San Jose State University

SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2010

IMPROVED SOFTWARE ACTIVATION
USING MULTITHREADING

Jian Rui Zhang
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd projects

Part of the Computer Sciences Commons

Recommended Citation
Zhang, Jian Rui, "IMPROVED SOFTWARE ACTIVATION USING MULTITHREADING" (2010). Master’s Projects. 157.

DOI: https://doi.org/10.31979/etd.u3hS-zbvv
https://scholarworks.sjsu.edu/etd_projects/157

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact

scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F157&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F157&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F157&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F157&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F157&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/157?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F157&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

IMPROVED SOFTWARE ACTIVATION
USING MULTITHREADING

A Thesis
Presented to
The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment
Of the Requirements for the Degree

Master of Science

by
Jianrui Zhang

April, 2010

© 2010
Jianrui Zhang
ALL RIGHTS RESERVED

SAN JOSE STATE UNIVERSITY
The Undersigned Project Committee Approves the Project Titled

IMPROVED SOFTWARE ACTIVATION USING MULTITHREADING

by

Jianrui Zhang

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Mark Stamp, Department of Computer Science Date

Dr. Robert Chun, Department of Computer Science Date

Mr. Wai Leung Wong, Oracle Corporation Date

ABSTRACT

Software activation is an anti-piracy technology designed to verify that software products
have been legitimately licensed [1]. It is supposed to be quick and simple while simultaneously
protecting customer privacy. The most common form of software activation is through the
entering of legitimate product serial numbers by users, which sometimes are also known as
product keys. This technique is employed by various software, from small shareware programs
to large commercial programs such as Microsoft Office. However, software activation based on a
serial number appears to be weak, as various cracks for a majority of programs are available and
can be found easily on the Internet. Users can use such cracks to bypass the software activation.

Generally, the verification logic for checking a serial number executes sequentially in a
single thread. Such an approach is weak because attackers can effectively trace this thread from
the beginning to the end to understand how the verification logic works. In this paper, we
develop a practical multi-threaded verification design. We breakdown the checking logic into
smaller pieces and run each piece within a separate thread. Our results show that the amount of
traceable code in a debugger is reduced to a low percentage of the code -- especially when junk
threads with deadlocks are used -- and the traceable code in each run can differ as well. This
makes it more difficult for an attacker to reverse engineer the code and bypass any security check.
Finally, we attempt to quantify the increased effort necessary to break out verification logic.

ACKNOWLEDGEMENT

I would like to sincerely thank my project advisor, Dr. Mark Stamp, for his expertise and
thoughtful insights which guided my project. In particular, 1 would also like to thank him for
introducing me to the topic of software security (in his CS265 lecture) and software reverse
engineering (in his CS286 lecture in Fall 2009). The first class motivated me to do this project
while the second class provided me the necessary knowledge to finish this project.

I would also like to thank my committee member, Dr. Robert Chun, for his expertise in parallel
processing (in his CS159 lecture in Spring 2010), which provided the core of my project design.
His hardware architecture class (CS247 in Fall 2008) motivated me to use redundancy as a
critical part of my design.

I would also like to thank my committee member, Mr. Wai Leung William Wong, for his
expertise in the field of software designs, which guided me to write code for my testing program.

In addition, I am thankful to my fellow colleagues in Dr. Stamp’s CS286 in Fall 2009, who
generously let me study their various anti-reversing techniques. These techniques — combined
with my own research — provided the building blocks of my new design.

Table of Contents

LLINEFOTUCTION ...t bbb bbbt b bbbt nn e 1
2. SOTtWAIE ACHIVALION ...ttt 3
2.1 Categories Of ProtECHIONS:cccuiiie ettt e e e et e e e et re e e e sabaee e e abeeeeenanees 3
2,11 PSSWOIA ... ettt ettt et e sb e et e e st e e s ne e e s bt e s bt e e e are e s be e e sare e e reeeenreenreeenareeaas 3
2.1.2 Base on How Many Times or Days ONe Can USEuuuuuiueeerimieieiernininieerieeeeererereenreeereremnns 3
2.1.3 Base on SpecificEexpiratioNDAAteceevei i e e e e 4
2.1.4 Having FUNCLiONS DIiSAbIEdcoociiiiiiiiiee et e e e areee s 4
2.15 Base 0N “Disk” OF “CD-ROM” ACCESS.....cceeereereeriirieeiteeiteesieesieessee st st eteesteesbeesaeesanesane e 4
2.1.6 (@1aY o1 doT={¢-] o [of¥=To o Ko o[- SRS 4
2.1.7 (01 1= -SSP P RO URR PSP 4

2.2 Ways Of ACtiVating SOTtWAIE:coii e e et e e e e bae e e e ree e e eeaeees 5
221 By Entering @ Serial NUMDETcoo ittt s s e e s aae e e s sereee s 5
2.2.2 BY @n ACHIVAtION FilE..ciiuiiiiiiiiiee et e e st re e e e areee s 5
2.2.3 BY HAardWare KEYcicciiiiieiiie ettt sttt e ettt e st e e e atv e e st e e e e aate e e e asaeeeeansaaeesannreeen 6
224 Pre-activation @t VeNdOr.......o . ittt s e e 7
2.2.5 Comparison Of MELNOASccoicuiiieicee e e e e e e e e e e e e e earees 7

3. SEIIAI INUMDEE ...t b bbbt n e 8
3.1 Ways of Obtaining Serial NUMDEIooo i 8
3.1.1 YT 0T I <120 =2/ =T | SRR 8
3.1.2 From Software Retail PACKAZEccouiiieiiee ettt ectree e e e e e e e brrae e e e e e e e anes 8

3.2 Ways of Checking Serial NUMDE:........ooo i et 9
3.2.1 One Time Checking Upon ENLEIINGccciie ettt ecitrre e e e e e atare e e e e e e e e nnraaee s 9
3.2.2 D TUE] I @ g T=Tol 4T V-SSP 9
3.2.3 Repeated Checking OVEr TIME....ccuviii ettt ettt e e e e s s s aae e e e e abe e e e enraee s 9

33 Ways of Entering Serial NUMDEI:uiiiiiiiee ettt see e ssite e e s satee e s sneneeesans 10
3.3.1 Only at INSTAllation TIMEuviiiiieiee e e et e e e s are e e e sente e e e sentaeeeeans 10
3.3.2 AFLEr INSEAlIAtION «..eeieie e bbb s e sare e 11
3.3.3 By Inserting Hardware Key DUING USEccccioiciiiiiieee ettt e e eccittee e e eevtrae e e e e e e ennes 11

Vi

3.4 How serial numbers are eNeratedooociiiiieiiiie e e 11

34.1 There are Third Party Software Activation Packages for Sale........cccceeecieeeeccieiiecciieeeenee, 11
3.4.2 Software Vendors Develop Their Own “Secret” Algorithms...........cccoveieciieeiiciieec e, 11
3.4.3 Generate Keys From Other SOftWare.......c.ueei i e eaee e 12

3.5 Criticism of Software Activationcoocuiiiiiiiii e 12

4. Programming Languages and IDES.........cccecviieiieii st 14
4.1 (00T o o] oY 11Te I o =T ol U = o] LU UPUR 14
4.2 23V = 0o Lo [USSR 14
4.2.1 JAVA et e e s st e e e s e s re e e e e e e s e nnne 14
4.2.2 L] O TSP P TOPRTPPRP 15

4.3 Integrated Development ENVIFONMENT......cccciiii ittt e e e e e e sarre e e e 15
5. How to crack SOftware aCtiVatioNcceoiiiiiiieieiie e 16
5.1 3V CT=] o PP PPPPPPPPPPPRPRY 16
5.2 Common Methods for Cracking Software Protectionccccveviieiniiiiinieeniieenieeniee e 16

6. ANLI-reVersing TECANTGUESooviiieiieie ettt sttt sb et be et reesbe e nreas 18
6.1 DL oot dl 1= o 10T ={ T PRSP 18
6.1.1 ISDEDUEBZEIPIESENT() coeeeeeiee et ettt e e et e e e eaba e e e e abae e e e bbeeeeeatseeeeennes 18
6.1.2 Time Checking Of COUE.. ... e e e e e e e e et e ae e e e e e e eennes 19

6.2 Insertion of ASSEMbBIY COUEoiiiiiiiieee e e e e e e e bae e e e ae e e e anees 19
6.3 INSEIrtioN OF JUNK COOE ..eiiuiiiiiiiiiiie ettt ettt ettt e sba e e sabe e sabeesaaeesabeeennes 21
6.3.1 U] o1 I =4 ol U PEUPN 21
6.3.2 JUNK D@, iiieeiiieiiie ettt sttt st s e e st e e s be e saba e s sabeesabeeesabeesabaesabeesabeeenateas 21
6.3.3 0] 1Y 0 g T o o] o 1T o o TS USSP 21

6.4 =T ol U1 £ (o] o IO PO PP PP PPPTPTPRPP 21
6.5 [1] T =0 g T o T o ISP PP 21
6.5.1 Entire Image of Binary EXeCULabIec.cuuiiiiiiiiie e 22
6.5.2 IN-MEMOIY ChECKSUM ...t e e e e et e e e e e e e et r b e e e e e e e e sensrseeeeeaeeennnes 22

6.6) A g TaY = 0] o) 1T or-1 o o U UURP 22

6.7 (0 oF- Yo [TCH o Yo [Tor-) YRR 23

6.8 CoNtrol FIOW OBfUSCAtION ..uiiiiiiiiiiiciie ettt ettt et te e st sbe e e sbaeesateesabeeesareenas 23
6.9 VIO 1R o] TSIV T - oY o APPSR 25
Lo O V. [W] 1 o[Y= T [T Y=< TSR 26
B.11 WINAOWS EVENTS..couuiiiiiiiiiiieiiieeite ettt ettt st e st e e sbe e ste e s saaeesabeesbteesabeesabaeesabaesabaesnssaesabeesnses 26
6.12 Comparison Of EffECtiVENESS....ccuuiiiiiiiee et e e e e e saraee s 27
I L=V LTS T | o USRS PPRURRTRON 28
7.1 Consideration Of NEW DESIBN.....ccciciiieiiiiiee ettt e e e te e e e e rte e e e e ate e e e e baee e e saraeeeenanees 28
7.1.1 Shift WOrKIOad ONlINE....cc.uveeiiiieiee ettt st e s snra e e s sneae e e sentaeeesans 28
7.1.2 ENCrypting EXECULADIE.........eeiieieeeeeeeeeee ettt e e e e e e e et rae e e e e e eennnes 28
7.1.3 DITY:] o g Y=l D LT o T = Y PSP 28
7.2 NEW DS ciiiiiieitete ettt e ettt e e e e s e ab bt e e e e e e e saasb et teeeeeesaansseeeaeeeeesaanssaaeeeeesesannnsneees 28
7.21 LICENSE FIlE cuetee ettt ettt ettt e st sba e st e e sbe e e s abe e sbe e s ate e sbeeenaae s 28
7.2.2 YT L Y=Y o [T Y USSP 29
7.2.3 YT o] (Y 2] [T F- A T o T PP PP 30
7.2.4 GUI AN GUI EVENTS ...uviiiiiiiiiee ittt ee st ee ettt e s st e e s st e e s satae e s sntaeessntaeessnsaeessanseeessnns 30
7.2.5 [0 a1 | T Y=o RPN 30
7.2.6 Encrypting Calculated RESUILSc..vviiiiiiiiie et 31
7.2.7 Junk Thread and DEAAIOCKcovviiiiiiiiiie et st sba e e naee s 31
7.2.8 DL AN To I (o U 4[] o PSPPI 32
7.2.9 (070 Te [N @] o] {ULYoF] d o] PRSPPI 32
7.2.10 Putting the BlOCKS TOGELNEI......ciiiiiiie et e e e 33
7.3 B AT =N (0 o I T oL AV =N o o PSR 36
7.4 TESEING AN RESUILS .ttt e e et e e s st e e e sbteeesansbeeessnsbeeesansneees 37
7.4.1 Correctness of IMpPlemMENTAtiONccuviii i rare e e e erae e e 37
7.4.2 Testing in Development ENVIFONMENTcoiiiiiiiciiiee et e e e 39
7.4.3 Single Threaded vs. MUIti-Threaded...........ooeiiiiie i et 48
7.4.4 Multi-Threaded With Use of JUNk Threadscocccveiiriiiiiiiiiiec e 51

viii

7.4.5 Effort Needed to Implement Multi-threaded Version.........ccccceeeieccciiiieeee e 56

7.4.6 D T Te 0o o [oIE T @] o] U or-) o] SRR 57
8. Conclusion and FULUIE WOTK..........cccuiiiiiiiieiee e 59
0. RETEIBNCES ..ottt bbbt bbb bbbttt n s 60
F N o] 0T o [D AN I 1 - SR i

List of Tables and Figures

Figures

Figure 1. Level of Software Piracy in Different COUNEIIEScccvvieeiereeiere et 2
Figure 2. Adobe Photoshop’s 2-layer ACHVALION...........ccooiiirieieeeree ettt 6
Figure 3. Microsoft’s Online Genuine Software Validation...........cccccvveevirieieninieeeeeee e 10
Figure 4. CD Key Generator’s Valid Serial NUMDEIScc.ooviiieieeeeeereeee e 13
Figure 5. Identifying Function 1SDebuggerPreSent()ccoeeerereriereeeeieseeere e 18
Figure 6. Bypassing Function ISDebuggerPreSent()coveeerereererieese ettt 19
Figure 7. Effect of Using Assembly Code to Confuse DiSassembIErccveeieeveevieevieesee e 20
Figure 8. Getting Obfuscated String iN CIEAr TEXLcccicieviiiieeeiecieece ettt st 23
Figure 9. FIowchart 0F @ SUDIOULINGc.eeiiiiiiciececeee ettt ettt steera et eaeenes 24
Figure 10. FUNCLION Call HIEIArCRYcviieeieceece ettt ettt et st b e s ae s 25
Figure 11. A Zoom-INn View Of FIQUIE L10.......cceeceiieieie ettt sttt sttt st 25
Figure 12. A Sample License File in XIML FOrmatc.coooiviiieiicieieece e 29
Figure 13. Deadlock CauSed DY CYCIE.....cc.icvecieiieeeeie ettt et st ere e 32
Figure 14. Block Diagram for Checking Program Binary Hash..........cccccceviiieviiiccecicese e 33
Figure 15. Block Diagram for Checking Serial Number Using First Checking Module............c.cceueu..... 34
Figure 16. Blocking Diagram of Using 2™ Module to Verify 15 Modulec.covevveveeeeeereeeseerseeeseene. 35
Figure 17. A 3" Module Checking 2™ Module PEFIOICAIIYc.oveeeeeeereeeeeeeeeeeeeeeeeeeeeseeee e, 36
Figure 18. Menu “CL” IS €NADIEM..........ccueiiieeeieceeteste ettt ettt a e e ae s re e s e beeeeense e 37
T [O e Y =Y o TV T O R O I o (< TP 38
Figure 20. Line Counts of Different Runs from MSVS in Single Threaded Mode...........ccccceevevverieerenee. 41
Figure 21. Line Counts of Different Runs from MSVS in Multi-Threaded Mode............ccccocevevenienininnene 42

Figure 22.

