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ABSTRACT 

MULTI-DIMENSIONAL PARTITIONING IN BUC FOR DATA CUBES 

by Kenneth Yeung 

 Bottom-Up Computation (BUC) is one of the most studied algorithms for 

data cube generation in on-line analytical processing.  Its computation in the 

bottom-up style allows the algorithm to efficiently generate a data cube for 

memory-sized input data.  When the entire input data cannot fit into memory, 

many literatures suggest partitioning the data by a dimension and run the 

algorithm on each of the single-dimensional partitioned data.  For very large 

sized input data, the partitioned data might still not be able to fit into the memory 

and partitioning by additional dimensions is required; however, this multi-

dimensional partitioning is more complicated than single-dimensional partitioning 

and it has not been fully discussed before.  Our goal is to provide a heuristic 

implementation on multi-dimensional partitioning in BUC.  To confirm our design, 

we compare it with our implemented PipeSort, which is a top-down data cubing 

algorithm; meanwhile, we confirm the advantages and disadvantages between 

the top-down data cubing algorithm and the bottom-up data cubing algorithm.  
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1. Introduction 

“Data warehousing is a collection of decision support technologies, aimed 

at enabling the knowledge worker (executive, manager, analyst) to make better 

and faster decisions” [3].  Since time is a critical factor in making business 

decisions, one of the challenges of data warehousing is to provide a responsive 

summary view out of the tremendous data that is collected from daily operations.  

A traditional relational database is not capable of doing so because of the lack of 

performance and its incapability of serving basic data warehousing operations 

such as rolling-up and drilling-down operations [4].  Since Gray et al. proposed a 

data cube structure to solve the problem, data cube generation has become one 

of the active researches in the online analytical processing technology. 

A data cube is “a data structure that consists of the results of group-by 

aggregate queries on all possible combinations of the dimension-attributes over a 

fact table in a data warehouse” [5].  A fact table can be visualized as a two-

dimensional array filled with data values.  Each row represents a tuple and each 

column represents an attribute of the tuple.  An attribute can be categorized into 

two types: dimension and measure.  A dimension is a data value that describes a 

tuple of a fact table and this value is not quantifiable; on the other hand, a 

measure is a quantifiable data value that describes a tuple of a fact table and we 

can apply aggregated functions on this type of attributes.  For example, a data 

warehouse of a car dealer stores millions of tuples for car sales (Figure 1).  Each 
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tuple consists of the following attributes: manufacture, model, year, color, and 

sale price.  The dimensions of this tuple are the manufacturer, model, year and 

color; whereas, the measure of this tuple is the sale price, which can be 

aggregated to find the average, minimum, maximum, and total of the sale price.  

The results of a group-by aggregate query are saved in a table known as view, 

which is labeled by the group-by dimensions.  In the car sales example, a view, 

which label is { manufacturer, year }, contains the summary of the sale prices in 

terms of manufacturer and year.  If a fact table has D number of dimensions, the 

data cube for this fact table will consist of 2D number of views. 

 

Figure 1. A sample fact table in the data warehouse of a car dealer 

A data cubing algorithm is an algorithm that generates a data cube from a 

fact table.  A data cube can be visualized as a cube lattice, which is an acyclic 

graph (Figure 2).  Each node of the lattice represents a view of the data cube.  

There is an edge from node A to B if and only if the number of dimensions of 

view A is exactly one more than the number of dimensions of view B and the 

dimensions of view A is the superset of the dimensions of view B.  Having this 

relationship will allow us to compute view B from A.  If we arrange the views in a 

Dimension Measure 

Tuples 
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way that a view is always under its parent and ancestors, the highest node of the 

lattice will be the finest view that consists of all dimensions; the lowest node of 

the lattice will be the coarsest view that consists of an empty set of dimensions.   

