
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2007

A Multiple-Copy Scheme for Multi-Channel Stop-
and-Wait HARQ
Yucheng Shih
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Shih, Yucheng, "A Multiple-Copy Scheme for Multi-Channel Stop-and-Wait HARQ" (2007). Master's Projects. 132.
DOI: https://doi.org/10.31979/etd.sy6d-z4mk
https://scholarworks.sjsu.edu/etd_projects/132

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70407883?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/132?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

 1

A Multiple-Copy Scheme for
Multi-Channel Stop-and-Wait HARQ

A Project Report

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

By

Yucheng Shih

August 2007

 2

Copyright © 2007

Yucheng Shih

ALL RIGHT RESERVED

 3

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Professor Teng Moh, Computer Science Department

Professor Melody Moh, Computer Science Department

Dr. Wei-Peng Chen, Fujitsu Laboratory of America

 4

ABSTRACT

A Multiple-Copy Scheme for
Multi-Channel Stop-and-Wait HARQ

By Yucheng Shih

 HARQ (Hybrid Automatic Repeat Request) combines ARQ (Automatic Repeat

Request) with FEC (Forward Error Correction) to provide a reliable way to ensure that

data are received correctly and in sequence. A multiple-copy HARQ scheme is proposed

for WiMAX (Worldwide Interoperability for Microwave Access) to reduce the waiting

time of erroneously received data in the receivers’ buffer. In this project, the

performances of WiMAX multi-channel stop-and-wait HARQ scheme are compared with

that of the proposed multiple-copy HARQ scheme. The multiple-copy HARQ can send

the same copy of a data burst on contiguous channels during noisy channel conditions so

that the required time for an unsuccessfully received data burst to recover is shortened. It

is beneficial for time sensitive data to have a shorter waiting time in a SS’s (Subscriber

Station) buffer. The simulation results show that the multiple-copy HARQ scheme

requires only 56% of the time that the original WiMAX HARQ needs to successfully

deliver erroneous data bursts in the SS’s buffer. The throughput of the multiple-copy

HARQ scheme can still reach more than 73% of the original WiMAX HARQ scheme’s

throughput.

 5

ACKNOWLEDGEMENTS

 I would like to express my appreciation to Professor Melody Moh for her advising

and encouragement that make this project possible. I would also like to thank Professor

Teng Moh for his assistance along the way and Dr. Wei-Peng Chen for his instruction

with WiMAX. Lastly, thanks also to my parents and friends for their continued support.

 6

TABLE OF CONTNETS

1. Project Overview .. 11
1.1 Introduction... 11
1.2 Proposed Area of Study .. 12
1.3 Project Requirements.. 13

1.3.1 Project Scope ... 13
1.3.2 Project Goals.. 14

1.4 Academic Contributions ... 14

2. Background... 15
2.1 ARQ.. 15
2.2 HARQ ... 16
2.3 WiMAX .. 18
2.4 WiMAX HARQ.. 19
2.5 Related Work .. 20

3. Summary of CS297 Project --- Evaluation of ARQ Schemes 24
3.1 Simulation Topology and Settings.. 24
3.2 Simulation Results .. 25

4. Design of CS 298 Project --- Multiple-copy HARQ .. 28
4.1 The BS-side Implementation .. 28

4.1.1 Parameter MC and Parameter ICN .. 28
4.1.2 Information Stored in the BS ... 29
4.1.2 Data Burst Information (C_x, NS_x, NR_x, S_x) ... 30
4.1.3 Parameter M_i and Parameter M_avg ... 31
4.1.4 Operation of HARQ Channel i in the BS... 33

4.2 The SS-side Implementation... 36
4.2.1 Operation of HARQ Channel i in the SS ... 36

4.3 Formal Analysis of the Multiple-Copy HARQ Scheme... 39
4.3.1 Correctness Analysis.. 39
4.3.2 Time Analysis of the BS Operation ... 41
4.3.3 Space Analysis of the BS Operation.. 43

5. Performance Evaluations of Multiple-Copy HARQ... 45
5.1 Synchronous DL and UL .. 45
5.2 Simulation Topology and Models... 46
5.3 Chase Combining.. 46
4.4 Noise Burst Conditions... 48
5.5 Simulation Settings ... 49
5.6 Simulation Criteria.. 49
4.7 Simulation Results .. 50

6. Conclusions... 62
6.1 Project Achievements ... 62

 7

6.2 Future Enhancements.. 63

6. References... 65

Appendix A: Source Code .. 68

 8

LIST OF FIGURES

Figure 1. Network topology and configuration for ARQ simulation................................ 25

Figure 2. Throughput comparison of seven different ARQ schemes 26

Figure 3. Information of unACKed data bursts stored in the BS...................................... 29

Figure 4. Flow chart of multiple-copy HARQ operation – BS sends data bursts on
channel i. ... 34

Figure 5. Description of multiple-copy HARQ operation in the BS 35

Figure 6. Description of multiple-copy HARQ operation in the SS................................. 37

Figure 7. Flow chart of HARQ operation – SS receives data bursts from channel i. 38

Figure 8. HARQ operation with six HARQ channels to compensate five frames feedback
delay.. 45

Figure 9. Simulation topology of HARQ schemes ... 46

Figure 10. Throughput comparison of both HARQ schemes with different numbers of
buffer size.. 52

Figure 11. Average waiting time comparison of both HARQ schemes with different
number of buffer size. ... 53

Figure 12. Throughput comparison of both HARQ schemes (MC/OR ratio) when using
different number of HARQ channel. .. 55

Figure 13. Average waiting time comparison of both HARQ schemes (MC/OR ratio)
when using different numbers of HARQ channel... 55

Figure 14. Maximum buffer occupancy comparison of both HARQ schemes................. 56

Figure 15. Throughput comparison of both HARQ schemes (MC/OR ratio) when using
different numbers of HARQ channel (no buffer limitation). .. 58

Figure 16. Average waiting time comparison of both HARQ schemes when using
different numbers of HARQ channels (no buffer limitation). .. 58

Figure 17 Throughput comparison of both HARQ schemes (MC/OR ratio) when using
different number of HARQ channel (non-IEEE approach) .. 60

Figure 18. Average waiting time comparison of both HARQ schemes (MC/OR ratio)
when using different numbers of HARQ channel (non-IEEE approach) 60

 9

LIST OF TABLES

Table 1. Comparison of four variant ARQ schemes... 22

Table 2. Parameters for a unACKed data burst. ... 31

Table 3. A summary of time analysis of both HARQ schemes .. 43

Table 4. Chase Combining modeling.. 47

Table 5. Noise burst modeling .. 48

Table 6. Simulation settings.. 49

 10

LIST OF ACRONYMS

ACID: HARQ Channel Identifier
AES: Advanced Encryption Standard
AI_SN: ARQ Identifier Sequence Number
ARQ: Automatic Repeat Request
BER: Bit Error Rate
BLER: Block Error Rate
BS: Base Station
BSN: Block Sequence Number
CC: Chase Combining
CQI: Channel Quality Indicator
CRC: Cyclical Redundancy Check
DCD: Down Link Channel Descriptor
DL: Down Link
EAP: Extensible Authentication Protocol
FDD: Frequency Division Duplex
FEC: Forward Error Correction
GBN: Go Back N
HARQ: Hybrid Automatic Repeat Request
HSDPA: High Speed Downlink Packet Access
IE: Information Element
IP: Internet Protocol
IR: Incremental Redundancy
IrDA: Infrared Data Association
MIMO: Multiple Input Multiple Output
OFDMA: Orthogonal Frequency Division Multiple Access
PDU: Protocol Data Unit
QoS: Quality of Service
SR: Selective Repeat
SS: Subscriber Station
SW: Stop and Wait
TDD: Time Division Duplex
UL: Up Link
WiMAX: Worldwide Interoperability for Microwave Access

 11

1. Project Overview

1.1 Introduction

Broadband wireless networks have been increasingly used for services such as

data, video, voice, and internet traffic. Wireless communication provides users with

tremendous convenience compared with communicating in a wired environment.

However, the wireless data traffic is more likely to suffer from signal interference and

attenuation; therefore, maintaining a high QoS (Quality of Service) is quite challenging

for all wireless technologies. WiMAX (Worldwide Interoperability for Microwave

Access) is a wireless digital communication system that can provide a whole

metropolitan area with broadband wireless services. Furthermore, the mobile WiMAX

supports not only fixed subscribers but also subscribers that are moving at vehicular

speed, which further demonstrates the marvelous potential of WiMAX as next generation

broadband wireless technology. ARQ (Automatic Repeat Request), due to its

implementation simplicity, is commonly used to provide a reliable way to ensure that

packets are successfully received at receivers and in sequence. HARQ (Hybrid Automatic

Repeat Request) combining ARQ scheme and FEC (Forward Error Correction)

functionality further improves the performance of wireless communication systems.

HARQ/ARQ relies on feedbacks (ACK/NAK) to determine whether retransmissions are

required. The WiMAX uses multi-channel stop-and-wait HARQ scheme. Each HARQ

channel is independent of each other, and a packet can only be retransmitted by the

HARQ channel that initially sends the packet. During a noisy channel condition, a

successful transmission might take quite a long time to deliver because more

retransmissions are needed. The proposed multiple-copy HARQ scheme sends multiple

 12

copies of the same data burst on contiguous HARQ channels so that it dramatically

reduces the time to successfully recover an erroneously received packet in a receiver’s

buffer. During noisy channel conditions, a time sensitive packet that needs more

retransmissions can be retransmitted quicker and recovered faster as well.

This report is organized as follows: In the rest of the section 1, the proposed area

of study, project requirements and academic contributions are addressed. In section 2, the

background of the project is covered, including ARQ, HARQ, WiMAX, WiMAX HARQ

and related works. In section 3, a summary of CS297 project is included. In section 4, the

proposed multiple-copy HARQ scheme is explained in detail. In section 5, simulation

settings and simulation results for both original WiMAX HARQ scheme and proposed

multiple-copy HARQ scheme are included. In addition, performance comparisons of

these two HARQ schemes are also provided. Finally, in section 6, conclusions are made.

1.2 Proposed Area of Study

Seven ARQ schemes, including three basic ARQ schemes, were studied and their

throughput performances were analyzed. In addition, a guideline of designing an ARQ

scheme with high throughput performance is provided, please refer to section 3. ARQ

mechanisms control the way a transmitter transmits and retransmits data to a receiver.

Generally speaking, an efficient ARQ mechanism should be able to deliver a great

throughput performance; however, there are other issues that an ARQ mechanism should

also consider in order to suit any particular need. For example, even though the stop-and-

wait ARQ scheme has low throughput performance when propagation delay is too long, it

is very suitable for a transmitter that only sends data to nearby receivers that only have

small buffer.

 13

HARQ makes use of both ARQ mechanism and FEC functionality, so the ARQ

mechanism still plays a crucial role in designing a good HARQ scheme. WiMAX

currently uses multi-channel stop-and-wait HARQ scheme which is simple and has good

throughput performance; however, a data packet might take a long time to be successfully

transmitted due to each HARQ channel is independent of each other. The WiMAX

HARQ was studied, aiming to come up with a brand new mechanism that is compatible

with the current WiMAX protocol and solves the issue of unsuccessfully transmitted data

busts’ long waiting time in the SS buffer.

1.3 Project Requirements

1.3.1 Project Scope

The purpose of this project, in the first phase, is to study and analyze existing

ARQ schemes by using a network simulator to mimic ARQ schemes running in different

channel conditions. As a result, a guideline of designing an ARQ scheme with high

throughput performance is derived from analyzing simulation results. Moreover, the

WiMAX HARQ that combines stop-and-wait ARQ scheme and Chase Combining

functionality is studied. In the second phase, the multiple-copy HARQ scheme is

proposed to reduce the waiting time that an erroneously received data burst has to spend

in the SS buffer while the channel experiences high block error rate (BLER) conditions.

A simulator is programmed to simulate both the original WiMAX HARQ scheme and the

proposed multiple-copy HARQ scheme on a wireless channel with varying channel

conditions. Both HARQ schemes’ throughput performance and average waiting time of

data bursts in the SS buffer are compared and analyzed.

 14

1.3.2 Project Goals

The primary objective of the project is to propose a HARQ scheme that can be

used in the current WiMAX protocol. The HARQ scheme currently used in the WiMAX

is extremely simple; however, it lacks flexibility because HARQ channels are

independent of each other. Retransmissions can only be done by the same sending

channel. It would be desirable to have HARQ channels without aforementioned

restriction so that HARQ channels could work together and quickly react to bad channel

conditions. The proposed HARQ scheme should be compatible with the current WiMAX

implementation and the fewer changes needed to be made, the better. The throughput

performance of the original HARQ scheme is good enough in a good channel condition;

therefore, it would be better that the proposed HARQ scheme remains the same as the

original HARQ scheme to keep the design simple in a good channel condition and

dynamically triggers the new mechanism when channel’s condition becomes noisy. The

way of deciding how the proposed HARQ scheme triggers or turns off the new

mechanism should be efficient and match the channel’s condition as closely as possible.

1.4 Academic Contributions

A multiple-copy HARQ scheme is proposed for WiMAX to reduce the long wait

of erroneously received data packets in the receiver’s buffer. It is most beneficial for data

packets containing time sensitive information. Even though the throughput performance

of the multiple-copy HARQ scheme is lower than that of the multi-channel stop-and-wait

HARQ scheme, the multiple-copy HARQ scheme dramatically reduces packets’ waiting

time in the receiver’s buffer when channel condition is noisy.

 15

The proposed multiple-copy HARQ scheme can be further studied to further

accurately estimate channel conditions so that the throughput performance could be even

better, especially when a channel has high packet error rate and more packets need to be

retransmitted. The multiple-copy HARQ scheme, using chase combining, can also be

modified to support using incremental redundancy. Furthermore, with a simple

modification as proposed in [27], the MIMO (Multiple Input Multiple Output) technology

that has been proven to improve throughput performance can runs multiple-copy HARQ

scheme in its multiple antennas separately.

2. Background

2.1 ARQ

In wireless network communications, ARQ schemes have long been used to

enhance the reliability of packet-based data transmissions. Requesting needed

retransmissions, ARQ scheme ensures that lost or erroneous packets are eventually

received at the receiver side without errors and sent to the upper layer in sequence. The

three basic ARQ protocols are stop-and-wait (SW), go-back-N (GBN), and selective

repeat (SR) [12]. The SW protocol has the advantage of implementation simplicity;

nevertheless, its inherently huge idle time (propagation delay) spent on waiting for an

acknowledgement from a receiver for every single transmission hurts its throughput

performance. The GBN protocol that continuously transmits data within the ARQ

window has a more efficient data transmission result than the SW protocol. The

performance of the GBN protocol degrades dramatically in both high packet error rate

and long round-trip delay situations. The reason is that when receiving an erroneous

packet, a receiver not only discards this erroneous packet but also discards all subsequent

 16

packets even though they are successfully received. There is a chance that correctly

received packets that were discarded might be corrupted during the retransmission and

then trigger another retransmission. Lastly, the SR protocol states that a transmitter

performs retransmissions only for erroneously received packets, so it is the most efficient

protocol among these three. Theoretically, a receiver should have an infinite buffer so

that a transmitter can keep sending data all the time while retransmitting erroneous ones.

In practice, the SR protocol usually sends packets within a finite window-size buffer. The

SR protocol’s drawback is that the buffer requirement is higher and is more complicated

to implement than the other two protocols. In addition to these three basic ARQ schemes,

there are a number of variant ARQ schemes, as in [3], [6], [14], and [17], that are

proposed to suit a variety of situations.

2.2 HARQ

Using wireless channels increases chances of suffering from interference of other

channels using the same frequency or surrounding noises. A successful packet

transmission sometimes requires several retransmissions if packet error rate becomes

high. The performance of ARQ schemes suffers quickly because more retransmissions

are required. In order to reduce the frequency of retransmissions, a system can adopt a

FEC functionality to correct erroneously received packets. Combining ARQ scheme

(with CRC) and FEC functionality to correct errors first and then detect uncorrectable

errors for retransmission is called HARQ. In [21], a HARQ scheme adopts stop-and-wait

ARQ scheme is a good example. A more general example was proposed in [22].

In general, there are three types of HARQ. In type I HARQ, the receiver simply

discards erroneous packets after it fails to correct errors, and then sends NAK to the

 17

transmitter to request a retransmission. There is no need to have extra buffer to store

erroneous packets for type I HARQ. Fixed code rate is used for error correction so that

the type I HARQ cannot effectively adapt to changing channel conditions. Using a code

rate too high may cause too many retransmissions in high packet error rate conditions; on

the other hand, using a code rate too low may cause too much redundancy in low packet

error rate conditions. In previously mentioned situations, the throughput is degraded by

either a high frequency of retransmission or a number of redundant data in transmissions.

Choosing a suitable code rate is crucial for type I HARQ. Type I HARQ is best suited for

a channel with a consistent level of SNR (signal to noise ratio). In type II HARQ, packets

are coded with ARQ and FEC just as type I HARQ does except the receiver keeps

erroneously received packets in the buffer in order to combine them with retransmitted

packets. There are two major FEC categories of coding for type II HARQ: chase

combining (CC) [9] and incremental redundancy (IR). In chase combining, the receiver

combines received copies of the same packet to get diversity gain [10] [13]. All

redundant bits for each retransmitted packet are the same as the first transmission;

therefore, it is relatively simple but less adaptive to the channel condition because the

decoder may just need a smaller number of redundant bits. The buffer needed is the

number of coded symbols of one coded packet. In incremental redundancy, it adapts to

changing channel conditions by retransmitting redundant bits gradually to a receiver until

all redundancies are sent. At the beginning, a transmitter using IR sends coded packets

with a small number of FEC redundant bits or even without any. If a retransmission is

needed, only different redundant bits, derived from different puncturing patterns, are

retransmitted depending on the base coding rate. The information data will not be

 18

retransmitted except a receiver still cannot successfully decode the packet after a

transmitter has sent all the redundant bits. This approach increases the receiver’s coding

gain one retransmission at a time; therefore, the IR scheme allows the system to adapt

channel encoder rates to the channel quality. A bigger buffer is required to store all

retransmitted data, including the first transmitted data as well. Type II HARQ needs a

larger buffer size than type I HARQ, but it has higher performance in terms of throughput.

The drawback of type II IR HARQ is that a receiver has to receive the first transmitted

data in order to combine it with subsequently received redundant bits. To overcome this

drawback, a type III HARQ was proposed [20]. Type III HARQ can be said as a special

case of type two HARQ except each (re)transmitted packet is self-decodable. A receiver

can either correctly decode information data by combining the first transmitted packet

with retransmitted packets or just use only one of retransmitted packets.

2.3 WiMAX

WiMAX (Worldwide Interoperability for Microwave Access) [15] [16] is a

broadband wireless communication technology also known as IEEE 802.16,

WirelessMAN. WiMAX can provide broadband wireless services that cover a larger area

than WiFi does due to its more efficient bandwidth usage, interference avoidance, and so

forth. Therefore, it has been defined as a “last mile” broadband wireless access

alternative to cable modem service, Digital Subscriber Line, and T1/E1 services.

