………………………………..28 

7. My Approach……………………………………………………………………….29 

  7.1 Improvement over Existing Protocol…………………………………...29 

  7.2. Security and User Authentication……….………………    

8.Implementation………………………………………………………………..…...32 

9. Performance Graphs………………………………………………………….......41 

10. Kademlia Algorithm in SOSIMPLE …………………………………………..42 

11. Comparison between Chord and Kademlia…………………………………45 



5 

12. Conclusion…..…………………………………………………………………..46 

13. Appendix ………………………………………………………………………..46 

14. Future Work …………………………………………………………………….47 

15. References ……………………………………………………………………....47  

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



6 

2. Introduction  
 
Voice over Internet protocol (VoIP) is used to transmit voice communications 

over the Internet using IP packets.  

 
Voice        –-- >    ADC     ––-- > INTERNET –-- > DAC ––- > Voice    
(Source)               (Analog to                                      (Digital to        (Destination)        
                         Digital Convertor)                         Analog Convertor) 
 
    Figure 1. VoIP functionality 
 
 
The following are the steps to set up VoIP: 
 

1. We convert the analog voices into digital signal (Bits) using Analog Digital 

Convertor (ADC). 

2. After the conversion, the digital signals have to be compressed and in a 

good format; there are many protocols that can be used to transmit these 

bits. 

3. Here the voice packets must be inserted into data packets using a real-

time protocol. 

4. A signaling protocol is needed to call users. 

5. At the receiver end, the data packets are disassembled, extracted, 

converted back to the analog signal. 

6. Everything is done at real-time as the users cannot wait too long for a 

vocal answer. 

 
Voice)) ADC ––-Compression Algorithm –-Assembling RTP in TCP/IP 
                                                                                               | 
                                                                                               | 
                                                                                        ––––-->       
                                                                                       <––––- 
                                                                                              | 
                   Voice   ((     DAC –--Decompression - -- Disassemble 
                                                        Algorithm           RTP from TCP/IP 
 
   Figure 2: Base Architecture 
 
 



7 

 
 
2.1 Different Architectures of VoIP 
 
2.1.1 H.323 Architecture 
 
2.1.1.1 H.323 Protocol 

 
H.323 protocol is one of the first multimedia conferencing protocols that includes 

voice, video, and data conferencing. H.323 protocol uses packet-switching 

network. This architecture was one of the first standards for VoIP because of its 

complex design; it is not as popular as SIP architecture. It has a client/server 

model in which there is a gateway and a gatekeeper. The sessions created using 

H.323 architecture can be dynamically adjusted and attributes modified such as 

encoding and decoding formats for the media, bandwidth required for the 

session, and data types (such as voice or video). The biggest disadvantage of 

this architecture is that it does not provide guaranteed quality of service (QoS). 

The H.323 stack is implemented at the application layer and it contains the 

following: 

• H.225 and H.245 for signaling control 

• Audio codec 

• H.263 and H.261 for video codec 

• T.120 series used for data transmission 

 
 

 

Figure 3. H.323 Stack 



8 

 
 
 
H.323 architecture has the following: 

• Terminals 

• Voice gateway 

• Gatekeeper (optional) 

• Multipoint control unit (MCU) 

• Border elements 

 

a) Terminals 

Include telephones, VoIP phones, IVR phones, voicemail phones, and soft    

phones. 

 

b) Voice gateways 

 Gateways contain 2 parts: 

• Media gateway controller (MGU), helps to handle call  

signal and other non-media-related media 

• Media gateway (MG), which helps in handling media 

 

c) Gatekeeper (optional) 

Even though Gatekeeper is optional but it acts like the brain of the 

architecture. It provides the following features: 

• Call control services 

• Call signaling routing 

• It helps in monitoring the call made by the gatekeeper and helps in 

controlling the calls that made in network. 

• It also helps to make the routing decision based on various factors.  

• IP telephony 

 

 

 



9 

d) Multipoint control unit (MCU) 

 Helps in managing the multipoint conference. It does it with the help of the  

 Multipoint Controller (MC) which looks at calls signaling and can also do  

 multipoint processing with the help of multiple processors (MP). 

e) Border and peer elements 

Peer elements does exchange-addressing information, it also participate 

in doing call authorization not just within but also between administrative 

domains. Border elements are a special type of peer element. They are 

between two administrative domains. 

 
 
 
 

 

Figure  4. H.323 Connection and Session Setup 
 
 
 
 
 
 



10 

2.1.1.2 H.225 Protocol 

 
The H.225 protocol is one of the protocols that have been specified by H.323 

architecture. It contains registration, admission, and status (RAS). It is also 

known as the H.225 RAS protocol.  

 
          Terminal and                H.225                     Gatekeepers 

Gateways                    RAS    
 

 Figure 5. Basic architecture of H.225 Protocol 
 

 

 

Figure 6. General Protocol of H.225 Registration, Admission, and Status 
 
The purposes of this protocol are: 

• Admission control 

• Access control 

• Assistance in gatekeeper discovery (GRQ) 

• Assisting in locating and registering the endpoints 

 

The biggest disadvantage of this protocol is that the channel through which the 

message is passed is highly unreliable and the message exchange can 

sometimes lead to timeouts. 