Figure 2. A sample cube lattice [5] 

There are primarily two computation styles of data cubing algorithms.  A 

top-down data cubing algorithm generates a data cube from the fine views to the 

coarse views.  The idea is to share the sorting effort by computing a view using 

the results of its parent.  Algorithm GBLP [4], PipeSort [10], Overlap [1] and 

PartitionCube [8] are categorized as top-down data cubing algorithms.  Similarly, 

a bottom-up data cubing algorithm generates a data cube from the coarse views 

to the fine views.  These kind of algorithms traverse the lattice in depth-first 

fashion.  A bottom-up data cubing algorithm is good at generating an Iceberg-

cube, in which the aggregated measures are greater than some value known as 

minimum support or minsup.  A bottom-up algorithm takes advantage of pruning 

any unqualified tuples in coarse views as early as possible [6].  Algorithm BUC 

[2], BU-BST [11], and CURE [5] are categorized as bottom-up data cubing 

algorithm. 
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The main goal of our research is to provide a heuristic implementation on 

multi-dimensional partitioning in BUC.  One of the limitations of BUC is memory 

requirement.  When input data cannot fit entirely into memory, many literatures 

suggest partitioning the data by a dimension and run BUC on each the partitions 

[2].  For clarity, we define single-dimensional partitioning to be an operation that 

BUC partitions the input data by one dimension only.  Two-dimensional 

partitioning will be an operation that BUC partitions the resulting partition from 

single-dimensional partitioning.  Tuples in such partition will share the same 

values on two dimensions.  For very large sized input data, the single-

dimensional partition might still not be able to fit into the memory and partitioning 

by additional dimensions is required.  Unfortunately, we cannot simply apply the 

same strategy as we do in single-dimensional partitioning on multi-dimensional 

partitioning because this will lead us to generate an incomplete data cube.  To 

our knowledge, no literature has addressed this issue and laid out a practical 

implementation in detail for it.  Our contribution is to identify the challenges in 

multi-dimensional partitioning and provide a heuristic implementation for the 

partitioning. 

We have implemented PipeSort to confirm our implementation on multi-

dimensional partitioning and our evaluation also gives us an opportunity to 

compare the top-down data cubing algorithm with the bottom-up algorithm.  We 

analyze the two algorithms by processing input data with different properties.  

Through our evaluation, we have confirmed the advantages and disadvantages 
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between the two algorithms.  To our knowledge, there is not a side-by-side 

comparison between these two algorithms. 

The rest of this paper is organized as below.  Section 2 provides a review 

of PipeSort and BUC.  We describe our approach on handling multi-dimensional 

partitioning in BUC in section 3, followed by the design of our implementation in 

section 4.  We then provide our evaluation in section 5 and our discussion in 

section 6.  Section 7 discusses the possible directions of our research in the 

future.  Finally, we conclude our research in section 8. 

2. Review 

This section provides a review of PipeSort and BUC. 

2.1. PipeSort 

PipeSort is a top-down data cubing algorithm introduced by Sarawagi, 

Agrawal, and Gupta in 1996 [10].  For each edge Exy from view X to view Y of a 

lattice, PipeSort assigns two computation costs: Axy and Sxy.  Cost Axy is the 

computation cost to generate view Y from X by simply reading or scanning the 

entire tuples of view X.  Edges with this cost are called pipeline edges.  Cost Sxy 

is the computation cost to generate view Y from X with the sorting in the order of 

the dimensions of view Y.  Edges with this cost are called sort edges.  PipeSort 

goes through the lattice, level by level, to determine the minimum cost for each 

view to be generated from its parent and removes the edges that come from the 
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rest of its parents.  As a result, each view will have exactly one edge coming from 

its parent and we call this modified lattice as a processing tree (Figure 3a).  A 

processing path is a set of views such that the views are connected by a set of 

edges and no two views share the same parent on a processing tree.  PipeSort 

decomposes a processing tree into a set of processing paths, which visit every 

view on the tree (Figure 3b).  For each processing path, PipeSort determines the 

common order of dimensions of all the views and sorts the source view based on 

this order such that PipeSort can aggregate the source view in pipeline fashion.  

It allocates memory in the size of a tuple for each view on the processing path 

and the aggregation can be performed for all the views simultaneously while the 

sorted data is being read. 

 

Figure 3. A sample processing tree and processing paths [10] 

The disadvantage of PipeSort is that it doesn’t scale well as the number of 

dimensions (D) increases.  According to [8], the number of sorting required by 



 
 

16 
 

PipeSort has a lower bound at , which is exponential in D.  A simple proof of 

the lower bound is that the maximum number of views at a level of a lattice is  

and each of the views is visited by a distinct processing path.  When a fact table 

is in spare, many views will not be able to fit inside memory and external sorting 

is required.  This increases a notable amount of I/Os. 