One WiMAX base station (BS) can serve hundreds of WiMAX subscriber

stations (SS), point-to-multipoint, and it also can reach many SSs among high-rise

buildings in city, non-line-of-sight (using 2 GHz – 11 GHz channel). WiMAX has a

tradeoff between having high bandwidth and reaching long distance, so a SS initializes

 19

connection by choosing a BS with a stronger reception signal and, if necessary, performs

handoff to a different BS that provides better reception signal when moving to a different

location. When Time Division Duplex (TDD) mode is used, a BS schedules bandwidth

for transmitting downlink data on downlink subframes (from BS to SS) and uplink data

on uplink subframes (from SS to BS). WiMAX also supports Frequency Division Duplex

(FDD) duplexing mode (best suited for voice service), but TDD can flexibly handle both

symmetric and asymmetric traffic between BSs and SSs, which is more suitable for data

traffic.

With intelligent technologies integrated in WiMAX such as scalable OFDMA

(Orthogonal Frequency Division Multiple Access), all IP (Internet Protocol) architecture,

MIMO (Multiple Input Multiple Output), smart antennas, etc, an always-connected

environment could be a reality. Supporting security mechanism such as EAP (Extensible

Authentication Protocol) and AES (Advanced Encryption Standard) helps WiMAX

overcome security shortcomings that the WiFi has faced. Five service classes of QoS

(Quality of Service) also enhance WiMAX to better serve different applications needs

such as streaming audio or video, VoIP, Data transfer, and so forth. When the costs of

WiMAX chipsets decrease and Mobile WiMAX solutions are fully delivered, WiMAX

will completely change the notion of broadband services.

2.4 WiMAX HARQ

HARQ is supported in WiMAX that uses OFDMA (Orthogonal Frequency

Division Multiple Access) physical layer. The HARQ scheme used in WiMAX is a basic

stop-and-wait protocol. Using multiple HARQ channels can compensate the propagation

delay of the stop-and-wait scheme, that is, one channel transmits data while others are

 20

waiting for feedbacks. Therefore, multi-channel stop-and-wait HARQ using a small

number of channels (e.g. 6) is an efficient and simple protocol that minimizes the

memory required for HARQ and stalling [24]. HARQ channels are distinguished by a

channel identifier (ACID). Data reordering at a SS is done by referring to PDU (Protocol

Data Unit) sequence numbers that are enabled when HARQ operation is used. When

Chase combining is used, the total buffer capability is determined by multiplying the

number of bits that each HARQ channel is allowed to send with the number of channels

used. HARQ DL MAP IE (Information Element) contains information about DL HARQ

Chase sub-burst IE that specifies the location of HARQ sub-bursts, ACID, AI_SN, etc.

By referring to MAP IEs, a SS can retrieve a correct data burst that is given to it. HARQ

feedbacks (ACK and NAK) are sent by the SS after a fixed delay (synchronous

feedbacks). To specify the start of a new transmission on each HARQ channel, one-bit

HARQ identifier sequence number (AI_SN) is toggled on each successful transmission.

[15] [16]

2.5 Related Work

In addition to three basic ARQ schemes, a number of other variant ARQ schemes

have been proposed to suit different network situations. An efficient selective-repeat

ARQ scheme was proposed for infrared links under a high bit error rate condition [4].

The efficient selective-repeat ARQ scheme is a window-based ARQ scheme operating

with a finite receiver buffer and a finite range of sequence numbers. A novel selective-

repeat stop-and-wait ARQ was proposed for operating in half-duplex channels [8]. Unlike

the normal stop-and-wait ARQ scheme, the novel stop-and-wait ARQ scheme sends a set

of packets that belongs to the same frame of an upper layer datagram and resends packets

 21

negatively ACKed. The sender sends the next set of packets after all packets of the

current set are successfully received. A block window retransmission ARQ scheme was

proposed for next generation high speed IrDA (Infrared Data Association) links [5]. The

block window ARQ scheme modifies the method of acknowledging packets and the way

of retransmitting packets by using concept of blocks that contain several packets. Lastly,

an optimum go-back-N ARQ strategy was proposed to send n copies of the same packet

continuously [7] [19]. The optimum go-back-N ARQ dynamically increases and

decreases n according to feedbacks by using an equation m = ceil[K/(n-1)] (K is about 5

to 15 times greater than n and m is used to decide when to decrease n). These four ARQ

schemes are compared in Table 1, and last two rows are based on simulation results. The

simulation results of these four ARQ schemes are covered in section 3.2.

 Efficient SR Optimum GBN SR SW Block Window
reTX

Type of ARQ

Selective Repeat Go-Back-N Combination of
selective Repeat
and Stop-and-
Wait

Selective Repeat

ACK scheme Following the
first negative
ACK, receiver
also sends both
positive and
negative ACKs
back.

Positive ACKs
and the first
negative ACK
are sent back.

Only negative
ACKs will be sent
back.

Send both positive
and negative ACKs
back except ACKs
for the first and last
blocks.

Buffer usage Store correctly
received ARQ
blocks which
have sequence
numbers within
the window.

No buffer
needed.

Store correctly
received ARQ
blocks which
have sequence
numbers within
the window.

Store correctly
received ARQ
blocks which have
sequence numbers
within the window.

 22

 Efficient SR Optimum GBN SR SW Block Window
reTX

Pros 1. Only
retransmit
erroneously
received ARQ
blocks.

1. Sending
multiple copies
of ARQ block
reduces the
retransmission
need in high error
rate environment.
2. Receiver does
not need buffers
to store out of
order ARQ
blocks: discards
them.

1. Simple
implementation.
2. Only retransmit
erroneously
received ARQ
blocks.

1. Using one bit to
acknowledge a
block-window
ARQ block is
beneficial if the
size of ACK
bitmap is limited.

Cons 1. More complex
to implement.
2. In high bit
error rate
environment,
throughput may
decrease because
of always
sending one
window-size
ARQ block
instead of blocks
inside the
window.

1. Unnecessary
retransmission of
ARQ blocks.
2. Low through at
high bit error rate
environment,
especially when
propagation delay
is long.

1. No new ARQ
block can be sent
before prior set of
ARQ blocks are
all successfully
received.

1. More complex
to implement.
2. Some
unnecessary
retransmissions
have to occur.

Normalized
throughput
in high BER
environment:
BER = 10-4
(*)

Second place
(**53%)

Forth place
(**22%)

First place
(**100%)

Third place
(**50%)

Normalized
throughput
in low BER
environment:
BER = 10-5
(*)

First place
(**100%)

Forth place
(**68%)

Second place
(**94%)

Third place
(**68%)

(*) in the situation where propagation delay is short (0.002 ms).

(**) taking first place value as the base value.

Table 1. Comparison of four variant ARQ schemes

 23

One famous example of using multiple-channel stop-the-wait is the ARPAnet

(Advanced Research Projects Agency Network), which supported multiplexing of 8

logical channels over a single link, and ran stop-and-wait ARQ on each logical channel

[18]. Using multiple-channel stop-and-wait HARQ with chase combining as a link

adaptation HARQ technique has been widely used in wireless networks such as HSDPA

(High-Speed Downlink Packet Access), refer to [2] for protocol description and

simulation results. HSDPA uses HARQ channels to transmit data inflexibly as WiMAX,

that is, each channel is independent of each other. On the other hand, the proposed

multiple-copy HARQ scheme makes data transmissions more flexible and adaptive to

channel conditions. Timing of N-channel stop-and-wait HARQ operation can be in fully

asynchronous, partial asynchronous and synchronous mode, as discussed in [1]. The

transmitter can (re)transmit data at any time in fully asynchronous mode. In partial

asynchronous mode, retransmissions can only be done at i + nN frame intervals (i is the

frame in which the first transmission takes place, n is a positive integer, and N is the

feedback delay in frames). In synchronous mode, retransmissions can take place only at

a fixed time interval. The proposed multiple-copy scheme is designed to work in

synchronous mode: each HARQ channel receives feedback and transmits data at every

fixed time interval. Multiple-channel stop-and-wait HARQ with chase combining can

also be used with MIMO (Multiple Input Multiple Output) technology. As in [7], the

authors proposed a new MIMO scheme to improve throughput by attaching each

substream separate CRC (Cyclic Redundancy Check) and employing one HARQ entity

with 3 processes in each transmit antenna. The concept of the proposed multiple-copy

 24

HARQ scheme can be easily used with MIMO to not only improve throughput but also

reduce waiting time of erroneously received data bursts in receivers’ buffer.

3. Summary of CS297 Project --- Evaluation of ARQ
Schemes

3.1 Simulation Topology and Settings

In this section, simulation results of seven different automatic repeat request

(ARQ) schemes are examined. In order to mimic a metropolitan WiMAX network

environment, half-duplex is chosen as a transmission mode and a short propagation delay

is configured in the simulation. When changing the bit error rate from 10-3 to 10-8,

simulation results show that ARQ schemes which only need to retransmit erroneously

received ARQ blocks have better overall throughput performance. Both evaluating and

analyzing the ability of handling data retransmission efficiently are the primary goals of

the project; therefore, a list of guidelines for designing an efficient ARQ scheme is

provided according to simulation results. Being aware of network status and reacting to it

effectively may be challenging when it comes to designing an efficient ARQ scheme.

There is no one particular ARQ scheme that can be the best for all kinds of channel

situations and network topologies. In this project, by mimicking a metropolitan WiMAX

network environment in the simulation, it paves a road to further research on HARQ used

in WiMAX.

The simulation tool used for all ARQ protocol simulations in this section is JSim

[23]. The simulation topology consists of two nodes, a transmitter and a receiver, and a

link that connects these two nodes, as depicted in Fig. 1. The network configuration

includes link bandwidth, propagation delay, and bit error rate. The transmission is set to

 25

be half-duplexing, which means that no simultaneous transmissions from both transmitter

and receiver. The transmitter node and the receiver node send packets or

acknowledgement to one another according to the ARQ protocol applied in the

simulation. The link between two nodes has a predefined bandwidth at 10 Mbps and a

predefined propagation delay at 0.002 ms (a distance of 600 meters away). The bit error

rate in the simulation ranges from 10-3 to 10-8. The packet payload size is 512 bytes and

the acknowledgement packet payload size is 10 bytes, both of these values are fixed

throughout the simulation. If there is a window size in use, the window size is 64 ARQ

blocks. The major measurement of performance is throughput. Packets are considered

successfully delivered when they are successfully received and sent to the upper layer in-

sequence.

Figure 1. Network topology and configuration for ARQ simulation.

3.2 Simulation Results

In this section, four variant ARQ schemes and three basic ARQ schemes mentioned
previously are compared.

Receiver Transmitter

Packet

ACK/NAK
Buffer

Bandwidth: 10 Mbps
Propagation delay: 0.002 ms
Bit Error Rate: 10-3 to 10-8

Buffer

 26

Throughput Comparison

0

500

1000

1500

2000

2500

-3 -4 -5 -6 -7 -8

Bit Error Rate (log)

A
RQ

 b
lo

ck
s/

se
c

Variant of Optimum GBN
Block Window Retransmission
Selective Repeat SW
Efficient Selective Repeat
Go-Back-N
Selective Repeat
Stop-and-Wait

Figure 2. Throughput comparison of seven different ARQ schemes

The throughput is one of the crucial factors in determining whether an ARQ

protocol is desirable or not. The throughput performance of seven different ARQ

protocols operating in different bit error rates situations is shown in Fig. 2. Undoubtedly,

the stop-and-wait ARQ has the lowest throughput due to long waiting time for each

acknowledgement (long propagation delay). The selective Repeat scheme and its variants

have relatively good throughput performance in high bit error rate situations because they

follow one important concept: a transmitter only sends ARQ blocks that are erroneously

received or missing. The throughput performance of the Go-Back-N scheme and its

variant sit right in the middle because a number of unnecessary retransmissions take

place when just one packet is incorrectly received or missing. Sending duplicate ARQ

blocks, a variant of optimum GBN scheme, helps improve the throughput of GBN in high

bit error rate situations.

By analyzing the simulation results, a list of suggested guidelines for designing an

efficient ARQ protocol is as follows:

 27

• Retransmitting only erroneous received ARQ blocks.

As the mechanism used in selective repeat scheme and its variants, retransmission

is only required for erroneously received ARQ blocks. Having fewer retransmissions

saves propagation delay significantly in a half-duplexing environment.

• Dynamically sending more than one copy of an ARQ block in a high bit error rate

situation.

By comparing throughput performance between GBN scheme and variant of

Optimum GBN scheme, dynamically increasing or decreasing number of ARQ block

copies sent at a any moment can improve throughput performance in a high hit error

rate situation.

• Sending more new ARQ blocks that are outside the ARQ window in a low bit error

situation.

As shown in Fig. 2, the efficient selective repeat scheme has higher throughput in

low bit error rate situation because it sends another whole window-size ARQ blocks

and lets the receiver decide whether to discard or accept them. If most of the ARQ

blocks are correctly received, the receiver can accept more ARQ blocks immediately

without having to wait for the next transmission opportunity.

• Selective repeat SW could be considered in a low bit error rate situation for simplicity

reason.

If propagation delay is short, the selective repeat SW scheme can be a good

candidate to be used in a low bit error rate situation. It is simple, yet has good

throughput performance as a regular selective repeat scheme. However, it is not like

 28

the regular selective repeat scheme in which the buffer restriction prevents new ARQ

blocks from being transmitted.

• Block window retransmission concept can be considered when the number of

available bits in a bitmap for acknowledging ARQ block is too small.

Block window retransmission scheme treats a block-window-size ARQ block as a

unit to acknowledge ARQ blocks. This means that, for example, using 10 bits, 50

ARQ blocks can be acknowledged if there is an average number of 5 ARQ blocks in

one block window. There is no need to use 50 bits to individually acknowledge each

ARQ block.

4. Design of CS 298 Project --- Multiple-copy HARQ

4.1 The BS-side Implementation

4.1.1 Parameter MC and Parameter ICN

Each HARQ channel of the original multi-channel stop-and-wait HARQ scheme

operates independently of each other. A data burst that is unsuccessfully received can

only be retransmitted by its initial sending channel. The proposed multiple-copy HARQ

scheme eliminates aforementioned restriction by adding two parameters in the DL HARQ

Chase sub-burst IE that is contained in the downlink map in the same downlink subframe

as data bursts [16]. One of the parameters is MC (Multiple Copy) that specifies whether

the data bust is the first transmission or not – “false” represents first transmissions and

“true” represents retransmissions. The other one is ICN (Initial Channel Number) that

specifies what the initial sending channel of the data burst is. ICN can be skipped if MC =

false (SS just refers to ACID for the channel number). Using parameters MC and ICN, a

 29

SS can correctly choose erroneous data bursts to combine with retransmitted data bursts

that are received on HARQ channels different from their initial sending channels.

4.1.2 Information Stored in the BS

Figure 3. Information of unACKed data bursts stored in the BS

.

.

.

.

Channel/Process 1

< 1, 2, 0, T >

< 2, 1, 0, F >

< 3, 1, 0, F >

< 4, 1, 0, F >

<C_x, NS_x, NR_x, S_x>

Data burst info:
< initial sending channel number,
total number of copies sent,
total number of NAKs received,
data burst status >

Information of all data bursts that are
transmitted but not yet ACKed is stored
in a queue.

Data burst in T status, i.e. next
channel should send one more
copy of this data burst.

< 1, 2, 1, T>

M_i is only associated with channel i, M_avg is
derived from the M_i of all channels to specify how
many copies the BS should send in contiguous
channels when sending a new data burst.

Note: data burst status S can be one of
the followings

1) F: waiting for Feedbacks
2) T: Transmitting multiple copies
3) R: waiting for Retransmission

M_1=1

Channel/Process 2
M_2=1

Channel/Process n
M_n=1

Queue Q

M_avg = floor[avg(M_1+….+M_n) + 0.5]

 30

As shown in Fig. 3, the BS stores information of all unACKed data bursts in a

queue Q and deletes the data bursts’ information when receiving corresponding ACKs.

The maximum size of the queue is the number of HARQ channels used since all channels

of the multiple-copy HARQ scheme are still using basic stop-and-wait scheme, i.e., a

HARQ channel will not send any data burst before receiving a feedback.

4.1.2 Data Burst Information (C_x, NS_x, NR_x, S_x)

Because a unACKed data burst can be retransmitted on different HARQ channels,

each unACKed data burst is associated with a set of four parameters of its own so that the

BS can choose a correct data burst to retransmit. These four parameters are listed and

explained in Table 2. Parameter C_x for a data burst is set and fixed after the data burst

is transmitted for the first time. The BS refers to C_x to set ICN when it retransmits a

data burst D_x. The NS_x, NR_x, and S_x are changed according to received feedbacks.

The BS refers to NS_x to set MC when it (re)transmits a data burst D_x. How these three

parameters are changed is described as follows (Supposing a data burst D_x has

parameters NS_x, NR_x, and S_x):

i. The NS_x is increased by one when the D_x is either transmitted for the

first time or retransmitted.

ii. The NR_x is increased by one when a channel receives a negative

feedback (NAK) of the D_x.

iii. The data burst status S_x is set to T when sending multiple copies is

needed; the S_x is set to F when the D_x has not received all the

feedbacks (NS_x > NR_x) after sending required multiple copies (or

 31

sending 1 copy if M_avg = 1); the S_x is set to R when the D_x has

received all the feedbacks but still has not been successfully transmitted

(NS_x = NR_x).

C_x Initial sending channel’s channel number of the data burst (fixed
after being set)

NS_x Number of copies of the data burst that have been transmitted
(initially is 0; changeable)

NR_x Number of NAKs of the data burst that have been received (initially
is 0; changeable)

S_x Data burst status. (T, Transmitting multiple copies; F, waiting for
Feedback; R, waiting for Retransmission; changeable)

Table 2. Parameters for a unACKed data burst.

4.1.3 Parameter M_i and Parameter M_avg

The proposed multiple-copy HARQ scheme sends the same data burst through

contiguous HARQ channels when channel conditions become noisy. In order to decide

how many copies to send, two parameters are introduced: M_i and M_avg. The M_avg is

calculated from all M_i’s as shown in equation (1). Each HARQ channel_i is associated

with a parameter M_i of its own. M_i is initially set to 1 for each channel; therefore,

M_avg is also equal to 1 initially, which means that the subsequent channel of a channel,

say channel 1, does not need to send one more copy of the same data burst that was sent

by channel 1. Each HARQ channel’s M_i is adjusted according to received feedbacks,

ACK and NAK. How the M_i is adjusted is described as follows:

i. When a BS receives a NAK of a data bust, D_x, the M_i of the D_x’s

initial sending channel is adjusted to NR_x + 1.

ii. When a BS receives an ACK of the first copy of a data burst, D_x, sent by

channel i, the M_i is adjusted to NR_x + 1. In this case, the M_i always

 32

becomes to 1 since NR_x is always equal to 0 when the feedback of the

D_i’s first copy is an ACK.

M_avg = Floor[Avg(M_1 + M_2 + … + M_N) + 0.5] (1)

Note: N is the number of HARQ channels.

When a HARQ channel is eligible to send a new data burst, the channel checks

M_avg to decide how to send data bursts and how to set the data bursts’ status afterward.

The following describes how.

i. If M_avg is greater than 1, the status of a new data burst D_x sent by

current channel is set to T (The BS has not sent enough copies of the data

burst D_x after current transmission).

ii. If M_avg is 1 or the parameter NS_x of the data burst D_x sent by current

channel is equal to M_avg, the status of the data burst is set to F (The BS

has sent enough copies of the data burst D_x after current transmission).