Figure 23. Instruction Counts of Useful and Junk with 2 Junk Threads..........cccccvevecevenieveceeece e, 43

Figure 24. Instruction Counts of Useful and Junk with 5 Junk Threads..........cccccvevevevinieve e, 44
Figure 25. Instruction Counts of Useful and Junk with 10 Junk Threads..........ccccceveevevinieneseecieneseeenn 44
Figure 26. Instruction Counts of Useful and Junk with 15 Junk Threads...........ccccovevveverieneseeciene e, 45
Figure 27. Instruction Counts of Useful and Junk with 20 Junk Threads..........ccccceveeveveneeneseeciene e, 45
Figure 28. Instruction Counts of Useful and Junk with 25 Junk Threads...........cccccveevevenieneseeviereeeeene, 46

Figure 29. Average Line Counts of Useful and Junk Instructions When a Different Number of Junk

THreads are INTTOUUCET.cc.eitiieee ettt st b e sa b e a e ens 47
Figure 30. Percentage of Average Number of Traceable Useful InStructionscccccoeeevereeneneecenenne 48
Figure 31. Numbers of Traceable Instructions from OllyDbg in Single Threaded Mode........................... 49
Figure 32. Numbers of Traceable Instructions from OllyDbg in Multi-Threaded Modec..c.c.......... 50
Figure 33. Numbers of Traceable Instructions from OllyDbg in Multi-Threaded Modec.cucu.e..... 52
Figure 34. Instruction Counts of Useful and Junk with 2 Junk Threads..........ccccooeveveieeiecececceceeeee, 53
Figure 35. Instruction Counts of Useful and Junk with 5 Junk Threads..........ccccoevveveieeceiececceceeeee, 53
Figure 36. Instruction Counts of Useful and Junk with 10 Junk Threads..........ccccecvevveveeieveneeciece e, 54
Figure 37. Instruction Counts of Useful and Junk with 15 Junk Threads..........cccccovevveveeievececcieceeeenee, 54
Figure 38. Instruction Counts of Useful and Junk with 20 Junk Threads..........cccccevevvevieeieveceececeeeenene, 55
Figure 39. Instruction Counts of Useful and Junk with 25 Junk Threads..........ccccccvevvevieeenececciececeenene, 55
Figure 40. Chance of Useful Threads Picked Out by OllyDbg When Junk Threads Used......................... 56
Figure 41. Quality of XenoCode’s OBFUSCALONc.covririririiieieieesr e 58
Tables

Table 1. Comparison of Different Methods for Software ACtiVationoceeevevieneiininneneceeeeee 7
Table 2. Comparison of Effectiveness of Different Anti-Reversing TeChniqUeScccecevereierereeceennnne 27
Table 3. Demo Program’s Thread Count in Various RUNNING MOGES...........cceeeririenenieieneeeee e 39
Table 4. Observation of Various Testing Scenarios Using MSVS’Ss Debugger........ccccovveveveerenereeneennne 40

Xi

Table 5. Extra Efforts Needed to Implement NEW DESIQNcc.ocvevieiieieieceeiene et sae e 57
Table 6. Instruction Count From MSV'S with Source Code in Single Threaded Versionc.ccccevvennen. i
Table 7. Instruction Count from MSVS with Source Code in Multi-Threaded Versionccccceceeevennene. i

Table 8. Instruction Count from MSVS with Source Code in Multi-Threaded Version with Different
Number of Junk Threads with Breakpoint Set at Start ONnlyccocverieieiini e ii

Table 9. Instruction Count from MSVS with Source Code in Multi-Threaded Version with Different
Number of Junk Threads with Breakpoint Set at All Functions Excluding Idle............cccoceinininiieinnnnene ii

Table 10. Average Instruction Count from MSVS with Source Code in Multi-Threaded Version with Junk

TRFEAGS. ... ettt sttt he bbbttt E et Rt h bt bt e e bt e b et e n e e neeneebe e nban iii
Table 11. Traceable Useful Instruction Count from OllyDbg in Single-Threaded Version........................ iii
Table 12. Traceable Useful Instruction Count from OllyDbg in Multi-Threaded Versioncccccccueeee. iv

Table 13. Traceable Code from OllyDbg in Multi-Threaded Version with Junk Threads Launched First .. v

Table 14. Traceable Code from OllyDbg in Multi-Threaded Version with Junk Threads Launched After
O T=] 0 I] =T Lo (USSR vi

Table 10. Average Instruction Count from MSVS with Source Code in Multi-Threaded Version with Junk

Xii

1. Introduction

There are hundreds of millions of software products in the world for all kinds of needs. Among
these, many are free or exist as open source, while others require users to pay -for the use of the
software. Many commercial software products provide trial versions — free of charge — so that
users can try out their features before buying; some form of activation is required to obtain full
use of the software. In this case inactivated (or trial) versions usually have reduced functionality
and/or usage limits over time. Usually trial versions are identical to the full versions in terms of
the binary code.

Most software products employ a serial number for protection. This method is the most popular.
However, its effectiveness is in serious question since the trial version has the same binary code
as the full version. Thus, it is possible to bypass or crack the software and remove the limitations
of the trial version to obtain full use. In fact, many software products that use serial numbers for
protection are cracked by bypassing or patching the activation mechanism. Since the activation
mechanism is relatively weak. After breaking the activation mechanism, hackers can create key
generators (commonly known as KeyGens) or patches and distribute them through the Internet
so that other users can use the trial version software just like the full version, but without paying.
One can find KeyGens or patches for many popular software products [20][21]. It is worth
mentioning that many KeyGens or patches contain viruses; therefore, using such cracks can
subject users to security problems. It is thought that a majority of computers used in China are
running pirated versions of Microsoft Windows, which clearly shows the weakness in that
software’s activation mechanism. In fact, it is reported that Windows 7 was already cracked after
the Lenovo OEM key leaked [2] a few months before its official release. Figure 1 shows the
estimated level of software piracy in various countries.

Our research focuses on how serial number checking is performed. The goal here is to design an
improved mechanism by using various anti-reversing techniques so that it is more difficult to
break the checking mechanism.

The organization of this report is as follows. Chapter 2 discusses various categories of software
activation while Chapter 3 focuses on various aspects of using serial numbers as activation
mechanisms. In Chapter 4 we discuss the influence of programming languages and integrated
development environments (IDEs) on software activation mechanisms. In Chapter 5 we discuss
various ways to break software mechanism. Chapter 6 covers various anti-reversing techniques
that can be used to strengthen activation mechanism and Chapter 7 covers our new design as well
as our testing setup and results. Finally, Chapter 8 provides a conclusion and suggestions for
future work.

Page 1 of 61

100

50
&0
40
20

%{"’
%% %,

Rate of softwars piracy (%)

|| .2003 2004 .2005
o, B, B, Y M ‘%?‘“& 9},, "’&.ﬂ“‘

-ﬁ%w@%fﬂ% I}%%%/"E,

Figure 1. Level of Software Piracy in Different Countries
Source: Australian Institute of Criminology [23]

Page 2 of 61

2. Software Activation

Software activation is used primarily as a way to make users pay for the software they use; this is
how software companies make money for the continuance of their business. In the past
(approximately a decade ago in the 1990s), software products were either free or the consumers
had to purchase them. In the past one could not download or share software products via Internet,
like we do today; as a result software privacy wasn’t a big concern. In fact, Microsoft
encouraged piracy as a way to market its Windows 95 operating system. This commercial
practice has changed since Internet became popular. Today, consumers can try various software
packages before they decide which to buy. In this process, software vendors must make the
software attractive enough to the consumers while setting some limitations so that consumers
will eventually pay for the software products. Through this change of practice came the concept
of software activation.

The rest of the chapter will discuss various kinds of protection schemes and several activation
mechanisms.

2.1 Categories of Protections:

2.1.1 Password

Password based protection usually requires users to enter their usernames and passwords for
authentication in order to gain access. This is the easiest to crack [3]. This can be cracked by
viewing “echoes” of the username and password by taking a memory snapshot. For more details,
see section 5.2. While the logic for username and password checking is bulletproof, improper
implementations for taking user input by programmers can make the checking mechanism weak.
For example, using immutable strings to store data (username and password) instead of character
arrays whose data one should clear after use. This may lead to revelation of such important
information.

2.1.2 Base on How Many Times or Days One Can Use

One common practice employed by shareware today is to limit the number of days users can use
the trial version of the software product. In this case, a trial version can be fully functional as
opposed to reduced functionalities. The software would expire after the limit and become
completely unusable. If a user likes that particular software and uses it for an important purpose,
the user will have to purchase the software in order to continue to use it. According to [3], this
category of protection is also fairly easy to break. We came across one software named “CD Key
Generator” from Jedisware [24], which utilizes this kind of protection in its trial version and
limits usage to only 5 days; we were able to break it in a matter of a few hours [4].

Page 3 of 61

2.1.3 Base on SpecificEexpirationDdate

Currently marketed software products do not usually expire after a specific date; expiration is
more or less an old practice. This practice is usually seen on beta products today, such as
Microsoft’s Windows beta versions. This kind of protection does not really protect the software
products per se, but rather forces users to buy the full version when it is released. One simple
way to break this kind of protection is to reset the clock to a time before the expiration date.

2.1.4 Having Functions Disabled

Another common practice in use today by many shareware is to provide users with a trial version
whose functionalities are reduced. For example, Cyberlink’s PowerDVD [25] lets a user play
back DVD movies up to five minutes in the trial version. In many cases, the executable for the
trial version is the same as the full version, which makes it possible to break the protection and
turn the trial version into a fully functional version. In fact, hackers often break software based
on such protection and distribute the cracked versions on the Internet.

2.1.5 Baseon “Disk” or “CD-ROM”” Access

There are software products that use presence of a disk (containing some critical information) in
the CD-ROM to start the program. This method is mostly used by the computer game industry
and is very easy to crack according to OCR [3]. One can easily find cracks online for nearly all
popular game titles using this protection.

2.1.6 CryptographicAadd-ons

There are essentially two methods in this category: encryption and hashing. This category of
protection is intended to make software temper-resistant from hackers. Encryption of code can
make it extremely difficult for attackers to understand the underlying protection mechanism,
whereas hashing is used to make code modification difficult. This kind of protection is usually
used to protect important logics in software.

2.1.7 Others

There are also software products whose protections can fit into more than one category
mentioned above in section 2.1. In this case, different protection methods are used in
combination to reinforce each other to make cracking more difficult. Another method is to have
different binaries for the trial and full versions. If the binary of the trial version does not contain
all functionality of the full version and the full version cannot be obtained publicly, there is no
point attacking the trial version.

Page 4 of 61

2.2 Ways of Activating Software:

2.2.1 By Entering a Serial Number

The use of a serial number is the most popular choice for activating software. Most shareware
and big name commercial products are activated this way, including Microsoft Windows. This
method requires a user to type in a serial number obtained from the vendor after purchasing a
legal copy of the software. In some cases, a username is also needed.

There are two common ways to distribute serial numbers. The first option is to distribute the
serial number along with the media containing installation package. This is usually preferred by
companies whose products are usually not downloadable (or not suitable for download due to
large size); however, most software products can be distributed through download nowadays
thanks to faster Internet. The second option is through email. This method is suitable for
downloadable software like shareware whose sizes are typically small. After purchasing the
product (usually online), vendors send an email confirmation to the user along with a serial
number for the product.

In addition to requiring users to enter serial numbers, certain software vendors may require more
information. For example, Adobe Photoshop requires users to go online (or by phone) to obtain a
second activation code and use it to complete the activation process, see Figure 2. Microsoft
Windows, on the other hand, repeatedly checks for activation information on user machines from
its proprietary software, GenuineAdvantage, against its database (via the Internet) whenever
critical updates for an operating system are downloaded and installed. As of this writing, there
are only a few software vendors that require something more than a serial number.

2.2.2 By an Activation File

An activation file is sometimes used to activate software, although not common. This method
usually works in conjunction with software distribution via download. A consumer purchases the
software online at the vender’s website, and the vendor sends an email to the user with an
activation file attached. After receiving the activation file, the user must manually follow certain
instructions (usually found from the same email) and save the file to some specified location.
When the software launches, it checks for the existence of an activation file; and if file is found,
the software turns into a full version mode if the contents of the activation file check out.
Activation files usually contain contents such as username and other activation information,
which is unique in each case. RarLab’s popular WinRAR [27] uses this method for activation.

Page 5 of 61

Adobe Photoshop Installer

Phone Activation

Flease follow the steps below:

1. Select your location: Malaysia -

Mote: If your location is not listed, please activate over the Internet.

2. Call one of the following numbers:
Toll-free: 1800 80 8025
Direct (toll number): {&5) 54155053

Mote: See www.adobe.comfactphone for a full list of phone numbers.

3. When prompted, please provide the following information:
Serial Mumber: 1045 - 1445 - 0672 - 3197 - 7337 - 2008

@ 4706 - 4183 - 3810 - 2128 - 1293 - 3229 - 129

Activation Type: Marmal

4, When you receive the Autlmri_z,aﬁu_:up Code, enter it here:

" 0463 1794 5942 7987 3293 |

&) You're done! Click ACTIVATE!

[Activation Options] @cﬁ'¢am D [Cancel

Figure 2. Adobe Photoshop’s 2-layer Activation
Source: Chinmaan [26]

2.2.3 By Hardware Key

Activation by hardware key is perhaps the least common method in use today. This method
requires software to work in the presence of some special hardware device [5]. This kind of
activation is perhaps the most difficult to break since it is very time consuming to figure out what
the hardware key does. For example, the hardware device may participate in some calculations
performed by the software, and it would be difficult for hackers to figure out what calculations
the hardware device does exactly. A secured hardware key can be a smart card. One advantage of
using a smart card as a hardware key is that it has cryptography built in for protection to make
the smart card tamper resistant. Any communication with the smart card is cryptographically
secured and the smart card is able to lock or destroy itself if authentication is failed for 10 times
consecutively [6]. Bank of China requires a USB drive to activate its online banking software [7].

Page 6 of 61

2.2.4 Pre-activation at Vendor

Pre-activation at vendor is a method to activate many OEM software products on brand name
computers. For example, Microsoft’s Windows operating system (OS) is the most widely pre-
activated software. When a user purchases a new brand name computer, the user may also get
other bundled software from the vendor — pre-installed and pre-activated.

For Microsoft Windows, activation information may be stored in the BIOS on the motherboard
and the OS would check the BIOS for activation information. This activation method for
Microsoft Windows is often explored by hackers; see more details in Section 5.2

2.2.5 Comparison of Methods

Table 1 shows a comparison of different methods of activating software, including pros and cons
of each method, summarized from ORC’s lessons [3].

Table 1. Comparison of Different Methods for Software Activation

Method Popularity Convenience for the Effectiveness of
user protecting against
privacy
Serial Number Very popular for Convenient Usually not effective,
individual users, for especially for
many kinds of software shareware. Because one

may be able to use the
same serial number on
multiple copies of the
software.

Activation File In use, but not common | Not very convenient Not very effective, same
copy of activation file
may be used to activate
multiple copies of the
same software

Hardware Key Barely in use today Not convenient Very effective

Pre-activation at vendor | Very popular for Very convenient Can be effective, but
computer sellers, mostly depends on exact
for OS implementation

Page 7 of 61

3. Serial Number

Serial number is a string consisting of alphanumeric characters and is the most popular method
of activating software products. It is sometimes known by other names, such as CD Key, product
key, activation code, and so on. Each legal copy of the same software product should be
distributed with a unique serial number; this unique serial number is used to indicate legitimate
rights to use the corresponding software. Although the use of a serial number was intended to
combat software privacy, it is not very successful.

Sections 3.1 below will discuss various aspects of using serial number as an activation
mechanism.

