
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2007

A Hierarchical Trusted Third-Party System for
Secure Peer-to-Peer Transactions
Khoi Nguyen
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Nguyen, Khoi, "A Hierarchical Trusted Third-Party System for Secure Peer-to-Peer Transactions" (2007). Master's Projects. 129.
DOI: https://doi.org/10.31979/etd.2qma-wsbv
https://scholarworks.sjsu.edu/etd_projects/129

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70407880?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/129?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

A HIERARCHICAL TRUSTED THIRD-PARTY SYSTEM FOR

SECURE PEER-TO-PEER TRANSACTIONS

A Written Report

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

Of the Requirements for the Degree

Master of Computer Science

by

Khoi Vu Nguyen

April 2007

© 2007

Khoi Vu Nguyen

ALL RIGHTS RESERVED

2

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Mark Stamp

Dr. Robert Chun

Dr. Sami Khuri

APPROVED FOR THE UNIVERSITY

3

ABSTRACT

A HIERARCHICAL TRUSTED THIRD-PARTY SYSTEM FOR SECURE PEER-TO-

PEER TRANSACTIONS

by Khoi Vu Nguyen

A peer-to-peer (P2P) network is a distributed network of peer computers loosely
connected through the Internet. Transactions in a P2P network are often conducted on a
no-security basis. Moreover, peer anonymity is often highly desirable, which makes
security even more difficult to achieve. In most cases, a peer executes a transaction solely
based on the faith that the other peer plays by the rules.

Here we propose a hierarchical Trusted Third-Party (TTP) system that facilitates
secure transactions between peers in an existing P2P network. This system is designed to
provide mutual authentication by using public key cryptography for peers to authenticate
the TTP system and by using symmetric key cryptography for the TTP system to
authenticate peers. After logging into the system, two peers can obtain a shared secret key
from the TTP system to form a secure channel over which all transactions are encrypted
using the secret key. The TTP system is designed to operate as an independent entity that
peers can choose to join independently of their P2P network and can remain anonymous
among each other.

In addition, a reputation scheme, in which peers rate each other, is employed in
the TTP system. This self-policing system provides a relative measure of trust among
peers so that a peer can decide whether to allow a transaction based on another peer’s
rating. The anonymity of peers in P2P systems creates many difficulties for establishing
an accurate rating system. However, we believe this is still achievable to a degree.

4

ACKNOWLEGEMENTS

I would like to thank my thesis adviser, Dr. Mark Stamp, for introducing me to
this fascinating field and guiding me through this thesis. Without his insightful feedback,
this thesis would not have succeeded. I would like to express my thanks to my committee
members, Dr. Robert Chun and Dr. Sami Khuri, for valuable comments.

This paper would not have been possible without the valuable help of my brother,
Nguyen Nguyen. I also want to thank my family for all of their support and
encouragement as I completed this thesis, especially my lovely wife, Silvie Phan.

5

Contents

1 Background .. 9
1.1 Problem Statement and Motivation ... 9
1.2 Requirements and Goals ... 9
1.3 Secure Socket Layer Protocol ... 10
1.4 Kerberos Authentication Protocol.. 10

2 Introduction.. 11

3 System Architecture ... 13
3.1 Assumptions.. 13
3.2 Overview ... 14
3.3 Hierarchy of TTP Servers ... 15

3.3.1 LTTP Server ... 16
3.3.2 ITTP Server .. 18

3.4 Peer Authentication ... 19
3.5 Establish Secure Channels between Peers ... 21

4 Peer Rating Scheme... 23
4.1 Direct rating ... 24
4.2 Objective rating.. 25
4.3 Subjective rating .. 25
4.4 Reputation Fading.. 25

5 Security and Performance Analysis .. 26
5.1 System Architecture and Protocol Issues... 26
5.2 Rating Scheme Issues... 29

6 Software Simulation... 29
6.1 Software Design.. 29
6.2 Software Implementation .. 30

6.2.1 SSL Server/Client Socket Implementation ... 30
6.2.2 Key Database.. 31
6.2.3 TTP System Implementation .. 31
6.2.4 P2P Network Implementation... 32

6.3 Simulation Results.. 33
7 Conclusions .. 34

References .. 34

Appendix... 36
A.1 Message Specification .. 36

6

A.1.1 Messages between Peers... 36
A.1.2 Messages between Peers and LTTPs .. 39
A.1.3 Messages within the TTP System... 46

A.2 The Software Simulation’s UML Diagrams .. 51
A.2.1 The TTP System’s UML Diagrams .. 51
A.2.2 The P2P Network’s UML Diagrams .. 57

7

Figures

Figure 1. Simplified SSL [8].. 10
Figure 2. Using Kerberos Tickets [8] .. 11
Figure 3. The TTP system in P2P Network .. 13
Figure 4. Hierarchy of TTP Servers... 15
Figure 5. TTP Server Paths and the LTTP Lookup Table ... 19
Figure 6. Alice logs in to the TTP system ... 20
Figure 7. Establishing a Secure Channel Between Peer Alice and Peer Bob 22
Figure 8. Software Simulation Architecture .. 30
Figure 9. The TTP system GUI... 32
Figure 10. The P2P Network GUI .. 33
Figure 11. Peer Alice Establishes Secure Channel with Peer Bob 37
Figure 12. Peer Alice Requests Peer Bob’s Rating.. 38
Figure 13. Peer Alice Registers with TTP System .. 40
Figure 14. Peer Alice Logs into the LTTP Server ... 41
Figure 15. Peer Alice Logs out of the LTTP Server .. 42
Figure 16. Requesting a Secret Key KAB with the LTTP Server 43
Figure 17. Peer Alice Sends a Vote to the LTTP Server ... 45
Figure 18. Relaying a Peer Verification .. 46
Figure 19. Relaying a Peer Vote to his LTTP Server .. 48
Figure 20. Updating Symmetric Key with Its Parent Server ... 49

8

1 Background

1.1 Problem Statement and Motivation

A P2P network consists of loosely connected peers and decentralized resources.
Often, there is also a desire for some degree of anonymity. Because of the desire for
anonymity, security is routinely omitted. When most P2P networks attempt to provide
security features, they become too restrictive to enable network growth. Therefore, P2P
networks in use today usually have minimal or no security features for providing
authentication of peers and confidentiality of transactions. Most P2P networks resolve
security issues by limiting the types of operations that peers can perform on network
resources. While this approach works well in most cases, it limits the potential
capabilities of P2P networking to predominantly file sharing.

P2P networks present many security concerns to an organization's network since

it opens a presumably secure network to various forms of attacks such as viruses, worms,
data theft, intellectual property loss, network bandwidth clogging, backdoor access, and
so on. By decentralizing resources, P2P networks compromise an organization’s security
policies and potentially place the organization’s network at risk.

However, P2P networking can also be used to enhance and expand network-

computing capabilities when certain security measures are put in place. One such security
requirement is the ability to communicate safely and securely between peers. In some
cases it is also important that peers can communicate securely without having to reveal
their identities to each other. If this problem was addressed successfully, additional P2P
networking possibilities could be explored, including the ability for peers to share files
securely with certain peers on the network, the ability for peers to lend unused CPU
cycles to certain peers securely, the ability for peers to securely send sensitive
information to other peers over an open P2P network, and so on. Therefore, the potential
contributions of our TTP system in P2P networks are limitless.

1.2 Requirements and Goals

The followings are the requirements and goals of our TTP system.

 Mutual authentication between peers and the TTP system
 Scalability of the TTP system, allowing future growth
 Independence of the TTP system from the underlying P2P network
 High accuracy and fault-resilient ratings
 Plug-in connectivity to existing P2P networks
 Use of stateless TTP servers
 Peer anonymity achieved at the authentication level

9

1.3 Secure Socket Layer Protocol

The Secure Socket Layer (SSL) protocol was developed by Netscape to address
the need for secure transactions over the Internet [11]. SSL uses public key cryptography
to provide authentication, integrity, and confidentiality. In practice, it is used primarily
when clients need to authenticate a server, although it can also provide mutual
authentication.

The basic idea of an SSL session is illustrated in Figure 1 below [8]. In this

scenario, a server named Bob has a pair of keys, one public and one private. The public
key, which is signed by a trusted Certificate Authority, is distributed widely and the
private key is kept secret. In this protocol, a client named Alice sends a request for a
secure transaction with the server along with her supported cipher list and a nonce RA.
The server replies with a certificate to the client along with his chosen cipher and another
nonce RB. Next, the client sends her generated “pre-master secret” S, encrypted with the
server’s public key, along with a hash of messages encrypted with the key K = h(S, RA,
RB), which is used to verify the correctness of the preceding messages. Last, the server
replies with a similar hash, which the client can decrypt to authenticate the server by
verifying that the server had received the previous messages correctly and was able to
obtain the secret S. At this point, both the server and the client have established a shared
symmetric key K that they can use to encrypt subsequent messages. Note that in this
protocol the client authenticates the server but the server does not authenticate the client.

Talk?, cipher list, RA

Certificate, cipher, RB

Figure 1. Simplified SSL [8]

After an SSL session is established, the client can open multiple subsequent SSL
connections using the symmetric key K, avoiding expensive public key operations.

1.4 Kerberos Authentication Protocol

Kerberos is a network authentication protocol developed at MIT [6]. It is based on
symmetric key cryptography and a trusted third-party model. The Kerberos protocol uses
a trusted third-party entity called the Key Distribution Center (KDC), which consists of
two parts: an Authentication Server (AS) and a Ticket Granting Server (TGS). Kerberos
is based on the use of “tickets” to authenticate users [8]. The KDC has a secret master
key, KKDC, which is used to encrypt the user’s Ticket Granting Ticket (TGT) [8]. This

client
Alice

{S}server , E(h(msgs, CLNT, K) ; K)
server
Bob

h(msgs, SRVR, K)

Messages encrypted with K

10

special ticket is used to obtain ordinary tickets that are used for accessing network
resources [6].

After a user named Alice logs in with her password, the key KA = hash(Alice’s

password) is computed. Alice is then granted a Ticket Granting Ticket, TGT =
E(“Alice”, SA; KKDC), by the TGS, which she can use to obtain other tickets for accessing
network resources. Here, SA is the session key that KDC assigns to Alice, and KKDC is the
KDC’s secret key. Figure 2 illustrates a scenario in which user Alice uses her TGT to
obtain access to a network resource named Bob.

Talk to Bob talk to Bob, TGT, authenticator = E(t ; SA)

Figure 2. Using Kerberos Tickets [8]

Using her TGT and an authenticator, Alice issues a request to the KDC for access
to Bob. The KDC replies with a “ticket to Bob,” which only Bob can decrypt, and a
shared session key, KAB, that Alice and Bob use to encrypt their session transactions.
Using this “ticket to Bob,” Alice can communicate securely with Bob by using the shared
session key KAB.

2 Introduction

A P2P network is a distributed network of peer computers connected loosely
through the Internet. Desirable characteristics of a P2P network are:

 There are many peers
 Resources are distributed
 Peers are anonymous in the P2P network
 Each peer is both a server and client
 Each peer has roughly equal functionality

One of the main characteristics of a P2P network is the ability for peers to remain

anonymous in the P2P network. This usually means that a peer’s representation must not
contain any direct identifiable information1. Although this characteristic provides

1 A peer in an anonymous P2P network is highly, but not completely, anonymous because it still has an
“address” [18].

Alice
E(“Bob”, KAB, ticket to Bob = E(“Alice”, KAB; KB) ;

SA)

KDC Alice’s
computer

ticket to Bob, authenticator = E(t ; KAB)
Alice’s
computer Bob E(t+1 ; KAB)

11

tremendous flexibility in a P2P network, it places a heavy burden on security
implementations to maintain anonymity.

In general, the number of peers in a P2P network can be very large. Therefore, it

is essential that any security scheme must be efficient and easily scalable as the number
of peers grows. Since P2P networks are based on decentralized resources, public key
cryptography is a natural choice. However, it is impossible to implement public key
cryptography directly on peers in a P2P network because each peer would have to
maintain a pair of public-private keys, which would require the existence of a Certificate
Authority to authenticate and publish the public keys to all other peers. Expecting public-
key certification for every peer is impractical because of the high economic cost
associated with doing so. On the other hand, symmetric key cryptography would require
each pair of peers to share a symmetric key, requiring in N(N-1) ≈ N2 total keys for a
network of N peers [6]. Obviously, this will not scale well as the number of peers grows.

Considering these issues, a third-party model is a logical solution. A Trusted

Third Party (TTP) system resides independently from the P2P network and shares one
unique symmetric key with each peer in the network, for a total of N symmetric keys.
Using a symmetric key cryptography TTP system, peers can authenticate each other with
the help of the TTP system. Peers can also establish secure channels with other peers in
the P2P network by requesting the TTP system to generate symmetric keys that only the
communicating peers know, while the peers remain anonymous to each other. However,
mutual authentication is not achieved using this scheme alone since peers cannot
authenticate the TTP system.

In light of these factors, a hybrid scheme emerges as the best candidate for the

TTP system. In such a scheme, symmetric key cryptography is used along with limited
public key cryptography. Public key cryptography in the form of the Secure Sockets
Layer Protocol (SSL) [11], is used to authenticate the TTP system. After a secure SSL
session or connection has been established between a peer and the TTP system, a
symmetric key cryptography system implementing the Kerberos Authentication Protocol
[6] is used to authenticate peers and to generate tickets. These two combined protocols
provide mutual authentication while improving system efficiency since only a symmetric
key is needed for every peer and only one public-key pair is needed for the entire system.

It is natural to use SSL to authenticate a TTP system because a TTP system

represents a single entity that all peers must share and trust. On the other hand, it makes
sense to use Kerberos authentication for the peer-to-peer interactions because it does not
require public key certificates for all peers, but yet it scales well, due to the use of a TTP.
Furthermore, a Kerberized TTP system can help peers to establish secure communication
channels between them by generating symmetric keys stored in encrypted tickets that can
only be decrypted by the communicating peers. These two security systems work hand-
in-hand to provide mutual authentication, taking advantage of the superior performance
of Kerberos’s symmetric key cryptography and the superior convenience of SSL’s public
key cryptography.