If the status of a data burst, D_x, is set to T, the subsequent HARQ channel

should send another copy of D_x. After sending a copy of the data burst, D_x, on the

subsequent channel, the BS checks M_avg to decide the status of the D_x again. The

same procedure repeats until the data burst’s status is set to F. Whenever a M_i is

adjusted, the M_avg is also updated before being used by the BS to make decisions on

transmitting data bursts and updating parameters.

The operation of the proposed multiple-copy HARQ scheme that runs at BS side

is described in Fig. 5. Data busts with different statuses have different priorities of being

sent. Data bursts with status T have the highest priority of being sent; data bursts with

 33

status R have second priority of being sent; data bursts have status F have the lowest

priority of being sent. The BS sends data bursts with status F only when there is no data

burst with status T, no data burst with status R, and an outstanding data burst of the

current channel existing (in this case, a new data burst can not be transmitted).

4.1.4 Operation of HARQ Channel i in the BS

Generally speaking, the BS firstly changes information of unACKed data bursts

and updates M_i, and M_avg after receiving a feedback. Secondly, if there is a data burst

with status T, the BS sends one more copy of the data burst with status T and updates

information of this data burst. Thirdly, if there is no data burst with status T, the BS sends

one more copy of data burst with status R, if any, and updates information of this data

burst. Fourthly, if there is no data bust with status R, the BS can send a new data burst if

the following tow conditions are satisfied. First condition is that there should be no

unACKed data burst initially sent by the current channel; otherwise, the BS sends a

unACKed data burst whose information entry is the first element stored in the queue.

Second condition is that the SS buffer capability has not been reached; otherwise, the BS

does not send any data burst. The flow chart of the proposed multiple-copy HARQ

scheme’s operation on channel i in the BS is illustrated in Fig. 4, and the corresponding

description is shown in Fig. 5.

 34

Figure 4. Flow chart of multiple-copy HARQ operation – BS sends data bursts on
channel i.

no

yes no

yes

no

yes

noyes

no
yes

no

yes no

yes no

no yes

no yes

yes no

noyes

ACK NAK

ACKNAK

Channel i sends a new data burst D_x with
MC = false to the SS.

ACK or
NAK?

Delete D x’s entry in Q.

Switch AI_SN. Send a new data
burst D_x with ACID = i and MC
= false to the SS. Add D_x’s info
<i, 1, 0, F> in the queue.

Is there a data burst currently in status T (transmitting)?

Increase NR_x by 1. M_i =
NR_x + 1. Update M_avg.

In the queue, any
data bust is in status
R (waiting for
retransmission)?

Pick first data burst in status R in
the queue. (Suppose it is D_y)
Increase NS_y by 1. Retransmit
D_y to the SS along with ICN =
C_y and MC = true.

Is there an
outstanding data
burst of channel i?

(Suppose it is D_y) Increase NS_y by 1. Retransmit
D_y to the SS along with ICN = C_y and MC = true.

M_avg > NS_i?

Set the data burst’s status as F.

Set data burst’s status as T.

Pick first data burst in the queue.
(Suppose it is D_y) Increase
NS_y by 1. Retransmit D_y to the
SS along with ICN = C_y and
MC = true.

Add D_x’s info
<i, 1, 0, F> into the Q.

ACK or
NAK?

Increase NR_y by 1. M_j =
NR_y + 1. Update M_avg.

Delete D_y’s
entry in Q.

Set data burst’s status as F.

M_avg >
NS_y?

Set data burst’s
status as T.

If NS_x = NR_x, set the
status of D_x as R.

If NS_y = NR_y, set the
status of D_y as R.

y = i?

Receive a feedback
after a fixed delay

Receive a feedback
after a fixed delay

First copy
and M_i
> 1 ?

M i = NR x +1. Update M avg.

y = i?

y = i?

Exceed max
SS buffer
capacity?

 35

Figure 5. Description of multiple-copy HARQ operation in the BS

(I).Initially for channel i := 0 to N { // N is the number of channels
 (1)Send a new data burst D_x to the SS along with MC = false and wait for the feedback
 // first copy of the data burst
 (2).Store entry of the data burst in the queue} end of (I)
(II).For channel i := 0 to N {
 (1)If channel i receives a feedback of a data burst D_x from the SS
 (a). Data burst D_x is initially sent by channel i
 i. If receiving an ACK
 1.If D_x is the first copy and M_i is not equal to 1
 a.Set M_i = NR_x + 1 //set M_i back to 1
 b. Update M_avg = floor[avg(M_1+M_2+….+M_N) + 0.5]
 2.Delete D_x’s entry from the queue
 ii.Else // receiving a NAK
 1.NR_i++, M_i = NR_x + 1
 2.Update M_avg = floor[avg(M_1+M_2+….+M_N) + 0.5]
 3.If all feedbacks for D_x are NAKs // NS_x = NR_x
 a.set S_i as R

 (b). Data burst D_x is not initially sent by channel i
 i.If receiving an ACK
 1.Delete D_x’s entry from the queue
 ii.Else // receiving a NAK
 1.NR_x++, M_j = NR_x + 1
 2.Update M_avg = floor[avg(M_1+M_2+….+M_N) + 0.5]
 3.If all feedbacks for D_x are NAKs // NS_x = NR_x
 a.set S_x as R
 (2).If there is a data burst with status T (supposed it is D_y)

 (a).Retransmit one more copy of D_y to the SS along with ICN = C_y and MC = true
 (b).NS_y++
 (c).If M_avg > NS_y, set S_y = T; otherwise, set S_y = F
Else // no data burst in status T
 (3).If there any data burst in status R
 (a).Retransmit the first data burst (suppose it is D_y) that is in status R in the
 queue along with ICN = C_y and MC = true
 (b).NS_y++
 Else // no data burst in status R
 (4).If there is any data burst in status F initially sent by channel i in the queue
 (a).Retransmit the first data burst (suppose it is D_y) in the queue
 along with ICN = y and MC = true
 (b).NS_y++

Else
 (5).If maximum SS buffer has not reached
 (a).Send a new data burst D_x to the SS along with MC = false
 (b).Adding data burst’s entry in the queue

 (c).If M_avg > NS_x, set S_x as T; otherwise, set S_x as F } end of (II)

 36

4.2 The SS-side Implementation

4.2.1 Operation of HARQ Channel i in the SS

When receiving a data burst, the SS first looks at the data burst’s parameter MC.

MC indicates whether the data burst is the first copy or not. If the data burst is the first

copy, MC = false, the one-bit AI_SN is checked to see if it is a new transmission. The SS

ignores data bursts sent from the same channel with MC = false and also with the same

AI_SN. If the AI_SN is different and MC = false, the SS starts to decode the data burst.

The SS sends an ACK back to the BS if the decoding is successful, otherwise it sends a

NAK back to the BS and stores the erroneously received data burst in the buffer to

combine with retransmissions. Successfully decoded data bursts are sent to the upper

layer in sequence. When the SS receives a retransmission, MC = true, the ICN of the data

burst is checked to identify the initial sending channel of the data burst so that the SS can

correctly combine the retransmitted data burst with the one that is erroneously received

previously. If there is no erroneously received data burst that has the ACID equal to the

retransmitted data burst’s ICN, the erroneously received data burst must have been

recovered by combining with previously retransmitted data bursts, so the SS simply

ignores the retransmitted data burst. If a data burst with error is successfully decoded

after combining, the SS sends the data burst to the upper layer in sequence and sends

back an ACK to the BS. The description of the operation is in Fig. 6, and the flow chart

of the operation is illustrated in Fig. 7.

 37

Figure 6. Description of multiple-copy HARQ operation in the SS

(I).When the SS receives a data burst D_x // receiving one by one
(1)If receiving the first copy of D_x// MC = false.
 (a).If same AI_SN for sending channel i// old data burst
 i.Ignore D_x
 (b).Else // new data burst
 i.Switch AI_SN for channel i
 ii.If successfully decode D_x
 1.Send an ACK back to the BS at a pre-scheduled time
 2.If D_x is in-sequence, then send to the upper layer; otherwise store D_x
 iii.Else// not successfully
 1.Send a NAK back to the BS at a pre-scheduled time
 2.Store D_x for later combining

 (2).Else// second or later copies
 (a).If D_x has already been successfully decoded with previous copies
 i.Ignore D_x
 (b).Else
 i.Combine D_x with the previously stored data burst
 ii.If successfully decode D_x after combining
 1.Send an ACK back to the BS at a pre-scheduled time
 2.Send in-sequence data bursts to the upper layer, otherwise store D_x
 iii.Else// not successfully
 1.Send a NAK back to the BS at a pre-scheduled time
 2.Store D_x for later combining

 38

Figure 7. Flow chart of HARQ operation – SS receives data bursts from channel i.

yes no

no

yes

yes

yes no

yes no

no

yes no

Arrival of a data burst D_x on channel i.

Store the data burst D in the
buffer and wait for other data
bursts that have PDUs with
smaller sequence numbers to be
successful decoded.

Successfully
decoded after
combining?

Receiving the
first copy of
D_x? (MC =
false)

Data burst D
_x is
successfully
decoded?

Data burst D
_x in
sequence?

Deliver the data
burst D and its
subsequent in-
sequence data bursts
to the upper layer.

At a pre-scheduled
time, send a NAK
back to the BS.

Store the data burst
D_x in the buffer
for later combining.

At a pre-scheduled
time, send an ACK
back to the BS.

At a pre-scheduled
time, send a NAK
back to the BS.

Keep the combined
data burst in the
buffer for later
combining.

Is there a stored
data burst that was
not successfully
decoded has an
ACID = D_x’s
ICN?

Combine D_x with the
stored data burst.

Ignore D.

AI_SN_i =
D_x’s
AI_SN?

Switch AI_SN_i.

Ignore D_x.

 39

4.3 Formal Analysis of the Multiple-Copy HARQ Scheme

4.3.1 Correctness Analysis
The most important thing in an ARQ/HARQ mechanism is to transmit data

correctly to receivers and receivers can send data to the upper layer in sequence. We do

the correctness analysis by using mathematical induction.

Firstly, we prove that the BS transmits data bursts correctly and in sequence,

using N channels. Secondly, we prove that the SS sends data bursts to the upper layer in

sequence, using N channels.

1.) The BS sends new data bursts and resends erroneously received data bursts correctly

so that the data bursts sent are in sequence.

1.1) There is only one HARQ channel:

1.1.1) The BS sends a data burst and receives an ACK. The BS sends a new data

burst, so data bursts are sent in sequence.

1.1.2) The BS sends a data burst and receives a NAK. The status of the NAKed data

becomes R, and it is recent again. After receiving an ACK, the BS then sends a

new data burst as in 1.1.1), so data bursts are sent in sequence.

1.2) Suppose that the BS can send data bursts in sequence when using N channels

1.3) Using N + 1 HARQ channels can send data bursts in sequence as well

 1.3.1) Initially, the BS sends a new data burst on (N + 1)th channel, then wait for the

feedbacks.

 1.3.2) Using N channels preserves the correctness as 1.2) supposes, when (N + 1)th

channel receives a feedback, the situations can be one of the followings:

 1.3.2.1) Receiving a feedback for a data burst that was initially sent by itself

After receiving an ACK/NAK: (N + 1)th channel can: 1. send one more

copy of the data burst sent by Nth channel; 2. send one copy of the oldest

waiting-for-retransmission data burst; 3. send one copy of the oldest unACKed

data burst; 4. send a new data bust; 5. do not send any because of buffer

limitation. In situation 1, (N + 1)th channel does not send a new data burst, so

data bursts sent are still correct and in sequence as the situation where only N

 40

channels exist. In situation 2, sending one more copy of a unACKed data burst

only increases the chance of a successful decoding. Data bursts sent are still

correct and in sequence. In situation 3, the same reason as in situation 2. In

situation 4, only when no waiting-for-retransmission data bursts exist, (N + 1)th

channel sends a new data burst. So, data bursts sent are still correct and in

sequence when there are N + 1 channels existing. In situation 5, not sending

data burst has no effect.

1.3.2.2) Receiving a feedback for a data burst that was initially sent by other

channel

After receiving an ACK/NAK: the only difference from 1.3.2.1) is that the

BS updates other channel’s M, so data burst are still sent correctly and in

sequence when there are N + 1 channels existing.

2.) The SS stores out-of-sequence data bursts and waits for those with smaller sequence

number to be successfully recovered so that it can send data bursts to the upper layer in

sequence.

2.1) There is only one HARQ channel:

 2.1.1) The SS successfully decodes a data burst and sends an ACK back to the BS.

Then the SS sends the data burst to the upper layer. So data bursts are sent to the

upper layer in sequence.

 2.1.2) The SS does not successfully decode the data burst and sends a NAK back to

the BS. Then the SS stores the data burst in the buffer. The BS resends the same data

burst to the SS to combine with the stored data burst. Abovementioned procedure

repeats until the data burst is successfully decoded, so data bursts are sent to the upper

layer in sequence.

2.2) Suppose that the SS can deliver data bursts to the upper layer in sequence using

N channels

2.3) Using N + 1 HARQ channels can deliver data bursts to the upper layer in

sequence as well

 2.3.1) Initially, the SS receives a new data burst on (N + 1)th channel. If the data

burst is successfully decoded, the SS sends the data burst to the upper layer if

 41

there is no erroneously received data burst with smaller sequence numbers, or it

stores the data burst and waits for those erroneously received data bursts to be

recovered. If the data burst is not successfully decoded, the SS stored the data

burst for later combining. So data bursts are sent to the upper layer in sequence.

 2.3.2) Using N channels preserves the correctness as 2.2) supposes, when (N + 1)th

channel receives a data bust, the situations can be one of the followings:

2.3.2.1) Receiving the first copy of a data burst

If the data burst is successfully decoded, the SS stores it if it is not in

sequence; otherwise, the SS sends it to the upper layer. If the data burst is not

successfully decoded, the SS stores it. So data bursts are still sent to the upper

layer in sequence.

2.3.2.2) Receiving any following copies of a data burst

The only difference from 2.3.2.1) is that the SS combines it with the same

previously received bad data burst to see if the data burst can be successfully decoded

after combining. If it can, the SS sends in-sequence data bursts to the upper;

otherwise, the SS stores it and asks for retransmission again. So data bursts are still

sent to the upper layer in sequence.

3.) Knowing from 1.) and 2.), by mathematical induction, data bursts can be received in

sequence using N HARQ channels.

4.3.2 Time Analysis of the BS Operation

The timing of sending data bursts on the BS side is the major difference between

the original HARQ scheme and the multiple-copy HARQ scheme. Suppose that a BS can

give a SS as many as N HARQ channels to compensate the delay. Suppose that the

number of retransmission times is T for chase combining scheme to successfully correct

errors. Since retransmissions of a data burst can only be done by the same HARQ channel,

the original HARQ scheme needs T*N + 1 frames (the 1 means the frame in which the

BS sends the last needed copy of data burst) to transmit all needed data bursts to

successfully deliver a correct data burst.

 42

On the other hand, the Multiple-copy HARQ can estimate how many

retransmissions may be needed so that the BS transmits copies of the same data burst

through contiguous HARQ channels. Suppose that the BS estimates S copies are needed.

The actually required copies are 1 + T.

If S is greater or equal to 1 + T (overestimated), there are two situations may

happens:

1) If the number of given channels, n, is equal or greater than 1 + T. The time

required to transmit all needed data bursts to successfully deliver a correct data

burst is as little as (1+T) frames.

2) If the number of given channels, n, is less than 1 + T. The time required to

transmit all needed data bursts to successfully deliver a correct data burst is

floor[(1+T)/n]*N + remainder of (1+T)/n.

If S is smaller than 1 + T (underestimated), there are also two situations may

happens:

1) If the number of given channels, n, is equal or greater than S. The minimum

time required is S + (1+T-S)*N + 1 frames (the 1 means the frame in which the

BS sends the last needed copy of data burst)

2) If the number of given channels, n, is less than S. The minimum time required

is floor[S/n]*N + (remainder of S/n) + (1+T-S)*N + 1.

A summary of the time analysis of both HARQ schemes is shown in Table 3.

(Unit of time is frame).

 43

 Conditions

HARQ Scheme

1+T

S >= 1 + T

(overestimated)

S < 1 + T

(underestimated)

Original WiMAX

HARQ

T*N + 1 N/A N/A

Mulitple-copy

HARQ

T*N + 1

(Note 1)

(1+T) or

floor[(1+T)/n]*N +

remainder of (1+T)/n

S + (1+T-S)*N + 1 or

floor[S/n]*N + (remainder

of S/n) + (1+T-S)*N + 1

(Note 2)

Note 1. The mechanism of sending multiple copies has not been triggered.
Note 2. Minimum time required

Table 3. A summary of time analysis of both HARQ schemes

4.3.3 Space Analysis of the BS Operation

In addition to parameters that are required in current WiMAX HARQ

implementation such as ACID and AI_SN, the proposed multiple-copy HARQ requires

additional parameters that are either stored in the BS or transmitted with data bursts to

accomplish the task of sending multiple copies correctly.

A set of four parameters <C_x, NS_x, NR_x, S_x> is associated with a unACKed

data burst. All sets of four parameters are stored in a queue Q in the BS. Space required

for each parameter is list as follows.

• C_x: ceil[log2N] bits (N is the number of channels)

• NS_x: ceil[log2(R+1)] bits (R is the maximum allowable retransmission time,

+1 is for the first transmission)

 44

• NR_x:ceil[log2(R+1)] bits (R is the maximum allowable retransmission time,

+1 is for the first transmission)

• S_x: 2 bits (00 for status T, 01 for status F, 10 for status R, 11 is reserved)

A queue Q stores all sets of four parameters for unACKed data bursts. There is

only one unACKed data burst for one HARQ channel because each HARQ channel uses

stop-and-wait scheme. The queue Q is stored in the BS. The following is the upper bound

of the queue Q.

• Queue Q: N*(size of <C_x, NS_x, NR_x, S_x>) bits (N is the number of

channels)

The parameters MC and ICN are sent in the DL Map within the same DL

subframe where the associated data burst locates.

• MC: 1 bit (1 for true; 0 for false)

• ICN: ceil[log2N] bits (N is the number of channels)

One parameter M_i is associated with one HARQ channel_i, which means that N

HARQ channels need N*M_i; there is only one M_avg that derived from all M_i. All the

M_i and the M_avg are stored in the BS.

• All M_i: N*ceil[log2(R+1)] bits (N is the number of HARQ channels, R is the

maximum allowable retransmission time, +1 is for the first transmission)

• M_avg: ceil[log2(R+1)] bits (R is the maximum allowable retransmission time,

+1 is for the first transmission)

 45

5. Performance Evaluations of Multiple-Copy HARQ

5.1 Synchronous DL and UL

The multiple-copy HARQ scheme and the original stop-and-wait HAQR scheme

are implemented by using Java. The timings of sending and receiving data bursts are

carefully organized so that a synchronous operation for both UL (Up Link) feedbacks and

DL (Down Link) data transmissions can be accurately simulated [2]. As shown in Fig. 8,

operations of one data burst transmitted to the SS (in downlink subframe) and one

feedback received from the SS (in uplink subframe) are done during one frame, and each

data bust’s feedback is received after a fixed delay (there are 5 frames delay in Fig. 8) .

The feedback delay is the only delay we consider in the simulation.