 



11 

2.1.1.2.1 H.225 Call Signaling: 

H.225 call signaling is a protocol that uses established calls between two H.323 

entities. It also contains information that helps in carrying additional information 

that can be related to specific messages. It allows a user to initiate and end a call 

with other users. 

The users use entities to exchange messages. They use a setup entity to set up 

a VoIP call between the users; with the help of call processing, they create the 

voice call between the users. After exchanging these entities, user 2 to which 

user 1 wants to connect gets an alert that user 1 is trying to call him, and once 

user 2 agrees, the protocol uses a connect entity to create a connection between 

the users. With the help of information entities, they are able to send voice data 

to each other. The users can also use entities such as status, status inquiry, 

progress, and notify, with the help of which they know how the call between the 

users is going. They terminate the call using release complete. With the help of 

these entities in the protocol, the users are able to connect, terminate, and 

exchange information themselves. 

 
2.1.1.3 H.245 Signaling 

 
H.245 signaling is a protocol that helps in handling conference calls. It helps in 

negotiating the capabilities and controlling aspects of a conference among many 

users. 

 

 

Figure 7. General Protocol of H.245 Signaling 
 

 



12 

 

 
 

Figure 8. Message Exchanged Using H.245 Signaling 
 
 
 

 
Figure 9. Complete Architecture of H.323 Protocol 

 
 
 
 
 
 
 
 
 



13 

2.2 Session Initiation Protocol (SIP) Architecture 

 
The architecture of SIP is based on a simple HTTP protocol of request/response 

exchange. Its simplicity is the reason that SIP is more popular compared to 

H.323 architecture.  

 
User1              Session Description                               Real Time Transport                       User 2 
                           Protocol (SDP)                                     Protocol (RTP) 
                       (Security and session handling) 
  

 Figure 10. Basic Architecture of Session Initiation Protocol 
 
SIP converts voice into VoIP, which can be done in the following ways: 

• Codec in PSTN 

• Voice gateway function, which includes packetization, silence 

suppression, echo cancellation, jitter buffering, DTMF, fax, and modem 

 
 
 

 
 

Figure 11. Basic SIP Architecture 



14 

 
SIP invokes the following methods: 

 

1) INVITE – initiate call 

2) ACK – confirm final response 

3) BYE – terminate (or transfer) call 

4) CANCEL – cancel searches and “ring” 

5) OPTIONS – feature support by the other side 

6) REGISTER – register with location services 

7) INFO – mid-call information  

8) COMET – precondition met 

9) PRACK – provisional acknowledgement 

10)  SUBSCRIBE – subscribe to an event 

11)  NOTIFY – notify subscribers 

12)  REFER – ask recipient to issue SIP request 

 

3. Peer-to-Peer SIP (P2P SIP) VoIP  
 
3.1 Introduction  
 
In P2P SIP network it does not uses servers to find the user location. Instead, it 

uses distributed hash table (DHT) to find the user and to register the user. DHT is 

more scalable, readily available, and robust than server-based SIP. The basic 

reason for using peer-to-peer is that it removes the need to use central servers 

and there is no dependence on a third party. 

The reason that we are using SIP with P2P rather than another protocol because 

SIP is a widely used protocol in VoIP, and it can use the existing Internet 

telephony infrastructure. The advantage of using P2P SIP is that it requires no 

maintenance or configuration; it can self-organize and provide interoperability.  

 
 
 
 



15 

3.2 Structure Overlay/Distributed Hash Tables   

Peer-to-Peer network uses distributed systems as it has no dependency on the 

central server and does not follow any known hierarchal organization. The 

Distributed Hash Table (DHT) helps to provide a lookup services. Since this 

network is at the application layer, it uses the underlying network to exchange the 

messages that is the reason they are called overlay networks too. This system 

provides content distribution to the application using the overlay it creates. It also 

provides an efficient lookup of the node that is responsible for a particular key. 

Distributed Hash Table (DHT) is distributed among the nodes in the network and 

all the nodes store small portion of the DHT. P2P networks are capable of 

handling large number of nodes that are entering and leaving the network at the 

same time. 

 
3.3 Chord Algorithm  
 
3.3.1 Chord  

Chord algorithm is one of the most popular algorithms of DHT. It creates a ring-

structure to place the peer in the network. In this structure, a peer that contains a 

hash value of zero is placed adjacent to the peer containing the highest possible 

hash value. In this algorithm, every resource is assigned a resourceID. If a 

resourceID is k then it will be stored in the first peer of the network with a peerID 

that would be greater to or equal to the value of k, it also ensures that every 

resourceID that is generated is associated to some peer in the network. 

 
3.3.2 Finger Table 

The Finger Table contains the list of the peers that the peer would use to send 

messages to. This table contains the information of the neighbors of the peer and 

the peers with similar ID’s and very rarely, it would have the information of 

remote ID’s. 