2.2. BUC 

Algorithm BUC, which stands for Bottom-Up Computation, is a bottom-up 

data cubing algorithm proposed by Beyer and Ramakrishnan in 1999 [2].  It is 

designed to generate an iceberg cube, which contains the results of group-by 

aggregate queries with HAVING(*) > X on all possible combinations of the 

dimensions of a fact table.  In other words, the aggregated measure of all tuples 

in an iceberg cube must be greater than X, which is known as minimum support 

or minsup.  BUC is good at generating an iceberg cube because of its depth-first 

fashion on traversing a processing tree.  BUC generates a data cube from the 

coarse views to the fine views and this allows the algorithm to prune any 

unqualified tuples as early as possible.  The advantage of BUC is manifest when 

a fact table is spare.  Many unqualified tuples will be pruned in the early stage 

and BUC will generate the fine views with less tuples. 
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The computation logic of BUC is described below.  Suppose that we have 

a fact table with four dimensions: A, B, C and D.  The order of the dimensions of 

each tuple is ABCD; in addition, the domain size of a dimension in lower order is 

larger or equal to that of the dimension in the higher order.  If |X| is the domain 

size of dimension X, we will have |A| > |B| > |C| > |D|.  For the sake of simplicity, 

we assume that the entire fact table can be fit inside memory.  BUC starts from 

computing the ALL view, which consists of an empty set of dimensions.  It then 

goes through each dimension in ascending order.  For each dimension Xi, BUC 

sorts the tuples with respect to the current dimension and this is known as 

partitioning by dimension.  Tuples in the same partition will have the same value 

on the specific dimension.  For each partition Pi on Xi, BUC aggregates the tuples 

of the partition and writes the result to view Xi.  Instead of moving to the next 

partition Pi+1, BUC performs partitioning by dimension Xi+1 on Pi and writes the 

aggregated result to view XiXi+1.  This is a recursive computation and it does not 

return until it reaches the highest dimension.  In our example, after the algorithm 

computes the ALL view, it partitions A and produces partition a1, a2, a3, and a4 

(Figure 4).  BUC writes tuple <a1> to view A and partitions a1 by B.  It writes <a1, 

b1> to view AB and partitions a1,b1 by C.  Applying the same computation logic, 

BUC writes the following aggregated tuples in order: <a1, b1, c1>, <a1, b1, c1, 

d1>, <a1, b1, c1, d2>, <a1, b1, c2>, <a1, b1, c2, d3>, <a1, b2>, etc. 
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Figure 4. BUC partitioning [2] 

When the entire fact table cannot fit into memory, partitioning by a 

dimension is required.  Each partition will be written to disk.  We load each 

partition, one at a time, back to the memory, hoping that the memory can hold 

the entire partition.  We then run BUC on the partition to generate a portion of a 

data cube.  Many literatures have mentioned that partitioning by additional 

dimensions is required if a single-dimensional partition cannot fit into the 

memory; however, we haven’t seen any publication that describes the logic of the 

additional partitioning, which is the main goal of our research. 

3. Approach 

Our approach to handle multi-dimensional partitioning in BUC is to first 

understand why we cannot simply run BUC on multi-dimensional partitions.  

Suppose a single-dimensional partition cannot fit into the memory.  We partition 

the data by another dimension, create two-dimensional partitions, and run BUC 
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on each of the two-dimensional partitions.  BUC will not be able to generate the 

aggregated tuples for the views that project the first dimension but not the 

second dimension.  For example, suppose the input data has four dimensions: A, 

B, C, and D. After we perform two-dimensional partitioning on AB, we will be able 

to generate aggregated tuples for the following views from this partition: AB, 

ABC, ABD, and ABCD.  However, we cannot generate tuples for view A, AC, AD, 

and ACD.   

To generate the missing tuples, we modify PipeSort and integrate it with 

our BUC algorithm.  The main difference between the original version and the 

modified version of PipeSort is that the modified version of PipeSort obtains a set 

of processing paths from the sub-graph of a lattice.  In the original version of 

PipeSort, we need to generate a set of processing paths that go though every 

single view of a data cube.  The dimension ordering can be different from one 

path to another.  On the other hand, the goal of the modified version of PipeSort 

is to generate the missing tuples from the results of two-dimensional partitioning.  

This will work because the missing tuples are always the coarse versions of the 

tuples that are generated from two-dimensional partitioning.  For example, 

suppose our input data has four dimensions (A, B, C and D).  After we perform 

two-dimensional partitioning on AB and generate the aggregated tuples for each 

of the partitions, we can obtain the following processing tree by flattening the 

sub-graph of the lattice (Figure 5).  Each node on the tree represents a view.  A 

solid node means that we have already generated the aggregated tuples for this 
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view by running BUC on the two-dimensional partitioned data; otherwise, the 

view will be indicated as an empty node.  A solid edge means that we can 

compute the aggregated tuples of a view from its parent without any sorting.  A 

dotted edge means that sorting is required to compute the aggregated tuples of a 

view from its parent. 