Figure 8. HARQ operation with six HARQ channels to compensate five frames
feedback delay

The number of HARQ channels given to the SS is decided by the BS. If the BS

has more available resources, it can give the SS enough HARQ channels to compensate

the delay caused by using simple stop-and-wait ARQ scheme. Sometimes the SS may get

Channel 1’s
data burst in DL
subframe.

Each channel performs a
stop-and-wait scheme.

frame
i

frame
i+1

frame
i+2

frame
i+3

frame
i+4

frame
i+5

Channel 0’s
data burst in DL
subframe.

Channel 0’s
ACKs/NAKs in
UL subframe

frame
i+6

Channel 0’s
data burst in DL
subframe.

 46

less HARQ channels than it needs to keep the pie full. Generally speaking, the delay is

composed of propagation delay, SS processing time, feedback delay, and BS processing

time [2].

5.2 Simulation Topology and Models

The simulation demonstrates one HARQ operation running between one BS and

one SS. The uplink feedback channel is assumed to be error-free, and the BS is assumed

to have a full traffic load for the SS. Both original multi-channel stop-and-wait HARQ

scheme and proposed multiple-copy HARQ scheme are simulated. The simulation

topology is illustrated in Fig. 9.

Figure 9. Simulation topology of HARQ schemes

5.3 Chase Combining

The type of HARQ considered in this project is the Chase Combining. The

erroneously received data bursts are stored in the SS buffer for later combining with

BS
SS 2

SS 1

SS 3

HARQ

HARQ

HARQ

 47

retransmissions. The size of the data busts are the same for both first transmission and

retransmissions.

Reference [11] mentions when the Chase Combining HARQ is applied for a

simulation, a valid approach is to simply add the Es/No (symbol energy to noise ratio)

values of each individual packet to get a resulting or combined Es/No after the combining.

Reference [26] says that in a low BLER (Block Error Rate) situation, a successful

transmission would have happened after one retransmission. In our simulation, we

supposed that one retransmission is required in a normal channel condition (10% BLER

[24]) as suggested in [26]. As for relatively higher BLER (> 60% BLER) channel

conditions during noise bursts, the retransmission time required for the chase combining

is reasonably assumed. We assume that the maximum number of retransmissions for a

successful data burst transmission is 4 times. When the chase combining is used, the

number of required retransmissions should be lower than simply discarding packets and

asking for a retransmission. Therefore, a reasonably defined retransmission time required

for a successful transmission under different BLER channel conditions is shown in Table

4.

Retransmissions required for chase combining BLER

1 time 10% BLER

80% 1 time, 20% 2 times 60% BLER

75% 4 times, 25% 3 times 90% BLER

Table 4. Chase Combining modeling

 48

4.4 Noise Burst Conditions

Noise bursts make channel condition of wireless communications unpredictable

so that the AMC (Adaptive Modulation and Coding) scheme chosen by a BS cannot

always achieve a targeted low BLER, causing a higher BLER for data transmissions. To

simulate the noise burst situations, three factors are considered: one is the occurrence rate

of noise bursts, NO; another one is the duration of a noise burst (in frames), ND; and the

last one is the BLER during noise bursts. The occurrence rate of noise bursts specifies

how often a noise burst can happen, and the noise burst duration specifies how long a

noise burst is maintained. Different combinations of these three factors can result in

different overall block error rates, as shown in equation (2). These three factors can be

adjusted to analyze their impacts on the performance of HARQ schemes. Four

combinations of the three factors used in the simulation are listed in Table 5. During a

noise burst condition, for simplicity, the BLER stays the same.

Overall BLER = (1-NO*ND)*BLERn + (NO*ND)*BLERb (2)

Note: BLERn means the BLER during the normal channel condition.
 BLERb means the BLER during noise bursts.

Occurrence
Rate of Noise
Bursts

Duration of a
Noise Burst

BLER During
Noise Bursts

Overall
BLER

1/1000 100 60% 15%

1/1000 100 90% 18%

5/1000 100 60% 35%

5/1000 100 90% 50%

Table 5. Noise burst modeling

 49

5.5 Simulation Settings

Simulation settings note
Transmission Timing Synchronous
HARQ type Chase Combing
Frame Size 5 ms
DL Peak Data Rate 64 Mbps (DL/UP = 1)
Number of SS 100
Duplexing Mode TDD Time Division Duplex
Number of Channels 4, 6, 8, 12, 16
Simulation Duration 100000 frames
Normal Channel Condition 10% BLER
Channel Condition During
Noise Bursts 60% and 90% BLER

Noise Burst Occurrence
Rate 1/1000 and 5/1000

Retransmission Time 1, 2, 3, or 4 Also refer to Table 4.
Data Burst Size 1536 bits
Buffer Size 4 to 19 Size of data burst
Noise Burst Duration 100 frames

Table 6. Simulation settings

5.6 Simulation Criteria

1) Throughput

The system throughput is defined as the total bits of successfully received data

bursts per second. Each frame length is fixed as 5 ms and one frame contains one data

burst that has 1536 bits for a particular SS.

2) Average Data Bursts Waiting Time in the SS Buffer

A successfully transmitted data burst has to wait for other unsuccessfully

transmitted data bursts that have PDUs with smaller sequence number in order to be

delivered to the upper layer in sequence. The data burst waiting time in the SS buffer is

 50

defined as the time it takes for a data burst from being received by the SS to the moment

the SS sends the data burst to the upper layer.

3) Maximum Buffer Occupancy

Data bursts are buffered if they are erroneously received or out-of-sequence.

Buffer occupancy will grow bigger and bigger if more out-of-sequence data bursts are

waiting for a data burst with the smallest PDU sequence number to be successfully

decoded. The maximum buffer occupancy is the biggest value of how many data bursts

buffered in the SS throughout the simulation.

4.7 Simulation Results

In this section we present simulation results of the proposed multiple-copy HARQ

scheme and the original HARQ scheme. The principal comparisons of these two schemes

are throughput (kbit/s) performance and average waiting time (ms) performance.

Performance evaluations are done under four different channel conditions. For the

purpose of easier referrals, each channel condition used in the simulation is assigned an

upper-case letter to it. Channel conditions and their associated letters are listed as

follows. (Noise burst duration is 100 frames for all channel conditions).

1. A --- BLER = 60 % during noise bursts, noise burst occurrence rate =

1/1000.

2. B --- BLER = 90 % during noise bursts, noise burst occurrence rate =

1/1000.

3. C --- BLER = 60 % during noise bursts, noise burst occurrence rate =

5/1000.

 51

4. D --- BLER = 90 % during noise bursts, noise burst occurrence rate =

5/1000.

The ratio of MC/OR is to compare the performance of two HARQ schemes

(simulation result of multiple-copy HARQ scheme over original HARQ scheme). As

shown in Fig. 12, 13, 17, and 18, throughput performance and average waiting time are

compared under the situation where the buffer size is equal to the number of HARQ

channels given to a SS, i.e., a SS has buffer size of 4 data bursts when giving 4 HARQ

channels to this SS.

1) The effects of SS buffer space

Configuration: 4 HARQ channels; buffer space increases from 4 to 7; simulated in

channel condition A, B, C, and D.

In addition to knowing that the original HARQ scheme inherently has higher

throughput than the multiple-copy HARQ scheme, we also investigate how the size of the

SS buffer can influence both HARQ schemes’ performances.

The throughput performance of both schemes, using 4 HARQ channels, with a

buffer sizes ranging from 4 to 7 is shown in Fig. 10. Generally speaking, lower

throughput performance occurs when the channel condition has high overall BLER, as in

condition D. The throughput performance of the multiple-copy HARQ scheme is

improved only slightly by the increase of the SS buffer size because the multiple-copy

scheme encounters high buffer occupancy less frequently; on the other hand, the

throughput performance of the original HARQ has a noticeable increase when buffer size

 52

increases. As the buffer size increases, the variation of average waiting time for both

schemes using 4 HARQ channels can be seen in Fig. 11. In condition A and B, the

multiple-copy HARQ scheme and the original HARQ scheme have very little difference

in average waiting time due to similar operations between two HARQ schemes in low

overall BLER channel conditions, about 4 ms, despite the buffer size increases from 4 to

7. A bigger difference in average waiting time can be seen in condition C and D, 21 ms

and 30 ms respectively; nevertheless, the increase in buffer size still does not have too

much influence on average waiting time.

0

10

20

30

40

50

60

70

A B C D

Channel Condition

Th
ro

ug
hp

ut
 (k

bp
s)

OR, 4
OR, 5
OR, 6
OR, 7
MC, 4
MC, 5
MC, 6
MC. 7

Figure 10. Throughput comparison of both HARQ schemes with different numbers
of buffer size.

 53

0

10

20

30

40

50

60

70

80

A B C D

Channel Condition

Ti
m

e
(m

s)
OR, 4
OR, 5
OR, 6
OR, 7
MC, 4
MC, 5
MC, 6
MC. 7

Figure 11. Average waiting time comparison of both HARQ schemes with different
number of buffer size.

2) The effects of number of HARQ channels used

Configurations: HARQ channel increases from 4 to 16; buffer space is equals to

the number of HARQ channels; simulated in channel condition A, B, C, and D.

A SS can be given more HARQ channels if a BS has more bandwidth resource for

that SS; therefore, we investigate how throughput performances of both HARQ schemes

are affected when HARQ channels increases from 4 to 16. The multiple-copy HARQ

scheme applies the same (re)transmission mechanism as the original HARQ scheme

when the channel condition has low overall BLER, as in channel condition A. Therefore,

the multiple-copy HARQ scheme’s throughput performance is almost as high as the

original HARQ scheme’s (94% to 99%), as shown in Fig. 12. Also, using multiple-copy

 54

HARQ scheme makes the average waiting time becomes shorter (81% to 90%) compared

with the original HARQ scheme, as shown in Fig. 13.

The mechanism of sending multiple copies of the same data burst through

contiguous HARQ channels is more likely to be triggered for the multiple-copy HARQ

scheme when the channel’s overall BLER becomes higher, as in condition D. Therefore,

the throughput performance of the multiple-copy HARQ scheme decreases (73% to 80%

of the original HARQ scheme’s throughput) due to sending some unnecessary copies of

data bursts, as shown in Fig. 12. However, the average waiting time is dramatically

decreased (52% to 59% of the original HARQ scheme’s average waiting time), as shown

in Fig. 13.

In Fig. 12, MC/OR ratio shows that increasing channels helps multiple-copy

HARQ scheme gain relatively higher throughput compared with the original HARQ

scheme because the M_avg is updated more frequently to reflect channel conditions when

more HARQ channels are used. When fewer HARQ channels are used, the multiple-copy

HARQ scheme reduces relatively more average waiting time compared with the original

HARQ scheme because sending multiple copies is triggered more quickly when a small

number of HARQ channels are used, as shown in Fig. 13.

 55

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

A B C D

Channel Condition

M
C

/O
R

 R
at

io 4 channels
6 channels
8 channels
12 channels
16 channels

Figure 12. Throughput comparison of both HARQ schemes (MC/OR ratio) when
using different number of HARQ channel.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

A B C D

Channel Condition

M
C

/O
R

 R
at

io 4 channels
6 channels
8 channels
12 channels
16 channels

Figure 13. Average waiting time comparison of both HARQ schemes (MC/OR ratio)
when using different numbers of HARQ channel.

 56

3) Maximum buffer occupancy

Configurations: HARQ channel increases from 4 to 16; buffer space is unlimited;

simulated in channel condition A, B, C, and D.

The maximum buffer occupancy of both HARQ schemes is examined (when

buffer is unlimited), simulation results are shown in Fig. 14. Both HARQ schemes have

similar maximum buffer occupancy when retransmission times of data burst are low (1

time), as in channel condition A and C. When the retransmission time is high (4 times),

as in channel condition B and D, the multiple-copy HARQ scheme sends more copies on

contiguous HARQ channels so that unsuccessfully received data bursts are recovered

quicker and sent to upper layer with other in-sequence data bursts; therefore, the buffer

occupancy is reduced.

0

5

10

15

20

25

30

35

A B C D

Channel Condition

M
ax

im
um

 B
uf

fe
r O

cc
up

an
cy

OR, 4
OR, 6
OR, 8
OR, 12
OR, 16
MC, 4
MC, 6
MC, 8
MC, 12
MC, 16

Figure 14. Maximum buffer occupancy comparison of both HARQ schemes.

 57

4) The effects of unlimited buffer space

Configurations: HARQ channel increases from 4 to 16; buffer space is unlimited;

simulated in channel condition A, B, C, and D.

We compare throughput performance and average waiting time when the buffer

size is unlimited to see the full performance of both HARQ schemes in different channel

conditions, simulation results are shown in Fig. 15 and Fig. 16.

The ratio of MC/OR becomes higher when the given number of HARQ channels

increases, as shown in Fig. 15, which means that increasing channels helps multiple-copy

HARQ scheme gain relatively higher throughput compared with the original HARQ

scheme because the M_avg is updated more frequently to reflect channel conditions when

more HARQ channels are used. Undoubtedly, the multiple-copy HARQ scheme

tremendously reduces average waiting time when the channel condition is noisy, as in

condition C and D. How the average waiting time of both HARQ schemes is affected

when using more HARQ channels is shown in Fig. 16. When fewer HARQ channels are

used, the multiple-copy HARQ scheme reduces relatively more average waiting time

compared with the original HARQ scheme because sending multiple copies is triggered

more quickly when a small number of HARQ channels are used.

 58

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A B C D

Channel Condition

M
C

/O
R

 R
at

io 4 channels
6 channels
8 channels
12 channels
16 channels

Figure 15. Throughput comparison of both HARQ schemes (MC/OR ratio) when
using different numbers of HARQ channel (no buffer limitation).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A B C D

Channel Condition

M
C

/O
R

 R
at

io 4 channels
6 channels
8 channels
12 channels
16 channels

Figure 16. Average waiting time comparison of both HARQ schemes (MC/OR
ratio)when using different numbers of HARQ channel (no buffer limitation).

 59

5) A non-IEEE approach

 Configurations: HARQ channel increases from 4 to 16; buffer space is equals to

the number of HARQ channels; simulated in channel condition A, B, C, and D.

We also investigate the throughput performance and the average waiting time for

a situation where the buffer control is done in the SS, i.e., the BS keeps sending data

bursts and the SS sends back a NAK if it encounters a buffer overflow situation,

simulation results are shown in Fig. 17 and Fig. 18. Basically, both HARQ schemes’

throughput performances become higher and average waiting times become lower

because the SS can accept data bursts right away if any data bursts get sent to upper layer.

As we can see from the MC/OR ratios (in Fig. 12, 13, 17, and 18), the non-IEEE

approach has a very similar simulation results as the IEEE approach. The subtle

difference in that the multiple-copy HARQ scheme’s throughput performance becomes

slightly less efficient in all channel conditions, and the reduction of average waiting time

becomes slightly less efficient as well in condition D. However, using multiple-copy

HARQ scheme still significantly reduces the average waiting time at a relatively small

cost of throughput decreasing.

 60

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

A B C D

Channel Condition

M
C

/O
R

 R
at

io 4 channels
6 channels
8 channels
12 channels
16 channels

Figure 17 Throughput comparison of both HARQ schemes (MC/OR ratio) when
using different number of HARQ channel (non-IEEE approach)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

A B C D

Channel Condition

M
C

/O
R

 R
at

io 4 channels
6 channels
8 channels
12 channels
16 channels

Figure 18. Average waiting time comparison of both HARQ schemes (MC/OR ratio)
when using different numbers of HARQ channel (non-IEEE approach)

 61

The following is the summary of the simulation results mentioned above,

regarding throughput performance, average waiting time, and maximum buffer

occupancy.

• If noise bursts’ occurrence rate is low and BLER is also low during noise bursts, the

multiple-copy HARQ scheme can have throughput as high as the original HARQ

scheme’s and also have slightly lower average waiting time than the original HARQ

scheme’s.

• If noise bursts’ occurrence rate is high and BLER is also high during noise bursts, the

multiple-copy HARQ scheme’s average waiting time is dramatically decreased

compared with the original HARQ scheme’s; in the same situation, the throughput of

the multiple-copy HARQ scheme decreases, but not as much as its average waiting

time.

• When giving more SS buffer, the original HARQ scheme has a noticeable increase in

throughput in all channel conditions; on the other hand, the multiple-copy HARQ

scheme’s throughput only increases a little bit when giving more SS buffer.

• Generally, the average waiting time of both multiple-copy HARQ scheme and

original HARQ scheme is barely affected by the increase of SS buffer (SS buffer >=

number of HARQ channels). Except for a channel condition where noise bursts’

occurrence rate is high and BLER is high during noise bursts, the average waiting

time of the original HARQ scheme decreases when giving more SS buffer.

 62

• If more HARQ channels are given, the throughput performance of the multiple-copy

HARQ scheme gets closer to that of the original HARQ scheme in almost all channel

conditions except in a channel condition where noise bursts’ occurrence rate is high

and BLER is high during noise bursts.

• If more HARQ channels are given, using the multiple-copy HARQ scheme reduces

less average waiting time in almost all channel conditions except in a channel

condition where noise bursts’ occurrence rate is high and BLER is high during noise

bursts.

• In channel conditions where BLER is high during noise bursts (more retransmissions

are needed), using multiple-copy HARQ scheme has lower maximum buffer

occupancy. In other channel conditions, both HARQ schemes have similar maximum

buffer occupancy.

• Simply dropping data when encountering buffer overflows at the SS side has higher

throughput and lower average waiting time than conducting buffer control at the BS

side; however, using multiple-copy HARQ scheme in this condition becomes less

efficient in throughput performance (MC/OR of throughput is lower).

6. Conclusions

6.1 Project Achievements

The original stop-and-wait HARQ scheme uses HARQ channels that are

independent of each other; therefore, retransmission delay may become large because

retransmissions can only be done by the initial sending channel. The proposed multiple-

 63

copy HARQ scheme has the mechanism of sending multiple copies of the same data burst

through contiguous channels when channel conditions become noisy, so data bursts that

need retransmissions have a shorter waiting time in the SS buffer. In this project, we

examine the performances of the multiple-copy HARQ scheme and the original stop-and-

wait HARQ scheme. Based on simulation results, the multiple-copy HARQ scheme can

have a low of about 56% average waiting time of the original HARQ scheme’s average

waiting time, yet the throughput of the multiple-copy HARQ scheme can still reach 73%

of the original HARQ scheme’s throughput. Therefore, the proposed multiple-copy

HARQ scheme can be very beneficial to wireless communication networks that easily

suffer from noise bursts and require more retransmissions.

6.2 Future Enhancements

The proposed multiple-copy HARQ scheme uses a simple scheme, derived from

ACK/NAK feedbacks sent back to the BS, to estimate channel conditions in order to

decide how many multiple copies are required to handle bad channel conditions. The

throughput performance of the proposed multiple-copy HARQ scheme could decline

when sending more copies than necessary. To estimate changing channel conditions

precisely is difficult and not realistic; therefore, a scheme that can quickly adapt to

channel conditions is truly desirable. Each SS may be given a different number of HARQ

channels based on available resources in the BS. If a HARQ scheme purely relies on

ACK/NAK feedbacks to adapt channel conditions, having fewer HARQ channels may

reduce the correctness of estimating a channel’s condition due to receiving fewer

feedbacks. Hence, it would be better to reply on some existing functions that constantly

examine channel conditions and provide feedbacks to the BS. The channel quality

 64

indicator (CQI) reports channel condition regularly. A BS may make use of CQI

information to get sufficient channel condition feedbacks regardless of how many HARQ

channels are given to the SS. Lastly, the proposed multiple-copy HARQ scheme currently

works on synchronous mode; therefore, it can also be further enhanced to work on

partially asynchronous mode or fully asynchronous mode. In conclusion, future

enhancements can be done probably in two major aspects: being more adaptive to

channel conditions and relying on regularly received feedback information.