3.1 Ways of Obtaining Serial Number:

The very basic problem of using a serial number to activate software is how users get the serial
numbers from software vendors. In today’s commercial practice, this problem is primarily solved
in the 2 following ways: by email, and from retail package.

3.1.1 Send by Email

A common practice used by many shareware vendors to distribute serial numbers is to send out
the serial number to users in emails after they pay for the software. This method is quite easy, but
it requires the user to have an email account to receive such emails. A very similar way is to
display the serial number on the webpage along with confirmation of purchase; this eliminates
the need to have an email account. Another problem with this method is keeping the serial
number after use. Users may need to reinstall the software for whatever reasons they have, which
will require users to enter the serial number again. Usually, people are not good at keeping such
important information well in order.

Sometimes free software requires activation too, such as Avast’s anti-virus home edition [28].
Avast requires users to register online to obtain a serial number, which is good for 1 year. After
registration, users then receive an email containing a new serial number. In essence, there is not
much incentive for obtaining a serial number for freeware.

In summary, this is perhaps the most convenient and popular way to distribute serial numbers if
software is purchased online by download.

3.1.2 From Software Retail Package

In contrast to obtaining serial numbers by emails when buying software products online, users
would get serial numbers in printed media if they buy them from retail stores. This is the original

way of distributing serial numbers. When users buy software products, they get an installation
Page 8 of 61

disk, a user manual, and a serial number inside the box. But due to popularity of the Internet,
fewer and fewer software products are distributed this way.

3.2 Ways of Checking Serial Number:

While serial number is used to fight against piracy, simply using it is not all that matters; how the
serial number is checked has an impact on the effectiveness of software activation.

3.2.1 One Time Checking Upon Entering

Most software products only check the serial number once after it is entered, but this also make it
easy to pirate software. In this scenario, after a serial number is deemed valid, it would be good
forever (a practice used in many shareware packages). As long as a user can obtain a good serial
number, their copy of given software will be activated and no tampering of the software itself is
necessary. The most serious pitfall of this method is vendors are unable to keep track of the serial
numbers being used.

3.2.2 Dual Checking

Dual checking is an attempted improvement over the one-time-checking mechanism. This
method is mostly found from Adobe’s products, such as Photoshop. After entering the serial
number, users are required to either go online or call by phone to obtain a second activation code
and use that to complete the activation process.

By contacting the vendor (Adobe in the case of above example), the vendor is able to validate
whether the first serial number is good, how many times it is used, and if that particular serial
number is actually distributed by Adobe. By doing this, Adobe is able to keep track of distributed
serial numbers and, perhaps, take actions against those who spread them illegally. Of course, this
is only an improvement over the previous method; it does not solve software piracy problems (if
piracy can be solved at all).

3.2.3 Repeated Checking Over Time

This method would require software products to be validated multiple times over time, after
successfully activating it in the first place. This makes piracy more difficult with a key
management server. Microsoft employs this method in its Windows XP and later operating
systems. When users download critical updates from Microsoft, Microsoft will try to check
whether the running OS is a legal copy by using its GenuineAdvantage software. In this scenario,
pirated copies will most likely be detected by Microsoft because the same serial number is used
too many times. Figure 3 shows a screenshot of online detection.

Page 9 of 61

All Microsoft Sites
Go
search by b|n9’

United States Change
o 9
Genuine Microsoft'Software .

Home About Validate Products Support

Every day, Microsoft helps customers worldwide who are victims of
counterfeit Windows and Office software. Want to read what they have
to say?

Genuine People, Genuine Stories

Validate Now

You can confirm that your
software is genuine now. It's
quick and easy.

Genuine Windows

About genuine Windows
Genuine Windows offers

More infarmation for IT Pros

Genuine Office
m Why validate Office?
m About OGA Matifications
m Frequently asked questions

mn Download the latest WGA
MNatifications tool

m What is WGA Notifications?

m Get the facts about validation

How to Tell
m How to tell whether your
software is genuine

Popular Genuine
Downloads

This download is available to
USErs running genuine
Microsoft Windows. Click the
icon for more information.

Piracy

m Learn more about piracy

@2

Figure 3. Microsoft’s Online Genuine Software Validation

m Report suspected piracy now

m View the counterfeit gallery m See the largest counterfeit bust in

m Microsoft Product Activation history

e At

The upside of this method is that it enables a vendor to detect piracy of its software with a
relatively high success rate; the downside is that it must get users to repeatedly go back to the
vendor. Distributing security updates is obviously a good reason to get users back to the vendor,
but this reason only applies to a few software products because most other software does not
provide routine updates like Microsoft. Therefore, while this method is considered to be a better
improvement over dual checking, its use is severely limited.

3.3 Ways of Entering Serial Number:

There are a few ways to enter a serial number, how this is accomplished determines how difficult it is to
break the protection.

3.3.1 Only at Installation Time

A common way to enter a serial number is during installation. This method is usually used by
software without trial versions. While cracking a serial number at installation time is more
difficult, it is still doable. Usually a serial number entered at installation time is not checked

Page 10 of 61

against the vendor’s system, so once the software is cracked or a serial number is leaked, piracy
is unstoppable.

3.3.2 After Installation

Many software products allow users to enter a serial number after installing the software. This
makes it a little easier for hackers to attack the activation mechanism, as they do not have to
investigate a large amount of codes compared to the installation package. This method is widely
used by software products having trial versions or trial periods.

3.3.3 By Inserting Hardware Key During Use

Some software products have serial numbers built into hardware keys. In this case, users do not
get to see the serial number at all. As discussed in Section 2.2.3, this makes it very difficult to
break the software activation mechanism. This method is not widely in use today.

3.4 How serial numbers are generated

There are many ways to generate and store serial numbers. How this is done directly affects how
easy or difficult it is to break the mechanism.

3.4.1 There are Third Party Software Activation Packages for Sale

If software developers do not have much experience in this field, they may be better off using
third party products for protection. One company that provides such service is LogicProtect; it
claims to provide “clever software activation, anti-piracy functionality and copy protection for
your software” [8]. LogicProject’s service description says its service is able to provide both
activation and online verification [8]. This will make the overall process more robust. In essence,
LogicProtect provides its service by letting developers integrate LogicProtect’s DLL into their
software. In its newest release (7.0), it even includes web service APIs, which make the online
verification easier to implement.

3.4.2 Software Vendors Develop Their Own ““Secret”” Algorithms

In many cases, software companies prefer to develop their own secret algorithm for generating
and checking serial numbers. The idea behind this practice is that the “secret algorithm” is
supposed to be difficult to break because no one from the outside knows about it; however, this
idea contradicts Kirchhoff’s principle [9]. In fact, the majority of serial number generation and
checking algorithms are broken by hackers. Once the part of the code responsible for serial
number generation is identified, hackers can simply “rip” out such code and use it to create a
KeyGen for that software product [10]. Among different secret algorithms, use of hash functions
is one of the favorites.

Page 11 of 61

3.4.3 Generate Keys From Other Software

Sometimes software developers use third party software products to generate serial numbers and
develop their own code to verify the serial numbers. Jedisware’s “CD Key Generator” is one
software product that can generate serial numbers of various lengths and formats (such as use of
hyphens, numbers only, and so on). The full version of “CD Key Generator” allows users to save
the generated serial numbers in a file or in a few data structures such as array or arraylist. What
was ironic is that “CD Key Generator” itself is not good at serial number checking. What it did
essentially is to store all 5000 valid serial numbers as an array of strings in the software, see
Figure 4, and does a comparison against all stored valid serial numbers to check for validity [4].
In this example, we can conclude that it is a terrible idea to store valid serial numbers in the
software’s source code.

3.5 Criticism of Software Activation

While use of software activation is popular, it is also criticized by many; some criticisms include
the following [11]:

e If a computer is stolen or destroyed, the activation records on it may be completely
lost. It is only by the good will of the company that products can be re-activated.
This makes backing up to guarantee prevention of substantial loss impossible.

e It can cause inconvenience for the end-user, particularly if phone calls are necessary
to complete activation or technical problems such as firewall blocks or activation
server downtime, preventing the activation process from completing.

e It can enforce software license agreement restrictions that may be legally invalid. For
example, a company may refuse to reactivate software on an upgraded or new PC,
even if the user may have a legal right to use the product under such circumstances.

e |f the company ceases to support a specific product (or declares bankruptcy), its
purchased product may become unusable or incapable of being (re)installed unless
an activation-free copy or final patch that removes or bypasses activation is released.

e Although many activation schemes are anonymous, some are accompanied by
mandatory registration which requires providing the user's address, phone number,
and other personal information before the product is activated.

e Many argue that product activation does not protect against piracy at all; pirates
often find ways to circumvent product activation.

e Product activation has also resulted in many software vendors treating their
customers with much more hostility than they did before they introduced it into their
products. This can mean that all users, including those with no intention to illegally
distribute their products or knowingly acquire or use bootleg copies, are suspected of
being involved in activities related to piracy.

e Product activation where there is no straightforward way to transfer the license to
another person to activate on their computer has been widely criticized as making
second-hand sales of products, particularly games, very difficult. Some suspect

Page 12 of 61

http://en.wikipedia.org/wiki/Firewall_(networking)�
http://en.wikipedia.org/wiki/Downtime�
http://en.wikipedia.org/wiki/Software_license_agreement�
http://en.wikipedia.org/wiki/Chapter_11_bankruptcy�

companies such as EA to be using product activation to reduce second-hand sales of
their games in order to increase sales of new copies.

~] Cz:\Program Files\Jedisware, LLCACD Eey Generator\EeyGenerator.eze (3296) (STOPPED)

File Edit V¥iew Tools

Kl Al S ‘II & F% YEEE A | &

Debugz Hindoew

Help

e e R L AR T

ro

e

[7o0134CE

| 7001353E

< a |

1 700 SEBE -

- hitp: e jedizware. com s
- mailtoc suppopri@jediswarg. com 0
- - \License bt
ﬁ VOO 3208 -
ﬁ VO 32EA -
-P
4 - g 3340 B BB

- A2M20G13ERT
- Q25 48B92KET
- WA h4ER 31397
et F001.3362 -
5] 70013370 -
5] 70013396 -
[55] 70013360 -
-137R3EDET20
-wl02PE1BEZHT
- kd5M2THI4MNES
] 70013418 -
ﬁ V0013432 -
ﬁ V0013440 -
] FO00734EE -
- £42B91JERBSHA
ea] 70073434, -
ﬁ VOO0134B4 -
- 38 28u360 2
] O07134E8 -
- EBOn3552u30
| 7o01351C -
(=] 70013536 -
-D920u93k51 78
- GE8s13d1h33y
-Fdimlud¥gl 0B
- D105 298614
| 70013568 -
- GINE2p2 372
| 700135EC -
el 70013606 -
[Fo013620 -
i - A0OLTEKBP30H
- WE4ABDSEN 22
- nd5C3451 0 n3
- IPBK22023448

WLicenzeD ate tut
Date

FIEKREIR 3422
crOUBEF 33w 0
d102k.32P23R3
b5204808T 230G

b19G10346317
[14T 30730
poFYEIAIZLET
RIS IIPA4FE

r22L56<87.70
nddwB451P105

H45k28031183

LE6dI6a99975
UEFII7gES74

M93uTid9r39y

M 38:71163p7
waC7OROFS7E4
H 04697103

% BE

Beferences

IL_DDDD’

Y=Y

ﬁl)isassenhly of EeyGenerator. fral

IL_DDDE'

IL_DDED’ IL

|A

IL_000C:
IL 0011:
IL 00Ll&:
IL_001E:
IL 001D:
IL O0LF:
IL 00Z4:
IL_0023:
IL_00ZE:
IL _DO0ZEF:
IL_0030:
IL_0031:
IL 0036:
IL_0037:
IL_0030:
IL_0041:
IL 0046:
IL_0047:
IL_O048:
IL 004D:
IL D04E:

TECOO000O4
&F4BO00000A
&F4C000004
1Foc

FE11
TE14120070
ZBEE000004
E6

Zh

0E
7EC4000004
0
TECO00000O4
&F4EO000004
GFDAOOOOO&
UF:N

o
FISEQ00000
0
TEC4000004

1dfld textEBEc
callwirt Str
callwirt Int
lde. id. = 0OxC
beg.= IL 0O0:
ldstr 1
ldstr "Trial
call ValueTy
pop

ret

ldarg.0
1dfld clsLic
ldarg. 0
1d£f1ld textBc
callwirt Str
callwirt Boc
stloc. 0
1ldlac.0
brfalse IL_C
ldarg. 0
1d£f1d clsLic

"Inwa,

W

b <

Figure 4. CD Key Generator’s Valid Serial Numbers

Page 13 of 61

K.eyGenerator frmlicense
F.eyEenerataor. frlecense button_Click. (060

button] Click [060

4. Programming Languages and IDEs

While serial number generation and checking appears to be a problem in the domain of an
algorithm, choice of programming language and IDE matters, too. In this project, we focus on
the software reverse engineering aspect of programming languages.

4.1 Compiled Executable

Compiled executables are the most difficult ones to reverse engineer because reversers must
have a good knowledge of assembly language. For this reason, C/C++, or other languages which
compile code directly into binary machine code should be used to write code related serial
number generation and checking.

Another advantage of compiled code is it can strip out all information regarding function and
variable names, leaving hackers to interpret memory addresses.

We must emphasize that compile executables only makes reversing more difficult, but not
impossible. Hackers can still use various tools (like IDA Pro [29]) and their expert knowledge to
accomplish the job.

4.2 Byte Code

Unlike compiled executables, which are in the form of binary machine code, byte codes contain
a considerable amount of information that is extremely helpful to hackers, and more importantly,
they can be decompiled to obtain high level source code quite similar to the original source code.
Developers need to add various obfuscation to the source code to effectively prevent reversing.

421 Java

Many programs written in Java are open source and, hence, free; therefore, there is not much
incentive to attack such Java programs for our purpose. But if one needs to, one can use
“Frontend Plus” to decompile the “.class” files containing the byte codes in order to obtain the
corresponding “source code” [12].

To obfuscate source code written in Java, one can use “ProGuard” [13] to do the trick. It
obfuscates symbolic information such as function names and variable names, even class names
[13]. Once obfuscation is done, it would be very difficult to understand the original source code.

To add another level obfuscation, one may use “SandMark” to encrypt the “.jar” files [14]. But
obfuscation done by this tool can be easily reversed, so it does not provide much value.
Alternatively, users can use the Java Virtual Machine’s (JVM) keytool to encrypt the “.class”

Page 14 of 61

files and the corresponding certificate will be stored in the key store [15]. Users must know the
password to the key store in order to retrieve the certificate and use it to decrypt the .class files.

There are tools currently available that can pack necessary libraries together with the user-
written code and generate an executable [16]; this makes reversing considerably difficult at the
expense of platform dependence.

4.2.2 .Net

.Net is essentially Microsoft’s version of Java as they share many similarities, especially C#. Just
like Java, after compiling the source code, byte codes known as Microsoft Intermediate
Language (MSIL) are generated. Because of this, hackers can decompile such programs using
tools to obtain codes quite similar to original source code.

To prevent reversing, developers can use tools like Xencode Postbuild [17] to add obfuscation,
or even generate native binary machine code, which can run without the .Net framework [17].

4.3 Integrated Development Environment

If developers think IDEs do not matter for our purpose, they are wrong. First, different IDEs may
compile source code differently. For example, for the same source code, Microsoft Visual Studio
would generate binary code much smaller in size compared to Dev C++; this directly affects how
the corresponding disassembly looks. In addition, different compilers may provide different
compiling options, such as optimization and so on. Such options would also have an impact on
the binary machine code. Sometimes, optimization may even undo or get rid of some the anti-
reversing tricks used.