12

Figure 3. The TTP system in P2P Network

Using this TTP system, peers can communicate safely and securely with each
other. However, an important question remains: how can a peer determine whether he
should trust another peer before establishing a secure channel with that peer? This
problem is addressed by incorporating a reputation-based scheme in which peers rate one
another after every transaction. Peers’ reputations are based on their past behavior.
Therefore, they theoretically should behave well to earn reputations that will allow them
to be trusted by others. Peer ratings are not stored in the peers, but are stored in the TTP
system along with other peer data so that the integrity of the ratings can be guaranteed.
Peer ratings are time-stamped and signed with the TTP system’s SSL private key before
being issued to the peer in a Kerberized ticket along with other data.

3 System Architecture

3.1 Assumptions

The design of the system assumes the following.

 The number of peers in the underlying P2P network is large.
 The public key of the TTP system is published to all peers in a certificate signed

by a trusted Certificate Authority.

13

 Peers and TTP servers are all capable of establishing SSL sessions and
connections.

 Peers and TTP servers are all capable of performing symmetric key cryptography,
such as AES, DES, 3DES, RC4, and so on.

3.2 Overview

The TTP system is a single entity that all peers in the P2P network can see and
trust. It implements the Kerberos Authentication Protocol, a proven network-based
authentication system [6]. The TTP system itself is analogous to the KDC in the Kerberos
authentication protocol and hence it uses a Kerberized ticket scheme to authenticate peers
and to establish confidentiality in transactions between peers. Any peer in the P2P
network who wants to participate needs to register with the TTP system to form a shared
symmetric key, Kpeer = hash(peer password), with the TTP system. This secret key is
shared only between the peer and the TTP system and is used to encrypt and decrypt
messages between them.

The TTP system has a public/private key pair that is used to establish an SSL
session with peers. Before a peer starts communicating with the TTP system, it uses the
TTP system’s certificate, CertTTP, which contains the TTP system’s public key and is
signed by a Certificate Authority, to start up an SSL session as described in Figure 1. The
peer uses this public key SSL protocol to authenticate the TTP system server. All
subsequent messages between the peer and the TTP system are encrypted with the
symmetric session key, KSSL, which is generated by the SSL session. The peer can use
KSSL to open cheaper subsequent SSL connections later. After an SSL session or
connection has been established, the TTP system’s Kerberos ticket protocol takes over
for the rest of the authentication. Thus, all Kerberized tickets and messages between the
TTP system and the peer are wrapped within a secure SSL session or connection.

 The Kerberized ticket scheme provides many advantages to the TTP system. It
allows the TTP system to remain stateless because peer session information need not be
stored on the TTP server but instead can be stored in the peer’s TGT; the total number of
messages is minimized by using timestamp in tickets2; and only N symmetric keys are
needed for N peers in the P2P network.

The scalability of the TTP system is an important concern since the number of
peers can grow to millions in a P2P network. Therefore, the TTP system is designed
internally as a hierarchy of TTP servers consisting of Local TTP servers (LTTP) at the
bottom level of the TTP tree and Intermediate TTP servers (ITTP) at the upper levels of
the TTP tree. Each LTTP manages a region of P2P network and each ITTP in turn
manages LTTPs and other ITTPs. Only LTTPs are exposed to the outside world while
ITTPs do not have any links to the outside world. This hierarchical TTP design makes it
easy for the TTP system to accommodate new peers as the network grows. When the
capacities of all LTTPs are reached, the TTP system only needs to add a new LTTP server

2 Timestamp in tickets are set by the TTP system’s servers, which clocks are synchronized with each other
within the TTP system, as required in Kerberos.

14

to the existing TTP server tree and assign new peers to it. This process is entirely
transparent to peers. Furthermore, peers assigned to an LTTP server can be moved to
another LTTP server if the LTTP server is shut down for maintenance or repair.

Table 1. Notation

KITTP/LTTP “master”/KDC symmetric key of ITTP or LTTP server.
KA private key of peer Alice, KA = hash(Alice’s password).
SA symmetric session key of peer Alice and her LTTP server.
TGTA Ticket Granting Ticket of user Alice issued by her LTTP server.
{ M }TTP encrypted with TTP system’s SSL public key.
[M]TTP signed with TTP system’s SSL private key.
CertTTP TTP system’s SSL certificate issued by a Certificate Authority.
E(m1, m2,…; K) encrypt data with key K using symmetric cryptography.
D(m1, m2,…; K) decrypt data with key K using symmetric cryptography.
KAB secret symmetric key of peer Alice and Bob.

3.3 Hierarchy of TTP Servers

The TTP system consists of a hierarchy of TTP servers in which LTTP servers
reside at the bottom and ITTP servers reside at the upper levels. The hierarchical
architecture of TTP servers addresses the scalability issue to better accommodate future
growth of the network. This model allows the TTP system to dynamically expand with
the growth of the P2P network by adding more LTTPs and ITTPs as needed. Moreover, it
permits flexibility in balancing the workload of the LTTP servers.

Figure 4. Hierarchy of TTP Servers

15

The TTP server naming follows the Domain Name standard: names are restricted
to ASCII characters [a – z], [A – Z], digits [0 – 9], and the hyphen. Each TTP server name
is a combination of its parent TTP server name and its own name separated by ‘.’
characters. Each server name must be unique among its sibling servers of the same parent
server. Although this naming scheme reveals little information about the TTP system
structure, it does not make the system less secure because only LTTP servers are exposed
to the outside world while all ITTP servers are isolated from it. However, any other
naming standard for TTP servers could be used in the actual implementation if this was a
concern. The X.500 naming standard, which does not use a hierarchical naming format, is
one alternative [17].

All servers in the TTP system share a public/private key pair used in establishing
an SSL session and connection with peers. A certificate that includes the public key
issued by a third-party Certificate Authority is published to all peers. Using this
certificate, a peer is able to authenticate its assigned LTTP server and open an SSL client
session to this server. After an SSL session or connection has been established,
subsequent communication between a peer and the LTTP server is done through Kerberos
ticket-based messages within this secure SSL channel by encrypting all Kerberized
messages with the SSL session symmetric key as in Figure 1. The private key on the
other hand is used to sign peer ratings to protect its integrity when it is sent to peers.

Although all Kerberos messages between the LTTP server and peers are encrypted
with an SSL session key, the communication is not necessarily more secure because
multiple layers of encryption do not mean better security automatically. The security of
this authentication system relies primarily on the ticket-based Kerberos authentication
method. The SSL protocol is used merely for authenticating the LTTP server. It serves no
further purpose once the Kerberos authentication takes over the remainder of the peer
authentication.

If for any reason a peer’s user identification and password are compromised, an
attacker could use the stolen identity to establish an SSL session with the TTP system and
obtain needed Kerberos tickets for use without the knowledge of the TTP system. Of
course, this problem exists in many authentication systems. There are, however, ways to
limit the chance of such a breach of security, such as requiring peers to change their
passwords periodically3.

3.3.1 LTTP Server

An LTTP server is analogous to a KDC in the Kerberos system because it serves
as both authentication server and ticket granting server. Each LTTP owns a “master”
KDC key, KLTTP, which is used to encrypt all tickets sent to peers. This “master” key is
shared with its immediate parent ITTP server and used to encrypt all internal messages
between them. It would also be possible to use a separate symmetric key for

3 Passwords are regarded as a relatively insecure method of access control because of many inherent
weaknesses [8]; however, passwords are still widely used because they are cheap. In fact, they are cost-
free.

16

communications between LTTP and ITTP servers, but that would cause an increase in the
workload of LTTP servers. This approach is not employed in the system by default but is
left as an option in the implementation.

Each LTTP server manages a group of assigned peers. When a peer joins in the
TTP system, he is assigned to a particular LTTP server, which becomes the sole server
that he communicates with in all TTP system operations from that point onward. The
LTTP server can be chosen randomly or based on the geographical region of the peer. A
random assignment is used by default because it helps to balance the number of peers
among all LTTP servers.

Each LTTP server owns a database that it uses to store its peers’ data. After a peer
registers with the LTTP server using a unique name and password, a symmetric key, KA,
which is the hash of the peer’s password, is shared between the LTTP server and the peer.
A peer profile including peer name, hashed password, and rating, along with other data, is
stored in the LTTP database. The peer’s rating is stored in the LTTP for integrity
purposes and only sent to the peer at login time.

Since LTTP servers are the only ones in the system open to the outside world,
they are the most vulnerable to attack. Using a separate key database for each LTTP
server minimizes the damage of a compromised LTTP server. If that does happen, only
the compromised LTTP server needs to be disconnected from the P2P network and
removed from the TTP hierarchy. Its peer profiles can be recovered from its database and
transferred to a new LTTP server or to other existing LTTP servers. The new LTTP
server to which peers are assigned automatically updates the symmetric keys of the
affected peers, by requiring the peers to change their passwords.

In contrast to the Kerberos authentication system, cross-LTTP communication is
disallowed in the TTP system. All cross-LTTP communication must go through a mutual
ITTP ancestor. For example, in Figure 4 messages between LTTP servers “sj.ca.ttp” and
“la.ca.ttp” must be done through their mutual ITTP parent “ca.ttp,” and messages
between LTTP servers “sf.ca.ttp” and “mi.fl.ttp” must be done through their mutual ITTP
server “ttp.” This restriction is enforced by the following requirements.

 All messages between TTP servers must be encrypted with their shared
symmetric key.

 An LTTP server can only send and receive internal messages to and from its
direct parent ITTP server.

These restrictions produce a clearer and simpler stream of internal

communications among servers and, more importantly, better security for the entire
system. By preventing LTTP servers from communicating directly with each other, the
system reduces the chance of having a compromised LTTP server cause another LTTP
server to be compromised. To break into multiple LTTP servers using a compromised
LTTP server, the attacker must break into the parent ITTP server. This is presumably

17

more difficult because all ITTP servers are disconnected from the outside world and only
communicate with their child LTTP servers for a very limited set of operations.

3.3.2 ITTP Server

An ITTP server manages other TTP servers including ITTP servers and LTTP
servers. Its jobs include monitoring its child TTP servers and relaying communications
between LTTP servers. The later job is essential to communications between LTTP
servers as described above.

Similarly, an ITTP server owns a “master” KDC key, KITTP, which it shares with
its immediate parent server. The root ITTP server is the only exception—it does not have
a “master” key since it has no parent. An ITTP server uses this symmetric key to encrypt
and decrypt messages to and from its parent server. It also shares a number of symmetric
keys with its immediate child servers and uses those keys to encrypt and decrypt
messages to and from its child servers.

As discussed above, cross-LTTP communications are not allowed. Therefore,
inter-LTTP messages must be relayed by ITTP servers that lie in the path from one LTTP
server to the other. For example, in Figure 4 messages between the LTTP servers
“sj.ca.ttp” and “la.ca.ttp” must be relayed through their mutual ITTP parent “ca.ttp”;
messages between LTTP servers “sf.ca.ttp” and “mi.fl.ttp” must be relayed through ITTP
servers “ca.ttp,” “ttp,” and “fl.ttp.”

To efficiently relay inter-LTTP messages, each TTP server maintains the path
from the root server to itself, which is encoded by the concatenation of its own name with
its parent server path. All LTTP servers share one LTTP lookup table that has two
columns: the hash of the LTTP server name and its path from the root server as described
in Figure 5. Whenever a new LTTP server is added to the hierarchy, a new row is added
to the table. Here are the steps to find the path from one LTTP server to another4:

 Get the paths from root to the two LTTP servers in the lookup table by taking the
hash of the two LTTP names, which hash to the appropriate row indices
containing the paths.

 Find the mutual ancestor server from these paths.

The path between them is the path from the first LTTP server to the mutual
ancestor server to the second LTTP server. For example, the paths from the root server to
LTTP servers “sf.ca.ttp” and “mi.fl.ttp” are {“ttp,” “ca.ttp,” “sf.ca.ttp”} and {“ttp,”
“fl.ttp,” “mi.fl.ca.ttp”} respectively. Hence, their mutual ancestor server is server “ttp,”
and the path from “sf.ca.ttp” to “mi.fl.ttp” is {“sf.ca.ttp,” “ca.ttp,” “ttp,” “fl.ttp,”
“mi.fl.ca.ttp”}.

4 This path-finding method is a generic method that works on any naming standard. If the Domain Name
standard is used for server names, then the path can be found directly from the names of the two LTTP
servers.

18

ITTP
“tx.ttp”

ITTP
“ttp”

ITTP
“fl.ttp”

ITTP
“ca.ttp”

hash(LTTP id) Path from Root to LTTP
h(“sj.ca.ttp”) { “ttp”, “ca.ttp”, “sj.ca.ttp” }
h(“sf.ca.ttp”) { “ttp”, “ca.ttp”, “sf.ca.ttp” }
h(“la.ca.ttp”) { “ttp”, “ca.ttp”, “la.ca.ttp” }
h(“aus.tx.ttp”) { “ttp”, “tx.ttp”, “aus.tx.ttp” }
h(“sat.tx.ttp”) { “ttp”, “tx.ttp”, “sat.tx.ttp” }
h(“hou.tx.ttp”) { “ttp”, “tx.ttp”, “hous.tx.ttp” }
h(“mi.fl.ttp”) { “ttp”, “fl.ttp”, “mi.fl.ttp” }
h(“ta.fl.ttp”) { “ttp”, “fl.ttp”, “ta.fl.ttp” }
h(“ke.fl.ttp”) { “ttp”, “fl.ttp”, “ke.fl.ttp” }

Path from Root
{ “ttp”, “ca.ttp” }

Path from Root
{ “ttp”, “tx.ttp” }

Path from Root
{ “ttp”, “fl.ttp” }

Path from Root

{ “ttp” }

LTTP
“sat.tx.ttp”

LTTP
“aus.tx.ttp”

LTTP
“hou.tx.ttp” LTTP

“mi.fl.ttp”
LTTP

“ke.fl.ttp”
LTTP

“ta.fl.ttp”

LTTP
“sf.ca.ttp”

LTTP
“sj.ca.ttp”

LTTP
“la.ca.ttp”

Path from Root
{ “ttp”, “ca.ttp”,

“sj.ca.ttp” }

Path from Root
{ “ttp”, “ca.ttp”,

“la.ca.ttp” }

Path from Root
{ “ttp”, “ca.ttp”,

“sf.ca.ttp” }

Path from Root
{ “ttp”, “tx.ttp”,
“aus.tx.ttp” }

Path from Root
{ “ttp”, “tx.ttp”,
“sat.tx.ttp” }

Path from Root
{ “ttp”, “tx.ttp”,
“hou.tx.ttp” }

Path from Root
{ “ttp”, “fl.ttp”,

“mi.fl.ttp” }

Path from Root
{ “ttp”, “fl.ttp”,

“ta.fl.ttp” }

Path from Root
{ “ttp”, “fl.ttp”,

“ke.fl.ttp” }

LTTP Lookup Table

hash function“hou.tx.ttp”

Figure 5. TTP Server Paths and the LTTP Lookup Table

Relaying messages from one LTTP server to another is easily accomplished at
every ITTP server through the following steps.