 65

6. References
[1] 3rd Generation Partnership Project, TSG-RAN Working Group 1, "Text Proposal

for the TR 25.848", January 15 – 19, 2001. Retrieved July 10, 2007, from
http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/ TSGR1_18/ Docs/PDFs/R1-01-
0124.pdf

[2] 3rd Generation Partnership Project, “Technical Specification Group Radio Access
Network; Physical Layer Aspects of UTRA High Speed Downlink Packet Access”, V
4.0.0, 2001 – 2003. Retrieved Aug. 1, 2007, from
http://www.3gpp.org/ftp/Specs/html-info/25848.htm

[3] M. Aghadavoodi Jolfaei, K. Aghadavoodi Jolfaei, S. Baucke and J. Kaltwasser,
“Improved Selective Repeat ARQ Schemes for Data Communication”, Proceedings
of IEEE Vehicular Technology Conference, vol.3, pp.1407 - 1411, June 8-10, 1994

[4] S. S. Ara, A. M. Shah and M. Matsumoto, “An Efficient Selective-repeat ARQ
Scheme for Half-duplex Infrared Links under High Bit Error Rate Conditions”,
Proceedings of IEEE Consumer Communications and Networking Conference, Vol.
2, pp.1088 - 1092, Jan. 8-10, 2006

[5] S. S. Ara, A. M. Shah and M. Matsumoto, “Block Window Retransmission ARQ
Scheme for Next Generation High Speed IrDA Links”, Proceedings of IEEE
International Symposium on Wireless Pervasive Computing, pp.1 - 4, Jan. 16-18,
2006

[6] G. Benelli, “Some ARQ protocols with finite receiver buffer”, Proceedings of
IEEE Transactions on Communications, Vol. 41, Issue 4, pp.513 - 523, April 1993

[7] H. Bruneel and M. Moeneclaey, “On the Throughput Performance of Some
Continuous ARQ Strategies with Repeated Transmissions”, Proceedings of IEEE
Transactions on Communications, Vol. 34, Issue 3, pp. 244 - 249, Mar. 1986

[8] J. Chen and J. Wang, “A novel selective repeat stop-wait ARQ for half-duplex
channels”, Proceedings of IEEE Region 10 Conference on Computers,
Communications, Control and Power Engineering, Vol. 2, pp.1238 – 1241, Oct. 28-
31, 2002

[9] K. D. Chase, “Code Combining: A maximum-likelihood Decoding Approach for
Combining an Arbitrary Number of Noisy Packets,” IEEE Transactions on
Communications, vol. 33, pp. 593–607, May 1985

[10] M. W. El Bahri, H. Boujernaa and M. Siala, “ Performance Comparison of type I,
II, and III Hybrid ARQ Schemes over AWGN Channels”, IEEE International
Conference on Industrial Technology, Volume 3, pp. 1417-1421, Dec. 8-10, 2004

[11] F. Frederiksen and T. E. Kolding, “Performance and Modeling of
WCDMA/HSDPA Transmission/H-ARQ Schemes”, Proceedings of 2002 IEEE 56th
Vehicular Technology Conference, Volume 1, pp. 472-476, Sept. 24-28, 2002

 66

[12] R. Fantacci, “Performance evaluation of efficient continuous ARQ protocols”,
IEEE Transactions on Communications, Vol. 38, Issue 6, pp. 773 – 781, June 1990

[13] S. Falahati, T. Ottosson, A. Svensson and Z. Lin, “Convolutional Coding and
Decoding in Hybrid Tyep-II ARQ Schemes on Wireless Channels”, IEEE 49th
Vehicular Technology Conference, Volume 3, pp. 2219-2224, May 16-20, 1999

[14] O. Gurbuz and E. Ayanoglu, “A Transparent ARQ Scheme for Broadband
Wireless Access”, Proceedings of IEEE Wireless Communications and Networking
Conference, Vol. 1, pp.423 - 429, 21-25 March 2004

[15] IEEE, 802.16 IEEE Standard for Local and Metropolitan Area Networks, Part 16:
Air Interface for Fixed Broadband Wireless Access Systems, 2004

[16] IEEE, 802.16 IEEE Standard for Local and Metropolitan Area Networks, Part 16:
Air Interface for Fixed and Mobile Broadband Wireless Access Systems, 2005

[17] W. S. Jeon and D. G. Jeong, “Improved Selective Repeat ARQ Scheme for
Mobile Multimedia Communications”, IEEE Communications Letters , Vol. 4, Issue
2, pp. 46 – 48, Feb. 2000

[18] L. Kleinrock and H. Opderbeck, "Throughput in the ARPANET—Protocols and
Measurement", IEEE Transactions on Communications, Vol. 25, Issue 1, pp. 95-104,
Jan. 1977

[19] P. Kosut and J. Polec, “Investigation into Optimum Go-Back-N ARQ Strategy of
Bruneel and Moeneclaey”, IEEE Electronics Letters, Vol. 36, Issue 4, pp. 381 - 382,
Feb. 17, 2000

[20] S. Kallel, “Complementary Punctured Convolutional (CPC) Codes and Their
Applications”, IEEE Transactions on Communication, Volume 43, Issue 6, pp. 2005-
2009, June 1995

[21] S. Kallel, “Efficient Stop-and-Wait Type II hybrid ARQ scheme”, IEEE
Electronics Letters, Volume 28, Issue 12, pp. 1097 – 1098, June 4, 1992

[22] S. Kallel and C. Leung, “Efficient ARQ Schemes with Multiple Copy Decoding”,
IEEE Transactions on Communications, Volume 40, Issue 3, pp. 642 – 650, March
1992

[23] The Illinois Network Design and EXperimentation (INDEX) Group, Referred
September 3, 2006, from http://www.j-sim.org/

[24] WiMAX Forum, “WiMAX System Evaluation Methodology”, version 1.0,
1/20/2007

[25] WiMAX Forum, “Mobile WiMAX – Part II: A comparative Analysis”, May 2006

[26] WINNER, “Test Scenarios and Calibration Cases Issue 2”, IST-4-027756
WINNER II, D6.13.7 v1.00, Dec. 31, 2006, Retrieved July 15, 2007, from
https://www.ist-winner.org/WINNER2-Deliverables/D6.13.7.pdf

 67

[27] H. Zheng, A. Lozano and M. Haleem, ”Multiple ARQ Processes for MIMO
Systems”, The 13th IEEE International System Symposium on Personal, Indoor and
Mobile Radio Communication, Vol. 3, pp. 1023-1026, Sept. 15-18, 2002

 68

Appendix A: Source Code
• Multiple-copy/Original HARQ Scheme (BS operation)

import java.util.Iterator;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Vector;
/**
 * This class simulates HARQ's operations. Each HARQ process runs one after another, receiving
 * feedbacks and then sending data bursts to the Subscriber Station.
 * @author Yucheng
 */
public class HARQ_SIM {
 private int process_num; //number of HARQ process
 private int SimDuration; //duration of simulation in frames
 private double M = 1; //M'
 private int[] AI_SN; //AI_SN for each HARQ process
 private SS_HARQ SS; //HARQ handler in the SS
 private int SN = 0; //sequence number of current data burst being sent
 private boolean initial = true; //for initializing purpose
 private Queue<String> feedbackQueue;//a queue that stores feedbacks from the SS
 private Vector<DataInfo> queue = new Vector<DataInfo>(); //data bursts information queue
 private Vector<HARQ_process> process = new Vector<HARQ_process>();// processes queue
 private boolean multipleCopy; //true, mulitple-copy HARQ is enabled; false, original HARQ is enabled
 private boolean limit_buffer = false;//if limiting buffer is enabled
 private int buffer_limit = 4; //given buffer size
 private int maximum_process = 16;//max number of process, also used as feedback delay
 private boolean SSlimit_buffer = false;//if SS-side buffer limit is enabled
 /**
 * HARQ_SIM constructor
 *@param simDur duration of the simulation
 *@param proNum number of processes
 *@param MC multiple-copy is enabled or not
 *@param limit_buffer buffer is limited or not; 1-->limited on BS side, 2-->limited on SS side
 *@param Channel_condition control setting of channel condition
 */
 public HARQ_SIM(int simDur, int proNum, boolean MC, int limit_buffer, int BL_num, int
Channel_condition){
 SimDuration = simDur;
 process_num = proNum;
 multipleCopy = MC;
 if(limit_buffer == 1){
 this.limit_buffer = true;
 }else if(limit_buffer == 2){
 SSlimit_buffer = true;
 }
 buffer_limit = BL_num;
 feedbackQueue = new LinkedList<String>();
 AI_SN = new int[maximum_process];
 for(int i = 0; i < maximum_process; i++){
 AI_SN[i] = 0;//initialize AI_SN for each process
 if(i<process_num){
 process.add(new HARQ_process(i, 1));//initialize processes
 }else{
 process.add(new HARQ_process(i, 0));//initialize processes (not used)

 69

 }
 }
 SS = new SS_HARQ(maximum_process, SSlimit_buffer, BL_num, Channel_condition);
 }
 /**
 * Start the simulation
 */
 public Results start(){
 Results r = null;
 int channel = 0;//rotate processes (0 - process_num)
 int pn;//process number, for updating AI_SN
 int seq_num; //first pdu sn in the data burst being sent
 while(SimDuration > 0){
 if(channel == maximum_process){
 initial = false;
 channel = 0; //rotating to the fist process
 }
 HARQ_process p = process.get(channel);//one process after another gets to operate
 if(initial){
 if(channel < process_num){
 p = process.get(channel);
 p.addInfo(queue, SN, M);
 SS.processDataBursts(channel, channel, 0, 0, feedbackQueue, SN);
 SN += 10;//10 PDUs in a data burst
 }else{
 SS.processDataBursts(channel, channel, 1, 0, feedbackQueue, -1);
 }
 channel++;//next channel
 SimDuration--;
 }else{
 String feedback = feedbackQueue.remove();
 //multiple copy HARQ mechanism
 if(multipleCopy){
 if(channel >= process_num){
 SS.processDataBursts(channel, channel, 1, AI_SN[channel], feedbackQueue, -1);
 }else{
 if(limit_buffer){//buffer is limited
 if(feedback.equalsIgnoreCase("ACK")){
 boolean update = p.ACKupdate(queue);
 if(update){
 calculateM();
 }
 }else if (feedback.equalsIgnoreCase("NAK")){
 p.NAKupdate(queue, process);
 calculateM();
 }
 if(p.checkT(queue)){//data burst in status T
 seq_num = p.sendMC(queue, M);
 }else{//no data burst in status T
 if(p.checkR(queue)){//any data burst in status R
 seq_num = p.resendDataBurst(queue);
 }else{//NO data burst in status R
 if(p.outstandingACID(queue)){
 seq_num = p.sendExtraDataBurst(queue);
 }else{
 if(okToSend()){//check max buffer

 70

 pn = p.sendNewDataBurst(queue, SN, M);
 seq_num = SN;
 SN += 10;
 if(AI_SN[pn] == 0){
 AI_SN[pn] = 1;
 }else{
 AI_SN[pn] = 0;
 }
 }else{
 p.notSendNewDataBurst();
 seq_num = SN;
 }
 }
 }
 }
 //SS operations
 SS.processDataBursts(channel, p.getICN(), p.getMC(), AI_SN[p.getICN()], feedbackQueue, seq_num);
 }else{//buffer is not limited
 if(feedback.equalsIgnoreCase("ACK")){
 boolean update = p.ACKupdate(queue);//dataInfo queue
 if(update){
 calculateM();
 }
 }else if (feedback.equalsIgnoreCase("NAK")){
 p.NAKupdate(queue, process);
 calculateM();
 }
 if(p.checkT(queue)){//data burst in status T
 seq_num = p.sendMC(queue, M);
 }else{//no data burst in status T
 if(p.checkR(queue)){//any data burst in status R
 seq_num = p.resendDataBurst(queue);
 }else{//NO data burst in status R
 if(p.outstandingACID(queue)){
 seq_num = p.sendExtraDataBurst(queue);
 }else{
 pn = p.sendNewDataBurst(queue, SN, M);
 seq_num = SN;
 SN += 10;
 if(AI_SN[pn] == 0){
 AI_SN[pn] = 1;
 }else{
 AI_SN[pn] = 0;
 }
 }
 }
 }
 //SS operations
SS.processDataBursts(channel, p.getICN(), p.getMC(), AI_SN[p.getICN()], feedbackQueue, seq_num);
 }
 }
}else{// Original SW HARQ operation
 if(channel >= process_num){
 SS.processDataBursts(channel, channel, 1, AI_SN[channel], feedbackQueue, -1);
 }else{
 if(limit_buffer){//limit buffer at BS side

 71

 if(feedback.equalsIgnoreCase("ACK")){
 p.deleteInfo(queue);
 if(okToSend()){//ok to send a new data burst
 if(AI_SN[channel] == 1){
 AI_SN[channel] = 0;
 }else{
 AI_SN[channel] = 1;
 }
 p.addInfo(queue, SN, 0);// 0 is for M, not used here
 SS.processDataBursts(channel, channel, 0, AI_SN[channel], feedbackQueue, SN);
 SN += 10;
 }else{//reach max buffer
 SS.processDataBursts(channel, channel, 0, AI_SN[channel], feedbackQueue,
SN);//simulate not sending
 }
 }else if (feedback.equalsIgnoreCase("NAK")){
 seq_num = p.getOSN(queue);//get original sequence number
 SS.processDataBursts(channel, channel, 1, AI_SN[channel], feedbackQueue, seq_num);
 }else{//receive null because buffer was full, it did not send out a data burst
 if(okToSend()){
 if(AI_SN[channel] == 1){
 AI_SN[channel] = 0;
 }else{
 AI_SN[channel] = 1;
 }
 p.addInfo(queue, SN, 0);// 0 is for M, not used here
 SS.processDataBursts(channel, channel, 0, AI_SN[channel], feedbackQueue, SN);

 SN += 10;
 }else{
 SS.processDataBursts(channel, channel, 0, AI_SN[channel], feedbackQueue,
SN);//simulate not sending
 }
 }
 }else{// buffer is not limited
 if(feedback.equalsIgnoreCase("ACK")){
 p.deleteInfo(queue);
 if(AI_SN[channel] == 1){//switch AI_SN
 AI_SN[channel] = 0;
 }else{
 AI_SN[channel] = 1;
 }
 p.addInfo(queue, SN, 0);
 SS.processDataBursts(channel, channel, 0, AI_SN[channel], feedbackQueue, SN);
 SN += 10;
 }else if (feedback.equalsIgnoreCase("NAK")){
 seq_num = p.getOSN(queue);
 SS.processDataBursts(channel, channel, 1, AI_SN[channel], feedbackQueue, seq_num);
 }
 }
 }
 }
 channel++;
 SimDuration--;
 }
 }

 72

 if(SimDuration - 1 ==-1){
 r = SS.getThroughput(multipleCopy);
 }
 return r;
}
 /**
 * Check buffer limitation
 * @return true, max buffer has not reached; otherwise, false.
 */
 private boolean okToSend(){
 if(queue.size() == 0){//data info queue
 return true;
 }else{
 DataInfo dataInfo = queue.firstElement();
 if(SN - dataInfo.getSN() >= buffer_limit*10){

return false;
 }else{
 return true;
 }
 }
 }
 /**
 * Calculate M' according to all Ms in processes
 */
 public void calculateM(){
 double M_total = 0.0;
 for (Iterator it = process.iterator(); it.hasNext();) {
 HARQ_process p = (HARQ_process) it.next();
 M_total += p.getM();
 }
 M = Math.floor(M_total/process_num + 0.5);
 }
 /**
 * Main method
 * @param args arguments
 */
 public static void main(String args[]){
 int numOfRuns = 1;//how many time the simulation runs
 boolean MC;//multiple-copy scheme
 LinkedList<Results> results = new LinkedList<Results>();
 if(args[2].equals("0")){
 MC = false;
 }else{
 MC = true;
 }
 for(int i = 0; i < numOfRuns; i++){
 HARQ_SIM sim = new HARQ_SIM(Integer.valueOf(args[0]).intValue(),
 Integer.valueOf(args[1]).intValue(),
 MC, Integer.valueOf(args[3]), Integer.valueOf(args[4]),Integer.valueOf(args[5]));
 results.add((Results)sim.start());
 }
 double throughput = 0.0;
 double average_waiting_time = 0.0;
 for(int i = 0; i< numOfRuns; i++){
 Results r = results.get(i);
 throughput += r.getTE();

 73

 average_waiting_time += r.getAWT();
 }
 System.out.println("***");
 System.out.println("Throughput: " + throughput/numOfRuns +" kbps");
 System.out.println();
 System.out.println("Average Waiting Time: " + average_waiting_time/numOfRuns+ " ms");
 System.out.println("***");
 }
}

**
**

• Multiple-copy/Original HARQ Scheme (SS operation)

import java.util.Collections;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.ArrayList;
import java.util.Queue;
import java.util.Random;
/**
 * This class simulates the operations in the Subscriber Station when receiving data bursts.
 * @author Yucheng
 */
public class SS_HARQ {
 private Integer[] UDDB; //unsuccessfully decided data bursts
 private Integer[] AI_SN; //recording AI_SN for each channel
 private ChannelSim cs; //channel condition simulation class
 private int SN = 0;//smallest sequence number for PDU that is waiting to be sent to the upper layer
 private int size = 10; //supposing ten PDUs per data burst
 private int totalSDDB = 0;//total successfully decoded data bursts
 private int totalTDB = 0;//total transmitted data bursts
 private int totalWaitingTime = 0;
 private int timer = 0; //a timer, for calculating data burst waiting time in SS
 private int[] combiningTime;//recording time of combining
 private LinkedList<Integer> buffer = new LinkedList<Integer>();//out of order data bursts (successfully
decoded)
 private ArrayList<BufferedDB> bufferedDB = new ArrayList<BufferedDB>();// buffered data bursts
 private int frameSize = 5;// 5 ms frame
 private int buffersize = 0;//current buffer size
 private int[] combiningTimeRequired; //store combining time required
 private boolean limit_buffer = false; // SS-side buffer limitation enabled or not
 private boolean enabled = false; // if SS-side buffer limitation enabled or not
 private int buffer_limit = 16;//buffer size
 private int bit_per_databurst = 1536;// size data burst in bits
 /**
 * HARQ operation in the Subscriber Station
 * @param numOfChannel number of channels
 * @param BL if SS-side buffer limit is enabled
 * @param BL_num value of limited buffer
 * @param Channel_Concition setting of channel condition
 */
 public SS_HARQ(int numOfChannel, boolean BL, int BL_num, int Channel_Condition){
 AI_SN = new Integer[numOfChannel];
 UDDB = new Integer[numOfChannel];
 combiningTime = new int[numOfChannel];