Page 15 of 61

5. How to crack software activation

In this chapter, we will discuss breaking software activation from two perspectives: the regular
user and the hacker. The difference in two perspectives will determine what needs to be done to
break the activation.

5.1 KeyGen

KeyGen, short for key generator, is a tool used to generate serial numbers for software. Such
tools are developed by hackers to activate software in order to eliminate all restrictions imposed
in trial versions. Regular users can perform a Google search on the Internet to find the matching
KeyGen for a particular software product, and then use it to generate serial numbers to active the
software. That is all that’s needed.

There are two ways to create a KeyGen:

1. Recreate the underlying algorithm after understanding the corresponding disassembly

2. Rip out the assembly code and use it directly.
Both of these methods require identifying the correct section of code responsible for checking
serial number. After this, the first method requires extensive study of the code in order to
reconstruct the algorithm used, whereas the second method only requires a copy and paste with
some minor modification. Comparing the two methods, the second one obviously requires much
less time. However, even if KeyGen is able to generate a serial number passing the algorithm’s
test, it still may not be good enough. Sometimes serial numbers are also checked against the
vendors’ databases and vendors may set special rules on valid serial numbers, such as not having
certain alphanumeric characters. Such preset rules may not be present in the checking algorithm,
and hence KeyGens wouldn’t know about them.

5.2 Common Methods for Cracking Software Protection

Without going into much detail, hackers would generally do the following to find out and attack
the activation mechanism, summarized from ORC’s lessons [3]:

e Take snapshots of memory after inputting password or serial number and then try to
identify the memory location by finding echoes of what you type in. Set breakpoints at
them.

e Use some utilities to draw out the calling hierarchy of functions

e Use breakpoints wisely as “single-stepping” is expensive.

e Try to identify a section where you repeatedly find assembly codes because they could be
precisely the protection as they are usually added at the end of development.

Page 16 of 61

e Examine all referenced strings first, if possible; try to identify messages related to
protection scheme (such as success or failure messages displayed on screen).

e Study virus as they are the best source for good “tight and tricky” assembly code. This is
of course done prior to actual hacking.

e Sometimes it is good to use a sequence of working instructions than a series of “NOP”’s
as newer protection schemes “smells” them. For example, hashing of code can detect any
change to it.

Page 17 of 61

6. Anti-reversing Techniques

In this chapter, we discuss various anti-reversing techniques, including the purpose of their use
and relative effectiveness in making cracking more difficult.

6.1 Detect Debugger

Hackers must use debuggers in order to successfully understand the design of the activation
mechanism. Therefore, if protection is added to prevent code to be run by debuggers, one may
force hackers to give up on reversing such software because they just lost their most valuable
tool at their disposal.

6.1.1 IsDebuggerPresent()

IsDebuggerPresent() is a system function provided in Microsoft’s library. If a process is started
by a debugger, calling this function can try to detect the presence of the debugger; if a debugger
is attached to a process after it is started by other means, calls to this function could return false.

One downside with this function is that this function can be easily identified by modern
debuggers. As shown in Figure 5, OllyDbg is able to identify this system function call. Hackers
can easily disable calls to this function to bypass the check, as shown in Figure 6. Our research
found that this method is not particularly effective because they can be easily identified by
debuggers.

OllyDbg - Problem1.exe - [CPU - main thread, module Problem1]

[e] File View Debug Plugins Options Window Help

x| win| 4] W4)+ LE{mT]w]n|c|s]k[BR]. 5] =2

DODF 157 5] 6304 64 ADD ESF, 4 = (FPU) 3 < < 2 3
Y] M as [Besierers
B S |SOIRAT cartsen g
Gope1iol| BD45 E4 LEA EFGOIR0 TR 551 EBP-161 v S D i aRL ey
ot]
B@A0F 1405 68 9C57BFBE PLISH OFFSET ?_CE_ BZDKEKHNDE ASCI1 "us™
BaaF 1406 FF1S C4876FAA EHLL DOWORD PTR DS [<&HSUER‘3BD MSUCRIED. scan- F
s i) EEE o
dtie) o B
@uar1415| E8 26FDFFFF CALL Probleml.808F114@
ooaFidin| SBF: Mol ESL, ESF
FFLE AB21BFE0 CALL DNORD PTR DS:[<EKERNELZ2. [sDebuage: kerne |32, IsDebuggerPresent
paFidzz| 3BFe CHF ESI,ESP il
B oo |G Bl eriico -
] 8 EN: FS: a5z 32hit EFDDHEH[FF]
o) 5 e
S%WWMMHHMWPMWWW I
SR B b S I p————————
BEEF 436 EA B8 PUSH 8 FL B@@as2de (NO,NE,E,BE,NS,FE, GE,LE)
0aF 1458 68 9B578FBE PUSH OFFSET 7_CE_BSNDMLEHOKED| ASCIT "DERDBEEF™
o pew iy e
gt o0 b
@eaF1441| FF1! mm CALL DWORD PTR DS: [<&MSUCR9GD. stri p>1| MSUCRIE0. strncmp
aoaFiddr| B3C AOD "
QoeFiddn| 3BF CHF ESI,ESF
DoeFid4C| EZ2 EFFCFFFF CALL Frobleml.®88Fiid4a
BREFi4E]| SECH TEST ERK,ERX
REF1453 P4 19 JE SHORT Frobleml.B@@rFideE
GBEF 1455 | SEF: HaWES: &T
e - ox coreremmoret e nSofsect seb et ninbSRHhTeS sl
woiier eooopony |G BESCT prontinti s pe conercamuore) pent e 1
o ot FEIE A g oo
i e o e
armiel E e |ORS
ggor: 460 VEB 17 JHP SHORT Prob lewm!. 0aF1485
S B
EQI 47| 68 3CEPeFen PUSH OFFSET ?_CE_k BELEPEHMKJFH ASCIT umber is correct.@”
AOEF1475| FFLS COS26Faa CALL DWORD PTR DS [<&MSUER‘3BD pr MSUERBED p tF
sl EOTh gl o
DOEF147E| 3BF: CHF ESI,ESF
QbGFi4sE| E2 BBFCFFFF CALL _Fre bl i, BEEF1140
DREFI4EE I2CH ®OR ERR, EN
DREF14E7| B2 FUSH_ED:
aoF14E2| SBCD HoU ECH, EEF
PBaF145A| 58 PUSH
BT B s | e oo o1 osecerenns
BT e | Lo ot
i)
DS [B0BFELAS]1= Tkerne 32, 1
erial.cpp:id, ifils
e
I
oot
prm
o
o
e
o
e o0
oo
GaaF a4
DOEF 7RSS
DROFTASE
DRGFTRED
DOEFTRES
DOGF7ATE o
e
e cacech
e op
oot re
ool on e e o

Figure 5. Identifying Function IsDebuggerPresent()
Page 18 of 61

Oyl - Problem Lese - [CPU - main thiead, module Problem]
5 Options Window Help

] et] 80] e

EB:'.FNBF
IE(:{E [1}
2 S e,
" FFI5 Ca) ‘
i
WIFy (¥

W IO BEC1] e
W3] | R0, eanf

wan erial menber. Try again g

Figure 6. Bypassing Function IsDebuggerPresent()

6.1.2 Time Checking of Code

Developers can write their own code to try to detect presence of a debugger at runtime.
Depending on how code is written, it may or may not be effective. One effective method is to
check the run time of a segment of code. Developers can use trial and error to determine the
normal run time of a block of code, and then set a limit based on the result. Developers can then
use another thread to check the run time of that block of code and see if the limit has been
exceeded; if so, it is probably because a debugger has stopped the execution.

6.2 Insertion of Assembly Code

Developers can add in various well-designed assembly codes to confuse disassemblers. However,
our research found that modern disassemblers are smart enough to deal with this tactic. At best,
only a few lines of disassembled code can be confused, hence proving this method of less value.
In Figure 7, the boxed line of code in red shows the only line of assembly code that got messed

up.

Page 19 of 61

OllyDbg - Problemd-45.exe - [CPU - main thread, module Problemd]

@File View Debug Plugins Options Window Help

B1Z71Z0E| Al DAFPEZFA] MOU ERX,DWORD PTR DS:[__security_cookis

BlavizEs| 23C% #“OR ERH, EEF

B12715ES| 8945 FC MoU DWORD PTR S5: [EEF-41,EAX

B12713ES| SBF4 rou ESI,ESF

B1271ZERf &2 PUSH OFFSET Problemd.?? CE_BEGEOOHPELEINASCII @A, "Enter Seri'
B12712EF| FF1E CALL DWORD PTR DS:[<&MSUCR9G0.printf>] | MSUCROG0. printf
B12715FE(8304 B4 AOD ESP. 4

B12712F2 2BF4 CHP ESI.ESF

B12712FA| EZ2 41FOFFFF CALL Problemd.@1271140

B12712FF| SEBF4 raw ESI,ESF

Aiz7i4E1(2045 E4 LER ERH,DWORD FTR S55: [EBP-1C1

Bi27 1484 5B FPUSH ER=

B12714BE &2 SCEPRFH] FUSH OFFZET Problemd. 7 CE_G=DKCKIINDEY HSCIT "Hs"
B1271480(FF1E CALL DWORD PTR DS: [<&MSUCRIG0. scant>] | MEUCRIE0. zcanf
B1271416(8304 B2 AOD ESP,. 2

B127141% 2BF4 CHP ESI.ESF

B1271415| EZ2 26FOFFFF CALL Problemd.@1271140

B127141Af S8 FUSH _ER=

A177i41E|~EB 81 JHP SHORT FPooblemd.B127141E

[EI=714100 \FSE 450856ES | JPO ESYYECEE |

BIZ7 1423 Bzad AOD AL,EYTE FTR DS: [ERX]

B127142E5| BOEG AOD BYTE FTR DS:[EA=], AL

A1271427|«EB BE JMP SHORT Problemd.B127142F

B1271429) 22300 65 AOD ERX, S

B127142C1 C2 B40a RETH 4

B127142F(E2 FOP ERX

81271436 SEF4 ray ESI,ESF

aizrl4sz &R B3 PUSH &

B1271434(&2 PUSH OFFSET Problemd. 7 CE_SSMOMLEHOKEOl ASCII “"DERDEEEF™
B1z71429(8D45 E4 LER ERX,DWORD FTR S5: [EBF-1C1

@i27v142c E6 PUSH ERA:

@12714200 FF1E CALL DWORD PTR DS: C<&MSUCR9E0. strnemp: 1| MEUCRIE0. strncmp
B1271442(83C4 BC AOD ESP, BC

A1271445| ZBF4 CHP ESI,ESP

1271445 ES FSFCFFFF CALL Froblemd.@1271148

aizvl440) S5C8 TEST ERm,ERK

B127144F [~74 19 JE SHORT Froblemd.B127145R

B12714E81 SBF4 rou ESI,ESF

B12714E62(&2 PUSH OFFSET Problemd.?? CE_GCHEIERAHOKE ASCII "Errort Incorre
E12714E8 FFIE CALL DWORD PTR DS: C<&MSUCR9G0.printf =] | MSUCRIED. printf
B12714EE(83C4 b4 AOD ESP. 4

B1271461(ZBF4 CHP ESI,ESP

Bizvi4ez| ES DSFCFFFF CALL Froblemd.@1271148

A1271468(~EB 17 JMP SHORT FProblemd.B1271451

21271460 SBF4 rou ESI,ESF

Blavl4eC| 65 3CSP2rH] PUSH OFFSET Problemd. 7 CE_SELEPEHMEJIFHI ASCII "Serial number
Biz7i47i FFIE CAZ2ZEFA] | CALL DWORD PTR DS:[<&MSUCROB0.printf»] | MSUCROB0. printf
B1271477(83C4 B4 AOD ESP. 4

B127147H(3BF4 CHP ESI,ESF

A127147C(E2 BFFCFFFF CALL Problemd.@1271140

A1271421(2200 #OR ERX,ERX

aizvidez 52 FPUSH ED=

@gizyi4s4| SBCD Mo ECH, EBF

B1271436(5@ FUSH _ER=

alzvid4ey! 2015 E4142761 | LEA EDX,DWORD PTR_DS: [12714E4]

@i2v1420f E2 FEFEFFFF CALL Problemd.@1271027

alavid4oz(B2 POP ERX

Li 221 A0 [={u] = = = LY

serial-pd—45.cpp:26. add gan, 5

Address |Hen dump ASCII

Blarroedl e BZ 97 S2/ED 47 &8 HY|-qusBGhE

B1277OAS 01 A0 BA 8O 61 B8 A8 0A|8.,.8...

B1277POI0(O] BO B8 B8 81 B8 A8 C& 8., . 8...

B1E77PEI2(01 B BE B BE B0 A6 CRI8.......

B127FE2EIFE FE FF FFB1 B0 08 Bdle B,

B1277022FF-FF FF FF{EF-FF FF EF

Bl27vEs6[E6 08 66 6AlAd &1 27 Bif. fat@

Figure 7. Effect of Using Assembly Code to Confuse Disassembler

Page 20 of 61

6.3 Insertion of Junk Code

Insertion of junk code into meaningful code is intended to confuse hackers. Junk code works by
causing hackers to spend more time studying useless code as well as divert their attention from
good code. Our research found that when much junk code had been inserted, it may not be
possible to identify the good code from the bad. It definitely took significantly much more time
in hacking efforts. Overall, this technique can be very effective. In this section, we will discuss 3
kinds of junk code.

6.3.1 Junk Logic

Junk logic is junk code added in the code section. Common examples include adding useless
instructions and mixing them together with useful code. This provides protection at the expense
of run time. Depending on how much junk code is inserted, run time overhead can be significant.

6.3.2 Junk Data

Junk data refers to useless variables in source code. Its purpose and use is more or less like junk
logic, except it may not have considerable overhead in run time.

6.3.3 Polymorphism

Polymorphic code was originally and commonly used in writing viruses. It uses a polymorphic
engine to mutate the code while keeping the original algorithm intact [18]. This technique is built
on top of encrypted code. It mutates the encryption/decryption code so that each copy looks
different. While this technique was invented by virus writers, it can be applied to normal code to
increase protection.

6.4 Recursion

Recursive function calls are good for significantly increasing the stack size because many
parameters and return addresses will be placed onto the stack in the process. This can effectively
disrupt a hacker’s view of information stored on the stack. One downside with this technique is
recursive functions are usually short in length of code and hence can be easily spotted and
understood. If the recursion does not do anything useful, hackers can simply disable them.

6.5 Hash Function

When used as protection, hash functions can detect change in code effectively with certainty.
Developers can choose to do one or both of the following: hashing the entire executable, or just
part of the code.

Page 21 of 61

6.5.1 Entire Image of Binary Executable

Hashing the entire image of binary executable can detect code patching created by hackers. One
problem with this is that one must store the hash value external to the executable. A possible
improvement using this method may be using cryptographic hash with keys and applying it
several times with different keys. This is to prevent making permanent changes to the code.

6.5.2 In-memory Checksum

Hashing can also be applied to code loaded into memory. The purpose of doing this is the same
as before — to prevent hacking from making changes, except that such changes are made at
runtime. This can effectively prevent hackers from using debuggers to modify code at runtime in
order to change execution flow. But this is very difficult to implement in practice.