 

 

 



16 

3.3.3 Predecessor Peer   

“Predecessor Peer” is a peer that is a predecessor to a particular peer in a given 

address space. A predecessor peer is not a peer that has peerID one less than 

the peerID of the particular peer in the address space, it means that there is no 

other peer between the predecessor peer and the peer. 

 
 

3.3.4 Successor Peer   

“Successor Peer” is a peer that is successor to the particular peer in a given 

address space. A successor peer is not a peer that has peerID one more than 

the peerID of the particular peer in the address space, it means that there is no 

other peer between the successor peer and the peer. 

 

3.3.5 Hash Algorithms and Identifiers 

All ID’s generated in an overlay are calculated using the same algorithm. This 

implementation supports SHA-1 algorithm that generates a 160-bit hash value. 

The hash algorithm by the overlay is specified in the peerID header in DHT. 

Peer-IDs and resource-IDs have to be in the same range of values.  

Formally: 

PeerID = token 

After using SHA-1 algorithm: 

PeerID = 40LHEX  

All of the P2PIDs are generated using SHA-1; therefore, all P2PIDs are hash 

values; in the example below, the peer-ID is a04d371e24 (40LHEX hash 

value).  

DHT Name Parameter: 

      In this protocol we need to set the dht-param token to “Chord 1.0”. If any  

      message does not have dht-param token equal to “Chord 1.0” then that  

      message will be rejected by the peer and it will return a 488 message of not  

      acceptable in response. 

 
 



17 

3.3.6 The DHT-Link Header 

The peers transfer information about where the other peers are located in the 

network using DHT-Link Header. DHT-link header is also used for transferring 

the information of the successor, predecessor and finger table store in the peers 

to the other peers in the network. The depth and linktype values used by the peer 

are not dependent on the DHT algorithm used by the peer. We use depthtype-

token and linktype-token to help the peer implement the Chord algorithm. 

 
3.3.7 The Linktype and Depth Values 

For the linktype, it has to be one the following character: P, S or F. P tells the 

receiving peer than the information they are receiving is for the predecessor of 

the sending peer. S tells the receiving peer that the information they are receiving 

is for the successor of the sender peer. F tells the receiving peer that the 

information they are receiving is the finger table of the sending peer.  

The depthtype cannot be a non-negative integer and should be describing the 

predecessor, successor and finger table entry. 

For example, “P0” indicated that it is the sender itself, whereas the “S9” indicates 

that it is the ninth successor.  

 
3.4 Chord Overlay Algorithm 
 
3.4.1 Finger Table, Successors, and Predecessors 

All the peers have to keep a track of minimum one predecessor in the routing 

table. The predecessor peer can never point to itself, but it can be set to null if 

the peer is the only peer in the overlay. All peers have to keep a track of 

minimum one successor in the routing table. The successor can point to itself. 

Peers can have more than one predecessor and successor information in its 

routing table for reliability.  

When we are using chord, it recommends us to keep the number of finger table 

entries equal to the size of the bits in the hash space. These entries should be 

pointing to the first peer which should be two^i away from the peer. The peers 

divide the circular overlay into segments. The peer then stores the entry in the 



18 

finger table for the first peer only if the peerID has to be equal or greater than the 

starting of this interval. This helps the peer to point to the nearby peer and less 

for the remote peers. It is flooded when the peer joins the overlay and is updated 

periodically. 

If we are using SHA-1 hash algorithm then it is recommended to have 160 

entries in the finger table, which could be 16 if the network is small and 32 if the 

network is bigger. This helps in improving the efficiency of the client. 

 

3.5 Working of P2P Overlay Structure  
 

1) Use of a DHT P2P structured based on the Chord algorithm and the SHA-

1 hash algorithm 

2) Each node 

a) Has a unique node-ID through hashing the IP address and port. 

b) Has the information about some other nodes in the network that helps 

it when it has to send messages across the overlay. 

3) Every resource has a resource-ID 

4) All messages are SIP messages of two kinds: maintain DHT and 

communication 

5) Encoding P2P in SIP 

 
3.6 Session Establishment 
 

• Caller node creates INVITE/MESSAGE message and hashes caller name 

• It sends the message to the node that is nearest to the peerID it wants to 

send message too. 

a) If  that node is not responsible for the resource-ID, a 302 message is 

returned, then resend the INVITE/MESSAGE message to this node 

b) When the node storing that registration is located, it sends  either a 

302 to the actual address of the caller’s node or a 404(called is not 

registered) 

• Caller resends the SIP message to the caller node as usual 

 



19 

4. Initial Proposals of P2P SIP VoIP 
 

a) Johnston and Sinnereich 

Johnston and Sinnereich proposed that we could use P2P network in SIP 

server to store information and for location lookup information. They also 

proposed avoiding the use of protocol for DHT message exchanges. They 

separated the DHT and SIP functionality into two layers 

 

b) Singh and Schulzrinne  

Singh and Schulzrinne suggested Open DHT for SIP location services. 