 74

 combiningTimeRequired = new int[numOfChannel];
 limit_buffer = BL;
 enabled = BL;
 buffer_limit = BL_num;
 cs = new ChannelSim(Channel_Condition);
 for(int i=0; i<numOfChannel;i++){
 AI_SN[i]= new Integer(1);
 }
 }
 /**
 * Process data bursts information
 * @param ACID_ ID of sending channel
 * @param ICN initial sending channel; 0 if MC = 0
 * @param MC mulitple copy
 * @param AI_SN_ HARQ identifier sequence number
 * @param feedbackq feedback queue
 * @param sn sequence number of this data burst
 */
 public void processDataBursts(int ACID_, int ICN, int MC, int AI_SN_, Queue<String>
feedbackq, int sn){
 timer++;
 totalTDB++;//total data burst received
 if(limit_buffer){
 if(buffersize < buffer_limit && sn < (SN + buffer_limit*10)){
 enabled = true;
 }else{
 enabled = false;
 }
 }else{
 enabled = true;
 }
 if(MC == 0 && enabled){//receiving initial copy of data burst
 if((AI_SN[ACID_]).intValue() != AI_SN_){//new data burst, change AI_SN_
 AI_SN[ACID_] = new Integer(AI_SN_);
 if(cs.decodeDB(ACID_)){//first copy is successfully decoded
 bufferedDB.add(new BufferedDB(timer, sn));
 reordering(sn);
 feedbackq.add("ACK");
 }else{//not successfully decoded
 UDDB[ACID_] = new Integer(ACID_);
 bufferedDB.add(new BufferedDB(timer, sn));
 feedbackq.add("NAK");
 }
 }else{//sles, ignore same AI_SN
 cs.isburstNoise();
 feedbackq.add("NULL");
 }
 }else{//receiving second or later copies
 if(sn == -1){//simulate not sending
 cs.isburstNoise();
 feedbackq.add("NULL");
 }else{
 if(UDDB[ICN] != null){//unsuccessfully data burst exists
 if(cs.decodeDB(ICN)){//combinined, and successfully decoded
 feedbackq.add("ACK");
 reordering(sn);

 75

}else{//not successfully decoded
 feedbackq.add("NAK");
 }
 }else{
 boolean temp = false;
 for (Iterator it = buffer.iterator(); it.hasNext();) {
 Integer seq = (Integer) it.next();
 if(seq.intValue() == sn){
 temp = true;
 }
 }
 if(limit_buffer){
 if (sn < SN || temp){
 cs.isburstNoise();
 feedbackq.add("Null");
 }else{
 if(buffersize < buffer_limit && sn < (SN + buffer_limit*10)){
 if((AI_SN[ICN]).intValue() != AI_SN_){
 AI_SN[ICN] = new Integer(AI_SN_);
 if(cs.decodeDB(ICN)){
 bufferedDB.add(new BufferedDB(timer, sn));
 reordering(sn);
 feedbackq.add("ACK");
 }else{
 UDDB[ICN] = new Integer(ICN);
 bufferedDB.add(new BufferedDB(timer, sn));
 feedbackq.add("NAK");
 }
 }else{
 //ignore same AI_SN
 }
 }else{
 cs.isburstNoise();
 feedbackq.add("NAK");
 }
 }
 }else{//buffer is not limited
 cs.isburstNoise();
 feedbackq.add("Null");
 }
 }
 }
 }
 int temp = 0;
 for(int i = 0; i < UDDB.length; i++){
 if(UDDB[i] != null){
 temp +=1;
 }
 }
 buffersize = buffer.size()+ temp;
 }
 /**
 * Reording stored data bursts to send to the upper layer
 * @param i first sequence number of a successfully decoded data burst
 */
 private void reordering(int sn_){

 76

 int seq_num = sn_;
 if(seq_num == SN){//this data burst is the next expected data burst
 totalSDDB++;
 calculateBufferedTime(seq_num);
 seq_num += size;
 for (Iterator it = buffer.iterator(); it.hasNext();) {
 Integer sn = (Integer) it.next();
 if(sn.intValue() == seq_num){//sent in order PDUs to the upper layer
 it.remove();
 calculateBufferedTime(seq_num);
 totalSDDB++;
 seq_num += size;
 }else{
 break;
 }
 }
 SN = seq_num;//set smallest sequence number
 }else{// not in order, store the data burst
 buffer.add(new Integer(seq_num));
 Collections.sort(buffer);//sorting the buffer
 }
 }
 /**
 * Calculate the time that a buffer has been stored in the SS before sending to the upper layer
 * @param sn sequence number of the first PDU in the data burst
 */
 private void calculateBufferedTime(int sn){
 for(int i = 0; i < bufferedDB.size(); i++){
 BufferedDB db = (BufferedDB) bufferedDB.get(i);
 if(db.getSN() == sn){
 totalWaitingTime += (timer - db.getTime());
 bufferedDB.remove(i);
 break;
 }
 }
 }
 /**
 * This class simulates channel conditions
 */
 public class ChannelSim{
 Random generator = new Random();
 private int BLER = 0; //normal block error rate (percentage)
 private boolean burstNoise = false;//is burst noise happening?
 private int noiseDuration;// (changeable) burst noise duration time (in frames)
 private int noiseDuration_ = 100;// used for assigning a fixed value (in frames)
 private int burstNoiseFrequency = 1;//(out of 1000)occurrence rate of noise bursts
 private int burstBLER = 90;//block error rate when noise burst is happening (percentage)
 private boolean burstNoiseEnabled = true;
 public ChannelSim(int channel_setting){
 if(channel_setting == 0){
 burstNoiseFrequency = 1;
 burstBLER = 90;
 }else if(channel_setting == 1){
 burstNoiseFrequency = 1;
 burstBLER = 60;
 }else if(channel_setting == 2){

 77

 burstNoiseFrequency = 5;
 burstBLER = 90;
 }else if(channel_setting == 3){
 burstNoiseFrequency = 5;
 burstBLER = 60;
 }
 }
 /**
 * simulate burst noises
 */
 public boolean isburstNoise(){
 if(!burstNoise){
 int value = generator.nextInt(1000);
 if(value < burstNoiseFrequency){
 burstNoise = true;
 noiseDuration = noiseDuration_;
 }
 }else{//during a noise burst
 int value = generator.nextInt(1000);
 if(value < burstNoiseFrequency){
 burstNoise = true;
 noiseDuration += noiseDuration_;
 }
 noiseDuration--;
 if(noiseDuration == 0){
 burstNoise = false;
 }
 }
 return burstNoise;
 }
 /**
 * Simulate decoding of a data burst, including combining
 * @param acid ACID of the data burst
 * @return true, successful; false, not successful
 */
 public boolean decodeDB(int acid){
 Integer uddb = UDDB[acid];
 if(burstNoiseEnabled){
 if(isburstNoise()){
 int value = generator.nextInt(100);
 int combineControl = 0;
 if(burstBLER == 60){ combineControl = 80;}
 if(burstBLER == 90){ combineControl = 75;}
 if(uddb == null){//check if combining time needs to be changed
 if(value < combineControl){
 if(burstBLER == 60){
 combiningTimeRequired[acid] = 1;
 }else{
 combiningTimeRequired[acid] = 4;
 }
 }else{
 if(burstBLER == 60){
 combiningTimeRequired[acid] = 2;
 }else{
 combiningTimeRequired[acid] = 3;
 }

 78

 }
 }
 BLER = burstBLER;
 }else{//normal channel condition
 combiningTimeRequired[acid] = 1;
 BLER = 10;
 }
 }
 //if there is a unsuccessfully decoded data burst exists
 //check combining time required
 if(uddb != null){
 int time = combiningTime[acid] + 1;
 if(time < combiningTimeRequired[acid]){
 combiningTime[acid] = time;
 return false;
 }else{//successful after combining
 combiningTime[acid] = 0;
 UDDB[acid] = null;// take it out after successfully decoding
 return true;
 }
 }else{//null, no unsuccessfully decoded data burst that has this acid
 //if it is a new data burst
 //do BLER check
 int value = generator.nextInt(100);
 if(value < BLER){
 return false;//unsuccessful
 }
 return true;//successful
 }
 }
 }
 /**
 * This class represents a data burst stored in the Subscriber Station
 * @author Yucheng
 */
 private class BufferedDB{
 private int time;//the time when SS buffers this data burst
 private int SN; //sequence number of this data burst
 public BufferedDB(int time, int SN){
 this.time = time;
 this.SN = SN;
 }
 /**
 * Retrieve time
 * @return time
 */
 public int getTime(){
 return time;
 }
 /**
 * Retrieve sequence number
 * @return SN
 */
 public int getSN(){
 return SN;
 }

 79

 }
 /**
 * performance statistic
 */
 public Results getThroughput(boolean MC){
 double throughput = (double)totalSDDB*bit_per_databurst/(totalTDB*0.005*1000);
 Results r = new Results(throughput, (double)totalWaitingTime*frameSize/totalSDDB);
 return r;
 }
}

**
**

• Multiple-copy/Original HARQ Scheme (HARQ Process)

import java.util.Iterator;
import java.util.Vector;
/**
 * This class specifies how each HARQ process operates according to information of data bursts stored
 * in the Base Station and feedbacks received from the Subscriber Station.
 * @author Yucheng
 */
public class HARQ_process {
 private final int ACID; // HARQ channel ID
 private int MC = 0; // multiple copies indicator; 0 -> fist copy, 1 -> second or later
 private double M; // number of multiple copies, needed for estimating M'
 private int ICN; // data burst's initial sending channel number
 /**
 * HARQ_process constructor
 * @param ACID HARQ channel ID
 * @param M initial value of M
 */
 public HARQ_process(int ACID, int M){
 this.ACID = ACID;
 ICN = ACID;
 this.M = M;
 }
 /**
 * Retrieve M of this process
 * @return M number of multiple copies, for extimating M'
 */
 public double getM(){
 return M;
 }
 /**
 * Add info of data bursts into the queue
 * @param queue A queue that stores unacked data bursts' info
 * @param sn Sequence number of the first PDU in the data burst
 * @param M M'
 */
 public void addInfo(Vector<DataInfo> queue, int sn, double M){
 DataInfo di = new DataInfo(ACID);
 di.setSN(sn);
 MC = 0; //first copy of the data burst
 ICN = ACID;
 queue.add(di);

 80

 if(M > di.getNS()){
 di.setStatus("T");
 }
 }
 /**
 * Delete data burst information from the queue
 * @param queue A queue that stores data bursts' information
 */
 public void deleteInfo(Vector<DataInfo> queue){//only used by original SW HARQ
 for (Iterator info = queue.iterator(); info.hasNext();) {
 DataInfo di = (DataInfo) info.next();
 if(di.getC() == ACID){//itself
 info.remove();
 break;
 }
 }
 }
 public void decreaseM(){
 if(M > 1){
 M--;
 }
 }
 /**
 * Retrieve initial channel number (ICN)
 * @return ICN initial channel number
 */
 public int getICN(){
 return ICN;
 }
 /**
 * Retrieve indicator of sending multiple copy
 * @return MC
 */
 public int getMC(){
 return MC;
 }
 /**
 * Update M
 * @param m M
 */
 public void updateM(double m){
 M = m;
 }
 /**
 * Update parameters when receiving a NAK
 * @param queue a queue that stores data bursts' information
 * @param p all processes
 */
 public void NAKupdate(Vector<DataInfo> queue, Vector<HARQ_process> p){
 if(MC == 0){// last time, first data burst sent by this HARQ process
 for (Iterator info = queue.iterator(); info.hasNext();) {
 DataInfo di = (DataInfo) info.next();
 if(di.getC() == ACID){//according to current process's ACID
 di.updateNR();//+1
 M = di.getNR() + 1;//update M of this process

 81

 if(di.getNS() == di.getNR()){//has received all feedback
 di.setStatus("R");
 }
 break;
 }
 }
 }else{ // last time, second or later data burst sent by this HARQ process
 for (Iterator info = queue.iterator(); info.hasNext();) {
 DataInfo di = (DataInfo) info.next();
 if(di.getC() == ICN){//according to initial process's ACID
 di.updateNR();
 HARQ_process pi = p.get(ICN);
 pi.updateM(di.getNR() + 1);//update M of initial sending process
 if(di.getNS() == di.getNR()){//has received all feedback
 di.setStatus("R");
 }
 break;
 }
 }
 }
 }
 /**
 * Update parameters when receiving a NAK (for original HARQ operation)
 * @param queue a queue that stores data bursts' information
 */
 public int getOSN(Vector<DataInfo> queue){
 int seq_num = 0;
 for (Iterator q = queue.iterator(); q.hasNext();) {
 DataInfo di = (DataInfo) q.next();
 if(di.getC() == ACID){//using channel ACID to get sequence num
 seq_num = di.getSN();
 break;
 }
 }
 return seq_num;
 }
 /**
 * Update parametes when receives a ACK feedback
 * @param queue a queue that stores data bursts' information
 * @param p initial sending channel
 */
 public boolean ACKupdate(Vector<DataInfo> queue){
 boolean updateMprime = false;
 if(MC == 0){// last time, first data burst was initially sent by this HARQ process
 for (Iterator info = queue.iterator(); info.hasNext();) {
 DataInfo di = (DataInfo) info.next();
 if(di.getC() == ACID){
 if(M != 1){
 M = di.getNR() + 1 ;//update M back to 1
 updateMprime = true;
 }
 info.remove();//info already removed here
 break;
 }
 }
 }else{ //second or later data burst sent by this process

 82

 for (Iterator info = queue.iterator(); info.hasNext();) {
 DataInfo di = (DataInfo) info.next();
 if(di.getC() == ICN){//based on ICN remembered by the process
 //M has been updated when receiving NAKs
 info.remove();//info already removed here
 break;
 }
 }
 }
 return updateMprime;
 }
 /**
 * Check if there is a data burst in status T (Transmitting)
 * @param queue a queue that stores data bursts' info
 * @return true, there is a unACKed data burst in status T; false, there is not
 */
 public boolean checkT(Vector<DataInfo> queue){
 for (Iterator info = queue.iterator(); info.hasNext();) {
 DataInfo di = (DataInfo) info.next();
 if(di.getS().equalsIgnoreCase("T")){
 return true;
 }
 }
 return false;
 }
 /**
 * check if there is any data burst in status R (waiting to be resent)
 * @param queue a queue that stores data bursts' information
 * @return true, there is a unACKed data burst in status R; false, there is not
 */
 public boolean checkR(Vector<DataInfo> queue){
 for (Iterator info = queue.iterator(); info.hasNext();) {
 DataInfo di = (DataInfo) info.next();
 if(di.getS().equalsIgnoreCase("R")){// the data burst in waiting to be retransmitted status
 return true;
 }
 }
 return false;
 }
 /**
 * Resend this data burst when there a data burst in status R
 * @param queue a queue that stores data bursts' information
 * @return sequence number of the burst being resent
 */
 public int resendDataBurst(Vector<DataInfo> queue){
 int sn = 0;//sequence number
 for (Iterator info = queue.iterator(); info.hasNext();) {
 DataInfo di = (DataInfo) info.next();
 if(di.getS().equalsIgnoreCase("R")){
 di.updateNS();//+ 1
 di.setStatus("F");
 sn = di.getSN();
 MC = 1;
 ICN = di.getC();
 break;//only find the first data burst that is in status R
 }

 83

 }
 return sn;
 }
 /**
 * Check if current channel has an unACKed data burst
 * @param queue a queue that stores data bursts' info
 * @return true, it has; false, it doesn't have
 */
 public boolean outstandingACID(Vector<DataInfo> queue){
 for (Iterator info = queue.iterator(); info.hasNext();) {
 DataInfo di = (DataInfo) info.next();
 if(di.getC() == ACID){
 return true;
 }
 }
 return false;
 }
 /**
 * Send an extra copy of data burst when there is an outstanding ACID
 * @param queue a queue that stores data bursts' info
 * @return sequence number of the data burst being sent
 */
 public int sendExtraDataBurst(Vector<DataInfo> queue){
 int sn = 0;//sequence number
 DataInfo di = (DataInfo) queue.firstElement();
 di.updateNS();// + 1
 sn = di.getSN();
 ICN = di.getC();
 MC = 1;
 //already in status F
 return sn;
 }
 /**
 * Send a new data burst
 * @param queue a queue that stores data bursts' information
 * @param sn a sequence number
 * @param M M'
 * @return this channel's ACID
 */
 public int sendNewDataBurst(Vector<DataInfo> queue, int sn, double M){
 addInfo(queue, sn, M);
 return ACID;
 }
 /**
 * Simulate the situation that the max buffer has reached
 */
 public void notSendNewDataBurst(){
 MC = 0;
 ICN = ACID;
 }
 /**
 * Send multiple copy when there is a data burst in status T
 * @param queue a queue that stores data bursts' information
 * @param M_prime number of how many extra copies have to be sent
 * @retrn first PDU's sequence number in the data burst being sent
 */

 84

 public int sendMC(Vector<DataInfo> queue, double M_prime){
 int sn = 0;//sequence number
 for (Iterator info = queue.iterator(); info.hasNext();) {
 DataInfo di = (DataInfo) info.next();
 if(di.getS().equalsIgnoreCase("T")){//check if a data burst in waiting to be retransmitted
 MC = 1;//second or later copies
 ICN = di.getC();//give ICN of the data burst to current process
 sn = di.getSN();
 di.updateNS();// + 1;
 if(di.getNS() < M_prime){
 di.setStatus("T");//transmit the same data burst on the next process
 }else{
 di.setStatus("F");//set status as waiting for feedback
 }
 break;
 }
 }
 return sn;
 }
}

**
**

• Multiple-copy/Original HARQ Scheme (unACKed Data Burst)

/**
 * This class specifies information of unACKed data bursts that are stored in the Base Station.
 * HARQ processes refer to this information to perform transmissions/retransmission.
 * @author Yucheng
 */
public class DataInfo {
 private final int C; //initial sending channel's ACID
 private int NR = 0; //number of NAKs received
 private int NS = 1; //number of data burst copy sent
 private String S = "F"; //status of the data burst; T, F(initially), or R
 private int SN; //sequence number of the first PDU in the data burst for recordering in the
Subscriber Station
 /**
 * DataInfo calss constructor
 * @param ACID initial sending channel
 */
 public DataInfo(int ACID){
 C = ACID;
 }
 /**
 * Set sequence number of first PDU
 * @param sn sequence number
 */
 public void setSN(int sn){
 SN = sn;
 }
 /**
 * Retrieve sequence number of first PDU
 * @return
 */
 public int getSN(){

 85

 return SN;
 }
 /**
 * Set status of the data burst
 * @param status status of the data burst
 */
 public void setStatus(String status){
 S = status;
 }
 /**
 * Update number of data burst copy sent by one
 */
 public void updateNS(){
 NS += 1;
 }
 /**
 * Update number of NAK received by one
 */
 public void updateNR(){
 NR += 1;
 }
 /**
 * Check if NS equals NR
 * @return true, equal; false, unequal
 */
 public boolean NSEqualsNR(){
 if(NS == NR){
 return true;
 }else{
 return false;
 }
 }
 /**
 * Retrieve status of the data burst
 * @return status
 */
 public String getS(){
 return S;
 }
 /**
 * Retrieve NS
 * @return NS
 */
 public int getNS(){
 return NS;
 }
 /**
 * Retrieve NR
 * @return NR
 */
 public int getNR(){
 return NR;
 }
 /**
 * Retrieve C
 * @return C

 86

 */
 public int getC(){
 return C;
 }
}

**
**

• Multiple-copy/Original HARQ Scheme (Simulation Results)

/**
 * This class stores simulation results for final display
 * @author Yucheng
 */
public class Results {
 private double throughput;
 private double average_waiting_time;
 public Results(double t, double awt){
 throughput = t;
 average_waiting_time = awt;
 }
 /**
 * Retrieve value of throughput
 * @return throughput
 */
 public double getTE(){
 return throughput;
 }
 /**
 * Retrieve value of average waiting time
 * @return average waiting time
 */
 public double getAWT(){
 return average_waiting_time;
 }
}

**
**

• TCL source code

Topology:

h0 ---------- h1

cd [mkdir -q drcl.comp.Component /test]

create the topology
puts "create topology..."
set link [java::new drcl.inet.Link]
$link setPropDelay 0.002; # ms
set adjMatrix [java::new {int[][]} 2 {{1} {0}}]
java::call drcl.inet.InetUtil createTopology [! .] $adjMatrix $link

 87

puts "create node builder..."
NodeBuilder:
set nb [mkdir drcl.inet.NodeBuilder .nodeBuilder]
$nb setBandwidth 1.0e7; #10Mbps

puts "build..."
$nb build [! h0] {
 udp drcl.inet.transport.UDP
 transmitter 101/udp Transmitter
}

$nb build [! h1] {
 udp drcl.inet.transport.UDP
 receiver 101/udp Receiver
}

! h?/udp setTTL 3

puts "set up simulator..."
set sim [attach_simulator .]

puts "Done!"