6.6 String Obfuscation

String obfuscation can be used to hide certain types of important information; this can be done
by using encryption. Simple encryption techniques, such as simple XOR or one time padding,
can accomplish this purpose. One problem with simple encryption is that a hacker can get
information out of the cipher text based on its length. To make string obfuscation more effective,
developers should to use a different length for the encrypted strings compared to the original
ones. Another problem with this technique is that hackers are not usually interested in the strings
themselves; rather, they want to know how and where the strings are used. Checking
mechanisms often display messages to users after they input serial numbers to indicate success or
failure; these messages often give out the location of checking mechanism. Given that hackers
are more interested in identifying locations of checking mechanism, they can trace system
function calls related to outputting messages, such as “print” or “Messagebox.show()” instead of
focusing on trying to work out the obfuscation method. In this regard, string obfuscation may not
provide much benefit for our purpose. Figure 8 gives an example of a debugger identifying
system function called “fopen” and using it to find out string “readme.txt” as file name from
EAX register.

Page 22 of 61

BED %ba ;J | X||medw ::] .f 10 s General registers

| (3 04 VewssP ;_]1 Thieads | §] Breakpons 4 Ger Eerneraheg,slels O N Tos —vr aae
' mn | ¢
65h | e
| 6th | a
text: 00485306 jmp i
text:00405308 ; 6oh | n
text: 0045308 65h | e
‘text: 0048534 Loc_k053AB: ; CODE XREF: supdd 2ER | .
text: 00405308 : sub_4oupge+gocdd 74h |t
text:00405308 mov eax, [ebp+var BO] :: ;i: :
text: 0605381 mov duord ptr [esp+bA8h+var 6A8], eax DO sy A0utg

text:004053B4 mov [ebp+uar_648], BFFFFFFFFh

text:DO4O53BE call fclose

text:004853C3 mov dword ptr [esp+6A8h+var 6AB+4], offset aR ; "r"
text:06uA53CB lea eax, [ebp+var_1A8]

text: 06485301 mov duord ptr [esp+bfBh+var 6A8], eax ; try to open "readme.txt"

EFL 00080296

Flgure 8. Getting Obfuscated String in Clear Text

6.7 Opaque Predicate

Opaque predicate refers to comparisons whose outcomes are either always true or always false.
Using them increases the number of branches of code hackers need to trace, which can be very
time consuming. Sometimes opaque predicates may actually be useless as they can be easy to
spot; for example, if opaque predicates make use of floating point calculation in an algorithm
that only uses integer calculation (or non-floating point calculation in general, as often is the case
for serial number checking), hackers would know what code to skip. In contrast, using opaque
predicates in places where they shouldn’t be found may lead to a revelation of important logic.
After tracing code a few times, hackers can realize their existence base on execution flow as well.

6.8 Control Flow Obfuscation

Control flow obfuscation refers to code executing in strange order or, at least, appears as a
strange order. This is usually accomplished by using many “jumps.” In essence, this is used to
break locality of code. Psychologically, people would think code blocks next or close to each
other are related and often are executed sequentially. Once locality is broken, hackers can feel
lost when they have to jump through different places in order to trace code. Figure 9 shows how
complex control flow can be by adding a considerable amount of junk code into one subroutine.
Figure 10 shows the effect of breaking up all of a program’s code into smaller functions making
code harder to trace. Figure 11 offers a zoom-in view of a port of Figure 10. In Figure, each box

Page 23 of 61

indicates a function, black being user written and pink being system functions, and each line
indicates a function call from one function to another.

Figure 9. Flowchart of a Subroutine

Page 24 of 61

Figure 10. Function Call Hierarchy

Figure 11. A Zoom-In View of Figure 10

6.9 Multiple Validation

Multiple validation logics can be used to prevent single point failure. For example, if a hacker
just patches one of several such logics, the overall activation mechanism cannot be broken since
the outcomes of validation from different logics are inconsistent. In this case, software can detect
tampering of its code. It is up to software developers to decide what actions to take when such
inconsistency is encountered. One advanced technique is to have the logics correct each other
on-the-fly. If hackers are not aware of the presence of multiple validation logics, this technique
can be very effective, as it would generally be difficult for hackers to figure out why their
patches are not working.

Page 25 of 61

6.10 Multithreading

The original purpose of having a multithreaded application is to parallelize some of the logic and
have the threads execute concurrently to increase overall efficiency. Here we use multithreading
to increase difficulty of debugging.

It is inherently difficult to debug a multithreaded program even if its developers have the source
code due to a variety of reasons, such as data synchronization and so on. The difficulty arises
from the fact that only an operating system has control over when and which thread runs, but not
the application itself and hence not the developers either. In addition, debug mode and release
mode may vyield different results for the same piece of code. For example, if the developers
didn’t initially synchronize data correctly, the release mode may yield incorrect results whereas
nothing may seem wrong in debug mode because the debug mode may force synchronization as
it has to display the result to the viewer.

For our purpose, we can use multiple threads to do the work concurrently so that hackers cannot
easily single step through code to find out how the logic works, since validation may have been
completed elsewhere.

6.11Windows Events

Windows events are directly related to graphical user interface, commonly known as GUI. Here
we use windows events to obfuscate the execution flow, more or less like using multithreading.
Windows events are raised by users through interaction with a GUI and processed by an
interface thread (sometimes known as an event thread). Developers can take advantage of this by
handling multiple events in the code so that execution will jump from one place to another
sporadically making hackers feel lost. Events, such as mouse movements, will be triggered many
times, which can certainly annoy hackers.

Page 26 of 61

6.12 Comparison of Effectiveness

Table 2 below compares relative effectiveness of various anti-reversing techniques discussed

above base on our research of them.

Table 2. Comparison of Effectiveness of Different Anti-Reversing Techniques

Very good

Can make code very hard
to trace, force hacker to
distinguish between useful
and useless code, very
time consuming

Over head in run time, can
be significant if junk code
is too much

Weak

Makes stack huge in size

Recursive functions are
usually short and easy to
understand

Good

Can detect change in code

A little overhead in run
time

Weak

Makes hacker hard to find
the correct logic to
investigate

Can trace system functions
for output to trace the
strings

Weak

Makes code have more
branches

Human may be able to
identify them easily, a
little run time overhead

Very good

Makes code very difficult
to trace by breaking
proximity of locality

Not much

Good

Can prevent single point
failure

Not much, other than
having to write more code

Very good

Makes it difficult to trace
code

May be difficult to
implement

Good

Can Dbreak sequential
execution of code, events
may occur many times
(such as Idle or
MouseMove)

Not much

Page 27 of 61

7. New Design

This section will propose a new design, along with testing results of the new design. Section 7.2
will go over the techniques used in the proposed new design; Section 7.3 will discuss testing
results of the new design.

7.1 Consideration of New Design
In this section, we will discuss several techniques considered but excluded from the new design.

7.1.1 Shift Workload Online

One way to use hardware keys is to use the hardware device to perform part of the computation;
similarly, we can do part of computation online, such as using web services. In this approach, the
installed local copy does not have full functionality. The server side can check for proper
licensing before completing requested computation. This way, activation mechanism is nearly
hack-proof; however, such activation mechanism is way too complicated to implement, not to
mention significant overhead and slowness, which renders this method impractical in most
applications.

7.1.2 Encrypting Executable

Encrypting executable is a strong anti-disassembling method. But this is extremely difficult to
implement in practice, especially with new security features built into current operating systems
(OS). Storing an encryption key safely is another issue.

7.1.3 Disabling Debugger

It is impossible to do reverse engineering work without a debugger, so disabling them (in one
way or another) seems to be an attractive choice. But in practice, it is very difficult, if possible at
all, to disable use of a debugger. The core issue here revolves around the inability to determine
presence of a debugger effectively and accurately, partially due to new hardware architecture and
new OS security features.

7.2 New Design

7.2.1 License File

Instead of requiring a user type in a program serial number from a keyboard, a license file will be
used. The license file should be generated by the software vendor, and distributed to users via
email; users should then save the license file in a proper place on their hard drives.

The license file should be encrypted using a strong encryption algorithm, such as Advanced
Encryption Standard (AES), with an/a encryption/decryption key derived from a password, one
that is only known to the vendor and user (each user will decide their own password during

Page 28 of 61

registration process). In this design, the format of the license file is XML, and contains
information such as username, the hash value of program’s binary, a serial number, and
necessary validation information. Other information, such as trial expiration date, can be also
included if necessary.

1 [l<License>
2 O <ProgramBinaryEMAC>
47,23,d2,7f,46,9a,18,¢5,17,£5,be, £8,37,bd, ba, 67,31, 3¢, 49,d8,99,3f,11,52,2¢,ea, £d, 33, 66,75, 2d,ec, 71,54, d1,2b, 5¢, 4b, 79, ¢, 68,23,45,¢9, a6, 1e, 3¢, 20,3, cd,11, £6,d7, 24,30, fe,
</ProgramBinaryEMAC>
<Username>SJSUCS298</Username>
<SerialNumber>12345¢/Seriallumber>
7 H <ValidationCode>
8 [<veL>
3d, 5e,c0,d6, 5d, 58, 7=, £e,9,bE, 59,2£, 92, 2£,be,17,48,c3,cb, 3¢, 42, &5, 62,12, 2b,e0, 95, 4a,2b, 5£,5a, 93, ed, 7d, of , 3,1£,37,a, 61,70, be, 76, 89,9, 7,54, 35,6, ca, =8, 98, de, 62,19, ed, £c,{
10 </vec1>
1O <ve2>
be,72,6c,¢,e3,f4,72,c6,d7,9,de, 11,62, 4F,4e,82,ab,bd, 53, 5f,d4, b6, 60, 48, de,a5,72,be, £f, 86,d2,£d, 10, fe,e5,a,ac, 31,08, c7, B¢, o5, 1e, 2e,e6,d8,ac, Th, 27,b6, 28, od, BF, 92 ,ec, 60,
13 </VC2>
14 O <veaE>
©5,46,£5,ca, 2¢, 8a, af, 2f, fc, fa,41,ad, 50,48 ,d4, A, 6¢,82,39,97 e, 3d, £8,28,d9,e5,51,e6,£2,7,d3, £f, a9, 68 ,ea,ed,ba, 10, £3,2d, 94, 6e, 76, c3, 86,6 ,ab, 20, 7e,bf, £3,b3, £d,dd, 96,9,
</ve3>
</ValidationCode>
</License>

Figure 12. A Sample License File in XML Format

The hash value of the program’s binary is intended to deter modification of the program by
attackers. A Hashed Message Authentication Code (HMAC) algorithm is used to calculate the
hash value with a key derived from the user’s password.

The reason for using a license file, instead of manual user input, is to make it more difficult to
locate the corresponding code responsible for validation. With breakpoints smartly set in a
debugger, an attacker may be able to quickly find out roughly the beginning and end of a code
region of interest, and then concentrate on that particular area. This is possible if the debugger is
able to jJump to that section of the code in question when it executes. In contrast, it is difficult to
discover when the code of interest executes if it does not require user interaction; additionally,
hackers would have to trace code from the very beginning to find out where code of interest
locates.

7.2.2 Multi-threading

Using multiple threads to do work for serial number checking is the core idea in this design. The
entire serial number verification process is divided into many small pieces (functions), and each
piece will be run using a separate thread. Any dependency among threads can be resolved by
“WaitHandle.” On a high level design, the verification can be divided into 4 parts: verifying the
program binary’s hash value, and 3 verification logics for checking the serial number. See more
details on multiple validations in Section 7.1.3 below. Each of these 4 logic blocks is further
divided.

There are a few reasons why a multithreaded processing is chosen here over a single threaded
version. First, it breaks the sequential execution flow. Even if code is broken into many pieces,
the execution flow is not changed (disrupted); a hacker can still easily trace the execution to
understand in which order the code is run. Once the order is known, code can be analyzed more
effectively. In essence, breaking-up code and running it in a sequential order, at most, makes

Page 29 of 61

code tracing a bit annoying, having to jump from one place to another. Having many jumps can
break attacker’s sense of locality, but with analytic tools, code can be easily understood by
drawing a flow chart. In contrast, using multiple threads running concurrently will fundamentally
change the execution order, which makes code much more difficult to trace.

Second, multithreading is very debugger-unfriendly. Even with source code, a multi-threaded
application can be very difficult to debug [19]. Timing is absolutely one of the most important
factors when debugging a multi-threaded application. A bug observed in normal run may not be
reproducible in debug run simply because the timing is different. Also, a debugger is not able to
trace two threads at the same time, in the sense that one cannot single step through more than one
section of disassembly at the same time, even if the debugger is aware of existence of other
threads.

Third, it is out of anyone’s control when and which thread runs; this is only determined by the
operating system’s (OS) task scheduler. Because of this, different runs of the same code on the
same debugger may yield different execution sequence, depending on which thread the debugger
is able to gain control over.

7.2.3 Multiple Validation

Using multiple validation logics has the obvious advantage over a single logic because it may
prevent a single point failure. This design employs 4 validation logics with 2 of them being able
to correct each if an inconsistent result is detected. While this method is not foolproof, it
certainly should work against attackers, as attackers will have to spend much more time locating
existence of these logics and then breaking them. At the beginning of program, only 2 of the 4
logics are executed, and the other 2 are delayed according to our new design. This way, attackers
may not discover the other logics even if they follow the execution flow from the start.

7.2.4 GUI and GUI Events

In this new design, certain GUIs are disabled by default, and their corresponding event handlers
are not registered with the event. This is used to prevent unauthorized use of some special
functions, such as full functions not found in trial versions. GUIs are properly enabled and event
handlers properly registered if, and only if, all validation logics determine the program is a
legitimate full version (not a hacked version). They are routinely turned off and on again to
prevent an attacker from enabling them at a program’s start by modifying the binary code.

7.2.5 Onldle Event

Onldle is an event issued by the OS when a program is in an idle state; it allows for idle time
processing of low priority tasks. When a program needs user interaction, this event will be issued
very frequently, as the user is very slow compared to the hardware. When the program does not
have a user focus (not being the topmost application), this event may not be issued since this

Page 30 of 61

entire program may not receive any CPU time. This new design utilizes the abovementioned
feature of Onldle as an anti-debugger technique and will use this event to process certain
important tasks, such as synchronizing encryption/decryption keys and serial number checking.

Serial number checking takes advantage of an idle event being run very frequently, whereas key
synchronization takes advantage of an idle event and can only run when a program has user
focus. In the latter case, crypto keys may not be synchronized if the Onldle function does not run,
such as when the debugger windows are on top of the program’s window.

7.2.6 Encrypting Calculated Results

With certain functions that require paying for a full version license, their results will be
encrypted and then decrypted with key pairs. One key is calculated in advance at license issue
time and stored in the license, while the other is derived from a serial number checking process.
If everything goes right, these two keys are identical; therefore, encrypting the result then
decrypting it should not change the result. If keys do not match, the correct result will be altered
in the decryption process, yielding an incorrect final result for output.

This method adds protection against unauthorized use of a full version feature when not properly
licensed, but it may carry significant overhead due to crypto-operations.

7.2.7 Junk Thread and Deadlock

Since multi-threaded checking is more effective than a single threaded version in terms of anti-
reversing in theory, this design will run extra threads to complicate the situation more. And these
extra threads will be used in combination with deadlocks.

Deadlock refers to a situation in which 2 or more threads each holding some resources while
waiting to acquire more which are held by other threads; because no thread is able to obtain all
required resources to proceed, all of them will sit idle and blocked. A classic example of
deadlock caused by cycle is shown in Figure 13.