They suggested to use an externally managed overlay for a client which 

used put/get messages to send messages to the nodes in that overlay 

with the help of remote procedures calls.  

c) Singh and Schulzrinne  

Singh and Schulzrinne proposed a hierarchical architecture in which 

multiple P2P networks represented a DNS domain. A global DHT was 

used for inter-domain routing of messages. To avoid the introduction of 

new SIP messages, the node ID and key ID are represented in SIP URI: 

for example, [hash (IP address)] @ IP address or [hash (IP address)] @ 

domain. This contains a lot of redundant information. User ID (the key 

helps us to look up for the node in the overlay) should be a valid e-mail 

address in the domain and e-mail based authentication is done. The SIP 

protocol is used under Chord. The SIP register method helps in storing 

key/data pairs. With the help of INVITE messages we can do user query.  

 

d) Bryan, Lowekamp, and Jennings 

Bryan, Lowekamp, and Jennings proposed a SOSIMPLE protocol as a 

P2P enhancement to the SIMPLE protocol. It is based on an Internet draft 

for P2P SIP registration and user location. The only differences are: 

1) IP address and port are hashed and stored in nodeID 

2) New SIP header (DHT-NodeID, DHT-Link): helps in transferring more 

than one routing table in a single SIP message. 



20 

3) SIP registration: helps in registrations and queries of nodeID/userID 

4) Pure P2P without a super node 

5) Iterative overlay routing 

6) PKI recommended for user verification 

 

5. Security Threats  
 
Security is one of the biggest concerns for VoIP in today’s world. With the 

increasing popularity of Internet, a secure protocol is very important so that no 

one else can peek into your data that you are transmitting over the Internet. In 

this section we are going to discuss the security threats in VoIP architecture. 

 

5.1 Security Threats in VoIP 

 
1. Authentication spoofing and replay attack 

In such an attack, the attacker can sniff the packets been transfers and 

get the valuable information such as IP addresses. Then the endpoint can 

be attacked using a DoS attack or registration reject. The replay attack 

can be done by sniffing the RAS register request messages, through 

which MD5 can be retrieved and the message can be replayed. 

 

2. DoS attack 

A DoS attack is one of the most common attacks on a network, and it is 

done by sniffing the messages and retrieving the endpoint IP address and 

then sending messages to that IP address again and again. 

 

3. Registration attacks 

Registration attacks can be done with the help of a man-in-the-middle 

attack. The attacker stands between the ISP and the gatekeeper. When a 

soft phone sends a message via ISP to the gatekeeper to join the network, 

the attacker sends a fake register reject message to the soft phone. Then 

the attacker can use the same request message to join the network.  



21 

 
 

 
 

Figure 12. Registration Attacks 
 
 
5.2 Security Threats in SIP Architecture 

 
1) Virus and software bugs 

Viruses and software bugs happen due to DoS attacks in which the 

attacker tries to continuously send messages to one IP address and then 

confuses the computer and gets unauthorized access to the computer. 

Viruses and bugs can be removed by adding an antivirus application or 

software patches. 

 

2) Eavesdropping  

Eavesdropping means that someone sniffs the messages and decodes 

them. In other words, eavesdropping is an unauthorized interception and 

decoding of signaling messages. 



22 

 

3) Replay 

Replay is the retransmission of general messages for reprocessing. The 

attacker sniffs the messages, stores them, and then replays them. This 

can be done by a DoS or man-in-middle attack. 

 

4) Message tampering/integrity  

 
Message tampering occurs when a message sent by a user is tampered 

with/changed by the attacker. This leads to loss of integrity. It can be 

avoided by encrypting messages sent using the mechanisms such as 

IPSec, TLS, or S/MIME. 

 

5) Spoofing 

Spoofing is the impersonation of a legitimate user. It can be avoided by 

sending address authentication between the call participants. 

 

6) Preventing access to network services 

Preventing access to network services can be done by flooding SIP proxy 

servers/registrars. This kind of attack is called a DoS (denial of service) 

attack. It can be stopped by configuring the systems. 

 

6. SOSIMPLE: A Serverless, Standard-based P2P SIP 
Communication  
 
6.1 Introduction  
 
This protocol creates an ad-hoc network for connections. It creates a distributed 

hash table (DHT) overlay based on the Chord algorithm that is using SIP 

messages to look up the nodes to connect. This protocol is an improvement of 

the SIP/SIMPLE protocol. A P2P overlay is created using a DHT that is created 

through exchanging SIP messages 

. 



23 

The primary contribution of this procedure is as follows: 

• It creates a fully distributed network, open P2P system for VoIP and IM by 

extending existing standards 

• Helps in identifying security requirement 

 
6.2 Background and Challenges 
 
6.2.1 SIP and SIMPLE 
 
SIM and SIMPLE are text-based protocols that are derived from HTTP. SIP is a 

general protocol mostly used widely for VoIP, but it can also used to establish 

and control multimedia sessions. It also has session description protocol (SDP) 

embedded in it, which helps in specifying the media parameters.  