**
**

import java.util.*;
 /**
 * A acknowledgement message sent from the receiver.
 */
 public class Acknowledgement{
 public LinkedList bitmap;

public boolean ack = true;
 public int next_expected_packet;
 public double time;
 public boolean done = false;
 public int sequence_num;
 public boolean forLastOne = false;
 public boolean next;

 public Acknowledgement(){
 bitmap = new LinkedList();
 }
 /**
 * Set next expected number.
 * @param next a number.
 */
 public void next(int next){
 next_expected_packet = next;
 }
 /**
 * Set a bitmap in the acknowledgement packet.
 * @param bitmap a bitmap.
 */
 public void setBitmap(LinkedList bitmap){

 88

 this.bitmap = (LinkedList) bitmap.clone();
 }
 /**
 * Set sequence Number.
 * @param num sequence number.
 */
 public void setNum(int num){
 sequence_num = num;
 }
 }

/**
 * An ARQ block.
 */

 public class ARQ_Block{
 public int sequence_num = 0;
 public boolean isLast = false;

 public ARQ_Block(){
 }
 /**
 * Set packet’s sequence number.
 *@param num sequence number.
 /
 public void setNum(int num){
 sequence_num = num;
 }
 /**
 * Set this packet as a last packet sent.
 */
 public void setLast(){
 isLast = true;
 }
 /**
 * Unset this packet as a last packet sent.
 */
 public void unSet(){
 isLast = false;
 }
 }

**
**

• Efficient Selective-Repeat ARQ Scheme

o Transmitter
import drcl.comp.Port;
import drcl.comp.Contract;
import java.util.*;
/**
 * Implementing the Efficient Selective-Repeat ARQ Scheme, transmitter side.
 */
public class Transmitter extends drcl.inet.application.SUDPApplication{
 long dst;

 89

 int dport;
 int packet_num;
 LinkedList buffer = new LinkedList();
 int window_size = 64;
 int max_sequence_num = 2*window_size + 2;
 int current_sequence_num = 0;
 LinkedList bitmap = new LinkedList();
 int resend_num = 0;
 double start_time;
 int total_packets;
 boolean stop = false;

 public Transmitter() {
 super();
 dst = 1;
 dport = 101;
 }
 /**
 * Start the program.
 * @param total_packets total packets needed for calculating throughput.
 */
 public void start(int total_packets){
 this.total_packets = total_packets;
 start_time = getTime();
 send_packets(dst, dport);
 }
 /**
 * Send a window-size packets to the receiver.
 * @param dst_ the receiver.
 * @param dport_ the port at the receiver.
 */
 public void send_packets(long dst_, int dport_){
 for(int i=0; i<window_size; i++){
 ARQ_Block p = new ARQ_Block();
 p.setNum(getSequenceNum());
 if(i == window_size-1){
 p.setLast();
 ARQ_Block p1 = new ARQ_Block();
 p1.setNum(p.sequence_num);
 buffer.add(p1);
 }else{
 buffer.add(p);
 }
 sendmsg(p , 512/*size*/, dst_, dport_);
 }
 }
 /**
 * Implement the protocol when an acknowledgement arrives.
 */
 protected synchronized void dataArriveAtDownPort(Object data_, Port downPort_){
 LinkedList temp = new LinkedList();
 long src_ = getPeerAddress(data_);
 int sport_ = getPeerPort(data_);
 Acknowledgement pkt_ = (Acknowledgement) getContent(data_);
 if (pkt_.done == 0 && !stop){
 if(pkt_.ack){

 90

 bitmap = pkt_.bitmap;
 if(bitmap.size()!=0){

 resend(pkt_.next_expected_packet,src_,sport_, temp);
 }else{
 if(pkt_.next_expected_packet!=current_sequence_num){
 resend(pkt_.next_expected_packet,src_,sport_, temp);
 }
 }
 for(int i = 0; i < window_size - bitmap.size(); i++){
 buffer.removeFirst();
 }
 for(int i = 0; i < bitmap.size(); i++){
 String value = (String) bitmap.get(i);
 if(value.equals("0")){
 ARQ_Block packet = (ARQ_Block) buffer.get(i);
 resend_num++;
 if(resend_num == 64){
 packet.setLast();
 }
 sendmsg(packet, 512, src_, sport_);
 if(resend_num == 64){
 ARQ_Block p1 = new ARQ_Block();
 p1.setNum(packet.sequence_num);
 temp.add(p1);
 }else{
 temp.add(packet);}
 }
 }
 int new_packet_num = window_size - resend_num;
 for(int i=0; i<new_packet_num; i++){
 ARQ_Block packet = new ARQ_Block();
 int temp1 = getSequenceNum();
 packet.setNum(temp1);
 if(i == new_packet_num -1){
 packet.setLast();
 sendmsg(packet , 512/*size*/, src_, sport_);
 ARQ_Block p1 = new ARQ_Block();
 p1.setNum(temp1);
 temp.add(p1);
 }else{
 sendmsg(packet , 512/*size*/, src_, sport_);
 packet.unSet();
 temp.add(packet);
 }
 }
 }
 buffer = temp;
 resend_num=0;
 }else{
 if(pkt_.done==1){
 stop = true;
 System.out.println("Time spent: "+pkt_.time);
 System.out.println("Througput of sending "+ total_packets +" packets is "+
total_packets/pkt_.time+" packets/s");
 }

 91

 }
 }
 /**
 * Resend packets to the receiver.
 * @param block block size.
 * @param num current sequence number.
 * @param src_ the receiver.
 * @param sport_ the port at the receiver.
 */
 private void resend(int num, long src_, int sport_, LinkedList temp){
 ARQ_Block packet = new ARQ_Block();
 packet.setNum(num);
 sendmsg(packet, 512, src_, sport_);
 resend_num++;
 temp.add(packet);
 }
 /**
 * Assign sequence number.
 */
 private int getSequenceNum(){
 if(current_sequence_num <= max_sequence_num - 1){
 return current_sequence_num++ ;
 }else{
 current_sequence_num = current_sequence_num - max_sequence_num;
 return current_sequence_num++;
 }
 }
}

o Receiver
import drcl.comp.Port;
import drcl.comp.Contract;
import java.util.*;

/**
 * Implementing the Efficient Selective-Repeat ARQ Scheme, receiver side.
 */
public class Receiver extends drcl.inet.application.SUDPApplication{
 long dst = 0;
 int dport = 101;
 LinkedList buffer = new LinkedList();
 int window_size = 64;
 int next_expected_num = 0;
 LinkedList bitmap = new LinkedList();
 boolean firstError=true;
 boolean normalState=true;
 int total_packets = 0;
 int total_packets_;
 boolean stop = false;

 public Receiver() {
 super();
 }
 /**
 * Implement the protocol when a packet arrives.

 92

 * @param data_ a packet
 * @param downPort_ a port
 */
 protected synchronized void dataArriveAtDownPort(Object data_, Port downPort_){
 long src_ = getPeerAddress(data_);
 int sport_ = getPeerPort(data_);
 ARQ_Block pkt_ = (ARQ_Block)getContent(data_);
 boolean b = isError();
 if(!stop){
 if (!b/*!isError()*/ && forwardDistanceOK(pkt_)){
 if(normalState){
 addToBuffer(pkt_);
 if(pkt_.isLast){
 sendAckBack();
 }
 }else{
 addToBuffer(pkt_);
 bitmap.add("1");
 if(pkt_.isLast){
 sendAckBack();
 }
 }
 }else if(firstError){
 firstError=false;
 normalState=false;
 if(pkt_.isLast){
 sendAckBack();
 }
 }else{
 bitmap.add("0");
 if(pkt_.isLast){
 sendAckBack();
 }
 }
 }
 }
 /**
 * Add received packets into the buffer or send to the upper layer.
 * @param pkt_ a packet.
 */
 public void addToBuffer(ARQ_Block pkt_){
 if(pkt_.sequence_num == next_expected_num){
 if(buffer.size()==0){
 next_expected_num++;
 sequenceCycle();
 finish();
 }else{
 finish();
 next_expected_num++;
 sequenceCycle();
 int b = buffer.size();
 for(int i = 0; i<b;i++){
 int b2 = buffer.size();
 int next = next_expected_num;
 for(int j=0; j<b2; j++){
 ARQ_Block temp = (ARQ_Block) buffer.get(j);

 93

 if(temp.sequence_num == next){
 finish();
 buffer.remove(j);
 next_expected_num++;
 sequenceCycle();
 break;
 }
 }
 }
 }
 }else{
 buffer.add(pkt_);
 }
 }
 /**
 * Determine if this packet has error based on bit error rate.
 */
 private boolean isError(){
 Random r = new Random();
 int i = r.nextInt(100000000) + 1;
 if(i > 540*8*10000){
 return false;
 }else{
 return true;
 }
 }
 /**
 * Send acknowledgement containing a bitmap to the receiver.
 */
 private Acknowledgement sendAck(){
 Acknowledgement ack = new Acknowledgement();
 ack.next(next_expected_num);
 ack.setBitmap(bitmap);
 return ack;
 }
 /**
 * Make sequence number.
 */
 private void sequenceCycle(){
 if(next_expected_num == (64*2 + 2)){
 next_expected_num = 0;
 }
 }
 /**
 * Calcuate the forward distance of received packet.
 * @param p a packet
 * @return ture:ok to store the packet; false:otherwise.
 */
 private boolean forwardDistanceOK(ARQ_Block p){
 int distance = p.sequence_num - next_expected_num;
 if(distance > 0){
 if(distance < window_size){
 return true;
 }
 return false;
 }else if(distance <0){

 94

 int newDistance = distance + (2*window_size + 2);
 if(newDistance < window_size){
 return true;
 }
 return false;
 }
 return true;
 }
 /**
 * Set totoal numbr of packets, for calculating throughput purpose.
 * @param value number of packets
 */
 public void setPacketNum(int value){
 total_packets_ = value;
 }
 /**
 * Check if the totoal numbers of packets sent have reached.
 */
 private void finish(){
 total_packets += 1;
 if(total_packets == total_packets_){
 stop = true;
 Acknowledgement ack = new Acknowledgement();
 ack.done = 1;
 ack.time = getTime();
 sendmsg(ack, 10, 0, 101);}
 }
 /**
 * Send acknowledgement back to the transmitter.
 */
 private void sendAckBack(){
 firstError=true;
 normalState=true;
 sendmsg(sendAck(), 10, dst, dport);
 bitmap.clear();
 }

}

**
**

• Variant of Optimum Go-Back-N ARQ Strategy by Bruneel and Moeneclaey

o Transmitter
import drcl.comp.Port;
import drcl.comp.Contract;
import java.util.*;
/**
 * Implementing the Variant of Optimum Go-Back-N ARQ Scheme, transmitter side.
 */
public class Transmitter extends drcl.inet.application.SUDPApplication{
 long dst;
 int dport;
 int packet_num = 0;
 LinkedList buffer = new LinkedList();

 95

 int window_size = 64;
 int number = 0;
 double start_time;
 int total_packets;
 boolean stop = false;
 int K = 64;
 int numberOfCopy = 1;
 boolean continue_ = true;

 public Transmitter() {
 super();
 dst = 1;
 dport = 101;
 }
 /**
 * Start the program.
 * @param total_packets total packets needed for calculating throughput.
 */
 public void start(int total_packets){
 start_time = getTime();
 this.total_packets = total_packets;
 send_packets(dst, dport);
 }
 /**
 * Send a window-size packets to the receiver.
 * @param dst_ the receiver.
 * @param dport_ the port at the receiver.
 */
 public void send_packets(long dst_, int dport_){
 for(int i=0; i<window_size; i++){
 ARQ_Block p = new ARQ_Block();
 p.setNum(i);
 number++;
 if(i== window_size -1){
 p.isLast = true;
 }
 sendmsg(p , 512/*size*/, dst_, dport_);
 }
 }
 /**
 * Implement the protocol when an acknowledgement arrives.
 */
 protected synchronized void dataArriveAtDownPort(Object data_, Port downPort_){
 long src_ = getPeerAddress(data_);
 int sport_ = getPeerPort(data_);
 Acknowledgement ack_ = (Acknowledgement) getContent(data_);
 if(ack_.ack && !stop){
 if(ack_.forLastOne == true){
 stop = true;
 double time_spent = ack_.time - start_time;
 System.out.println("time spent: "+ time_spent);
 System.out.println("Througput of sending "+ total_packets +" packets
is "+ total_packets/ack_.time +" packets/s");
 }else if(ack_.next && !stop){
 adjust_copy(ack_.sequence_num);
 retransmit(ack_.sequence_num + 1);

 96

 }
 }else{
 if(!stop){
 continue_ = false;
 if(ack_.sequence_num!= 0){adjust_copy(ack_.sequence_num-1);}
 else{adjust_copy(ack_.sequence_num);}
 continue_ = true;
 numberOfCopy += 1;
 retransmit(ack_.sequence_num);
 }
 }
 }
 /**
 * Retransmit a window-sized packets.
 * @param num a packet sequence number.
 */
 private void retransmit(int num){
 number = num;
 for(int i = 0; i < window_size; i++){ //send another block-size packets
 for(int j=0; j<numberOfCopy; j++){
 ARQ_Block p = new ARQ_Block();
 p.setNum(number + i);//from next expected number;
 int temp = number +i;
 if(i == (window_size -1) && j == (numberOfCopy -1)){
 p.isLast = true;
 }
 sendmsg(p , 512/*size*/, dst, dport);
 }
 }
 }
 /**
 * Adjust number of packet's copies.
 */
 private void adjust_copy(int seqNum){
 if(seqNum == 0) return;
 int temp = seqNum - packet_num;
 while(true){
 int temp2 = temp - generate_m();
 if(temp2 >= 0){
 packet_num += generate_m();
 numberOfCopy -= 1;
 if(numberOfCopy == 0){ numberOfCopy = 1;}
 temp = temp2;
 }else{
 if(!continue_){
 packet_num = seqNum;}
 break;
 }
 }
 }
 /**
 * Generate number M to decide if increasing number of copy is needed.
 */
 private int generate_m(){
 if(numberOfCopy - 1 == 0){
 return 1;

 97

 }else{
 return (int) Math.ceil(K/(numberOfCopy -1));
 }
 }
}

o Receiver
import drcl.comp.Port;
import drcl.comp.Contract;
import java.util.*;

/**
 * Implementing the Variant of Optimum Go-Back-N ARQ Scheme, receiver side.
 */
public class Receiver extends drcl.inet.application.SUDPApplication{
 long dst = 0;
 int dport = 101;
 int pkt_num;
 LinkedList buffer = new LinkedList();
 int next_expected_num = 0;
 boolean normalState=true;
 LinkedList ACK = new LinkedList();
 int total_packets = 0;
 int total_packets_ = 1000;
 int first_neg_seq = -1;
 boolean stop = false;

 public Receiver(){
 super();
 }
 /**
 * Implement the protocol when a packet arrives.
 * @param data_ a packet
 * @param downPort_ a port
 */
 protected synchronized void dataArriveAtDownPort(Object data_, Port downPort_){
 long src_ = getPeerAddress(data_);
 int sport_ = getPeerPort(data_);
 ARQ_Block pkt_ = (ARQ_Block) getContent(data_);
 boolean b = isError();
 if(!stop){
 if (!b){
 if(addToBuffer(pkt_)){
 finish(pkt_.sequence_num);
 if(pkt_.isLast && !stop){
 Acknowledgement ack = new Acknowledgement();
 ack.setNum(pkt_.sequence_num);
 ack.time = getTime();
 ack.next = true;
 sendmsg(ack, 10/*size*/, src_, sport_);
 }
 }else{
 if(!normalState && pkt_.isLast){
 sendAck();
 }
 if(normalState && pkt_.isLast){//duplicate no-error packet

 98

 Acknowledgement ack = new Acknowledgement();
 ack.setNum(pkt_.sequence_num);
 ack.time = getTime();
 ack.next = true;
 sendmsg(ack, 10/*size*/, src_, sport_);
 }
 }
 }else{
 if(normalState && pkt_.sequence_num != (next_expected_num-1)){
 normalState = false;
 first_neg_seq = pkt_.sequence_num;
 }
 if(normalState && pkt_.sequence_num == (next_expected_num-1)){
 if(pkt_.isLast){
 Acknowledgement ack = new Acknowledgement();
 ack.setNum(pkt_.sequence_num);
 ack.time = getTime();
 ack.next = true;
 sendmsg(ack, 10/*size*/, src_, sport_);
 }
 }
 if(!normalState && pkt_.isLast){
 sendAck();
 }

 }
 }
 }
 /**
 * Add received packets into the buffer and send to the upper layer.
 * @param pkt_ a packet.
 */
 public boolean addToBuffer(ARQ_Block pkt_){
 if(pkt_.sequence_num == next_expected_num){
 next_expected_num++;
 normalState = true;
 total_packets += 1;
 return true;
 }else{
 return false;
 }
 }
 /**
 * Determine if this packet has error based on bit error rate.
 */
 private boolean isError(){
 Random r = new Random();
 int i = r.nextInt(100000000) + 1;
 if(i > 540*8*10){
 return false;
 }else{
 return true;
 }
 }
 /**
 * Send ack when all window-size ARQ blocks are received.

 99

 */
 private void sendAck(){
 Acknowledgement ack = new Acknowledgement();
 ack.setNum(first_neg_seq);
 ack.setAck(false);
 sendmsg(ack, 10, dst, dport);
 }
 /**
 * Check if required number of packets is reached
 */
 private void finish(int lastOne){
 if(total_packets == total_packets_){
 System.out.println("send ack back to notify");
 stop = true;
 Acknowledgement ack = new Acknowledgement();
 ack.time = getTime();
 ack.setNum(lastOne);
 ack.forLastOne = true;
 sendmsg(ack, 10/*size*/, dst, dport);
 }
 }

}

**
**

• Selective Repeat SW-ARQ Scheme

o Transmitter
import drcl.comp.Port;
import drcl.comp.Contract;
import java.util.*;
/**
 * Implementing the Selective Repeat SW ARQ scheme, transmitter side.
 */
public class Transmitter extends drcl.inet.application.SUDPApplication{
 long dst;
 int dport;
 int window_size = 64;
 int number = 0;
 LinkedList bitmap = new LinkedList();
 int total_packets;
 double start_time;
 double time_spent;
 boolean stop = false;

 public Transmitter(){
 super();
 dst = 1;
 dport = 101;
 }
 /*
 * Start the program.
 * @param run total runs needed for calculating throughput.