Deadlocks can work well against stepping through code in a debugger. When stepping through
instructions in a debugger, one cannot move to the next instruction until the current one finishes.
For example, if one tries to step over a function call that takes a long time to finish, the
instruction right after the function call cannot be executed until the call returns. In this case,
execution is temporarily blocked. If that function never returns, such as running an infinite loop,
then the next instruction will be blocked indefinitely. In this new design, we will purposely
create a deadlock situation with extra junk threads (threads that do not execute any useful work).
When a debugger picks such a thread for a user to step through, it is expected that the progress
will be blocked indefinitely. This technique attempts to divert an attacker from stepping through
those threads that do work of real interest.

Page 31 of 61

Figure 13. Deadlock Caused by Cycle
Source: Shameem Akhter and Jason Roberts, Multi-Core Programming [19]

7.2.8 Delayed Execution

In this new design, certain operations are delayed to hide its relationship with other operations.
For example, one important use of this is exiting the program when checking fails to pass.
Certain system calls can be easily identified by debuggers, by tracing these backwards
sequentially, an attacker may discover where checking is performed. By delaying a certain
execution and running it in another thread, we can effectively break an attacker’s sense of code
locality, making backwards tracing pointless. Using this technique, we can shift comparisons
away from checking logic, forcing an attacker to trace more code.

7.2.9 Code Obfuscation

Obfuscated code is more difficult to understand, because one has to distinguish between the
useful and useless code. This is often accomplished by inserting junk code and shifting code
blocks around it. In this project, we hope to apply this technique to scramble code, but it is not
easy to find a good polymorphic engine to accomplish this task. Xenocode’s PostBuild [17] has
built-in code obfuscator; we will use it without analysis of its effectiveness.

Page 32 of 61

7.2.10 Putting the Blocks Together

Figure 14 below shows the flow and dependency of blocks responsible for verifying the integrity
of a program’s binary by hashing. If modification is detected, the program will terminate itself.

ReadLicenseFile StartupProgramintegrityCheck

mrelLicenseRead mreComputeProgramHashStartup

l

ExtractDataFromLicense

mreLicenseData—— VerifyProgramintegrity

mreProgramintegrityCheck

KillProgram_ IntegrityCheck

Figure 14. Block Diagram for Checking Program Binary Hash

Figure 15 shows the flow and dependency of blocks responsible for verifying the serial number
at program startup. If verification is passed, GUI and corresponding handlers are enabled.

Page 33 of 61

StartupProgram
IntegrityCheck

mreComputeProgram
HashStartup

CalculateVC1
Startup

mreVC1Check

«—mrelLicenseData:

mreLicenseData

—— | VeriftyVC1

ReadLicenseFile

mreLicenseRead

ExtractDataFromLicense

mreEnable
cul EnableGUI

mreGUI
Handler

RegisterGUI
Handler

Figure 15. Block Diagram for Checking Serial Number Using First Checking Module

Figure 16 shows the flow and dependency of using a secondary module to verify a checking
result obtained at program startup. If secondary checking demonstrates a different result than the
startup checking, overall verification is deemed failed. In this case, the program will terminate.

Page 34 of 61

ReadLicenseFile

mreLicenseRead

mreLicenseData——>» CalculateVC2

ExtractDataFromLicense

mreVC2Check

VerifyVC1ByVC2

Figure 16. Blocking Diagram of Using 2" Module to Verify 1% Module

Figure 17 shows a flowchart of utilizing a timer to activate the 3" verification module, whose
result will be compared to that of the secondary module. If a difference is detected, overall
verification is deemed failed, GUI will be disabled and handlers will be deregistered, and the
program will terminate.

Page 35 of 61

Timer

OnTimer_GUI OnTimer_Handler OnTimer_CheckVC1ByVC2
A A A
. CalcuateVC2
EnableGUI RegisterGUIHandler VeryVC1ByVC?2

Figure 17. A 3" Module Checking 2" Module Periodically

7.3 Test Setup and Metric

A demo program will be written in C#, then convert to native x86 binary using XenoCode’s
PostBuild, without any obfuscation applied. Microsoft Visual Studio (MSVS)’s built-in debugger
will be used alongside a source code to set expectations; this will not be the real world scenario.
Tests will be repeated using OllyDbg and IDA Pro. These tests will be the main testing. A d
program can be set to run in a specific mode (single threaded versus multi-threaded), and a
number of junk threads can be specified.

Tests will be divided into 3 parts. Part one will be the correctness of implementation. Tests in
part one will include testing for correct thread count, as well as the correct behavior of some
functions. Part two will be comparing a single threaded version against a multi-threaded version.
Testing in part two will determine whether using multiple threads for checking has advantages
over a single threaded version. Part three will examine whether junk threads will make attacking
more difficult.

In our testing, we will use number of lines of disassembly that can be stepped through as the
main metric. In a single threaded version, one should be able to step through all relevant code in
order to analyze it, whereas in a multi-threaded version we expect only some of the code can be
traced. If an attacker cannot trace and analyze all the relevant code, there is little chance the
attacker can successfully break the software’s security.

Page 36 of 61

Also, extra effort needed to implement the multi-threaded version will be considered and
compared to the single threaded version.

Finally, XenoCode’s obfuscator will be simply evaluated, by comparing how much of the
disassembled code are different.

7.4 Testing and Results

7.4.1 Correctness of Implementation
Here, we will examine correctness of implementation of a few key features.

First, we will examine the license file. When a correct password is entered, the program stays
stable; when a wrong password is entered, the program terminated after 10 seconds, as designed.

Second, we will look at the GUI and GUI handler. As show in Figure 18 below, menu “C1” is
enabled after the program is launched with the correct password.

igure 18. Menu “C1” is enabled

After menu “C1” is clicked, result is correctly displayed as shown in Figure 19. The displayed
string is encrypted then decrypted using the AES128 algorithm, as described in Section 7.2.6

Page 37 of 61

above. When the string is correctly displayed, Idle event handler must be functioning correctly
since it is s responsible for updating the encryption and decryption keys.

Success \ J

Figure 19. Menu “C1” Clicked

Page 38 of 61

Lastly, we will examine correctness of threads. Table 3 below summarizes results of different

test runs.

Table 3. Demo Program’s Thread Count in Various Running Modes

Program runs on 9 threads minimum (GC + GUI + Timers +
asynchronous event firing, and so on). Max was 12 as reported by
WTM.

WTM reported a max of 12 threads running at the same time.
Thread count gradually falls to 9 according WTM, which is the
similar to single threaded mode. This makes sense too since when
checking is done, most extra threads are terminated. Theoretically,
the program should launch 10 individual threads, but it appears that
they do not all run at the same time.

WTM reported a max of 17 threads running at the same time; it
falls to 14 after a while. Total count is 17 because of 5 junk threads.

10

WTM reported a max of 22 threads running at the same time; it
falls to 19 after a while. Total count is 22 because of 10 junk
threads.

15

WTM reported a max of 27 threads running at the same time; it
falls to 24 after a while. Total count is 27 because of 15 junk
threads.

The thread counts in the Table 3 are consistent, assuming 9 threads are needed to run the
application on average after checking is completed. Running code in debuggers has the same
count as running it without debuggers; therefore, implementation of threading is correct.

7.4.2 Testing in Development Environment

The demo was tested with Microsoft Visual Studio. The tests shown in Table 4 are done with
MSVS’s debugger with source code. The reason for using this testing environment is so that we
can set breakpoints correctly and track which function is being executed. In other words, this is
for the purpose of convenience and to set our expectation when debugging in other environments;
without such convenience, debugging can only be substantially more difficult (this should be the
best testing scenario possible). Table 4 summarizes testing results in various scenarios.

Page 39 of 61

Table 4. Observation of Various Testing Scenarios Using MSVS’s Debugger

Test
Case
Number

Observation

1

Single Threaded, no junk thread, break on all relevant functions. Unable to proceed to
other functions because Idle function runs continuously and this is the function captured
debugger’s attention all the time. GUI is launched, but unable to interactive with it because
Idle is constantly running.

Single Threaded, no junk thread, break on all relevant functions except Idle. Without Idle
interfering, GUI is launched, and can be interacted with normally. Checking is done
sequentially in the right order as specified. All parts of code can be traced.

A frequent timer event can severely disrupt debugger process, as relevant functions run all
the time. All handlers of timer event can be debugged, as long as breakpoints are set for
them. Present of timer didn’t affect debugging code relevant checking functions, because
they do not take effect until initial checking is done.

Single Threaded, no junk thread, break on all relevant function, but Idle added in later. As
long as the first breakpoint for checking is reached before setting the breakpoint of Idle,
checking can be traced as in case 2 above, but timer events cannot be trace due to constant
running of Idle.

Multi Threaded, 0 junk threads, break on all relevant functions. Observation is identical to
case 1 above, which matches expectation

Multi Threaded, 0 junk threads, break on all relevant functions except Idle. The first
function can be partially traced, a few other functions can be traced partially at random
(indeterministic about how much of a function can be traced). Timer events can interfere
with normal tracing

Multi Threaded, 0 junk threads, break on all relevant function, but Idle added in later.
Result similar to case 5, except Idle will disrupt code execution more severely compared
to case 5 above. In essence, checking is executed interleavingly with Idle.

Multi Threaded, 2 junk threads (minimum needed to create deadlock), break on all
relevant functions. Deadlock situation is successfully created. After deadlock, only Idle
can be traced, no checking can be traced.

Multi Threaded, 2 junk threads, break on all relevant functions except Idle. Deadlock
situation created, but checking can be traced like in case 5 above.

Multi Threaded, 2 junk threads, break on all relevant function, but Idle added in later. If
added too soon, then like case 7 above; if added late enough, then like case 6 above.

Page 40 of 61

Additional tests were performed with more junk threads (with numbers being 5, 10, and 15) in
the same setup as test case 7, 8, and 9 in Table 4, and the same results were obtained
correspondingly. In this case, more threads being deadlocked added no extra benefits. In fact, the
presence of a deadlock added no more difficulty compared to just being multithreaded in this
particular testing environment. This is due to the fact that Microsoft’s debugger (with source
code) can smartly execute code in an interleaving manner, allowing the execution to change from
one thread to another, although it is out of the user’s control which thread is executed and when.

Single breakpoint was also tried out in testing. In multithreaded case, it is definitely worse than
setting breakpoints on all relevant functions (functions cannot be traced without setting
breakpoints at them in this case). In a single threaded case, depending on where the single
breakpoint is set, it is possible to trace all code relevant to checking.

With MSVS in single threaded mode, line counts are the same for setting a breakpoint at only the
start and at all functions except Idle; but if a breakpoint was set at Idle, line count dropped
significantly, see Figure 20 below. The reason is an Idle event was issued many times by the OS
to the application, hence triggering the Idle event handler to run many times.

Instruction Count from Microsoft Visual
Studio with Source Code
in Single Threaded Version

140

120 B Breakpoint at Start
g only
S 100 -
b B Breakpoint at all
£ | functions (exclude
3 80 idle)
§ Breakpoint at all
= 60 - functions (include
5 Idle)
2 40 -
E
3
z

20 —

O I T T T T
1 2 3 4 5
Run Number

Figure 20. Line Counts of Different Runs from MSVS in Single Threaded Mode
Page 41 of 61

When running the same program in multi-threaded mode, the line counts stay the same across all
runs at 40 and 30, for setting breakpoints at all functions including Idle and at start only
respectively. When breakpoints are set at all functions excluding lIdle, line counts varies
significantly across runs, ranging from 40 to over 140, with an average being 73.35, see Figure
21.

Instruction Count in Multi-Threaded Version
160
2
2 140 B Breakpoint at
o
5 Startonly
‘E 120
c
o 100 — Breakpoints at
= all functions
[t I BN BN S .
§ 80 (exclude Idle)
F 60 ———t—t 5t & M Breakpoints at
Y .
o all functions
g 40 (include Idle)
g 20
2
0 -
1 2 3 45 6 7 8 I% 1811121314151617181920
un Number

Figure 21. Line Counts of Different Runs from MSVS in Multi-Threaded Mode

When a breakpoint is set at the start and additional threads (junk threads) are introduced, line
counts stay the same across several runs, suggesting the number of junk threads does not seem to
matter, see Figure 22.

When junk threads are used and breakpoints set at all functions except Idle, line counts vary
significant. Here we distinguish between useful lines (lines of code of threads doing useful work)
and junk lines (lines of code from junk threads doing nothing useful). Numbers of junk threads
tested were 2, 5, 10, 15, 20, and 25. As shown in Figure 23 to 28, when number of junk threads
increases, lines of junk code increase and lines of useful code decreases overall.

Page 42 of 61

Instruction Count in Multi-Threaded Version
with Junk Threads (Breakpoint at Start only)

35

w

5

= 30 -

o

=

w 25 -

£

[+F]

3 20 m 2 Junk Threads
[+F]

g 15 - B 5 Junk Threads
'—

S 10 - 10 Junk Threads
[+F]

-g 5 m 15 Junk Threads
3

z 4

1 2 3 4 5

Run Number

Figure 22. Line Counts of Different Runs from MSVS in Multi-Threaded Mode with Junk
Threads used

Instruction Count in Multi-Threaded Version
with 2 Junk Threads (Breakpoint at all
function exluding Idle)

50
45
40
35 -
30 -
25 -
20 W Useful
15
10

W Junk

Number of Traceable Instructions

Run Number

Figure 23. Instruction Counts of Useful and Junk with 2 Junk Threads

Page 43 of 61

Instruction Count in Multi-Threaded Version
with 5 Junk Threads (Breakpoint at all
function exluding Idle)

40
35
30 +
25 -

20
15 - m Useful

10 W Junk

Number of Traceable Instructions

Run Number

Figure 24. Instruction Counts of Useful and Junk with 5 Junk Threads

Instruction Count in Multi-Threaded Version
with 10 Junk Threads (Breakpoint at all
function exluding Idle)

35

30
25

20

15 - W Useful

10

W Junk

Number of Traceable Instructions

Run Number

Figure 25. Instruction Counts of Useful and Junk with 10 Junk Threads

Page 44 of 61

Instruction Count in Multi-Threaded Version
with 15 Junk Threads (Breakpoint at all
function exluding Idle)

40
35
30
25
20
15
10

W Useful

B Junk

Number of Traceable Instructions

Run Number

Figure 26. Instruction Counts of Useful and Junk with 15 Junk Threads

Instruction Count in Multi-Threaded Version
with 20 Junk Threads (Breakpoint at all
function exluding Idle)

35
30
25

20

15

W Useful

10 ~ B Junk

Number of Traceable Instructions

Run Number

Figure 27. Instruction Counts of Useful and Junk with 20 Junk Threads

Page 45 of 61

Instruction Count in Multi-Threaded Version
with 25 Junk Threads (Breakpoint at all
function exluding Idle)

W Useful

B Junk

Number of Traceable Instructions

Run Number

Figure 28. Instruction Counts of Useful and Junk with 25 Junk Threads

The average of each scenario show in Figures 23 through 28 is also plotted on the same graph,
shown in Figure 29 below. According to our test, when using multi-threading mode without junk
threads, an average line count is about 73, compared to 113 in the single threaded mode. When
junk threads are used, line counts for useful lines drop significantly even if only 2 junk threads
were used. As more junk threads are used, useful line counts drop even more. In contrast, junk
line counts increase steadily at a slower pace as more junk threads are introduced.