 Find the path from one LTTP server to the other as described earlier.
 Remove the first server name in the path and relay this message along with the

shortened path to the removed server, which should be either the immediate
parent server or the immediate child server.

 Recursively repeat these steps until the path is empty. The designation LTTP
server is the last server in the list.

It is essential that an ITTP server be excluded from all connections to the outside

world. It should only be inter-connected with its immediate parent server and its
immediate child servers. This restriction is vital to the security of the whole system since
these ITTP servers are supposed to be hidden and protected behind LTTP servers.

3.4 Peer Authentication

The TTP system is designed as an independent trusted-third-party model so that
peers need only to join when they want secure transactions. Peers can operate in a P2P

19

network with insecure transactions as usual without having to do anything with the TTP
system. When a peer is ready to join, he can register with the system using a unique name
and password. The TTP system reserves a default LTTP server for peer registration. This
reserved LTTP server can determine which LTTP server this peer should be assigned to
according to the peer’s geographical location, organization, the current workload of
LTTP servers, or a random choice. Once an LTTP assignment is made, the registration
LTTP server requests the assigned LTTP server to create the peer profile and reply to the
peer with the following data upon success.

 The assigned LTTP server name and IP address.
 The peer’s hashed password, Kpeer = hash(peer password), which is his private

symmetric key for use with the assigned LTTP server.
 The hash function type used in hashing the password.

Note that all communications between peer and TTP servers are always carried

out within the secure SSL channel that the peer has established with the TTP system. The
peer computer only stores the hash function type and LTTP server data, which are used to
hash the peer password and communicate with the LTTP server in the login process.

1. LOGIN_RQST, "Alice", KA

2. LOGIN_RPLY, "sj.ca.ttp", E(SA, Alice’s rating,
ttl, [“Alice”, Alice’s rating, ttl]TTP, TGTA; KA)

secure SSL channel

Alice "Alice", password

LTTP
“sj.ca.ttp”

Peer Computer

Figure 6. Alice logs in to the TTP system

When peer Alice desires a secure transaction, she logs in to her LTTP server
using her user name and password as in Figure 6. Her peer computer uses the predefined
hash function to compute the hashed password, KAlice, to be sent to the server. It then
authenticates and establishes an SSL session with the LTTP server and sends the login
request with Alice’s name and hashed password to the LTTP server. When receiving the
LTTP server’s encrypted reply, the peer computer uses KAlice to decrypt the message,
which contains the following.

 A session key, SAlice, generated randomly by the LTTP server.
 A Ticket Granting Ticket, TGTAlice = { LTTP name, E(“Alice,” SAlice, time-to-live;

KLTTP) }, used to obtain other tickets.
 The signed and time-stamped peer rating, [“Alice”, Alice’s rating, time-to-live]TTP.

These data are saved on the peer computer for use within the lifetime of Alice’s

TGT. TTP authentication system benefits from this Kerberos ticket-based scheme
because it does not have to store the peer’s session data while they are logged in. All
session data are stored in the peer TGT itself, encrypted with the LTTP master key, and
can be decrypted only by the LTTP server. This is an advantage in a P2P network since
the number of peers may be very large. Storing all peers’ data on the TTP servers would

20

be inefficient and perhaps even impossible. These data are distributed among peers in a
secure manner instead.

This login mechanism is vulnerable to one potential attack method. Trudy, an
attacker, may try to guess Alice’s password by logging in with Alice’s user name and
different passwords multiple times until succeeding. This attack is present in almost all
authentication systems. Several methods are used in LTTP servers to prevent such an
attack.

 Limit the number of logins to three. After three failed attempts, the peer account is
suspended for some time. This, however, creates a window for Denial of Service
attack.

 Delay the login reply from LTTP server for a short time. Three seconds is used in
LTTP servers by default. This slows down an attack dramatically.

3.5 Establish Secure Channels between Peers

One of the main purposes of this system is to provide a mechanism for
establishing secure transactions between peers. The method employed is based on the
Kerberos ticket-based scheme. Peers use their TGTs to request a symmetric key, KAB,
which is issued only to the two involved peers. The symmetric key generated by the TTP
system is sent to the requesting peer. In addition, a Kerberized ticket including the
symmetric key encrypted with the other peer’s session key is sent to the requesting peer
who must then send it to the other peer. Therefore, only the two involved peers can get
the secret key KAB, which is used to form a secure channel between the two peers in
which all messages are encrypted using KAB.

Figure 7 shows a sequence of messages between two peers and between a peer
and its LTTP server for obtaining a secret key, KAB. This scenario assumes that both
peers Alice and Bob have logged in to their respective LTTP servers and obtained
TGTAlice and TGTBob. First, peer Alice requests peer Bob to establish a secure channel
that they can use for secure transactions. In her request message, Alice sends to Bob her
time-stamped rating signed by the TTP system along with her TGTAlice. If Bob does not
trust Alice based on her rating, he can deny the request, and the interaction terminates. If
Bob decides to trust Alice, he opens an SSL connection with his LTTP server and sends
his TGTBob and Alice’s TGTAlice along with an encrypted timestamp5 requesting the
LTTP server for a shared secret key. If Alice belongs to the same LTTP server as Bob,
then this server can decrypts peer Alice’s TGTAlice to verify her identity. Otherwise,
Bob’s LTTP server finds Alice’s LTTP server, as described above in section 3.3.2, to
request verification of Alice. When all peers are verified, Bob’s LTTP server generates a
random symmetric key, KAB, enclosed in the following message and ticket.

 “Message to Bob”

5 Timestamps in messages between peers or between a peer and the TTP servers are used to prevent replay
attack.

21

 “Ticket to Alice” encrypted with SAlice

2. "
Bob", T

GTBob,
TGTAlice

, E
(t ;

 SBob)

3. "l
a.ttp

", “
messa

ge to
 Bob”, “

tick
et to

 Alice
”

Figure 7. Establishing a Secure Channel Between Peer Alice and Peer Bob

 Bob opens his message to get KAB and a voting ticket used to vote on Alice later.
He sends to Alice her ticket along with the current time incremented by 1, encrypted with
KAB. Alice decrypts the ticket to get KAB and a voting ticket used to vote on Bob later.
After she uses KAB to verify Bob’s timestamp, she sends back an acknowledgement of
the time incremented by 2 encrypted with KAB which Bob can also verify using KAB.
Timestamps are used for mutual authentication between peers. The purpose of
incrementing timestamps here is to prevent replay attack. After this, they can start using
the secure channel by encrypting all messages with the secret key KAB. This secret key
KAB is valid for a limited time, Time-To-Live (TTL), specified by Bob’s LTTP server.

Note that the two voting tickets generated by the two peers’ LTTP server(s) are

encrypted with their respective master key(s) and issued only to the two peers involved in
the request. One is sent directly to Bob for voting on Alice. The other is contained in the
“ticket to Alice” sent by Bob to Alice for voting on Bob. After their transactions are
completed, the peers use these tickets to vote on each other by sending the tickets along
with their votes to their respective LTTP servers. Only the correct LTTP server can
decrypt the voting ticket and use it to verify the vote authenticity. If sent to the wrong
LTTP, the vote will be discarded.

Messages 1, 4, and 5 are sent over an insecure channel between peers Alice and
Bob. However, this does not make their communication less secure because these
messages are all encrypted with either Alice’s private key KA or the shared secret key
KAB that only peers Alice and Bob can decrypt.

Timestamps are used throughout in messages between peers and between peers
and the TTP system to avoid replay attack and reduce the number of messages needed.

22

This approach presents a drawback since time becomes a security-critical parameter and
requires clock synchronization among all involved parties [8]. There are two options to
overcome this problem.

 Synchronize a peer software clock with TTP server’s clock when the peer logs in
and use this clock to produce timestamps in messages instead of peer computer
clock. TTP servers’ clocks are internally synchronized with each other so that
LTTP servers’ peer software clocks are also synchronized indirectly with each
other. This is relatively easy to accomplish since TTP servers are closely coupled.
A small clock skew of one minute is accepted in the system by default since peer
software clocks can deteriorate over long periods.

 Instead of synchronizing clocks, TTP servers memorize all timestamps received

within a certain clock skew close to the current time and reject repeated
timestamps [8]. This method, however, places much more workload on the TTP
system than the previous approach.

The TTP system implements the first approach by default. However, the decision

of choosing either approach is left to the actual implementation of the TTP system.

4 Peer Rating Scheme

Trust is a key factor in reputation-based systems. It is particularly important in a
P2P network because peers remain anonymous to each other; a peer’s reputation is
essentially the only information that anyone can use to determine whether he can be
trusted.

A reputation-based rating system is integrated into the TTP system. A peer rating
is kept in the LTTP server and issued to the peer when he logs in, signed by the TTP
system’s SSL private key. To prove his trustworthiness, a peer sends his signed rating to
other peers, who can decrypt it using the TTP system’s public key. When the TTP system
creates a secret key, KAB, for two peers, it includes two voting tickets issued to the
involved peers. Peers use these tickets to rate each other after completing their
transactions. The followings are the rules that the TTP system uses in its peer reputation
scheme.

 A rating scale of -5.0 to 5.0 is used.
 Ratings for each peer are kept in the peer’s LTTP server and are signed and issued

to the peer when he logs in.
 A peer rating is updated when another peer uses a voting ticket to vote on the

peer.
 A peer can only vote on a particular peer once per day.

In the TTP system, as in any reputation system, a peer rating is built on his past

reputation and is affected by the consequences of his interactions with other peers [4].

23

However, the reputation system in the TTP system does not compute peer ratings by
merely averaging the summation of all votes on the peer. Using that method alone is a
flawed approach. For example, a peer that has ten +5 votes in the last year but remains
inactive in the current year and a peer that has one hundred +5 votes in the recent month
both have the same +5 rating. This is obviously flawed because the second peer should be
more trusted than the first peer.

The rating system in the TTP system therefore is designed to encourage actively
good behavior in peers and discourage bad behavior or passive peers. In other words, a
peer must actively maintain his good behavior in order to maintain a high rating. To
better represent a peer rating in the system, a “weighted” rating formula is used to
compute peer ratings from a number of factors, including direct rating, objective rating,
subjective rating, and fading ratio:

peer rating = (α*direct_rating + β*obj_rating + γ*subj_rating) * fading_ratio (1)
, where α, β, and γ are the percentages and α+ β+ γ = 1.

This rating is computed and given to the peer only when he logs in to the system.

This approach enhances system efficiency because the system does not have to compute
the value repeatedly. The percentages α, β, and γ are chosen to be 70%, 15%, and 15%
respectively by default. However, these percentages should be fine-tuned in the actual
implementation to create a suitable outcome.

4.1 Direct rating

The direct rating is the average of other peers' votes on a peer. Every time another
peer votes on this peer, his direct rating is recalculated and updated in the LTTP server.
This rating source should be the biggest percentage in the overall rating formula because
it represents the most important factor, the votes/opinions of other peers in the P2P
network.

However, using direct rating as a major percentage in the formula could also be
the pitfall of this rating system. A group of peers in a P2P network can cooperate in
bringing up their ratings by giving each other high votes. It is difficult to design a rating-
tampering resistance system without increasing the workload of the system. Thus, peer
reputation scheme in the TTP system is designed to compromise between rating-
tampering resistance and system performance as follows.

 For a cluster of peers with the same IP address’ net_id, take only an average of
these peers’ votes to prevent vote tampering of a clique of dummy or cooperating
peers. This essentially collapses these votes from the same net_id to one single
vote [2].

 Select a set of random votes from all votes in computing a peer’s direct rating.
LTTP servers randomly determine which votes to accept according to a predefined
probability. By default, 70% of votes are accepted. However, this should only be
employed when there exists a large number of votes on a peer.

24

4.2 Objective rating

Peer rating is affected by a number of objective factors.

 Responsiveness: the time from when the voting ticket was issued to when this
vote was received. The longer the duration, the less effect the vote has on the peer
rating.

 Liveliness: how active the peer is in the system, as measured by the total number
of secret channels this peer has owned. The more he has, the better objective
rating he possesses.

 Credibility: take into account the voter's own reputation on his vote. For example,
if Alice's rating is +4, then her vote on Bob has only 90% of the effect of a perfect
vote. In other words, we do not trust a voter more than other peers trust him.

These factors are based on objective information that LTTP servers collect and

store in their databases. They do not overburden TTP servers and have minimal effect on
system performance. These are the objective factors used in the TTP system by default.
However, any other objective factors can be added in the actual implementation.

4.3 Subjective rating

Peer rating is also affected by a number of subjective factors that are based on
context-aware tests [1].