 100

 */
 public void start(int total_packets){
 this.total_packets = total_packets;
 start_time = getTime();
 send_packets(dst, dport);
 }
 /*
 * Send a window-sized packets to the receiver.
 */
 public void send_packets(long dst_, int dport_){
 for(int i=0; i<window_size; i++){
 ARQ_Block p = new ARQ_Block();
 p.setNum(number);
 number += 1;
 if(i == window_size - 1){
 p.setLast();
 }
 sendmsg(p , 512/*size*/, dst_, dport_);
 }
 }
 /*
 * Implement the protocol when an acknowledgement arrives.
 */
 protected synchronized void dataArriveAtDownPort(Object data_, Port downPort_){
 long src_ = getPeerAddress(data_);
 int sport_ = getPeerPort(data_);
 Acknowledgement pkt_ = (Acknowledgement) getContent(data_);
 bitmap = pkt_.bitmap;
 if(!stop){
 if(pkt_.ack){
 number = 0;
 if(pkt_.forLastOne == true){
 stop = true;
 time_spent = pkt_.time - start_time;
 System.out.println("Time spent: " + time_spent);
 System.out.println("Througput of sending "+ total_packets +"
packets is "+ total_packets/time_spent+" packets/s");
 }else{
 send_packets(dst, dport);
 }
 }else {
 for(int i=0; i<bitmap.size(); i++){
 int m = ((Integer)(bitmap.get(i))).intValue();
 ARQ_Block p = new ARQ_Block();
 p.setNum(m);
 if(i == bitmap.size()-1){
 p.isLast = true;
 }
 sendmsg(p, 512, src_, sport_);
 }
 }
 }
 }
}

 101

o Receiver
import drcl.comp.Port;
import drcl.comp.Contract;
import java.util.*;

/**
 * Implementing the Selective Repeat SW ARQ scheme, receiver side.
 */
public class Receiver extends drcl.inet.application.SUDPApplication{
 long dst = 0;
 int dport = 101;
 LinkedList buffer = new LinkedList();
 int next_expected_num = 0;
 LinkedList bitmap = new LinkedList();
 boolean normalState = true;
 int total_packets = 0;
 int total_packets_ = 1000;
 boolean stop = false;

 public Receiver() {
 super();
 }
 /*
 * Implement the protocol when a packet arrives.
 * @param data_ a packet
 * @param downPort_ a port
 */
 protected synchronized void dataArriveAtDownPort(Object data_, Port downPort_){
 long src_ = getPeerAddress(data_);
 int sport_ = getPeerPort(data_);
 ARQ_Block pkt_ = (ARQ_Block)getContent(data_);
 boolean b = isError();
 if(!stop){
 if (!b/*!isError()*/){
 if(normalState){
 addToBuffer(pkt_);
 if(pkt_.isLast){
 for(int i=0; i<bitmap.size(); i++){
 int m = ((Integer)(bitmap.get(i))).intValue();
 }
 next_expected_num=0;
 Acknowledgement ack = new Acknowledgement();
 ack.ack = true;
 ack.setBitmap(bitmap);
 ack.time = getTime();
 sendmsg(ack, 10/*size*/, src_, sport_);
 bitmap.clear();

 }
 }else{
 if(pkt_.sequence_num == next_expected_num){
 normalState = true;
 }
 addToBuffer(pkt_);
 if(pkt_.isLast){
 if(normalState){

 102

 next_expected_num = 0;
 Acknowledgement ack = new Acknowledgement();
 ack.ack = true;
 ack.setBitmap(bitmap);
 ack.time = getTime();
 sendmsg(ack, 10/*size*/, src_, sport_);
 bitmap.clear();
 }else{
 for(int i=0; i<bitmap.size(); i++){
 int m = ((Integer)(bitmap.get(i))).intValue();
 }
 Acknowledgement ack = new Acknowledgement();
 ack.ack = false;
 ack.setBitmap(bitmap);
 sendmsg(ack, 10, src_, sport_);
 bitmap.clear();
 }
 }
 }
 }else{
 normalState = false;
 bitmap.add(new Integer(pkt_.sequence_num));
 if(pkt_.isLast){
 for(int i=0; i<bitmap.size(); i++){
 int m = ((Integer)(bitmap.get(i))).intValue();
 }
 Acknowledgement ack = new Acknowledgement();
 ack.ack = false;
 ack.setBitmap(bitmap);
 sendmsg(ack, 10, src_, sport_);
 bitmap.clear();
 }
 }
 }
 }
 /*
 * Add received packets into the buffer or send to the uppper layer.
 * @param pkt_ a packet.
 */
 public void addToBuffer(ARQ_Block pkt_){
 if(pkt_.sequence_num == next_expected_num){
 if(buffer.size()==0){
 total_packets += 1;
 finish(pkt_.sequence_num);
 next_expected_num++;
 }else{
 total_packets += 1;
 finish(pkt_.sequence_num);
 next_expected_num++;
 int b = buffer.size();
 for(int i = 0; i<b;i++){
 int b2 = buffer.size();
 int next = next_expected_num;
 for(int j=0; j<b2; j++){
 ARQ_Block temp = (ARQ_Block) buffer.get(j);
 if(temp.sequence_num == next){

 103

 total_packets += 1;
 finish(temp.sequence_num);
 buffer.remove(j);
 next_expected_num++;
 break;
 }
 }
 }
 }
 }else{
 buffer.add(pkt_);
 }
 }
 /*
 * Determine if this packet has error based on bit error rate.
 */
 private boolean isError(){
 Random r = new Random();
 int i = r.nextInt(100000000) + 1;
 if(i > 540*8*10000){
 return false;
 }else{
 return true;
 }
 }
 /*
 * Send acknowledgement containing a bitmap to the receiver.
 */
 private Acknowledgement sendAck(){
 Acknowledgement ack = new Acknowledgement();
 ack.setBitmap(bitmap);
 return ack;
 }
 /**
 * Check if required number of packets is reached.
 */
 private void finish(int lastOne){
 if(total_packets == total_packets_){
 stop = true;
 Acknowledgement ack = new Acknowledgement();
 ack.ack = true;
 ack.time = getTime();
 ack.setNum(lastOne);
 ack.forLastOne = true;
 sendmsg(ack, 10/*size*/, dst, dport);
 }
 }
}

**
**

• Block Window Retransmission ARQ Scheme

o Transmitter

 104

import drcl.comp.Port;
import drcl.comp.Contract;
import java.util.*;
/**
 * Implementing the Block Window Retransmission ARQ scheme, transmitter side.
 */
public class Transmitter extends drcl.inet.application.SUDPApplication{
 long dst;
 int dport;
 LinkedList buffer = new LinkedList();
 int window_size = 64;
 int max_sequence_num = 64;
 int current_sequence_num = 0;
 LinkedList bitmap = new LinkedList();
 int resend_num = 0;
 int b1 = (window_size /*+ 1*/)/4;
 int b2 = (window_size /*+ 1*/)/8;
 int b3 = (window_size /*+ 1*/)/8;
 int b4 = (window_size /*+ 1*/)/8;
 int b5 = (window_size /*+ 1*/)/8;
 int b6 = ((window_size /*+ 1*/)/4)/* - 1*/;
 boolean final_block = false;
 double start_time;
 int total_packets;
 boolean stop = false;

 public Transmitter() {
 super();
 dst = 1;
 dport = 101;
 }
 /**
 * Start the program.
 * @param total_packets total packets needed for calculating throughput.
 */
 public void start(int total_packets){
 this.total_packets = total_packets;
 start_time = getTime();
 send_packets(dst, dport);
 }
 /**
 * Send a window-size packets to the receiver.
 */
 public void send_packets(long dst_, int dport_){
 for(int i = 0; i < window_size; i++){
 ARQ_Block p = new ARQ_Block();
 p.setNum(getSequenceNum());
 buffer.add(p);
 if(i == window_size - 1){
 p.setLast();
 }
 sendmsg(p , 512, dst_, dport_);
 }
 }
 /*
 * Implement the protocol when a acknowledgement arrives.

 105

 */
 protected synchronized void dataArriveAtDownPort(Object data_, Port downPort_){
 long src_ = getPeerAddress(data_);
 int sport_ = getPeerPort(data_);
 Acknowledgement pkt_ = (Acknowledgement) getContent(data_);
 if (pkt_.done == 0 && !stop){
 bitmap = pkt_.bitmap;
 resend(b1, pkt_.next_expected_packet,src_,sport_);
 for(int i = 0; i < bitmap.size(); i++){
 String value = (String) bitmap.get(i);
 if(value.equals("0")){
 if(i==0){
 resend(b2 , pkt_.next_expected_packet +
b1 ,src_,sport_);
 }else if(i==1){
 resend(b3 , pkt_.next_expected_packet + b1 +
b2 ,src_,sport_);
 }else if(i==2){
 resend(b4 , pkt_.next_expected_packet + b1 + b2 +
b3 ,src_,sport_);
 }else if(i==3){
 resend(b5 , pkt_.next_expected_packet + b1 + b2 +
b3 + b4 ,src_,sport_);
 }
 }
 }
 final_block = true;
 resend(b6, pkt_.next_expected_packet + b1 + b2 + b3 + b4 + b5, src_, sport_);
 resend_num=0;
 }else if(pkt_.done == 1){
 stop = true;
 double time_spent = pkt_.time - start_time;
 System.out.println("time spent: "+ time_spent);
 System.out.println("Througput of sending "+ total_packets +" packets is "+
total_packets/time_spent+" packets/s");
 }
 }
 /**
 * Resend packets to the receiver.
 * @param block block size.
 * @param num current sequence number.
 * @param src_ the receiver.
 * @param sport_ the port at the receiver.
 */
 private void resend(int block, int num, long src_, int sport_){
 int num_ = num % (window_size +1)/*16*/;
 for(int i = 0; i < block; i++){
 ARQ_Block packet = new ARQ_Block();
 if(final_block && i == block -1){
 packet.isLast = true;
 final_block = false;
 }
 packet.setNum(num_++);
 if(num_> window_size/*15*/){
 num_ -= (window_size + 1)/*16*/;
 }

 106

 sendmsg(packet, 512, src_, sport_);
 }
 }
 /**
 * Assign sequence number.
 */
 private int getSequenceNum(){
 if(current_sequence_num < max_sequence_num){
 return current_sequence_num++ ;
 }else{
 current_sequence_num = current_sequence_num - window_size/*15*/;
 return current_sequence_num++;
 }
 }
}

o Receiver
import drcl.comp.Port;
import drcl.comp.Contract;
import java.util.*;

/**
 * Implementing the Block Window Retransmission ARQ scheme, receiver side.
 */
public class Receiver extends drcl.inet.application.SUDPApplication{
 long dst = 0;
 int dport = 101;
 int pkt_num;
 LinkedList buffer = new LinkedList();
 int window_size = 64;
 int max_sequence_num = 15;
 int next_expected_num = 0;
 LinkedList bitmap = new LinkedList();
 boolean firstError = true;
 boolean normalState = true;
 LinkedList bitmapSend = new LinkedList();
 int b1 = (window_size /*+ 1*/)/4;
 int b2 = (window_size /*+ 1*/)/8;
 int b3 = (window_size /*+ 1*/)/8;
 int b4 = (window_size /*+ 1*/)/8;
 int b5 = (window_size /*+ 1*/)/8;
 int b6 = ((window_size /*+ 1*/)/4)/* - 1*/;
 LinkedList sentToUpper = new LinkedList();
 int packets_sent = 0;
 int total_packets;
 boolean stop = false;

 public Receiver() {
 super();
 }
 /**
 * Implement the protocol when a packet arrives.
 * @param data_ a packet
 * @param downPort_ a port
 */

 107

 protected synchronized void dataArriveAtDownPort(Object data_, Port downPort_){
 long src_ = getPeerAddress(data_);
 int sport_ = getPeerPort(data_);
 ARQ_Block pkt_ = (ARQ_Block)getContent(data_);
 boolean b = isError();
 if(!stop){
 if (!b){
 if(normalState){
 addToBuffer(pkt_);
 if(pkt_.isLast){
 sendAckBack();
 }
 }else{
 addToBuffer(pkt_);
 bitmap.add("1");
 if(pkt_.isLast){
 sendAckBack();
 }
 }
 }else if(firstError){
 firstError = false;
 normalState = false;
 if(pkt_.isLast){
 sendAckBack();
 }
 }else{
 bitmap.add("0");
 if(pkt_.isLast){
 sendAckBack();
 }
 }
 }
 }
 /**
 * Add received packets into the buffer or send to the uppper layer.
 * @param pkt_ a packet.
 */
 public void addToBuffer(ARQ_Block pkt_){
 if(pkt_.sequence_num == next_expected_num){
 if(buffer.size()==0){
 packets_sent +=1;//records total packets sent to upper layer
 finish(pkt_.sequence_num);
 next_expected_num++;
 sequenceCycle();
 sentToUpper.add(new Integer(pkt_.sequence_num));
 }else{
 packets_sent +=1;
 finish(pkt_.sequence_num);
 next_expected_num++;
 sequenceCycle();
 int b = buffer.size();
 for(int i = 0; i<b;i++){
 int b2 = buffer.size();
 int next = next_expected_num;
 for(int j=0; j<b2; j++){
 ARQ_Block temp = (ARQ_Block) buffer.get(j);

 108

 if(temp.sequence_num == next){
 buffer.remove(j);
 sentToUpper.add(new Integer(next));
 packets_sent +=1;
 finish(temp.sequence_num);
 next_expected_num++;
 sequenceCycle();
 break;
 }
 }
 }
 }
 }else{
 boolean packet_exist = false;
 for(int i = 0; i < buffer.size(); i++){
 ARQ_Block p = (ARQ_Block)buffer.get(i);
 if(p.sequence_num == pkt_.sequence_num){
 packet_exist = true;
 }
 }
 for(int i = 0; i < sentToUpper.size(); i++){
 int n = ((Integer) sentToUpper.get(i)).intValue();
 if(n==pkt_.sequence_num){
 packet_exist = true;
 }
 }
 if(!packet_exist){
 buffer.add(pkt_);
 }
 }
 }

 /**
 * Determine if this packet has error based on bit error rate.
 */
 private boolean isError(){
 Random r = new Random();
 int i = r.nextInt(100000000) + 1;
 if(i > 540*8*100000){
 return false;
 }else{
 return true;
 }
 }

 /**
 * Send acknowledgement containing a bitmap to the receiver.
 */
 private Acknowledgement sendAck(){
 Acknowledgement ack = new Acknowledgement();
 ack.next(next_expected_num);
 ack.setBitmap(bitmapSend);
 return ack;
 }
 /**
 * Construct next expected window that will be received.

 109

 */
 private void constructNextWindow(){
 if(addBitmap(b2, next_expected_num + b1)){
 bitmapSend.add("1");
 }else{
 bitmapSend.add("0");
 }
 if(addBitmap(b3, next_expected_num + b1+b2)){
 bitmapSend.add("1");
 }else{
 bitmapSend.add("0");
 }
 if(addBitmap(b4, next_expected_num + b1+b2+b3)){
 bitmapSend.add("1");
 }else{
 bitmapSend.add("0");
 }
 if(addBitmap(b5, next_expected_num + b1+b2+b3+b4)){
 bitmapSend.add("1");
 }else{
 bitmapSend.add("0");
 }
 }
 /**
 * Determine bitmap value for constructing next expected window use.
 * @param num block size
 * @param n expected sequence number of fist position in the block
 */
 private boolean addBitmap(int num, int n_){
 int n = n_% (window_size + 1)/*16*/;
 int temp = 0;
 for(int i = 0; i < num; i++){
 n = n + i;
 if(n > window_size/*15*/){
 n=0;
 }
 for(int j = 0; j < buffer.size(); j++){
 ARQ_Block p = (ARQ_Block)buffer.get(j);
 if(p.sequence_num == n){
 temp += 1;
 }
 }
 }
 if(temp == num){
 return true;
 }else{
 return false;
 }
 }
 /**
 * Make sequence number.
 */
 private void sequenceCycle(){
 if(next_expected_num == window_size + 1/*16*/){
 next_expected_num=0;
 }

 110

 }

 /**
 * Set totoal numbr of packets, for calculating throughput purpose.
 * @param vale number of packets
 */
 public void setPacketNum(int value){
 total_packets = value;
 }
 /**
 * check if required number of packets has reached, then finish.
 */
 private void finish(int seqNum){
 if(packets_sent == total_packets){
 stop = true;
 Acknowledgement ack = new Acknowledgement();
 ack.time = getTime();
 ack.setNum(seqNum);
 ack.done = 1;
 sendmsg(ack, 10/*size*/, 0, 101);//send back to nofity sender
 }
 }
 /**
 * send acknowledgement back to the transmitter.
 */
 private void sendAckBack(){
 firstError = true;
 normalState = true;
 constructNextWindow();
 sendmsg(sendAck(), 10, dst, dport);
 bitmap.clear();
 bitmapSend.clear();
 sentToUpper.clear();
 }
}

	San Jose State University
	SJSU ScholarWorks
	2007

	A Multiple-Copy Scheme for Multi-Channel Stop-and-Wait HARQ
	Yucheng Shih
	Recommended Citation

	1. Project Overview
	1.1 Introduction
	1.2 Proposed Area of Study
	1.3 Project Requirements
	1.3.1 Project Scope
	1.3.2 Project Goals

	1.4 Academic Contributions

	2. Background
	2.1 ARQ
	2.2 HARQ
	2.3 WiMAX
	2.4 WiMAX HARQ
	2.5 Related Work

	3. Summary of CS297 Project --- Evaluation of ARQ Schemes
	3.1 Simulation Topology and Settings
	3.2 Simulation Results

	4. Design of CS 298 Project --- Multiple-copy HARQ
	4.1 The BS-side Implementation
	4.1.1 Parameter MC and Parameter ICN
	4.1.2 Information Stored in the BS
	4.1.2 Data Burst Information (C_x, NS_x, NR_x, S_x)
	4.1.3 Parameter M_i and Parameter M_avg
	4.1.4 Operation of HARQ Channel i in the BS

	4.2 The SS-side Implementation
	4.2.1 Operation of HARQ Channel i in the SS

	4.3 Formal Analysis of the Multiple-Copy HARQ Scheme
	4.3.1 Correctness Analysis
	4.3.2 Time Analysis of the BS Operation
	4.3.3 Space Analysis of the BS Operation

	5. Performance Evaluations of Multiple-Copy HARQ
	5.1 Synchronous DL and UL
	5.2 Simulation Topology and Models
	5.3 Chase Combining
	4.4 Noise Burst Conditions
	5.5 Simulation Settings
	5.6 Simulation Criteria
	4.7 Simulation Results

	6. Conclusions
	6.1 Project Achievements
	6.2 Future Enhancements

	6. References
	Appendix A: Source Code