SIMPLE is a set of SIP extensions for IM systems. SIMPLE and SIP are same 

but the IM systems is different as the messages that are to be passed are carried 

directly to the signaling path and no separate stream is used for when we are 

using IM systems. 

 
6.2.2 Scenarios Requiring a New Approach 
 
The scenarios that led to the motivation of the SOSIMPLE approach were as 

follows: 

A) Security-conscious small organization 

B) Limited or no Internet connectivity 

C) Ad-hoc and ephemeral groups 

D) Censorship or impeded access 

E) Scalability 

 
6.3 Requirements 
 

A) No central server 

Sometimes we are not able to contact to the server because of either the 

security or scalability reason. With the help of P2P systems, we are able 

to cut down the option of having central servers. 

 



24 

B) No central naming authority 

User have the freedom to select their own names and no central authority 

is required or involved in naming. 

 

C) Simple system discovery 

It is important to have a simple mechanism to discover a system, such as 

a broadcast mechanism. 

 

D) Privacy 

It is important that users can exchange messages without having other 

users interfere in the middle. It is important to have privacy for the users in 

the network. 

 

E) Scalable number of users 

It’s important that the network grows and that no additional resources are 

required except those obtained by new users. 

 

F) Compatibility and reuse  

It is important that the system is compatible with the existing infrastructure. 

It’s also good to use existing code as much as possible rather than build 

new code. 

 
6.4 SOSIMPLE P2P SIP Architecture 
 
6.4.1 Structure and Message 

The nodes in the network are stored in the DHT based on the Chord algorithm 

and the NodeID is created using the SHA-1 hashing function. The protocol uses 

the Chord algorithm to maintain the overlay. The nodes store the information 

about the resources that it has and the information about the successor node. 

SOSIMPLE maintains a smaller number of finger tables entries in each node that 

contains information from the Chord. SIP can be improved by adding new 

headers that help to add new functionalities in the protocol. 



25 

With the help of SIP REGISTER we can transfer messages or information 

between the nodes in the overlay  

1) To register the user’s 

2) Register the nodes in the network for DHT operations such as entering the 

overlay, leaving the overlay, or maintaining the overlay 

 

6.4.2 Node-level Operation  
 
A new node can join the network after exchanging many REGISTER messages. 

Once a node joins the network, the node is responsible to store information 

associated with  the overlay  that helps to map and calculate NodeID. The joining 

node is responsible for finding the node of that region; the node also has to join 

the network and transfer information about the region to the node currently 

storing the information. 

 

Node 1 (N1) 

wants to join 

SIP REGISTER 
Node 2 (N2) 

If N2 is a bootstrap node 

then it will do the 

authentication of the N1 
else forward to nearby node 

to find bootstrap node200 OK if bootstrap 

node else 

304 moved 

temporarily

 

. Figure 13. Messages between the Nodes to Join the Network 

 



26 

 

Figure 14. An example of Node-ID 503 Joining the Overlay 

 

6.4.3 User Operation  

Since the architecture has no central server and no central naming authority, so if 

we have to register or contact a user, it is important to find a user containing the 

information of the other user. When a node wishes to know the information of a 

particular user or wants to contact a particular user, it hashes its username to 

generate a resource ID. Since the node is in the overlay, the finger table has the 

information about the nodes and points to the correct node it wants to connect to. 

If a node wants to find/contact another node, it looks up into its finger table to find 

the peerID nearest to the resource ID. If that node is not the correct node, it will 

send back a 302 message which means Moved Temporarily, it also includes the 

node it thinks to be closet to the sender peer , it  forwards the message to it. This 

goes on until the user does not get either a 200 message (the OK message) from 

the node or a 404 (node not found) message back. User operation also includes 

SIP SUBSCRIBE/NOTIFY and SIP PUBLISH (for user mobility use) messages, 

too. 

 

 

 

 



27 

7. My Approach 
 
7.1 Improvements over the Existing Protocol 
 
The SOSIMPLE algorithm has no security implementation. Privacy is one of the 

most important aspects nowadays in network security. It is important that the 

messages transmitted in the network are secure and that no outsider can read 

the message. P2P architecture needs a system that with trust between the users 

and the P2P system.  

 
7.1.1 Security and User Authentication 
 
With the help of RSA algorithm, I am generating public keys for each node, and 

they are stored in the overlay. With this procedure, there is no guarantee of 

authenticating a user joining the network, but when a user receives a message it 

checks the certificate and if it is a valid certificate then it accepts the message. 

The users can exchange messages among each other, but this certificate 

encrypts them. With the help of this mechanism, multiple users can have the 

same names but can be distinguished with the help of this certificate and 

previous conversations. 