 

Figure 5. Processing tree for generating missing views 

The cost assignment in our modified version of PipeSort is also different to 

the cost assignment in the original version.  Lets pick the graph in Figure 5 as an 

example.  For clarity, we refer missing view to be a set of aggregated tuples for a 

view that is not generated from two-dimensional partitioning.  We can generate 

the missing view A from the tuples of view AB or view AC.  The difference on 

choosing between view AB and view AC is that the tuples of view AB is already 

computed but the tuples of view AC are not.  Our modified PipeSort will select 
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view AC since we can compute the missing view A while we are generating the 

missing view AC.  Aggregating the missing view A from the tuples of view AB is 

cost ineffective because we have to load the tuples of view AB back to memory 

and this produces additional I/Os.  In order to instruct PipeSort to aggregate the 

missing view A from the tuples of view AC instead of the tuples of view AB, we 

set the cost of the edge from view AC to view A to be zero.  In general, the cost 

of the edge between two circle nodes will be set to be zero. 

After we obtain the optimal set of processing paths, generating the 

missing views becomes an easy task, which computation logic is similar to the 

original version of PipeSort.  When a single-dimensional partitioned data cannot 

be fit entirely in memory, we perform two-dimensional partitioning on the 

partition.  During the processing, we determine the boundaries of the aggregated 

tuples that are generated from two-dimensional partitions.  After the processing, 

we load the aggregated tuples of the views, which are specified in the processing 

paths, back to memory and generate the missing views. 

We have developed two versions of our implementation on multi-

dimensional partitioning in BUC.  The first version will construct the optimal set of 

processing paths every time it partitions on a single-dimensional partition; 

whereas, the second version, which is the improved version, will construct only 

one set of processing paths for the single-dimensional partitions, which are 

partitioned by the same dimension.  If a fact table has D number of dimensions, 
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the second version of our implementation will generate at most D number of 

optimal set of processing paths.   

4. Design 

We have developed five algorithms to support our research and we will 

briefly describe the design of each of the algorithms.  DataFormatter is a JAVA 

console application that parses any data in different formats into a binary data 

file, which becomes the input of our data cubing algorithms.  This application is 

described in section 4.1.  In section 4.2, we go though the design of our PipeSort 

algorithm, which is used in our evaluation.  Section 4.3 describes the design of 

our BUC, which basically follows the design in [2] and supports single-

dimensional partitioning.  We call this algorithm as BUC1.  The design of our 

implementation on multi-dimensional partitioning in BUC is described in section 

4.4 and we call this algorithm as BUC2.  BUC3 is the improved and final version 

of our implementation on multi-dimensional partitioning in BUC and the design is 

described in section 4.5. 

4.1. DataFormatter 

DataFormatter is a JAVA console application that parses any data in 

different formats into a binary data file, which becomes the input of our data 

cubing algorithms.  The resulting data file will have the following properties.  1) 

Every data value will be replaced with an integer under the following rule.  Let X 

be the integer of value A on a column and Y be the integer of value B on the 
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same column.  Value A is smaller than Value B if and only if X is smaller than Y.  

2) Columns in the binary file will be rearranged such that the size of the domain 

of a column in low order is always larger than or equal to that in high order. 

DataFormatter consists of the following components: Main, ColumnInfo, 

DataParserFactory, DataParser, GenericParser, and CovTypeParser.  Main is 

the main class of this application and the entire execution starts from here.  It 

contains an array of ColumnInfo, which length is in the number of dimensions of 

the input data file.  ColumnInfo consists of two fundamental JAVA collection 

objects: HashSet and HashMap, which are used to manage the distinct data 

values of the corresponding column and the mapping between a data value to an 

integer.  Since we would like to support parsing input data file in various formats, 

we define DataParser as an interface, which allows us to implement different 

parsers for different data formats.  We developed two classes that implement 

DataParser: GenericParser, which supports parsing files in CSV and 

CovTypeParser, which supports parsing Forest Covertype data.  We adopt the 

Factory design pattern to construct the corresponding parser and we pass the 

data format as a parameter to DataParserFactory to get a parser.  Figure 6 

displays the class diagram of DataFormatter. 
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DataParserFactory

«interface»

DataParser

GenericParser CovTypeParser

ColumnInfo

Main

1

*

HashSetHashMap

java.io.*

 

Figure 6. Class diagram of DataFormatter 

The execution logic of DataFormatter is described as follows.  Given the 

data format of a data file and its file path, DataFormatter gets the corresponding 

DataParser from DataParserFactory.  For every line that this application reads 

from the data file, the application inputs the line to the parser that returns an 

array of Object, each of which represents a data value of a tuple in the data file.  