Page 46 of 61

Instruction Count in Multi-Threaded Version
with Junk Threads

804
" 70
2
E 60
Sl
2 50
g |\
=]
3 40
§ \ ——Useful
w30
g \ " . —— —=—Junk
€ 20 —
2 _a—k

10 - ———

0 . T T T T T 1

0 5 10 15 20 25 30
Number of Junk Threads

Figure 29. Average Line Counts of Useful and Junk Instructions When a Different Number of
Junk Threads are introduced

Figure 30 demonstrates a percentage count for the average number of traceable, useful
instruction. As shown, only about 20% to 30% of useful instructions can be traced when junk
threads are used, as opposed to about 75% when none are used. When 25 junk threads are used,
traceable useful code drops to about 14%. From an attacker’s perspective, the lower the
percentage, the less useful code he can trace, which in turn means more difficult for the attacker
to understand the code when it comes to reverse engineering.

Page 47 of 61

Percentage Instruction Count for Useful Code
in Multi-Threaded Version with Junk Threads

70 *
60 \
50

oL\

s == Useful
20 —- _‘____\\

10

% of Number of Traceable Useful Instructions

0] 5 10 15 20 25 30

Number of Junk Threads

Figure 30. Percentage of Average Number of Traceable Useful Instructions

7.4.3 Single Threaded vs. Multi-Threaded
In this section, we will perform tests using both OllyDbg [30] and IDA Pro [29].

First, tests were run with OllyDbg using the same pattern as with MSVS, with the exception that
breakpoints were not set in the same way. Also, a different counting scheme is used. All of
instruction counts were based on the calculation of addresses in blocks selected as relevant.
Some of the codes were included in counts not executed by the debugger. They were only
considered a rough estimate. Counts are likely to include a large number of instructions that are
not relevant to checking; but rather, they are part of windows API libraries, such as the code
executed initially to start the program or GUI libraries. High number of line counts is due to the
inability to clearly identify relevant code correctly from disassembly. Because of the inability to
identify code, no breakpoint is set in testing. An average result from the single threaded case will
be called “total”..When counting an instruction in a multi-threaded mode, a different approach is
used. We will try to identify code that cannot be traced based on the thread table provided by
OllyDbg, and subtract them away from the “total”’; the resulting number will be regarded as the
count for that particular test run. In theory, this number also represents the maximum amount of
code an attacker can trace.

Page 48 of 61

In single threaded mode, it seems like code can run normally; therefore, it should be theoretically
possible to trace the code execution as long as breakpoints are smartly and properly set after
correctly identifying relevant code sections in disassembly. Even though checking is done in a
single thread, system still has other threads running in the background, such as the Idle event.
Figure 31 below shows the instruction counts (in terms of bytes) across 5 runs. Result shows that
all 5 runs give the same count, which is consistent with our assumption above.

Traceable Useful Code from OllyDbg in
Single Threaded Version

70000

60000 -
50000 -
40000 -
30000
W Traceable Code
20000
10000 ~
0 T T T T T
1 2 3 4 5

Run Number

Number of Bytes

Figure 31. Numbers of Traceable Instructions from OllyDbg in Single Threaded Mode

In a multithread mode, things get much more complicated:

e OllyDbg seems to capture the first available thread and executes that one in the
foreground (making it available to step through). In this case, it appears to be always the
same thread in our tests. Also, it appears like the thread captured by debugger is the
runtime’s GUI thread, which launches other checking threads. Once checking threads are
launched, this captured thread pauses. Depending on how fast we step through this
captured GUI thread, we may or may not see other threads because they can finish. In
cases where we can jump into other threads, we cannot tell which checking thread (or
even the Idle thread) we jump into.

e Repeated runs yield different results in our test runs. This can get even worse if we
randomize the start order of checking threads.

Page 49 of 61

From running code in OllyDbg in multithreaded mode, we were unable to (or cannot
easily) determine relationships among various threads (such as which depends on which).

Setting breakpoints is an extremely difficult task in multithreaded mode, because one
thread may block another. If we want to trace one thread, we must set a breakpoint for it.
But if that thread runs in the background and it blocks the one running in the foreground
(the one we are currently stepping through), then we will be in a deadlock like situation
since the foreground thread cannot proceed until the blocking thread finishes, which it
cannot because of the breakpoint. If breakpoints are not properly used in a particular run,
we cannot even bring up the GUI of the program (which happened quite often as we
cannot set the breakpoints right). With no breakpoints set, we can get to the GUI of the
program.

While OllyDbg may take us to the code representing the thread (by double click on the
thread), it is only possible when the thread hasn’t finished execution. This may require
one to work very fast.

Base on the results of test runs, as shown in Figure 31 below, it is clear that different execution
paths are taken at different runs; therefore, resulting in a different count each time. Due to this
fact, it is more difficult for an attacker to reverse engineer from the disassembly because he
would get a different view of code each time he tries.

Number of Bytes

Traceable Code from OllyDbg in Multi-
Threaded Version

64000

63500

63000
62500
62000
61500 B WithoutJunk Thread
61000

60500

60000

Run Number

Figure 32. Numbers of Traceable Instructions from OllyDbg in Multi-Threaded Mode

Page 50 of 61

Testing with IDA Pro yielded similar results in single threaded mode as OllyDbg, although result
is slightly different from that obtained from OllyDbg. This is due to inability to clearly identify
code in the counting process. Overall, code seems to run OK in debugger, meaning it can be
effectively traced and analyzed in theory.

In a multithread mode, things get much more complicated (even worse than OllyDbg):

e This time, we cannot even enter the password into the program, since it is launched in
another thread. This is very devastating because without it, nothing else will run properly.
IDA Pro clearly didn’t capture this thread in the foreground. This is going to be the end
of it even if other code can run. We didn’t notice this before in OllyDbg since it got into a
deadlock trap.

e IDA Pro, like OllyDbg seems to capture the first available thread it can and executes that
one in the foreground (making it available to step through). In this case, it is appears to be
always the same thread in our tests. But this thread it captured seems to run in an endless
loop; it is perhaps the message processing thread from the runtime, or the Idle event
thread. Even though it is able to show the different threads in a thread window, it cannot
jump to any of them, not even to their location in disassembly.

e Again, we cannot determine relationships among various threads running code in IDA
Pro in multithreaded mode, just like in OllyDbg, because we cannot step through them.

In the case of IDA Pro, we are not able to obtain a meaningful count of instructions in multi-
threaded mode, because we cannot identify code corresponding to different threads.

7.4.4 Multi-Threaded With Use of Junk Threads

Testing with OllyDbg, these observations are obtained with junk threads added on top of other
checking threads:

If junk threads are launched before checking threads, we were never able to get the program run
correctly, as we got into the deadlock trap. No matter how many junk threads we used, the result
was always the time, see Figure 33; therefore, it is unclear whether number of junk threads
matter because timing is another important factor. This is likely due to junk threads are launched
before the useful checking threads (in a sequential order). When junk threads are launched first,
they are the only threads around (in addition to system threads), and OllyDbg seems to capture
one such thread (probably because checking threads are not even launched yet) and shows it in
the foreground, and then wait indefinitely. In this case, maybe 2 junks are sufficient for our
purpose.

Page 51 of 61

Traceable Code from OllyDbg in Multi-
Threaded Version with Junk Threads
Launched First

70000
60000
o 50000 -
=
@ 10000 - B 2 Junk Threads
[
o
S 30000 W 5 Junk Threads
g i
£ ® 10 Junk Threads
= 20000 -
W 15 Junk Threads
10000 -
W 20 Junk Threads
0 -

Run Number

Figure 33. Numbers of Traceable Instructions from OllyDbg in Multi-Threaded Mode

If junk threads are launched after checking threads, the situation becomes more or less like the
regular multithreaded case discussed earlier in Section 7.4.3, except it is deadlock causing
trouble instead of breakpoints (or actually can be both of them at the same time if breakpoints are
set). Figures 34 through 39 show the results of using different number of junk threads; they
definitely reduce attacker’s chance of getting into the right places compared to just multi-
threading with no junk threads.

Page 52 of 61

63500

Traceable Code from OllyDbg in Multi-
Threaded Version with 2 Junk Threads

Launched After Useful Threads

63000 -

62500 -

62000 -

61500 -

Number of Bytes

61000 ~

60500 ~

60000 -

1 2 3 45 6 7 8 91011121314151617 1818 20

Run Number

m 2 Junk Threads

Figure 34. Instruction Counts of Useful and Junk with 2 Junk Threads

Traceable Code from OllyDbg in Multi-
Threaded Version with 5 Junk Threads

Launched After Useful Threads

63500

63000

62500

62000

61500

61000 ~

Number of Bytes

60500 ~

60000 -

1 2 3 45 6 7 8 91011121314151617 1818 20

Run Number

m 5 Junk Threads

Figure 35. Instruction Counts of Useful and Junk with 5 Junk Threads

Page 53 of 61

Traceable Code from OllyDbg in Multi-
Threaded Version with 10 Junk Threads
Launched After Useful Threads

63500

63000

62500

62000

61500
m 10 Junk Threads

Number of Bytes

61000 ~

60500 ~

60000 -
1 2 345 6 7 8 91011121314151617 181920

Run Number

Figure 36. Instruction Counts of Useful and Junk with 10 Junk Threads

Traceable Code from OllyDbg in Multi-
Threaded Version with 15 Junk Threads
Launched After Useful Threads

63500

63000

62500

62000

61500
m 15 Junk Threads
61000 -

Number of Bytes

60500 ~

60000 -
1 2 345 6 7 8 91011121314151617 181920

Run Number

Figure 37. Instruction Counts of Useful and Junk with 15 Junk Threads
Page 54 of 61

Traceable Code from OllyDbg in Multi-
Threaded Version with 20 Junk Threads
Launched After Useful Threads

63500

63000 -

62500 -

62000 -

61500
m 20 Junk Threads

Number of Bytes

61000 ~

60500 ~

60000 -
1 2 345 6 7 8 91011121314151617 181920

Run Number

Figure 38. Instruction Counts of Useful and Junk with 20 Junk Threads

Traceable Code from OllyDbg in Multi-
Threaded Version with 20 Junk Threads
Launched After Useful Threads

63500

63000 -

62500 -

62000 -

61500 -

m 20 Junk Threads
61000 -

Number of Bytes

60500 ~

60000 -
1 2 345 6 7 8 91011121314151617 181920

Run Number

Figure 39. Instruction Counts of Useful and Junk with 25 Junk Threads
Page 55 of 61

Assuming each thread, either junk or useful, has equal chance of being captured by OllyDbg and
put to foreground, more junk thread should work to our benefits statistically in theory. While
result indicated that one can get into deadlock with higher chance using more junk threads, it
does not completely agree with probability provided by statistics, see Figure 40. In this case,
timing matters too in addition to number. Timing comes in many factors, including how fast we
step through code, when OS really launches and executes a thread, and so on. In short, simple
testing result on this can be generalized as the more junk threads the better.

Chance of Useful Threads Picked by OllyDbg

90.0
*

80.0

70.0 \

60.0 \

50.0

40.0 .

\.\- =—4=—Theoretical
30.0 — -

== Actual
20.0

10.0
0.0

Chance in %

0] 5 10 15 20 25 30

Number of Junk Threads

Figure 40. Chance of Useful Threads Picked Out by OllyDbg When Junk Threads Used

We are unable to repeat tests with IDA Pro, because we cannot identify code corresponding to
threads. Because of this, we would tend to say from an attacker’s prospective OllyDbg appears
better than IDA Pro for purpose of reversing code.

7.4.5 Effort Needed to Implement Multi-threaded Version

To implement this new design using multiple threads, extra effort is needed. Extra efforts are
summarized in Table 5 below:

Page 56 of 61

Table 5. Extra Efforts Needed to Implement New Design

Work Extra Effort

Dividing workload from single This requires minimum effort, only a little extra time is

function into multiple smaller required (about 30 minutes for this demo). This step is

functions simple overall. Time is mostly spent on coding than
analysis.

Ensuring dependencies among This requires some significant effort; about 2 extra hours

multiple threads are not changed are used. Time is mostly spent on analysis. In C#, about

40 lines of extra code are added for this purpose.

Coding the multiple threads This requires minimum effort assuming one is familiar
with the threading library in use. In this demo, about 10
minutes were needed for this part of coding. In C#, about
30 lines of extra code are added for this purpose.

Coding junk threads and deadlocks | This requires minimum effort. In this demo, about 5
minutes were needed for coding, and about 20 lines of
code are written.

Other work related to Coding timer function requires minimum effort, properly
multithreading launching application in multithreaded mode also requires
only little effort.

In summary, the extra effort in coding is not too difficult assuming one is already familiar with
the library related to multithreading. On the other hand, making sure the design works properly
requires more work in the analysis phase. In the demo, total effort is not more than 4 hours and
approximately 100 extra lines of code; this is not much overall given the positive outcome.

7.4.6 XenoCode’s Obfuscator

Code obfuscation is also part of the new design; incorporation of it would make disassembled
code more difficult to trace and force attackers to waste time by studying junk codes. In this
project, XenoCode’s built-in obfuscator was used primarily for this purpose. Obfuscation is
achieved by inserting junk code into binary code. Without detailed analysis of its effects, the
result seems good if the highest level of obfuscation is used. We plotted the effects of
obfuscation of all 4 levels against the original source code, as shown in Figure 41. In Figure 41,
each vertical bar is a comparison between the obfuscated code and the unobfuscated code. Areas
colored in red represents a difference in code, whereas areas colored in white represents the same

Page 57 of 61

code. There are 4 levels of obfuscation provided by XenoCode, level 1 being the lightest
obfuscation and level 4 being the heaviest obfuscation. The results in Figure 41 from left to right
are corresponding to level 1 to level 4. As shown by figure, there are only a little white areas
overall in level 4, suggesting good obfuscation.

o
[
n
(b P | g
({ |
£] - | : .

t b

kil
7
¥ 1Y

1=

I =

Base vs. L1 Base vs. L2 Base vs. L3 Base vs L4

Figure 41. Quality of XenoCode’s Obfuscator
Page 58 of 61

8. Conclusion and Future Work

Our new design uses multiple threads and multiple validation modules for verifying serial
numbers. After careful analysis of test results, running code in a multithreaded manner for
checking serial numbers has clear advantages over the single threaded option. In particular, the
following tricks appear to be quite effective for our purpose:

Accepting user input in a thread other than the checking threads.

Running Idle event handler.

Use of junk thread and deadlock, especially launching them before useful ones.
Checking serial number in multiple threads.

Hwn e

Our method achieved the primary goal of this work. It proves cracking a serial number validation
can be made more difficult if multiple threads are used instead of a single thread since it reduces
the amount of traceable code. Also, overall extra efforts needed to implement the new design are
small compared to that of the entire software development cycle, making this method practical to
use.

We studied how multiple threads can make dynamic analysis of disassembly in debuggers more
difficult to perform. Future research can be expanded to include how difficult it can be to extract
code to create KeyGens from a multithreaded checking mechanism, especially when code is
obfuscated by third party tools. Also, the effects of a running timer (especially those with short
time intervals) could be studied further to understand its impact on debugging code. In addition,
one could use third party tools to try to analyze interaction between threads to see if thread
dependency can be found; and if so, can the dependency be understood. One could also try to use
threads purposely running in an infinite loop instead of deadlocks to find out which method is
better for our purpose. Finally, one can try to implement our new design in another programming
language to see if our method still holds against attack.