We are using RSA to generate public keys and digital signatures. This algorithm 

is more secure than others as it uses sufficiently longer keys. The following is the 

code segment to generate private and public keys: 

KeyPairGenerator keyGen = 

    KeyPairGenerator.getInstance("RSA); 

KeyPair pair = keyGen.generateKeyPair(); 

PrivateKey priv = pair.getPrivate(); 

PublicKey pub = pair.getPublic() 
 
The following is the code segment for encryption and decryption: 
 

public String encrypt(byte[] text, PrivateKey priv) 
    { 
        byte[] cipherText = null; 
          
        try 



28 

        { 
            // 
            // get an RSA cipher object and print the provider 
            
            Cipher ecipher = Cipher.getInstance("RSA");  
             
 
            ecipher.init(Cipher.ENCRYPT_MODE, priv); 
            cipherText = ecipher.doFinal(text); 
            return new sun.misc.BASE64Encoder().encode(cipherText); 
        } 
        catch (Exception e) 
        { 
           
            e.getMessage(); 
        } 
        return null; 
    } 
 
public String decrypt(byte[] text, PublicKey pub) { 
  
         byte[] dectyptedText = null; 
         
        try 
        { 
            // decrypt the text using the public key 
            Cipher dcipher = Cipher.getInstance("RSA"); 
             
            dcipher.init(Cipher.DECRYPT_MODE, pub); 
            dectyptedText = dcipher.doFinal(text); 
            return new sun.misc.BASE64Encoder().encode(dectyptedText); 
        } 
        catch (Exception e) 
        { 
            e.getMessage(); 
        } 
        return null; 
 
     

 
 

8. Implementation 
 
1. In this screenshot, we create one node that starts a DHT and then, in the other 
prompt, we start another node that joins the overlay using the IP address of the 
first node. 



29 

 
 

 

 

 Figure 15. Node 1 is Started 
 

 

 

Figure 16.Node 2 is Started and Connected to Node 1 Using Node 1’s IP 
Address 

 
 
 
2. Typing Help at one prompt gives us all of the commands that we can run:  
 

a) status [<verbose level>]  

 This command helps us to know our predecessors and successors to a  

 user. With the help of this feature, a user can keep track of the neighbor 

 nodes 

b) init <host>[:<port>] [<port>] 

 With the help of this instruction, the joining node can join the overlay by 

contacting a specific node 

c) get [-status] <key> [<key>…..] 

 This helps to get the values that the users have put using the put 

 command using a specific key. The user can use multiple keys. 

d) put [-status] <key> <value> [<value>…….] 



30 

 This helps to place specific data with a specific key. The user can have  

 multiple keys. The user can also put data in pairs separated  by using “-” 

in the command. 

e) remove: delete [-status] <secret> <key> [<value>…….] 

 This command helps to remove the data from a specific key. We do  

 multiple deletes at a time separated by the “-” sign. 

f) setttl  <ttl> 

 It specifies the time to live <ttl>. The values stored by the put command  

 can also be stored for ttl time. 

g) localdata 

 This command helps to show all data stored in a node locally. 

h) quit|exit 

 With the help of this command, we can stop the overlay. 

i) halt|stop 

 This command the users. 

j) clear routing table 

 This command clears the complete routing table. 

k) clear dht 

 This command cleans the data in the nodes in the specified hash table. 

l) suspend 

 This command stops a user temporarily. 

m) resume 

 This command resumes a user who was suspended. 

 
 
 
 
 
 
 
 
 
 
 
 



31 

3. Once we run the status on any user node, it gives us the information about the 

user node neighbors. It is useful, as the user knows its neighbors. 

 

 

 

Figure 17. Results after Typing Status in a User Node 
 
 

1. Label 1 in the figure above shows that the IP address of the user is 

hashed and stored, as we are using IP address as our peer ID. 

2. Label 2 has the routing table of the node in which the information of the 

predecessors and successors to the nodes is saved. 

3. Label 3 contains information about the finger table, which has the list of 

the peers to which we send the messages. 

1 

2 

3 

4 

5 

6 



32 

4. Lable 4 has the number of messages sent and received between the 

nodes; for example, 2->2 means that 2 messages were sent and 

receieved by this node. Key has the key used to route the messages. 

5. Label 5 shows the route that the message has taken and the nodes it has 

passed through to send a message to the correct node. In this example, 

the length is 1, as the destination node is the neighbor to this node. 

6. Label 6 shows the root node of this network. 

This information is usefult for testing, as it will help the developer to know 

whether the route followed is efficient. 

 

4. We can put information in the overlay using the put command. We can get 

information from the overlay by writing the get command. Once we write the 

command with the word, we need the value thatit provides. 

 

 

Figure 18. Example of Put and Get Key and Value 
 

In the example above, we are putting in the value “bar” in the distributed hash 

table with the key “foo.” In the next one, we are getting the value of bar and foo. 

Since bar is data itself, it has no value, but since foo is a key to store bar, it has 

its key information and its value “bar,” as in the figure above. 

 

6. We use an emulator to control many DHT shells on one computer. The 

scenario used is as follows: 

 

 



33 

 
Figure 19. The Emulator Running and Controlling 4 Nodes on a Single Computer 
 
In the figure above, we have the emulator working and invoking 4 user nodes. 