 Suspicion detection: A peer’s rating history plays an important role in
determining this subjective rating. For example, if a peer rating is 0/neutral for
months but suddenly surges up to +5 in a few days, then his subjective rating
should be low since this activity is suspicious.

 System behavior: This is determined by peer interactions with TTP servers. This
score is low if the peer fails to log in many times or has tried to use invalid
Kerberized tickets frequently in the last few days.

To determine peer subjective ratings, the system must monitor the history of peer

behavior, which increases the workload of the system. Therefore, a balanced number of
subjective tests must be chosen in the system to determine peer subjective ratings without
affecting system performance too much. The impact on system performance of each
subjective test must be carefully considered. The TTP system chooses to include the
above two tests by default. However, any new test can be added to the actual
implementation of the system.

4.4 Reputation Fading

The fading of reputation reflects a social norm in which a person’s trustworthiness
decreases slowly as time passes. A person’s reputation is not the same today as a year ago
if he remains inactive the whole time. In other word, he must always work actively to

25

maintain his good reputation; otherwise, his reputation fades. On the other hand, if he has
had a bad reputation in the past, that aspect of his reputation also fades over time.

In the TTP system, this fading factor is implemented by discounting the peer
rating by a small percentage periodically [1]. This prevents peers from capitalizing on
past good behavior and provides the possibility of redemption from previous bad
behavior [1]. A peer rating slowly fades back to the "neutral" state (rating = 0.0); each
day it is multiplied by a fading factor of 0.975, for a 0.025% daily discount as in formula
1. This fading factor has the effect of decreasing a +5.0 rating or increasing a -5.0 rating
back to a neutral/0.0 rating over a 200-day period.

Many algorithms for fading factors can be incorporated into the system to
improve the outcome. One is to have different fading ratios for positive and negative
ratings so that it takes longer to fade back to the neutral state from a negative rating than
a positive one. Another is to increase or decrease the fading factor according to the peer’s
behavior over time. For example, for second-chance misbehavior, a peer can get back his
reputation slowly by good behavior over time. However, following any future
misbehavior reflected in negative votes of other peers, his reputation will fade even
faster. This fading method is very effective for the case in which a peer intentionally
maintains good behavior to get a good rating over a long period and then uses it for bad
behavior over a short period before discontinuing the account. Even though these
algorithms are not implemented in the TTP system by default due to their load on TTP
servers, they can be incorporated in an actual implementation.

5 Security and Performance Analysis

5.1 System Architecture and Protocol Issues

Although the TTP authentication system is based on the proven security protocols
SSL and Kerberos, as in any other authentication system it has a number of outstanding
issues. Most of them are inherited directly from the SSL and Kerberos architectures and
have been discussed in many publications. The following are some of the more prominent
issues with the TTP system.

 Single Point of Failure

Since the TTP system is based on a trusted third-party model, it rests on a single

entity that is critical to the availability of the whole system. The system requires
continuous availability of its central servers. If an LTTP server is down, no peer
associated with this server can log in or use its services. Solutions for this issue follow.

o Keep a backup/mirror LTTP server for each LTTP and switch to the backup

server automatically when it goes down.

26

o Delegate the LTTP server’s peers to another LTTP server in the TTP server
hierarchy. However, this should be implemented carefully so that it does not
offset the workload balance among the servers.

 Bottleneck Effect

Since all inter-LTTP communications are relayed through ITTP servers along the

path from one LTTP server to the other, the system contains a potential bottleneck that
may slow down its performance when there is a large number of such communications. If
the TTP hierarchical tree depth is d, the average number of involved ITTP servers in
inter-LTTP communication is (d – 1)/2. Thus, to maintain system performance, the
hierarchy tree depth should be minimized so that the number of ITTP servers in inter-
LTTP communication is small.

 Replay Attack

As in the Kerberos authentication system, a timestamp is used in TTP system

messages to cut down on the number of messages required [8]. If the TTP system is
implemented exactly akin to Kerberos servers, so that the clocks of peer computers and
TTP servers are not synchronized, there must be an allowance for time skew between
peer message timestamps and the TTP server’s clock. This means that any message with
a timestamp close to the allowable time skew of the server’s clock is accepted. This
opens up a small window for a replay attack using a stolen live authenticator.

The TTP system limits this replay attack by requiring the peer software‘s clock to

synchronize with the LTTP server’s clock whenever the peer logs in, as described in
section 3.5. However, since even the peer software’s clock may be out of sync with the
server’s over a long period, a time skew of one minute is still used by default. Thus, the
chance of such an attack is small but still exists. Another approach is to remember
timestamps within the clock skew and refuse to accept duplicate timestamps. This
eliminates the replay attack, but puts an additional burden on the TTP servers. Therefore,
it is a tradeoff.

 Password Guessing Attack

The TTP system is vulnerable to a password-guessing attack because most users

do not use “strong” passwords. This issue exists in almost all authentication systems that
use a password for login authentication. A peer’s password could be discovered by a
dictionary attack, in which the password is forward-searched by trying words from a
dictionary of commonly used passwords [8]. To prevent this attack, the system can lock
down the account after a certain number of failed attempts, often three. However, the
question remains: how long should the account be locked down? If the lock-down time is
too short, it will have minimal affect on the attack. But if it is too long, it opens up a
window for a Denial of Service attack in which the attacker can intentionally use an
incorrect password to deny service to a legitimate peer [8].

27

 Login Spoofing

A peer computer uses the TTP client software to handle all peer operations with
the system. Because personal computers and workstations are in general more vulnerable
to attacks, it is very likely that this TTP client software can be hacked to record peer
passwords whenever he enters a password to the peer computer [10].

A standard countermeasure used in the TTP login design is to use a

challenge/response dialog instead of a hashed password [10]. This method requires the
LTTP server and the peer computer to share a predefined secret key, Ks. When receiving
a peer login request, an LTTP server first sends a random number, R, to the peer
computer, which then uses the predefined secret key to encrypt the received random
number, E(R; Ks), and sends it back to the server. If the server’s encrypted value matches
the peer computer’s, then the server allows the peer to be logged in. The Diffie-Hellman
key exchange protocol can be used to establish this symmetric secret key, Ks, between the
LTTP server and the peer computer [8].

Another countermeasure is to use a smartcard for authentication of peer identity.

This method is attractive because it implements relatively better security than passwords.
A smartcard’s embedded chip usually implements a cryptographic algorithm. If used in
combination with biometrics such as fingerprints, smartcards can provide two- or three-
factor authentication [16]. However, it may not be practical at this time to require all
peers in a P2P network to have a smartcard due to its high cost.

 Peer Secret Key Storage

Peer symmetric keys and other information are stored in a database associated

with the LTTP server assigned to the peer. It is tempting to store these keys on the LTTP
server or to keep this database on the same server computer. This architecture may be
convenient but not a good idea since these peers’ information will be unavailable when
the LTTP server is down. Therefore, it is better to keep the peer database on a separate
database server connected to the LTTP server through a dedicated line. However, this
could be a weak link if the database is not on the LTTP server but is connected through a
multiple-purpose network that may create a security risk if it also connects with the
outside world. The following methods can be used to avoid this security risk.

o Each LTTP server is associated with a separate key database server through a

dedicated secure link that is not used for any other purpose. In case the server
goes down, a new LTTP server can easily replace it by connecting to its
database server, or its peers’ profiles can be transferred to other LTTP servers’
databases.

o All messages between the database server and an LTTP must be encrypted
with a predefined symmetric key.

o An LTTP server downloads peer information from this database only to its
“volatile”/RAM memory as needed [10].

28

 Peer Repudiation

Since an LTTP server does not store the secret key KAB given to the two peers to
establish a secure channel, peers can repudiate this transaction later, asserting that it has
never taken place. This is a problem or a feature depending on the perspective taken. It is
a desirable feature for peers who want to maintain anonymity as well as transaction
secrecy with others in the P2P network.

5.2 Rating Scheme Issues

Rating of peers is based mainly on other peers’ opinions. The rating scheme relies
on a P2P peer community to sort out over time the proper peer ratings. This scheme is not
perfect and presents several issues, as do most reputation systems.

 Pseudospoofing

A malicious peer may exploit anonymity in the system by using multiple phony

identities [2]. Such a peer often turns to a new identity after earning a bad reputation with
the old one. However, creating a clique of phony identities using the same IP address is
avoided in the TTP system because votes are taken only from the average of all votes
coming from the same net_id as described in section 4.1.

 Shilling

This attack method is well known in auction-based protocols. A malicious bidder

uses multiples identities to push up the bidding price of his auctioned product [2]. It is
different from pseudospoofing in that multiple identities, called shills, are created from
different IP addresses [2], or a group of legitimate peers cooperates in manipulating the
system. In the TTP system, shilling can be used by a group of cooperating peers to push
up their ratings over time. A number of mechanisms in the TTP system are employed to
deal with this issue. They include selecting a set of random votes from all votes, as
described in section 4.1, and using reputation fading to fade away the peer’s rating over
time, as described in section 4.4.

6 Software Simulation

6.1 Software Design

In order to demonstrate the TTP authentication system’s correctness and
effectiveness, a software simulation of the TTP system in a P2P network has been
developed. The simulation comprises two main software modules: a module simulating
the TTP system and a module simulating a P2P network of peers. These two modules run
independently and communicate with each other through secure SSL connections. This
simulation design allows us to monitor several aspects of the system: the authentication

29

process between peers and the TTP system, the Kerberized ticket scheme between peers
and the TTP system, and the rating scheme. Each module has a Graphical User Interface
to allow us adjust the simulation data, control the simulation process, and run particular
simulation tests.

Figure 8. Software Simulation Architecture

In Figure 8 above, the simulation module on the right, which simulates the TTP
system, includes four components: a Hierarchy of Kerberized TTP Servers, a Key
Database, an SSL Server Socket, and a Graphical User Interface. The first component
represents a hierarchy of TTP servers, comprising LTTP servers on the bottom level and
ITTP servers on the upper levels. Each LTTP server manages a number of peers from the
simulated P2P network, and each ITTP server in turn manages LTTPs and other ITTPs.
As in the Kerberos KDC server, the TTP server issues Kerberized tickets to peers to be
used for subsequent operations. The Key Database component provides an interface to a
database storing peer data and system data. TTP servers use this interface to access and
query the database regarding peer data. A single database stores all peer data in this
simulation instead of having a separate database for each LTTP server. This
configuration was deemed sufficient for the simulation. The SSL Server Socket
component simulates an SSL server socket for receiving requests from peers to establish
secure SSL sessions/connections with the system.

The P2P Network module, which represents the entire P2P network of peers,

includes three components: a P2P Network of peers, an SSL Client Socket, and a
Graphical User Interface. The P2P Network component manages all peers in the network,
which includes creating, deleting, and changing peer data. The SSL Client Socket
component in the P2P network module simulates an SSL client socket issuing requests to
establish secure SSL sessions/connections with the system.

6.2 Software Implementation

6.2.1 SSL Server/Client Socket Implementation

SSL server and client sockets handle secure communications between a peer and
its LTTP server using the SSL public key protocol. Its implementation is based on Java
Secure Socket Extension (JSSE) technology, in which Secure Sockets Layer (SSL) and

30

Transport Layer Security (TLS) protocols are designed to authenticate and protect data
transfer across networks [12].

A Java SSL server socket and client socket framework can be implemented using
a variety of public key cryptographies. In our simulation, RSA with an MD5-signature
algorithm is chosen to run internally in the public key cryptography of SSL server and
client sockets. The Java key and certificate management tool, keytool, is used in
managing public keys and certificates by creating one key store that stores a public-key
pair on the TTP system side and one key store that stores a self-signed certificate on the
P2P network side. A pair of public/private keys and a SunX.509 self-signed certificate are
generated by the tool on the TTP system side with a 512-bit-RSA key size [12]. The
certificate containing the RSA public key is imported into the P2P network’s key store
and used in opening an SSL secure channel with the LTTP server. Note that a Certificate
Authority, usually needed for signing the certificate, is intentionally omitted in this public
key protocol because it is deemed unnecessary for this software simulation.

6.2.2 Key Database

According to the TTP architecture, each LTTP server is associated with a
database that stores its assigned peers’ data. To simplify the software simulation, only a
single database is used to store all peers’ data shared among all LTTP servers. A MySQL
database is chosen to implement the database in this simulation [13]. Two database
tables, one storing TTP server data and one storing peer data, are created in the database.
LTTP servers access these tables to keep a few essential peer data such as peer name,
hashed password, rating, and so on.

The Java Database Connectivity (JDBC) framework is used to integrate Java
software code with database SQL code [14]. A JDBC technology-based driver is
imported into the software project to provide connectivity with the MySQL database.
When the TTP system module boots up, it first loads the driver using Java Driver
Manager and then establishes a connection with the database using a JDBC API. Once
the database connection is opened, LTTP servers can begin to access the database’s tables
using a set of JDBC APIs.

6.2.3 TTP System Implementation

A tree data structure is used to represent the hierarchy of TTP servers. Bottom
nodes represent LTTP servers and upper-level nodes represent ITTP servers. Each LTTP
server is implemented similar to a KDC server in the Kerberos authentication system.
Tickets are generated in response to peer requests using a set of Kerberos APIs and are
encrypted using the LTTP server’s “master” key, KLTTP, the peer’s session key, SAlice, or
the peer’s private key, KAlice.

The 3DES algorithm is the symmetric key cryptography used in encrypting and
decrypting Kerberized tickets with 168-bit symmetric key size. This symmetric key size,
however, is actually 24 bytes in Java Cryptography Extension (JCE) with the last three

31

bytes duplicating the first three bytes [15]. The 24-byte 3DES symmetric keys are
generated for TTP servers’ “master” keys and peers’ session keys.

Figure 9. The TTP system GUI

The TTP system module includes a Graphical User Interface (GUI) to monitor
and control the system. The GUI allows us to control and operate the TTP server
hierarchy, including such actions as adding new servers, removing servers, running XML
scripts to create multiple servers, and so on. The GUI displays all system data and TTP
server data, including the “master” key, SSL public and private keys, and peer-hashed
keys, in real time to help us debug and understand TTP system interaction with peers.