We add each value to the HashSet of the corresponding ColumnInfo.  After 

reading the entire data file, we sort each of the HashSets and put the assignment 

of each distinct data element into a HashMap for each column.  We also write the 

assignments to a file for each column and write statistical information of the data 

file in a meta file.  Lastly, we read the data file again.  For every line we read, we 

get the integer value of each data value from the corresponding HashMap and 

then write the integer value to the resulting file in binary format.  In addition, the 

order of elements on each line will be based on the size of the column domains 

in descending order.  Figure 7 illustrates the activity diagram of this application. 
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Get DataParser from DataParserFactory

Read a line from data file

Parse the line into an array of objects

Send each object to the HashSet of the corresponding columnInfo

More data?

Sort every HashSet

Finish reading

Assign an integer to each value in every HashSet and put this mapping to HashMap

Write meta files

Read a line from data file

Arrange data value by domain size

Write the integer of each data value to the put file

Finish reading

More data?

 

Figure 7. Activity diagram of DataFormatter 

4.2. PipeSort 

Our design of PipeSort basically follows Sarawagi’s design in 1996.  Given 

a binary input file generated from DataFormatter, PipeSort will generate a data 

cube of a fact table and each view of the data cube will be presented as a file.  

Let D be the number of dimensions of the input data.  There will be 2D number of 

files created for the data cube.  For simplicity, we will implement only one 

aggregation function: sum. 

Our PipeSort consists of the following basic components: Main, Memory, 

DataLoader, QuickSort, MergeSort, SizeEstimator, PlanGenerator, and 

ViewAggregator.  Main is the main class, where the execution begins.  Memory is 
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a class that consists of an integer array in fixed length and methods to illustrate a 

resizable memory table.  All data must be loaded into Memory before any in-

memory computation such that we can control the memory size of our PipeSort.  

DataLoader is responsible to load the fact table or generated views into Memory 

and sort the tuples in ascending order.  It will perform external sorting if it cannot 

load all data into Memory.  QuickSort and MergeSort are the algorithms that 

DataLoader used for in-memory and external sorting.  SizeEstimator is a class 

that calculates the estimated number of tuples of a view by multiplying the size of 

the dimension domains of the view.  The estimation will be used by 

PlanGenerator, which generates a set of optimal processing paths.  For each 

view on a processing path, a ViewAggregator is used to aggregate tuples and 

write the results to a file.  Figure 8 shows the class diagram of our PipeSort. 

MainMemory

DataLoader

QuickSort MergeSort

SizeEstimator

PlanGenerator

ViewAggregator
1

*

 

Figure 8. Class diagram of PipeSort 
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The execution logic of our PipeSort is described as below.  Our algorithm  

starts from initialization on the size of Memory and the basic configuration of our 

algorithm such as the size of each dimension domain, the total number of 

dimensions, and the path to the output directory.  It then creates SizeEstimator to 

estimate the size of each view of the data cube and saves the results in an 

integer array, which is passed to PlanGenerator to generate the optimal set of 

processing paths.  Each processing path is presented by ViewPath, a data 

structure that contains a pointer to a view and a pointer to the next ViewPath.  

We will describe ViewPath in detail later.  For each ViewPath returned from 

PlanGenerator, DataLoader loads the first view in the path to Memory and sorts 

the data in ascending order.  PipeSort then asks DataLoader to return every 

tuple, which will be fed into ViewAggregator to generate tuples for the views 

specified in the rest of the processing path.  Figure 9 shows the activity diagram 

of our PipeSort. 
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Figure 9. Activity diagram of PipeSort 