We can also start the nodes and retrieve the information a_value that we put in 

the user node 0 (emu 0) through the emulator scenario. 

 
7. Similar to the scenario above, we have a scenario for invoking 20 nodes on a 

single computer. The screenshots below are the visual effect of the nodes 

communicating with each other.  

 



34 

 
 

  Figure 20. Visual effect of 20 nodes communicating in circle format                  



35 

 
 
 Figure 21. Visual effect of 20 nodes communicating in vortex format 
 
 
In the screenshots above we have 20 nodes creating an overlay network on a 

single computer with the help of the Emulator. The dots in the screenshots are 

different nodes joining the network and the lines are showing the communication 

between the nodes via Message services. There are many formats in the visual 

effect like Circle, Vortex, Straight line, Waving line and Grid.  

 
 
 
 
 
 
 
 
 
 
 



36 

9. Performance Graphs 
  
Scenario: I created a test case for the simulator in which five nodes are 

       generated in the network and node1 tries to talk to the other  

       four nodes in the network.  

 

   Graph 1: I have plotted a graph between the original SOSIMPLE protocol and 

                  Improved SOSIMPLE protocol (with user authentication).  The X-axis 

                  represents the number of nodes that Node 1 connects to, while the  

                  Y-axis represents the number of messages passed between the  

                   nodes to build those connections. 

 

 Graph 1: Comparison with Original SOSIMPLE protocol and Improved  

                          SOSIMPLE protocol               

 

 

 

 

Graph 2: I have plotted a graph with X-axis representing the number of  



37 

               Connections made and the Y-axis represents the Time taken(in  

                seconds) to make the connection. 

 

 

 Graph 2: Comparison between Original SOSIMPLE and Improved  

                          SOSIMPLE protocol. 

Conclusion: With the security in the protocol, it is not significantly deteriorating 

the performance of the protocol. 

 

10. Kademlia Algorithm in SOSIMPLE Protocol  
 
10.1 Introduction  
 
Kademlia is an existing P2P algorithm, like Chord, that I have implemented to 

make a comparison between Kademlia and Chord in order to determine which 

one is better.  

Kademlia is a distributed hash table algorithm designed for using decentralized 

peer-to-peer network. It specifies the structure of the network and exchanges the 

information between the nodes with the help of the node lookups. The peer in the 

network is identified through the numbers or peer ID. In Kademlia, the peer ID is 

not just for identification of the nodes but also to locate the values. In other 



38 

words, with the help of the node ID, we can do a direct map for file hashes, and 

the nodes have stored information on where to look up files or resources. 

Kademlia uses a key to store the values; hence, for each value stored, there is 

an associated key. The nodes in each step will find the closest node to the key 

until they don’t get a response or value back from the other nodes. 

The advantages of using these decentralized structures are that we can increase 

resistance to many common attacks, especially denial of service attacks (DoS 

attacks). Even if we flood the network, it will have a limited effect on the network, 

as the network will be build around the holes for the users. 

 
10.2 System Detail 
 
This algorithm uses the “distance” calculation to determine how far two nodes are 

from each other. The Exclusive OR (XOR) of the node ID is the distance between 

them, since the key and the node ID are of the same format and length, it helps 

in calculating the distance in the same way, the node ID for each node is a 

random number chosen with the consideration that it has to be unique for each 

node. 

Exclusive OR (XOR) is used as it has some common properties as that of 

geometric distance calculation.  

 
 
10.2.1 Routing Tables 
 
As with the Chord algorithm, we have a finger table to store the information about 

each bit; similarly, we have a list in the Kademlia algorithm that stores this 

information. The information stored in the list contains the data that can help us 

to locate other nodes. Generally, the entries in the list are the IP address, port, 

and node ID of the other nodes. As the network grows, every node that is 

encountered is recorded in the list. All of the nodes encountered are considered 

for inclusion in each node list.  

In Kademlia, the lists of nodes are sometimes referred to as k-buckets, where k 

is a number that is system-wide, such as 20. Each k-bucket has lists with k-



39 

entries, which means that each node would have lists of up to k nodes for a 

particular distance from itself. If the k-bucket is full and the node comes across a 

new node in the network, then it pings the node that has not been encountered 

for a long time to determine whether the node is still alive or dead. If it does not 

get a response, then the node assumes that the node is dead and deletes its 

entry from the list and adds the information about the new node encountered. If 

the node is alive, then the information about the new node is stored in the 

secondary list, which is the replacement cache.  

 
10.2.2 Protocol Messages 
 

• PING  

• STORE 

• FIND_NODE 

• FING_VALUE 

 
10.2.3 Locating Nodes 
 
In Kademlia, we can do asynchronous lookups. When a node starts looking for a 

node by requesting a FIND_NODE, it starts by querying in its own node list (the 

k-bucket) and finds the closed one to the desired value. The requestor sends the 

message to the nearest node, which looks in its k-bucket and sends the nearest 

value to the requestor node. The requestor node will store the information sent in 

its results list. This iteration keeps going until the node does not send back a 

result that is much closer than the previous result.  