6.2.4 P2P Network Implementation

Instead of simulating each peer separately, a network of P2P peers is simulated as

a whole to simplify the simulation. The simulated P2P network contains a list of peers,
each of which can individually initiate interactions with the TTP system or with each
other. Every time a new peer is created in the P2P module, he will attempt to register to
the TTP system. When receiving a registration request, the TTP system module assigns
him to a random LTTP server with which he will communicate exclusively from this
point on.

The peer password is hashed by a SHA-1 hash function from the Java
Cryptography Extension (JCE) in both the TTP system and the P2P network modules
[15]. This 20-byte hashed password is sent to the LTTP server in the peer login process.
For verification, the LTTP server compares the received hashed password with its stored
hashed password, which was hashed previously by the same SHA-1 function.

32

Figure 10. The P2P Network GUI

A Graphical User Interface (GUI) is created for this P2P network to monitor and
control peer interactions in the TTP authentication system. The GUI displays in real time
P2P network data and peer data including SSL public key, peer hashed key, and existing
secure channels between peers. It allows us to run a number of tests on peers including
logging in, logging out, voting, creating a secure channel with another peer, and so on.

6.3 Simulation Results

Using the two GUIs to simulate the TTP system and P2P network of peers, we
were able to observe the interactions of peers within the TTP system. A number of testing
scenarios for peer login/logout, creating secure channels between peers, and voting on
peers was successfully carried out. They demonstrated the success of the following
objectives of the TTP system.

 The TTP server hierarchy can be expanded and shrunken as needed.
 Peers are able to authenticate and establish secure connections with LTTP servers

using the SSL public key protocol.
 LTTP servers are able to authenticate peers using the Kerberos ticket-based

authentication protocol.
 Peers are able to login and logout of the TTP system as desired.
 Two peers are able to create a secure channel by requesting a secret key, KAB, to

be generated by the TTP system and sent to them in Kerberized tickets that can
only be decrypted by them.

 Peers are able to vote on each other in a reputation-based scheme integrated into
the TTP system.

33

 Peers remain anonymous to each other.

7 Conclusions

In this paper, an authentication framework is proposed for giving P2P peers the
ability to establish secure transactions with each other with the help of an independent
trusted third-party authentication system. In this system, peers use public key
cryptography, the SSL protocol, to authenticate the TTP system. After logging in, the
remainder of the authentication process is accomplished through a Kerberized ticket-
based scheme. To help peers determine other peer’s integrity, a reputation-based scheme
is integrated into the system that lets peers rate each other based on completed
transactions.

This TTP authentication system provides several advantages to peers in a P2P
network. The system can be plugged into any existing P2P network; it is scalable to
accommodate network growth; it provides secure transactions for peers; and most
importantly, it accomplishes all of these goals without compromising peer anonymity.

References

[1] Sonja Buchegger and Jean-Yves Le Boudec. A Robust Reputation System for P2P

and Mobile Ad-hoc Networks. In Proceedings of the 2nd Workshop on the
Economics of Peer-to-Peer Systems, 2004.

[2] Ernesto Damiani, De Capitani di Vimercati, Stefano Paraboschi. A Reputation Based
Approach for Choosing Reliable Resources in PeertoPeer Networks. In Proceedings
of the 9th ACM Conference on Computer and Communications Security, 2002.

[3] Ali Aydin Selcuk, Ersin Uzun, Mark Resat Pariente. A Reputation-Based Trust
Management System for P2P Networks. Technical Report BU-CE-0402, Department
of Computer Engineering, Bilkent University, 2004.

[4] Li Xiong and Ling Liu. PeerTrust: Supporting Reputation-Based Trust for Peer-to-
Peer Electronic Communities. IEEE Transactions on Knowledge and Data
Engineering (TKDE), Special Issue on Peer-to-Peer Based Data Management,
2004.

[5] Li Xiong and Ling Liu. Reputation and Trust. Idea Group Inc., 2005.
[6] John Kohl and B. Clifford Neuman. The Kerberos Network Authentication Service

(V5). RFC 1510, 1993, http://www.ietf.org/rfc/rfc1510.txt
[7] Marvin A. Sirbu and John Chung-I Chuang. Distributed Authentication in Kerberos

Using Public Key Cryptography. Information Networking Institute’s Net Bill,
Carnegie Mellon University, 2001.

[8] Mark Stamp. Information Security: Principles and Practice. Wiley-Interscience,
2005.

[9] Kaufman, C., R. Perlman, and M. Speciner. Network Security: Private
Communication in a Public World. Prentice Hall PTR, 2nd Edition, 2002.

34

http://www.ietf.org/rfc/rfc1510.txt

[10] Steve M. Bellovin and Michael Merritt. Limitations of the Kerberos Authentication
System. In USENIX Conference Proceedings, 1991.

[11] K. E. B. Hickman. Secure Socket Library. Netscape Communication Corp., 1995.
[12] Sun Microsystem. Java Secure Socket Extension Reference Guide.

http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html
[13] MySQL AB. MySQL 5.0 Reference Manual.

http://dev.mysql.com/doc/refman/5.0/en
[14] Sun Microsystem. Java Database Connection Reference Guide.

http://java.sun.com/j2se/1.5.0/docs/guide/jdbc
[15] Sun Microsystem. Java Cryptography Extension Reference Guide.

http://java.sun.com/j2se/1.5.0/docs/guide/security/jce/JCERefGuide.html
[16] Wikipedia. Smart Card. http://en.wikipedia.org/wiki/Smart_card
[17] D W Chadwick. Understanding X.500 – The Directory.

http://sec.cs.kent.ac.uk/x500book/
[18] Wikipedia. Anonymous P2P. http://en.wikipedia.org/wiki/Anonymous_P2P

35

http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html
http://dev.mysql.com/doc/refman/5.0/en
http://java.sun.com/j2se/1.5.0/docs/guide/jdbc
http://java.sun.com/j2se/1.5.0/docs/guide/security/jce/JCERefGuide.html
http://en.wikipedia.org/wiki/Smart_card
http://sec.cs.kent.ac.uk/x500book/
http://en.wikipedia.org/wiki/Anonymous_P2P

Appendix

A.1 Message Specification

This appendix provides the specification of messages used in the TTP system. All
messages are constructed with a message identification number followed by a number of
encrypted or unencrypted data:

{ message id, data 1, data 2, … }, where message id is a 4-byte integer.

 This appendix uses the following notation:

• Peer Alice is a peer named Alice that is often the requester.
• Peer Bob is a peer named Bob that is often the replier.

A.1.1 Messages between Peers

A.1.1.1 To Establish a Secure Channel

COM_RQST : peer Alice peer Bob
COM_DENY_RPLY : peer Alice peer Bob
COM_ACCEPT_RPLY : peer Alice peer Bob
COM_ACCEPT_ACK : peer Alice peer Bob
COM_ERR : peer Alice peer Bob

 These messages between two peers are used in establishing a secure channel. As
in figure below, peer Alice sends an invitation to peer Bob for establishing a secure
channel so that they can secretly use to transfer their transactions. After peer Bob
determines to accept her invitation, he requests his LTTP server to generate a secret
symmetric key used for encrypting messages in the secure channel. The LTTP server
replies to Bob with the generated key and a “ticket to Alice” that also includes the
generated key which Bob then sends to Alice. After both peers acknowledge each other
on sharing this key, they can start using the secure channel by encrypting all messages
with the shared key KAB.

36

Figure 11. Peer Alice Establishes Secure Channel with Peer Bob

 COM_ RQST : peer Alice peer Bob

Peer Alice sends a request to peer Bob for establishing a secure channel.

Message Format:

{ COM_RQST, peer name, [peer name, peer’s rating, timestamp]TTP , TGTpeer }

peer name : string such as “alice.sj.ttp”
[peer name, peer’s rating, timestamp]TTP

: latest peer rating signed by TTP system
TGTpeer : peer’s TGT issued by its LTTP

Example:

{ COM_RQST, “alice.sj.ttp”, [“Alice”, Alice’s rating, t]TTP , TGTAlice }

 COM_DENY_RPLY : peer Alice peer Bob
Peer Bob denies this request for establishing a secure channel due to his decision on
Alice’s rating, his server’s capacity, and so on.

Message Format:

{ COM_DENY_RPLY }

 COM_ACCEPT_RPLY : peer Alice peer Bob

Peer Bob replies his acceptance of Alice’s request after requesting his LTTP to
generate a shared symmetric key KAB.

Message Format:

{ COM_ACCEPT_RPLY, ticket to Alice, E(t; KAB) }

Ticket to Alice = E(“bob.la.ttp”, KAB; Kalice)
E(t; KAB) : Bob’s challenge

Example:

37

{ COM_ACCEPT_RPLY, E(“bob.la.ttp”, KAB; Kalice), E(t; KAB) }

 COM_ACCEPT_ACK : peer Alice peer Bob

Peer Alice responses to Bob’s challenge.

Message Format:

{ COM_ACCEPT_ACK, E(t+1; KAB) }

E(t+1; KAB) : reply to Bob’s challenge

Example:

{ COM_ACCEPT_ACK, E(t+1; KAB) }

 COM_ERR : peer Alice peer Bob

Peer Bob reports an error that could be caused by invalid data in Alice message,
overloading in Bob’s capacity, and so on.

Message Format:

{ COM_ERR, error number }

NOTE:

Message 2 and 3 from peer Bob to his LTTP server is specified in section A.1.2.4.

A.1.1.2 To Get a Peer Rating

RATING_RQST : peer Alice peer Bob
RATING_DENY : peer Alice peer Bob
RATING_RPLY : peer Alice peer Bob
RATING_ERR : peer Alice peer Bob

 A Peer can request for other peers’ ratings so that he can determine how much
trustworthy the other peer is. As in figure below, peer Alice requests for Bob’s rating:

Figure 12. Peer Alice Requests Peer Bob’s Rating

 RATING_RQST : peer Alice peer Bob

Peer Alice requests for Bob’s rating.

Message Format:

{ RATING_RQST, peer name }

38

Peer name : name such as “alice.sj.ttp”

 RATING_DENY : peer Alice peer Bob

Peer Bob denies this request due to reasons such as Bob doesn’t want to send his
rating to Alice, Bob’s computer is too busy, and so on.

Message Format:

{ RATING_DENY }

 RATING_RPLY : peer Alice peer Bob

Peer Bob replies to the request with his rating.

Message Format:

{ RATING_RPLY, [peer name, peer’s rating, ttl]TTP }

[peer name, peer’s rating, ttl]TTP
: signed and time-stamped rating issued to peer by the TTP system

 RATING_ERR : peer Alice peer Bob

Error happens in peer Bob due to condition such as computer overloading, invalid
request, and so on.

Message Format:

{ RATING_ERROR, error number }

A.1.2 Messages between Peers and LTTPs

The main difference in messages between peers and LTTPs is that all messages
are wrapped within an SSL session/connection. In other words, peer must establish an
SSL session with the LTTP server first before sending these messages.

In addition, peer can only communicate with the assigned LTTP. Vice versa, the
LTTP server can only communicate with its registered peers.

A.1.2.1 To Register with the TTP System

REG_RQST
REG_RPLY (ok)
REG_ERR (TTP system is busy, error in registration info, etc)

39

Figure 13. Peer Alice Registers with TTP System

Peer needs to register with the TTP system when he wants to join. In the

registration process, peer sends information to a designated LTTP server that the TTP
system reserves for peer registration. Upon obtaining peer registration information, this
LTTP server will determine the actual LTTP server that the peer will be assigned to.

Peer software does not store the user password but instead the hashed password,
KA, along with the hash function type.

 REG_RQST : peer Alice TTP

Peer Alice requests to register with the TTP system.

Message Format:

{ REG_RQST, peer name, chosen password, hash function list }

Peer name – 128B : peer name
Chosen password – 32B : password chosen by the peer
Hash function list – 128B : list of hash function types

 REG_RPLY : peer Alice TTP

LTTP server replies with the peer name, the hashed password, and its chosen hash
function type after creating a unique profile for the peer in its database. Peer software
stores this hash function type for use in the peer login.

Message Format:

{ REG_RPLY, peer name, LTTP name, LTTP IP address, hash(password), hash
function type }

Peer name - 128B : peer name
LTTP name - 128B : assigned LTTP name
LTTP IP address – 4B : IP address of the LTTP server
KA = hash(password) – 20B : peer secret key, KA created by hash function

SHA-1
Hash function type – 8B : hash function type

 REG_ERR : peer Alice TTP
LTTP replies with an error due to conditions such as peer name already existed,
invalid password, server overloaded, and so on.

40

Message Format:
{ REG_ERROR, error number }

A.1.2.2 To Login to the TTP System

LOGIN_RQST
LOGIN_RPLY (ok, TGT is sent to peer also)
LOGIN_ERR (wrong password, etc)

Figure 14. Peer Alice Logs into the LTTP Server

When Alice logs in, her peer computer first establishes an SSL session and sends
her name and her hashed password to the LTTP server. When receiving the reply, peer
uses her hashed password, Kpeer = hash(peer password), to decrypt the message and
obtain the followings from the LTTP server:

• A session key, SA , generated randomly by the LTTP server
• A Ticket Granting Ticket, TGTpeer = (LTTP name, E(peer name, Speer, ttl;

KLTTP))
• Signed and time-stamped rating, [peer name, peer’s rating, ttl]TTP

These data are saved on the peer computer for use within the maximum lifetime

of the login session.

 LOGIN_RQST : peer Alice TTP

Peer Alice requests to login to the LTTP server.

Message Format:

{ LOGIN_RQST, peer name, Kpeer }

Peer name - 128B : peer name
Kpeer = hash(password) – 20B: peer symmetric key, created by hash function SHA-

1

 LOGIN_RPLY : peer Alice TTP
The LTTP server accepts the peer login and replies with the associated data encrypted
with the peer symmetric key.