Page 59 of 61

9. References

[1] activatesoft.net, “Product Activation Overview”, http://www.activatesoft.net/activation_overview.asp,
retrieved on 08/24/2009

[2] Chris Davies, “Windows 7 cracked after Lenovo OEM key leaks”,
http://www.slashgear.com/windows-7-cracked-after-lenovo-oem-key-leaks-2950684/, retrieved on
08/24/2009

[3] ORC, “How to Crack”, http://www.mindspring.com/~win32ch/howtocrk.zip, retrieved on 09/21/2009

[4] Jianrui Zhang & Shengyu Li, “CS265 Project 2 Report”, 05/11/2009

[5] MLC Technologies, “Hardware Key Activation”, http://www.mcl-
collection.com/support/licensing/hardware_key.php, retrieved on 09/02/2009

[6] Schlumberger, “Cyberflex Access Cards Programmer’s Guide”, Jan 2004

[7] Bank of China, “Security Mechanism (Cooperate Service)”,
http://www.bankofchina.com/en/custserv/bocnet/200812/t20081212_144526.html, retrieved on
12/05/2009

[8] Logic Protect, http://www.logicprotect.com/index.asp, retrieved on 10/23/2009

[9] Mark Stamp, "Information Security: Principles and Practices”, 2006

[10] Mark Stamp, lecture notes on “Software Breaking”, Fall 2009

[11] Wikipedia, http://en.wikipedia.org/wiki/Product_activation, retrieved on 10/25/2009

[12] Martin Cowley, “Frontend Plush”, http://frontend-plus.software.informer.com/, retrieved on
12/23/2009

[13] Eric Lafortune, “ProGuard”, http://proguard.sourceforge.net/, retrieved on 11/10/2009
[14] Christian Collberg, “SandMark”, http://sandmark.cs.arizona.edu/, retrieved on 11/25/2209
[15] Scott Oaks, “Java Security”, Published by O’Reilly, 2001

[16] Borland, JBuilder 2007 Documentation

[17] XenoCode, http://www.xenocode.com/ , retrieved on 11/29/2009

[18] Wikipedia, http://en.wikipedia.org/wiki/Polymorphic_code , retrieved on 12/01/2009

[19] Shameen Akhter & Jason Roberts, “Multi-Core Programming: Increasing Performance through
Software Multi-threading”

Page 60 of 61

http://www.activatesoft.net/activation_overview.asp�
http://www.slashgear.com/windows-7-cracked-after-lenovo-oem-key-leaks-2950684/�
http://www.mindspring.com/~win32ch/howtocrk.zip�
http://www.mcl-collection.com/support/licensing/hardware_key.php�
http://www.mcl-collection.com/support/licensing/hardware_key.php�
http://www.bankofchina.com/en/custserv/bocnet/200812/t20081212_144526.html�
http://www.logicprotect.com/index.asp�
http://en.wikipedia.org/wiki/Product_activation�
http://frontend-plus.software.informer.com/�
http://proguard.sourceforge.net/�
http://sandmark.cs.arizona.edu/�
http://en.wikipedia.org/wiki/Polymorphic_code�

[20] BestSerials, http://www.bestserials.com/ , retrieved on 04/20/2010

[21] CrackLoader, http://www.crackloader.com/, retrieved on 04/10/2010

[23] Australian Institute of Criminology, http://www.aic.gov.au/, retrieved on 04/10/2010
[24] Jedisware, http://www.jedisware.com/ , retrieved on 04/10/2010

[25] Cyberlink, http://www.cyberlink.com/products/powerdvd/overview_en_US.html, retrieved on
04/10/2010

[26] Chinmaan, http://i179.photobucket.com/albums/w306/chinmaan/activation.jpg , retrieved on
04/10/2010

[27] RabLab, http://www.rarlab.com/ , retrieved on 04/10/2010
[28] Avast, http://www.avast.com/free-antivirus-download, retrieved on 04/10/2010
[29] IDA Pro, http://www.hex-rays.com/idapro/, retrieved on 04/10/2010

[30] OllyDbg, http://mww.ollydbg.de/, retrieved on 04/10/2010

Page 61 of 61

http://www.bestserials.com/�
http://www.crackloader.com/�
http://www.aic.gov.au/�
http://www.jedisware.com/�
http://www.cyberlink.com/products/powerdvd/overview_en_US.html�
http://i179.photobucket.com/albums/w306/chinmaan/activation.jpg�
http://www.rarlab.com/�
http://www.avast.com/free-antivirus-download�
http://www.hex-rays.com/idapro/�
http://www.ollydbg.de/�

Appendix A: Data

Table 6. Instruction Count from MSV'S with Source Code in Single Threaded Version

. Instruction Count | Instruction Count
Instruction Count . .
. (Breakpoint at all | (Breakpoint at all
Run # (Breakpoint at . . .
Start only) function excluding functions
¥ Idle) including Idle)
1 131 131 40
2 131 131 40
3 131 131 40
4 131 131 40
5 131 131 40

Table 7. Instruction Count from MSVS with Source Code in Multi-Threaded Version

Instruction Count Instruction Count Instruction Count
Run # (Breakpoint at Start (Breakpoint at all (Breakpoint at all
only) function excluding Idle) functions including Idle)
1 30 60 40
2 30 60 40
3 30 71 40
4 30 42 40
5 30 59 40
6 30 50 40
7 30 42 40
8 30 62 40
9 30 81 40
10 30 69 40
11 30 65 40
12 30 60 40
13 30 81 40
14 30 67 40
15 30 102 40
16 30 98 40
17 30 151 40
18 30 91 40
19 30 54 40
20 30 102 40
Average 30 73.35 40

Table 8. Instruction Count from MSVS with Source Code in Multi-Threaded Version with

Different Number of Junk Threads with Breakpoint Set at Start Only

Instruction | Instruction | Instruction | Instruction

Run | Count (2 Count (5 Count (10 | Count (15
Junk Junk Junk Junk

Threads) Threads) Threads) Threads)

1 30 30 30 30

2 30 30 30 30

3 30 30 30 30

4 30 30 30 30

5 30 30 30 30

Table 9. Instruction Count from MSVS with Source Code in Multi-Threaded Version with
Different Number of Junk Threads with Breakpoint Set at All Functions Excluding Idle

Instruction Instruction Instruction Instruction Instruction Instruction
Run # Count (2 Count (5 Count (10 Count (15 Count (20 Count (25
Junk Junk Junk Junk Junk Junk
Threads) Threads) Threads) Threads) Threads) Threads)
Useful | Junk | Useful [Junk | Useful | Junk | Useful | Junk | Useful | Junk | Useful | Junk
1 36 6 30 7 27 3 33 8 25 16 23 10
2 21 4 25 10 20 5 21 4 17 17 22 9
3 28 4 28 22 7 27 9 17 12 16 14
4 30 6 25 25 6 23 7 20 13 11 15
5 26 6 34 20 8 25 10 29 11 18 16
6 26 4 26 10 21 5 23 8 31 14 17 15
7 32 6 21 28 11 34 9 18 20 14
8 36 4 27 30 6 30 6 33 19 9
9 34 4 25 32 28 8 23 13 22 12
10 43 4 28 29 25 8 17 15 13 15
Average 312 | 4.8 269 | 6.7 254 | 6.6 269 | 7.7 23 | 12.7 18.1 | 12.9

Table 10. Average Instruction Count from MSVS with Source Code in Multi-Threaded Version
with Junk Threads

#Junk Threads | Useful Junk Ratio of Useful to Total
0 73.35 0 0.649
2 27.6 4.2 0.244
5 23.9 6 0.212
10 22.7 6.3 0.201
15 23.6 6.9 0.209
20 20.5 11.1 0.181
25 15.8 11.9 0.14

Table 11. Traceable Useful Instruction Count from OllyDbg in Single-Threaded Version

Run # | Instruction Count

64136
64136
64136
64136
64136

Gl W|N| -

Table 12. Traceable Useful Instruction Count from OllyDbg in Multi-Threaded Version

Instruction
Run # Count
(bytes)

1 63190
2 62884
3 63190
4 63366
5 62762
6 63190
7 61252
8 62884
9 63190
10 63190
11 62884
12 63056
13 62884
14 61252
15 63056
16 62884
17 63190
18 63056
19 63190
20 63366

Table 13. Traceable Code from OllyDbg in Multi-Threaded Version with Junk Threads
Launched First

(bytes) Threads

1 61094 2
2 61094 2
3 61094 2
4 61094 2
5 61094 5
6 61094 5
7 61094 5
8 61094 5
9 61094 10
10 61094 10
11 61094 10
12 61094 10
13 61094 15
14 61094 15
15 61094 15
16 61094 15
17 61094 20
18 61094 20
19 61094 20
20 61094 20

Table 14. Traceable Code from OllyDbg in Multi-Threaded Version with Junk Threads
Launched After Useful Threads

RUN # 2 Junk 5Junk | 10Junk | 15Junk | 20Junk [25 Junk
Threads | Threads | Threads | Threads | Threads | Threads

1 63190 61094 61094 61094 63190 61094
2 61094 61094 61094 63190 62762 62884
3 62884 63190 61094 61094 61094 61094
4 61094 61094 63190 61094 63056 61094
5 63190 63190 61094 61094 63190 63366
6 61094 61094 61094 63056 61094 61094
7 62762 62884 61094 63190 61094 61094
8 61094 61094 63190 61094 61094 63056
9 61094 61094 61094 61094 62884 61094
10 61094 63190 62884 63056 61094 61094
11 63190 61094 63190 61094 61094 63190
12 63056 62884 62884 61094 61094 61094
13 61094 61094 61094 61094 61094 61094
14 62884 63190 61094 63190 63190 61094
15 61094 61094 61094 61094 61094 61094
16 62762 61094 61094 61094 61094 61094
17 61094 61094 61094 61094 61094 61094
18 61094 62762 63056 61094 61094 62762
19 62762 61094 61094 62762 61094 61094
20 61094 61094 61094 61094 61094 61094

Table 15. Average Instruction Count from MSVS with Source Code in Multi-Threaded Version
with Junk Threads

of Junk # of Useful | Total Thread Theoretical Actual
Threads Threads Count
10 12 83.3 45.0
10 15 66.7 35.0
10 10 20 50.0 30.0
15 10 25 40.0 30.0
20 10 30 33.3 30.0
25 10 35 28.6 25.0

Vi

	San Jose State University
	SJSU ScholarWorks
	2010

	IMPROVED SOFTWARE ACTIVATION USING MULTITHREADING
	Jian Rui Zhang
	Recommended Citation

	IMPROVED SOFTWARE ACTIVATION USING MULTITHREADING
	Jianrui Zhang
	ALL RIGHTS RESERVED
	Mr. Wai Leung Wong, Oracle Corporation Date
	ABSTRACT
	ACKNOWLEDGEMENT
	Table of Contents
	List of Tables and Figures
	Figures
	Tables
	Introduction
	Figure 1. Level of Software Piracy in Different Countries
	Software Activation
	Categories of Protections:
	Password
	Base on How Many Times or Days One Can Use
	Base on SpecificEexpirationDdate
	Having Functions Disabled
	Base on “Disk” or “CD-ROM” Access
	CryptographicAadd-ons
	Others

	Ways of Activating Software:
	By Entering a Serial Number
	By an Activation File

	Figure 2. Adobe Photoshop’s 2-layer Activation
	By Hardware Key
	Pre-activation at Vendor
	Comparison of Methods

	Serial Number
	Sections 3.1 below will discuss various aspects of using serial number as an activation mechanism.
	Ways of Obtaining Serial Number:
	Send by Email
	From Software Retail Package

	Ways of Checking Serial Number:
	One Time Checking Upon Entering
	Dual Checking
	Repeated Checking Over Time

	Figure 3. Microsoft’s Online Genuine Software Validation
	Ways of Entering Serial Number:
	Only at Installation Time
	After Installation
	By Inserting Hardware Key During Use

	How serial numbers are generated
	There are Third Party Software Activation Packages for Sale
	Software Vendors Develop Their Own “Secret” Algorithms
	Generate Keys From Other Software

	Criticism of Software Activation
	While use of software activation is popular, it is also criticized by many; some criticisms include the following [11]:

	Figure 4. CD Key Generator’s Valid Serial Numbers
	Programming Languages and IDEs
	Compiled Executable
	Byte Code
	Java
	.Net

	Integrated Development Environment

	How to crack software activation
	KeyGen
	Common Methods for Cracking Software Protection

	Anti-reversing Techniques
	Detect Debugger
	IsDebuggerPresent()
	Time Checking of Code

	Insertion of Assembly Code

	Figure 7. Effect of Using Assembly Code to Confuse Disassembler
	Insertion of Junk Code
	Junk Logic
	Junk Data
	Polymorphism

	Recursion
	Hash Function
	Entire Image of Binary Executable
	In-memory Checksum

	String Obfuscation

	Figure 8. Getting Obfuscated String in Clear Text
	Opaque Predicate
	Control Flow Obfuscation

	Figure 10. Function Call Hierarchy
	Figure 11. A Zoom-In View of Figure 10
	Multiple Validation
	Multithreading
	Windows Events
	Comparison of Effectiveness
	Table 2 below compares relative effectiveness of various anti-reversing techniques discussed above base on our research of them.

	Table 2. Comparison of Effectiveness of Different Anti-Reversing Techniques
	New Design
	Consideration of New Design
	Shift Workload Online
	Encrypting Executable
	Disabling Debugger

	New Design
	License File
	Multi-threading
	Multiple Validation
	GUI and GUI Events
	OnIdle Event
	Encrypting Calculated Results
	Junk Thread and Deadlock
	Delayed Execution
	Code Obfuscation
	Putting the Blocks Together

	Figure 14. Block Diagram for Checking Program Binary Hash
	Figure 15. Block Diagram for Checking Serial Number Using First Checking Module
	Figure 16. Blocking Diagram of Using 2nd Module to Verify 1st Module
	Figure 17. A 3rd Module Checking 2nd Module Periodically
	Test Setup and Metric
	Testing and Results
	Correctness of Implementation
	Testing in Development Environment

	Figure 20. Line Counts of Different Runs from MSVS in Single Threaded Mode
	Figure 21. Line Counts of Different Runs from MSVS in Multi-Threaded Mode
	Figure 23. Instruction Counts of Useful and Junk with 2 Junk Threads
	Figure 24. Instruction Counts of Useful and Junk with 5 Junk Threads
	Figure 25. Instruction Counts of Useful and Junk with 10 Junk Threads
	Figure 26. Instruction Counts of Useful and Junk with 15 Junk Threads
	Figure 27. Instruction Counts of Useful and Junk with 20 Junk Threads
	Figure 28. Instruction Counts of Useful and Junk with 25 Junk Threads
	Figure 30. Percentage of Average Number of Traceable Useful Instructions
	Single Threaded vs. Multi-Threaded
	Multi-Threaded With Use of Junk Threads

	Figure 34. Instruction Counts of Useful and Junk with 2 Junk Threads
	Figure 35. Instruction Counts of Useful and Junk with 5 Junk Threads
	Figure 36. Instruction Counts of Useful and Junk with 10 Junk Threads
	Figure 37. Instruction Counts of Useful and Junk with 15 Junk Threads
	Figure 38. Instruction Counts of Useful and Junk with 20 Junk Threads
	Figure 39. Instruction Counts of Useful and Junk with 25 Junk Threads
	Effort Needed to Implement Multi-threaded Version
	XenoCode’s Obfuscator

	Figure 41. Quality of XenoCode’s Obfuscator
	Conclusion and Future Work
	References
	[8] Logic Protect, http://www.logicprotect.com/index.asp, retrieved on 10/23/2009
	[11] Wikipedia, http://en.wikipedia.org/wiki/Product_activation, retrieved on 10/25/2009
	[18] Wikipedia, http://en.wikipedia.org/wiki/Polymorphic_code , retrieved on 12/01/2009
	Appendix A: Data
	Table 6. Instruction Count from MSVS with Source Code in Single Threaded Version
	Table 7. Instruction Count from MSVS with Source Code in Multi-Threaded Version