 
 
 
 
 
 
 
 
 



40 

10.2.4 Locating Resources 

Information is stored using a key. Hash is generally used for mapping. The node 

that has to store the information will use the STORE message. The key used to 

store the value is found in the same way as locating nodes. The only difference is 

that it returns the exact key and the values 

 

11. Comparison between the Chord and Kademlia Algorithms   

Scenario 1: 

I have created a test case in which a network is created that has 5 nodes and 

node one interacts with all the other nodes in the network. I made this test case 

work for both the algorithms. The reason I run this test case is to see how many 

messages does Chord and Kademlia take to establish a connection. This test 

case in the end shows the message count of how many messages are 

interchanged between the nodes to establish the connection.  

Result: 

 In this test case, I found that Chord algorithm takes 48 messages to establish 5 

connections and Kademlia takes 19 messages to establish the 5 connections. 

The reason that Kademlia takes fewer messages and establishes a connection 

faster is that it supports asynchronous / parallel lookup for the nodes. Kademlia 

can do asynchronous lookup as it creates a XOR metric to calculate the distance 

between the two nodes. It also helps Kademlia routing table to extend more than 

a single bit. This helps Kademlia to do a faster lookup and establish a connection 

as compare to Chord.  

Scenario 2: 

I have a simulator in which networks of 20 nodes are created using Chord and 

Kademlia. Once the network is created the node 1 starts interacting with other 

nodes by sending PUT messages.  I run my test case for Chord algorithm and 

then for Kademlia algorithm to build a comparison graph. 

 

 

 



41 

Graph 3: 

In the graph below, I have plotted Time Taken (in seconds) to send particular 

number of messages between nodes with the help of Chord algorithm and 

Kademlia algorithm. In this test case, a set of messages are passed between the 

nodes to interact with each other in the network. The graph below shows the time 

taken by the different algorithms to pass those set of messages between the  

nodes in the network. The messages are sent between the nodes in this test 

case not just for establishing connection between the nodes but also to transfer 

more information between the nodes. The X-axis represents the number of 

messages sent and the Y-axis represents the time taken (in seconds) to send the 

message.  

 

                   Graph 3. Comparison between Chord and Kademlia 

 

Conclusion: In the above graph it shows that the time taken to send a particular  

                      set of messages between the nodes is less in Kademlia as  

  compare to chord. The reason why Kademlia takes less time than 

                      Chord is because it can do asynchronous or parallel lookup which  

                      helps Kademlia to do faster message transfer. 



42 

 
 

12. Conclusion 
 
With the help of the SOSIMPLE architecture, we were able to decentralize the 

system and remove the dependency on central proxy servers. It not only reuses 

the existing SIP client but can also establish the interface for the SIP systems. 

The security that we have added always authenticates without having a fully 

secure P2P system.  

13. Appendix 

 

Graph 4. Memory Consumed when 1000 Nodes Run on a Single Computer 

 

Conclusion: A Chord algorithm with 1000 nodes running uses 177 MB of 

memory, which requires the maximum memory with respect to the other 

algorithms. This yields an estimate that with 1GB of free memory, we can run 

5000 nodes on a single computer. 

 



43 

 

14. Future Work 
 
To avoid over-flooding of messages, they have to resolve a crypto graphical 

puzzle: For a key k of data, determine an appropriate b so that the first c bits of 

H(k xor b) are equal to the first c bits for a particular node ID. 

 
15. References 
 
[1] RSA Algorithm, http://en.wikipedia.org/wiki/RSA 

[2] SOSIMPLE P2P VoIP, A Serverless, Standard-based P2P SIP 

Communication, 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.77.4225&rep=rep1&typ

e=pdf 

[3] Session Initiation Protocol, 

http://en.wikipedia.org/wiki/Session_Initiation_Protocol 

[4] P2P SIP Information, www.p2psip.org 

[5] Security Challenges for Peer-to-Peer SIP, 

http://www.jcbroadband.com/Library/jcbvoip5.pdf 

[6] P2PNS: A Secure Distributed Name Service for P2PSIP, 

http://doc.tm.uka.de/P2PNS_2008.pdf 

[7] SIP Security Mechanism: A State-of-the-Art-Review 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.105.7241&rep=rep1&ty

pe=pdf 

[8] SIP Security: Status Quo and Future Issues, 

http://events.ccc.de/congress/2006/Fahrplan/attachments/1116-

22c3_SIPsecurity_JanSeedorf.pdf 

[9] SIP Security, 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.5711&rep=rep1&typ

e=pdf 

[10] VoIP Howto, 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.5711&rep=rep1&typ

e=pdf 


	San Jose State University
	SJSU ScholarWorks
	2010

	Security in Peer-to-Peer SIP VoIP
	Richa Marwaha
	Recommended Citation


	Microsoft Word - CS298_Report_Richa18