Message Format:

41

{ LOGIN_RPLY, LTTP name, E(SA, peer rating, TTL , [peer name, peer’s rating,
TTL]TTP, TGTA; KA) }

LTTP name – 128B : LTTP name such as “sj.ttp”
SA - 24B : peer session key generated randomly by the LTTP
peer rating – 8B : peer rating in range of [-5, 5]
TTL – 8B : time-to-live of the session
[peer name, peer’s rating, TTL]TTP : time-stamped and signed peer rating
TGTA – 296B : peer Ticket Granting Ticket
KA – 20B : peer symmetric key, created by hash function SHA-

1

 LOGIN_ERR : peer Alice TTP
LTTP replies with an error due to conditions such as server busy, server overloaded,
and so on.

Message Format:

{ LOGIN_ERROR, error number }

NOTE:

_ The purposes of peer login are to get a TGT, a session key, and a latest peer rating.
_ Session key, SA, in the issued TGT is stored on the peer with an expiration time but

not stored on the LTTP server. The session’s time-to-live represents a maximum
window in which the peer can operate in. When the peer logs out, his session key
along with other temporary data are destroyed in the peer computer.

_ If peer wants to get the latest rating or a new session key, he needs to re-login to the
system.

A.1.2.3 To Logout of the TTP System

LOGOUT_RQST
LOGOUT_ACK (ok)
LOGOUT_ERR (error)

1. LOGOUT_RQST, "alice"

2. LOGOUT_ACK

secure SSL channel is
disconnected afterwards

Alice "alice", “logout”

LTTP
“sj.ca.ttp”

Peer Computer

Figure 15. Peer Alice Logs out of the LTTP Server

Peer Alice requests to logout of the TTP system. When receiving the LTTP
server’s acknowledgement, peer software shuts down the SSL connection with TTP
system.

42

 LOGOUT_RQST : peer Alice TTP

Peer Alice requests to logout of the LTTP server.

Message Format:

{ LOGIN_RQST, peer name, Kpeer }

Peer name - 128B : peer name
Kpeer = hash(password) – 20B : peer symmetric key, created by hash

function SHA-1

 LOGOUT_RPLY : peer Alice TTP
The LTTP acknowledges the peer logout.

Message Format:

{ LOGOUT_ACK }

 LOGOUT_ERR : peer Alice TTP
LTTP replies with an error due to conditions such as server busy, server overloaded,
and so on.

Message Format:

{ LOGOUT_ERROR, error number }

A.1.2.4 To Request for a Secret Symmetric Key KAB

The system assumes that both peer Alice and peer Bob have logged in to and

received TGTs from the TTP system.

KEY_RQST
KEY_RPLY (ok)
KEY_ERR (invalid peer, wrong authentication, etc)

Figure 16. Requesting a Secret Key KAB with the LTTP Server

This is the continuation of part A.1.1.1. Peer Bob requests the TTP system to
verify peer Alice identity and generate a shared secret key for both peers. The TTP

43

system decrypts peer Alice’s TGTA to verify her identity and generates a random key
KAB for establishing the secure channel between peer Alice and peer Bob.

In addition, two voting tickets generated by peers’ LTTP server(s) are issued to
the two peers. One is sent directly to peer Bob for voting on peer Alice. The other one is
kept inside the “ticket to Alice” which is sent to peer Alice for voting on peer Bob. Peers
can use these tickets to vote on each other after the transaction is completed.

 KEY_RQST : peer Bob TTP

Peer Bob requests the TTP system to verify peer Alice identity and generate a shared
secret key for both peers.

Message Format:

{ KEY_RQST, TGTpeerB, TGTpeerA , E(time; SpeerB) }

TGTpeerB – 296B : the requesting peer’s Ticket Granting Ticket
TGTpeerA – 296B : the other peer’s Ticket Granting Ticket
Time – 8B : the timestamp in second to prevent relay

attack
SpeerB – 24B : the requesting peer session key

 KEY_RPLY : peer Bob TTP
The TTP system verifies peer Alice and replies with the secret key KAB. Two voting
tickets are also generated by peers’ LTTP(s) for voting on the peer after the
transaction is completed.

Message Format:

{ KEY_RPLY, message to peer B, ticket to peer A }

message to peer B = { peer A name, KAB , TTL, voting ticketpeerA }
ticket to peer A = E(peer B name, KAB , TTL, voting ticketpeerB; SpeerA)

 voting ticketpeerA = (peer A’s LTTP name, E(peer A name, expiration; KLTTPA))
 voting ticketpeerB = (peer B’s LTTP name, E(peer B name, expiration; KLTTPB))

Peer A name – 128B : peer A name
KAB - 24B : shared secret key between peer A

and peer B
TTL – 8B : time-to-live of KAB
Message to peer B – 440B : message sent to peer B
Ticket to peer A – 440B : ticket sent to peer A
voting ticketpeerA – 272B : ticket used to vote on peer A
voting ticketpeerB – 272B : ticket used to vote on peer B

 KEY_ERR : peer Bob TTP

LTTP replies with an error due to conditions such as server busy, server overloaded,
and so on.

44

Message Format:

{ KEY_ERROR, error number }

A.1.2.5 To Vote on a Peer

VOTE_RQST
VOTE_ACK (ok)
VOTE_ERR (wrong voting key, wrong vote value, etc)

Figure 17. Peer Alice Sends a Vote to the LTTP Server

Peers use the voting ticket obtained in the previous transaction to vote on each
other. Only the voted peer’s LTTP server can decrypt the ticket to verify the validity of
the voting peer’s vote and update the peer rating according to the vote.

 VOTE_RQST : peer Alice LTTP

Peer uses the voting ticket to vote on another peer.

Message Format:

{ VOTE_RQST, peer A name, E(voting ticketpeerB, vote; SpeerA) }

voting ticketpeerB = { LTTP B name, E(peer B name, expiration; KLTTPB) }

Peer A name – 128B : voting peer name
voting ticketpeerB - 272B : ticket used to vote on peer B.
vote – 8B : a vote of type double in range [-5.0 , +5.0]
SpeerA – 24B : peer A’s symmetric session key

 VOTE_ACK : peer Alice LTTP

LTTP server acknowledges the peer’s vote after successfully updating the other
peer’s rating.

Message Format:

{ VOTE_ACK }

 VOTE_ERR : peer Alice LTTP
LTTP server replies with an error due to conditions such as invalid vote, server busy,
server overloaded, and so on.

45

Message Format:

{ VOTE_ERROR, error number }

A.1.3 Messages within the TTP System

Each (L)TTP server can only communicate with its immediate parent TTP server.
No cross-level communication between LTTPs is allowed. This must be accomplished
through the TTP hierarchy. All communication messages between (L)TTP servers to their
parent TTP server are encrypted with the (L)TTP’s symmetric key.

A.1.3.1 To Relay a Peer Verification

PEER_CHK_RQST
PEER_CHK_RPLY (ok)
PEER_CHK_ERR (fail to verify)

...

...

1. P
EER_CHK_RQST, "s

j.ca
.ttp

", E
(TGTAlice

,

non-encry
pted tic

ket to
 Alice

 ; K
la)

2. P
EER_CHK_RPLY, "c

a.ttp
", E

(encry
pted

tick
et to

 Alice
, vo

ting tic
ketAlice

;; K
la)

TTP
SYSTEM

LTTP
“sj.ca.ttp”

ITTP
“ca.ttp”

Figure 18. Relaying a Peer Verification

This is the continuation of part A.1.2.4. When the TTP system receives a

symmetric key request from a peer for establishing secure channel with another peer, the
TTP system needs to verify involved peers and to generate a secret key for them.
However, only the peer’s assigned LTTP server can verify his identity. Therefore if
involved peers are from different LTTP servers, the receiving LTTP server must
hierarchically go through the TTP tree structure to request the other peer’s LTTP server
to verify the peer identity.

46

This process also involves requesting the other peer’s LTTP server to generate a
“ticket to peer” encrypted with the peer’s symmetric key and a voting ticket on the peer
encrypted with the LTTP “master” key.

 PEER_CHK_RQST : (L)TTP parent/child (L)TTP

(L)TTP relays the request to its parent TTP or to one of its child (L)TTP in the TTP
hierarchy that lies in the path to the peer’s LTTP for verifying a peer and generating
the needed tickets.

Message Format:

{ PEER_CHK_RQST, (L)TTP A name, E(TGTpeerB, non-encrypted ticket to peer
B; K(L)TTPA) }

(L)TTP A name : LTTP name of the requesting peer
TGTpeerB : TGT of peer needed to be verified
non-encrypted ticket to peer B = (peer A name, KAB , voting ticketpeerA)

: ticket to peer B that is needed to be encrypted with
peer B’s symmetric key

K(L)TTPA : (L)TTP A’s symmetric key with its parent/child
(L)TTP

 PEER_CHK_RPLY : (L)TTP parent/child (L)TTP

Parent/child (L)TTP replies or relays the reply with the needed tickets after the peer
has been successfully verified.

Message Format:

{ PEER_CHK_RPLY, (L)TTP B name, E(encrypted ticket to peer B, voting
ticketpeerB; K(L)TTPA) }

(L)TTP B name : the replying LTTP name
encrypted ticket to peer B = E(peer A name, KAB , voting ticketpeerB; KLTTPB)

: ticket to send to peer B encrypted with its LTTP key
voting ticketpeerB = E(peer B name, expiration; KLTTPB)

: ticket used to vote on peer B
K(L)TTPA : (L)TTP A’s symmetric key with its parent/child
(L)TTP

 PEER_CHK_ERR : (L)TTP parent/child (L)TTP

(L)TTP relays an error due to condition such as invalid peer, (L)TTP down, etc.

Message Format:

{ PEER_CHK_ERROR, error number }

A.1.3.2 To Relay a Peer Vote to His LTTP Server

47

PEER_VOTE_RQST
PEER_VOTE_ACK (ok)
PEER_VOTE_ERR

Figure 19. Relaying a Peer Vote to his LTTP Server

This is the continuation of partA.1.2.5. When TTP system receives a vote from a

peer on another peer, the TTP system verifies the voting ticket and updates the voted
peer’s rating. However, only the voted peer’s LTTP can decrypt this ticket to verify.
Therefore if involved peers are from different LTTPs, the receiving LTTP must
hierarchically go through the TTP tree structure to request the other peer’s LTTP to
process this vote.

 PEER_VOTE_RQST : (L)TTP parent/child (L)TTP

(L)TTP relays the vote to its parent TTP or to one of its child (L)TTP that lies in the
path to the voted peer’s LTTP.

Message Format:

{ PEER_VOTE_RQST, (L)TTP A name, E(voting ticketpeerB, vote; K(L)TTPA) }

(L)TTP A name : the requesting LTTP name
voting ticketpeerB = (LTTPB name, E(peer B name, expiration; KLTTPB))
 : ticket used to vote on peer B
vote : the vote
K(L)TTPA : (L)TTP A’s symmetric key with its parent/child

(L)TTP

 PEER_VOTE_ACK : (L)TTP parent/child (L)TTP

48

(L)TTP relays the vote acknowledgement from the voted peer’s LTTP back to the
original requesting LTTP through its parent TTP or one of its child (L)TTP in the
path.

Message Format:

{ PEER_VOTE_ACK }

 PEER_VOTE_ERR : (L)TTP parent/child (L)TTP
(L)TTP relays an error on the vote due to conditions such as invalid voting ticket,
(L)TTP down, and so on.

Message Format:

{ PEER_VOTE_ERROR, error number }

A.1.3.3 To Update Symmetric Key with Its Parent TTP

SKEY_UPD_RQST
SKEY_UPD_ACK (ok)
SKEY_UPD_ERR (wrong TTP id, etc)

1. S
KEY_UPD_RQST, "s

j.ca
.ttp

", E
(

Knew la
, expiration tim

e ; Kold la
)

2. S
KEY_UPD_ACK, E

(expiration tim
e ; K

new la
)

Figure 20. Updating Symmetric Key with Its Parent Server

(L)TTPs change their symmetric key K(L)TTP shared with the parent TTPs and

update the new key to the parent TTPs periodically. To strengthen the system security,
lower-level (L)TTPs change their symmetric keys more often than the upper-level TTPs.

 SKEY_UPD_RQST : (L)TTP parent TTP

The (L)TTP sends a new symmetric key and its expiration time to its parent TTP.

49

Message Format:
{ SKEY_UPD_RQST, (L)TTP name, E(Knew (L)TTP, expiration time; Kold (L)TTP) }

(L)TTP name : the child LTTP name
Knew (L)TTP : the new (L)TTP’s symmetric key
expiration time: the new key’s expiration time until the next update
Kold (L)TTP : the old (L)TTP’s symmetric key

 SKEY_UPD_ACK : (L)TTP parent TTP

The parent TTP sends an acknowledgement of receiving the new symmetric key back
to the (L)TTP.

Message Format:

{ SKEY_UPD_ACK, E(expiration time; Knew (L)TTP) }

expiration time : new key’s expiration time until the next update
Knew (L)TTP : new (L)TTP’s symmetric key

 SKEY_UPD_ERR : (L)TTP parent TTP

Parent TTP reports an error on the key update due to conditions such as invalid
symmetric key, invalid expiration time, TTP busy, and so on.

Message Format:

{ SKEY_UPD_ERROR, error number }

50

A.2 The Software Simulation’s UML Diagrams

This appendix provides the UML diagrams of the software simulation.

A.2.1 The TTP System’s UML Diagrams

 The TTP System Package Model

cd TTP System Class Model

Common

+ CommonT ype
+ Constant

Global

+ T tpManager

Gui

+ T tpSystemGui

Kerberos

+ KerberosApi

KeyDatabase

+ KeyDbApi
Reputation

+ RatingApi

TcpSslConnection

+ SslServer

TtpServ ers

+ IttpServer
+ LttpServer
+ PeerProxy
+ TtpServer

«import»

«import»
«cal l»

«cal l»

«cal l»

«own»
«own»

«import»
«import»

«import»

51

 Package Common

cd Common

CommonType

«enumeration»
CommonType::ErrorType

«static»
CommonType::Pair

+ value: int
enum
+ E_PEER_INVALID_PWD:
+ E_PEER_INVALID_TGT:
+ E_PEER_INVALID_TIMESTAMP:
+ E_PEER_INVALID_VOTE_TICKET :
+ E_PEER_PEER_EXIST :
+ E_PEER_PEER_NOT_EXIST :
+ E_PEER_VOTE_FAIL:
+ I_PEER_ADD_FAIL:
+ I_PEER_KEY_FAIL:
+ I_PEER_LOGIN_FAIL:
+ I_PEER_LOGOUT_FAIL:
+ I_PEER_VOTE_FAIL:

~ ErrorType(int)

«enumeration»
CommonType::TtpCmdType

+ value: int
enum
+ E_PEER_KEY_ERR:
+ E_PEER_KEY_RPLY:
+ E_PEER_KEY_RQST:
+ E_PEER_LOGIN_ERR:
+ E_PEER_LOGIN_RPLY:
+ E_PEER_LOGIN_RQST:
+ E_PEER_LOGOUT_ACK:
+ E_PEER_LOGOUT_ERR:
+ E_PEER_LOGOUT_RQST:
+ E_PEER_REG_ERR:
+ E_PEER_REG_RPLY:
+ E_PEER_REG_RQST:
+ E_PEER_VOTE_ACK:
+ E_PEER_VOTE_ERR:
+ E_PEER_VOTE_RQST:
+ I_PEER_CHK_ERR:
+ I_PEER_CHK_RPLY:
+ I_PEER_CHK_RQST:
+ I_PEER_CHK_VOTE_T ICKET_ACK:
+ I_PEER_CHK_VOTE_T ICKET_ERR:
+ I_PEER_CHK_VOTE_T ICKET_RQST:
+ I_PEER_VOTE_ACK:
+ I_PEER_VOTE_ERR:
+ I_PEER_VOTE_RQST:
+ I_PEER_VOTE_TICKET_ACK:
+ I_PEER_VOTE_TICKET_ERR:
+ I_PEER_VOTE_TICKET_RQST:
+ I_SKEY_UPD_ERR:
+ I_SKEY_UPD_RPLY:
+ I_SKEY_UPD_RQST:

+ convert(int) : T tpCmdType
~ T tpCmdType(int)

«enumeration»
CommonType::

TtpStatus

+ value: int
enum
+ TTP_ERROR:
+ TTP_RUNNING:
+ TTP_STOP:

+ toString() : String
~ T tpStatus(int)

«enumeration»
CommonType::
TtpServ erType

enum
+ ITTP_SERVER_TYPE:
+ LTTP_SERVER_TYPE:

+ e1: Object
+ e2: Object

+ Pair()
+ Pair(Object, Object)

Constant

+ DB_NAME: String = "ttp_db"
+ DES3_KEY_SIZE: int = 24
+ DIRECT_RAT IO: double = 1.0
+ FADE_RAT IO: double = 0.975
+ HASH_PWD_FUNC: String = "SHA-1"
+ IV_3DES: byte ([]) = { 0x00, 0x01, 0...
+ KEY_SIZE: int = 24
+ KEY_STORE_TTP: String = "Publ icKeyStore"
+ KEY_STORE_TTP_ALIAS: String = "ttpsystem"
+ KEY_STORE_TTP_PWD: String = "nguyen"
+ KEY_TTL_MS: long = 1 * 3600000
+ MAX_CHILD_OF_ITTP: int = 8
+ MAX_PUSER_OF_LTTP: int = 128
+ MAX_RAT ING: double = +5.0
+ MIN_RAT ING: double = -5.0
+ MSG_CMD_TYPE: int = 4
+ MSG_DATA: int = 1024
+ MSG_NAME_SIZE: int = 128
+ MSG_PEER_ENC_VOTE: int = 288
+ MSG_PEER_KEY_RPLY_SIZE: int = 2 * MSG_NAME_SI...
+ MSG_PEER_LOGIN_RPLY_SIZE: int = 2 * MSG_NAME_SI...
+ MSG_PEER_LOGOUT_RPLY_SIZE: int = 2 * MSG_NAME_SI...
+ MSG_PEER_REG_RPLY_SIZE: int = 2 * MSG_NAME_SI...
+ MSG_PEER_VOTE_RPLY_SIZE: int = 2 * MSG_NAME_SI...
+ MSG_T IME_ENC: int = 16
+ MSG_T IME_RELAY: int = 10000
+ MSG_TOTAL_SIZE: int = 2 * MSG_NAME_SI...
+ MSG_USER_HPWD: int = 20
+ MSG_USER_PWD: int = 32
+ NAME_SIZE: int = 128
+ OBJ_RAT IO: double = 0.0
+ PEER_TABLE_NAME: String = "peer_tb"
+ PEER_VOTE_T ICKET : int = 272
+ PRIVATE_KEY_SIZE: int = 112
+ PUBLIC_KEY_FORMAT: String = "RSAwithMD5"
+ PUBLIC_KEY_SIGN_ALG: String = "MD5withRSA"
+ SSL_HOST: String = "localhost"
+ SSL_PORT: int = 4000
+ SUBJ_RAT IO: double = 0.0
+ TGT_SIZE: int = 296
+ T ICKET_TO_PEER_SIZE: int = 440
+ T ICKET_TTL_SEC: long = 1 * 24 * 3600
+ TTL_SIZE: int = 8
+ TTP_TABLE_NAME: String = "ttp_server_tb"

52

 Class TtpManager

cd Global

TtpManager

- i ttp_size: int
- l ttp_l ist: HashMap<String, LttpServer>
- l ttp_size: int
- random: Random
- ssl_thread: Thread
- ttp_manager: T tpManager
- ttp_size: int

+ createT tpServer(T tpServerType, IttpServer, String) : T tpServer
+ deleteAl l(T tpServer) : void
+ deleteT tpServer(T tpServer) : void
+ getLttpRef(String) : LttpServer
+ getObj() : T tpManager
+ getRandLttpRef() : LttpServer
+ start() : void
+ startSslServer() : void
+ stop() : void
+ stopSslServer() : void
+ T tpManager()
+ updateSystemDataToGui() : void

-ttp_manager

53

 Class TtpSystemGui

cd Gui

javax.sw ing.JFrame
TtpSystemGui

- action_menu: javax.swing.JMenu
- add_cancel: javax.swing.JButton
- add_dialog: javax.swing.JDialog
- add_menu: javax.swing.JMenuItem
- add_ok: javax.swing.JButton
- add_ttp_button: javax.swing.JButton
- add_ttp_name: javax.swing.JTextField
- add_ttp_type: javax.swing.JComboBox
- fi le_menu: javax.swing.JMenu
- log_text: javax.swing.JTextArea
- l ttp_panel: javax.swing.JPanel
- popup_add: javax.swing.JMenuItem
- popup_menu: javax.swing.JPopupMenu
- popup_remove: javax.swing.JMenuItem
- popup_start: javax.swing.JMenuItem
- popup_stop: javax.swing.JMenuItem
- popup_update: javax.swing.JMenuItem
- progress_panel: javax.swing.JScrol lPane
- refresh_button: javax.swing.JButton
- remove_menu: javax.swing.JMenuItem
- remove_ttp_button: javax.swing.JButton
- reset_button: javax.swing.JButton
- run_script: javax.swing.JMenuItem
- script_fi le: javax.swing.JFi leChooser
- script_menu: javax.swing.JMenu
- start_menu: javax.swing.JMenuItem
- start_ssl : javax.swing.JButton
- start_ttp_button: javax.swing.JButton
- status_label: javax.swing.JLabel
- stop_menu: javax.swing.JMenuItem
- stop_ssl : javax.swing.JButton
- stop_ttp_button: javax.swing.JButton
- system_on_off: javax.swing.JT oggleButton
- system_panel: javax.swing.JPanel
- ttp_gui: T tpSystemGui
+ ttp_tree: javax.swing.JT ree
+ ttp_tree_model: Defaul tT reeModel
- update_menu: javax.swing.JMenuItem
- update_ttp_button: javax.swing.JButton

- add_cancelMouseReleased(java.awt.event.MouseEvent) : void
- add_menuActionPerformed(java.awt.event.ActionEvent) : void
- add_okMouseReleased(java.awt.event.MouseEvent) : void
- add_ttp_buttonActionPerformed(java.awt.event.ActionEvent) : void
- dfcreate(Node, T tpServer) : void
+ getObj() : T tpSystemGui
- ini tComponents() : void
+ main(String[]) : void
- parseXml(Fi le) : void
- popup_addActionPerformed(java.awt.event.ActionEvent) : void
- popup_removeActionPerformed(java.awt.event.ActionEvent) : void
- popup_startActionPerformed(java.awt.event.ActionEvent) : void
- popup_stopActionPerformed(java.awt.event.ActionEvent) : void
- popup_updateActionPerformed(java.awt.event.ActionEvent) : void
+ println(String) : void
- refresh_buttonActionPerformed(java.awt.event.ActionEvent) : void
- remove_menuActionPerformed(java.awt.event.ActionEvent) : void
- remove_ttp_buttonActionPerformed(java.awt.event.ActionEvent) : void
- reset_buttonActionPerformed(java.awt.event.ActionEvent) : void
- run_scriptActionPerformed(java.awt.event.ActionEvent) : void
- setup() : void
- start_menuActionPerformed(java.awt.event.ActionEvent) : void
- start_sslActionPerformed(java.awt.event.ActionEvent) : void
- start_ttp_buttonActionPerformed(java.awt.event.ActionEvent) : void
- stop_menuActionPerformed(java.awt.event.ActionEvent) : void
- stop_sslActionPerformed(java.awt.event.ActionEvent) : void
- stop_ttp_buttonActionPerformed(java.awt.event.ActionEvent) : void
- system_on_offActionPerformed(java.awt.event.ActionEvent) : void
+ T tpSystemGui()
- update_menuActionPerformed(java.awt.event.ActionEvent) : void
- update_ttp_buttonActionPerformed(java.awt.event.ActionEvent) : void
- updateGui() : void

MouseAdapter
TtpSystemGui::TtpPopupMenuListener

+ mousePressed(MouseEvent) : void
+ mouseReleased(MouseEvent) : void

TreeSelectionListener
TtpSystemGui::TtpTreeModelListener

+ valueChanged(T reeSelectionEvent) : void

-ttp_gui

54

 Class Kerberos

cd Kerberos

KerberosApi

+ convert(byte[]) : String
+ createSecretKey() : byte[]
+ createTgt(String, String, byte[], long, byte[]) : byte[]
+ createT icketToPeer(String, byte[], byte[], byte[]) : byte[]
+ createVotingT icket(String, String, long, byte[]) : byte[]
+ decrypt(byte[], byte[]) : byte[]
+ encrypt(byte[], byte[]) : byte[]
+ hash(String) : byte[]
+ veri fyTgt(String, byte[], byte[]) : Pair
+ veri fyT icketToPeer(String, byte[], byte[]) : Pair
+ veri fyVotingT icket(String, byte[], byte[]) : String

 Class KeyDatabase

cd KeyDatabase

KeyDbApi

- conn: Connection
- db_name: String
- keyDb: KeyDbApi
- user_name: String
- user_pwd: String

+ add(String, String[]) : void
+ clear(String) : void
+ clone() : Object
+ close() : void
+ delete(String, String) : void
final ize() : void
+ getObj() : KeyDbApi
- KeyDbApi()
- KeyDbApi(String, String, String)
+ select(String, String, String) : Resul tSet
+ update(String, String, String[], String[]) : void

-keyDb

 Class RatingApi

cd Reputation

RatingApi

+ computeOveral lRating(PeerProxy) : double
+ getRating(String) : double
+ setRating(String, double) : void
+ vote(PeerProxy, double) : void

55

 Class SslServer

cd TcpSslConnection

Runnable
SslServ er

- connection: Socket
- in: InputStream
- out: OutputStream
- shutdown: boolean
- ssl_server: SslServer
- ssocket: SSLServerSocket

+ close() : void
final ize() : void
+ getKeyPair() : Pair
+ getObj() : SslServer
- l istenForConnection() : boolean
+ run() : void
- sendCmdToLttp(String, String, int, byte[]) : void
+ sendMsg(byte[]) : void
+ shutdown() : void
+ sign(byte[]) : byte[]
- SslServer()

-ssl_server

 Package TtpServers

cd TtpServ ers

IttpServ er

+ isLeaf() : boolean
+ IttpServer(IttpServer, String)
+ updateT oGui() : void

LttpServ er

- peers: HashMap <String, PeerProxy>

+ addPeer(PeerProxy) : boolean
+ deleteAl lPeer() : void
+ deletePeer(PeerProxy) : boolean
+ externalCmd(String, T tpCmdType, byte[]) : boolean
+ getNumLoginPuser() : int
+ getNumRegPuser() : int
+ internalCmd(T tpCmdT ype, byte[]) : ArrayList<Object>
+ isLeaf() : boolean
+ LttpServer(IttpServer, String)
- sendError(String, T tpCmdT ype, ErrorT ype) : void
- setLogin(String, boolean) : void
+ updateT oGui() : void

PeerProxy

+ di r_rating: double
+ h_pwd: byte ([])
+ is_login: boolean
+ name: String
+ obj_rating: double
+ rating: double
+ session_key: byte ([])
+ session_ttl : Date
+ subj_rating: double
+ votes: ArrayList< Double >

+ PeerProxy()
+ toString() : String
+ updateToGui() : void

DefaultMutableTreeNode
TtpServer

master_key: byte ([])
name: String
status: T tpStatus = T tpStatus.T T P_ST OP
time: T imestamp

+ createKdcKey(boolean) : void
+ forward(LinkedList<String>, T tpCmdType, byte[]) : ArrayList<Object>
+ getName() : String
getPath(String, String) : LinkedList<String>
+ remove() : void
+ start() : boolean
+ stop() : boolean
+ toString() : String
+ updateKdcKey(boolean) : void
+ updateToGui() : void

56

A.2.2 The P2P Network’s UML Diagrams

 The P2P Network Package Model

cd Class Model

Common

+ CommonT ype
+ Constant

Gui

+ P2pGui

Global

+ P2pManager

Crypto

+ CryptoApi

Peer

+ PeerUser
+ SecretChannel

TcpSslConnection

+ SslCl ient

«import»

«own» «own»

«cal l»

«cal l»

«import»

«import»

57

 Package Common
cd Common

CommonType

«enumeration»
CommonType::
ChannelStatus

+ value: int
enum
+ CH_STAT_ACT IVE:
+ CH_STAT_CLOSED:
+ CH_STAT_ERR:
+ CH_STAT_NONE:

~ ChannelStatus(int)
+ toString() : String

«enumeration»
CommonType::ErrorType

+ value: int
enum
+ E_PEER_INVALID_PWD:
+ E_PEER_INVALID_T GT :
+ E_PEER_INVALID_T IMEST AMP:
+ E_PEER_INVALID_VOT E_TICKET :
+ E_PEER_PEER_EXIST :
+ E_PEER_PEER_NOT_EXIST :
+ E_PEER_VOTE_FAIL:
+ I_PEER_ADD_FAIL:
+ I_PEER_KEY_FAIL:
+ I_PEER_LOGIN_FAIL:
+ I_PEER_LOGOUT _FAIL:
+ I_PEER_VOTE_FAIL:

~ ErrorT ype(int)

«enumeration»
CommonType::TtpCmdType

+ value: int
enum
+ E_PEER_KEY_ERR:
+ E_PEER_KEY_RPLY:
+ E_PEER_KEY_RQST :
+ E_PEER_LOGIN_ERR:
+ E_PEER_LOGIN_RPLY:
+ E_PEER_LOGIN_RQST:
+ E_PEER_LOGOUT_ACK:
+ E_PEER_LOGOUT_ERR:
+ E_PEER_LOGOUT_RQST :
+ E_PEER_REG_ERR:
+ E_PEER_REG_RPLY:
+ E_PEER_REG_RQST:
+ E_PEER_VOT E_ACK:
+ E_PEER_VOT E_ERR:
+ E_PEER_VOT E_RQST :
+ I_PEER_CHK_ERR:
+ I_PEER_CHK_RPLY:
+ I_PEER_CHK_RQST:
+ I_PEER_CHK_VOT E_T ICKET_ACK:
+ I_PEER_CHK_VOT E_T ICKET_ERR:
+ I_PEER_CHK_VOT E_T ICKET_RQST :
+ I_PEER_VOT E_ACK:
+ I_PEER_VOT E_ERR:
+ I_PEER_VOT E_RQST :
+ I_PEER_VOT E_TICKET _ACK:
+ I_PEER_VOT E_TICKET _ERR:
+ I_PEER_VOT E_TICKET _RQST:
+ I_SKEY_UPD_ERR:
+ I_SKEY_UPD_RPLY:
+ I_SKEY_UPD_RQST:

+ convert(int) : T tpCmdT ype
~ T tpCmdT ype(int)

«static»

T1
T2

CommonType:
:Pair

+ e1: T 1
+ e2: T 2

+ Pair()
+ Pair(T1, T2)

Constant

+ DB_NAME: String = "ttp_db"
+ DES3_KEY_SIZE: int = 24
+ HASH_PWD_FUNC: String = "SHA-1"
+ IV_3DES: byte ([]) = { 0x00, 0x01, 0...
+ KEY_SIZE: int = 24
+ KEY_ST ORE_TT P: String = "Publ icKeyStore"
+ KEY_ST ORE_TT P_ALIAS: String = "ttpsystem"
+ KEY_ST ORE_TT P_PWD: String = "nguyen"
+ MAX_CHILD_OF_ITT P: int = 8
+ MAX_PUSER_OF_LT TP: int = 128
+ MAX_RAT ING: double = +5.0
+ MIN_RAT ING: double = -5.0
+ MSG_CMD_TYPE: int = 4
+ MSG_DAT A: int = 1024
+ MSG_NAME_SIZE: int = 128
+ MSG_PEER_ENC_VOTE: int = 288
+ MSG_PEER_KEY_RPLY_SIZE: int = 2 * MSG_NAME_SI...
+ MSG_PEER_KEY_RQST _SIZE: int = 2 * MSG_NAME_SI...
+ MSG_PEER_LOGIN_RPLY_SIZE: int = 2 * MSG_NAME_SI...
+ MSG_PEER_LOGIN_RQST _SIZE: int = 2 * MSG_NAME_SI...
+ MSG_PEER_LOGOUT _RPLY_SIZE: int = 2 * MSG_NAME_SI...
+ MSG_PEER_LOGOUT _RQST_SIZE: int = 2 * MSG_NAME_SI...
+ MSG_PEER_REG_RPLY_SIZE: int = 2 * MSG_NAME_SI...
+ MSG_PEER_REG_RQST _SIZE: int = 2 * MSG_NAME_SI...
+ MSG_PEER_VOTE_RPLY_SIZE: int = 2 * MSG_NAME_SI...
+ MSG_PEER_VOTE_RQST_SIZE: int = 2 * MSG_NAME_SI...
+ MSG_TIME_ENC: int = 16
+ MSG_TOTAL_SIZE: int = 2 * MSG_NAME_SI...
+ MSG_USER_HPWD: int = 20
+ MSG_USER_PWD: int = 32
+ NAME_SIZE: int = 128
+ PEER_T ABLE_NAME: String = "peer_tb"
+ PEER_VOTE_TICKET : int = 272
+ PRIVATE_KEY_SIZE: int = 112
+ PUBLIC_KEY_FORMAT: String = "RSAwithMD5"
+ PUBLIC_KEY_SIGN_ALG: String = "MD5withRSA"
+ SSL_HOST : String = "localhost"
+ SSL_PORT : int = 4000
+ T GT _SIZE: int = 296
+ T ICKET_T O_PEER_SIZE: int = 440
+ T ICKET_T TL_SEC: long = 30 * 24 * 360
+ T RUST _ST ORE_P2P: String = "P2pNetStore"
+ T RUST _ST ORE_P2P_ALIAS: String = "P2pNet"
+ T RUST _ST ORE_P2P_PWD: String = "nguyen"
+ T TL_SIZE: int = 8
+ T TP_TABLE_NAME: String = "ttp_server_tb"
+ VOT E_VALUE_MAX: double = +5
+ VOT E_VALUE_MIN: double = -5

58

 Class CryptoApi
cd Crypto

CryptoApi

+ decrypt(byte[], byte[]) : byte[]
+ encrypt(byte[], byte[]) : byte[]
+ hash(String) : byte[]

 Class P2pManager

cd Global

P2pManager

- count: int = 0
- is_start: boolean
- p2p_manager: P2pManager
- puser_l ist: HashMap <String, PeerUser>
- secret_channels: ArrayList <SecretChannel>

+ addSecretChannel(SecretChannel) : void
+ clearAl l () : void
+ createRandPusers(int) : void
+ getObj() : P2pManager
+ getPuser(String) : PeerUser
- P2pManager()
+ start() : void
+ stop() : void
+ updateT oGui() : void

-p2p_manager

59

 Class P2pGui
cd Gui

javax.sw ing.JFrame
P2pGui

- connect_button: javax.swing.JButton
- create_dialog: javax.swing.JDialog
- create_puser: javax.swing.JButton
- create_sec_cha_button: javax.swing.JButton
- create_sec_cha_menu: javax.swing.JMenuItem
- delete_button: javax.swing.JButton
- discon_button: javax.swing.JButton
+ friend_l ist_model: Defaul tListModel
- log_text: javax.swing.JTextArea
- login_button: javax.swing.JButton
- login_menu: javax.swing.JMenuItem
- logout_button: javax.swing.JButton
- logout_menu: javax.swing.JMenuItem
- p2p_gui: P2pGui
- p2p_panel : javax.swing.JPanel
- popup_menu: javax.swing.JPopupMenu
- pu_friend_table: javax.swing.JTable
- puser_create_cancel: javax.swing.JButton
- puser_create_ok: javax.swing.JButton
- puser_l ist: javax.swing.JList
- puser_no_textfield: javax.swing.JTextField
- puser_panel: javax.swing.JPanel
- sc_dialog: javax.swing.JDialog
- sc_dialog_puser_l ist: javax.swing.JList
- start_button: javax.swing.JButton
- status_label: javax.swing.JLabel
- stop_button: javax.swing.JButton
- vote_button: javax.swing.JButton
- vote_dialog: javax.swing.JDialog
- vote_dialog_cancel: javax.swing.JButton

- connect_buttonActionPerformed(java.awt.event.ActionEvent) : void
- create_puserActionPerformed(java.awt.event.ActionEvent) : void
- create_sec_cha_buttonActionPerformed(java.awt.event.ActionEvent) : void
- create_sec_cha_menuActionPerformed(java.awt.event.ActionEvent) : void
- delete_buttonActionPerformed(java.awt.event.ActionEvent) : void
- discon_buttonActionPerformed(java.awt.event.ActionEvent) : void
+ getObj() : P2pGui
- ini tComponents() : void
- login_buttonActionPerformed(java.awt.event.ActionEvent) : void
- login_menuActionPerformed(java.awt.event.ActionEvent) : void
- logout_buttonActionPerformed(java.awt.event.ActionEvent) : void
- logout_menuActionPerformed(java.awt.event.ActionEvent) : void
+ main(String[]) : void
+ P2pGui()
+ println(String) : void
- puser_create_cancelMouseReleased(java.awt.event.MouseEvent) : void
- puser_create_okMouseReleased(java.awt.event.MouseEvent) : void
- puser_l istMouseReleased(java.awt.event.MouseEvent) : void
- puser_l istValueChanged(javax.swing.event.ListSelectionEvent) : void
- sc_dialog_cancelActionPerformed(java.awt.event.ActionEvent) : void
- sc_dialog_okActionPerformed(java.awt.event.ActionEvent) : void
- sc_dialog_puser_l istMouseReleased(java.awt.event.MouseEvent) : void
- sc_dialog_puser_l istValueChanged(javax.swing.event.ListSelectionEvent) : void
- sc_dialogComponentAdded(java.awt.event.ContainerEvent) : void
- start_buttonActionPerformed(java.awt.event.ActionEvent) : void
- stop_buttonActionPerformed(java.awt.event.ActionEvent) : void
- updateGui() : void
- vote_buttonActionPerformed(java.awt.event.ActionEvent) : void
- vote_dialog_cancelActionPerformed(java.awt.event.ActionEvent) : void
- vote_dialog_okActionPerformed(java.awt.event.ActionEvent) : void
- vote_dialog_puser_l istMouseReleased(java.awt.event.MouseEvent) : void
- vote_dialog_puser_l istValueChanged(javax.swing.event.ListSelectionEvent) : void
- vote_menuActionPerformed(java.awt.event.ActionEvent) : void

-p2p_gui

60

 Package Peer

cd Peer

PeerUser

+ friends: ArrayList <SecretChannel>
+ h_pwd: byte ([])
+ is_login: boolean
+ l ttp: String
+ name: String
+ rating: double
+ session_key: byte ([])
+ session_ttl : Date
+ tgt: byte ([])

+ loginCmd() : boolean
+ logoutCmd() : boolean
+ PeerUser(String, String)
+ registerCmd(String) : boolean
+ secretChannelCmd(PeerUser) : boolean
+ toString() : String
+ updateToGui() : void
+ voteCmd(String, double) : boolean

SecretChannel

+ Kab: byte ([])
+ Kab_ttl : Date
+ pu_a: String
+ pu_a_vote_ticket: byte ([])
+ pu_b: String
+ pu_b_vote_ticket: byte ([])
+ status: ChannelStatus

~ SecretChannel()

0..*

 Class SslClient

cd TcpSslConnection

SslClient

- csocket: SSLSocket
- in: InputStream
- out: OutputStream
- shutdown: boolean
- ssl_cl ient: SslCl ient

+ connect() : void
+ disconnect() : void
final ize() : void
+ getCerti ficate() : Certi ficate
+ getObj() : SslCl ient
+ sendAndRcvMsg(byte[]) : ArrayList<Object>
- SslCl ient()

-ssl_cl ient

61

	San Jose State University
	SJSU ScholarWorks
	2007

	A Hierarchical Trusted Third-Party System for Secure Peer-to-Peer Transactions
	Khoi Nguyen
	Recommended Citation

	ABSTRACT
	ACKNOWLEGEMENTS
	Background
	Problem Statement and Motivation
	Requirements and Goals
	Secure Socket Layer Protocol
	Kerberos Authentication Protocol

	Introduction
	System Architecture
	Assumptions
	Overview
	Hierarchy of TTP Servers
	LTTP Server
	ITTP Server

	Peer Authentication
	Establish Secure Channels between Peers

	Peer Rating Scheme
	Direct rating
	Objective rating
	Subjective rating
	Reputation Fading

	Security and Performance Analysis
	System Architecture and Protocol Issues
	Rating Scheme Issues

	Software Simulation
	Software Design
	Software Implementation
	SSL Server/Client Socket Implementation
	Key Database
	TTP System Implementation
	P2P Network Implementation

	Simulation Results

	Conclusions
	References
	Appendix
	Message Specification
	Messages between Peers
	To Establish a Secure Channel
	To Get a Peer Rating

	Messages between Peers and LTTPs
	To Register with the TTP System
	To Login to the TTP System
	To Logout of the TTP System
	To Request for a Secret Symmetric Key KAB
	To Vote on a Peer

	Messages within the TTP System
	To Relay a Peer Verification
	To Relay a Peer Vote to His LTTP Server
	To Update Symmetric Key with Its Parent TTP

	The Software Simulation’s UML Diagrams
	The TTP System’s UML Diagrams
	The P2P Network’s UML Diagrams