4.2.1. DataLoader 

Given a processing path, DataLoader loads the first element on the path 

into Memory in a given column arrangement and sort tuples in order.  The first 

element can be the fact table or a file that represents a generated view.  Since 

the second view on the path might not be the prefix of the first element in terms 

of the order of dimensions, rearranging the dimensions of the data in Memory is 

required.  DataLoader writes the tuples into Memory until either DataLoader 

finish loading all data of the first element or Memory is full.  If Memory can keep 

all tuples of the first element, DataLoader will sort the tuples by running 

QuickSort.  Otherwise, DataLoader will sort the tuples in Memory by running 

QuickSort and output them to a temporary file.  DataLoader repeats this logic 

initialize the size of Memory

estimate the size of each view

Generate the optimal set of processing paths

Remove a path from the set

Load the first view of the path in Memory

Sort the view

Aggregate every tuple according to the processing path

The set is not empty

The set is empty
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until it finishes reading all tuples of the first element.  At the end, DataLoader will 

perform MergeSort on the temporary files.  The results will be written to a file, 

which will be loaded back to Memory when it is needed.  Figure 10 shows the 

activity diagram of DataLoader. 

Read a new tuple from the first view

and write it to Memory

Sort tuples in Memory
Memory is full

Write the tuples in a temporay file

Otherwise

More tuples

Done reading
Temporary files are created

MergeSort

Write results to a file

QuickSort

 

Figure 10. Activity diagram of DataLoader 

4.2.2. SizeEstimator 

SizeEstimator is a class that estimates the size of each view of a data 

cube through the mathematical approximations [9].  The reason we chose this 

approach is that the estimation is simple and fast.  Based on the research, we 

can estimate the size of a view, es(V), by using the following formula: 
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Figure 11. The size estimation formula [9] 

In this formula, ms(V) is the maximum size of a view and we define it as 

the multiplication of the size of the dimension domains of the view.  |F| is the size 

of the fact table.  SizeEstimator returns an integer array, which contains the 

estimated size of each view of the data cube.  The array will be used by 

PlanGenerator in the next step. 

4.2.3. PlanGenerator 

Given the total number of dimensions, the estimated size of each view of a 

data cube and the size of Memory, PlanGenerator will generate the optimal set of 

processing paths for PipeSort to generate a data cube.  PlanGenerator uses 

CubeNode to model a view on a processing tree and uses ViewPath to illustrate 

a processing path.  Each ViewPath represents a view on a processing path and 

maintains a pointer to the next ViewPath.  During the path generation processing, 

PlanGenerator will encounter the minimum cost matching problem, which will be 

solved by our implementation of Hungarian algorithm that was described by 

Papadimitriou and Steiglitz in 1982.  Figure 12 shows the class diagram of 

PlanGenerator. 
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Figure 12. Class diagram of PlanGenerator 

The execution logic of PlanGenerator is described as follows.  Given a 

lattice, each of which views is represented by CubeNode, PlanGenerator goes 

through the views from the bottom level to the top level.  For each level k, 

PlanGenerator works on the views at that level and their parents at the k+1 level.  

PlanGenerator assigns the corresponding scan cost to every edge from the 

parents to their children.  It then makes k number of copies of the parents and 

assigns the corresponding sort cost to every edge from the copied parents to 

their children.  A two-dimensional array is used to keep the cost information, 

where the rows represent the parents and the columns represent the children.  

PlanGenerator then runs the Hungarian algorithm with the cost table to find the 

minimum cost assignment for generating the child views from the parent views.  

However, since the Hungarian algorithm is used to solve the maximum cost 

matching problem, we need to find the maximum cost in the cost table and 

subtract it with every cost in the table.  When PlanGenerator gets the assignment 

from the Hungarian algorithm, it removes every edge that goes into the child 

PlanGenerator

ViewPath

CubeNode
java.util.*

Hungarian
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views except the one that is mentioned in the assignment.  After going through all 

levels, PlanGenerator will traverse the lattice, which now becomes a processing 

tree.  It then decomposes the tree into processing paths, each of which is 

represented as ViewPath.  Figure 13 shows the activity diagram of 

PlanGenerator. 

Position to the bottom level of a lattice

Read CubeNodes and their parents

Assign scan costs to edges

If there are k number of CubeNodes, make k copies of their parents

Assign sort costs to the edges from the duplicated parents to their children

Fill up the cost table and run the Hungarian algorithm

Remove all edges except the ones described in the assignment from Hungarian

Move up 1 level

Traverse the processing treeConstruct processing paths

Reach the top level

More levels

 

Figure 13. Activity diagram of PlanGenerator 

4.2.4. ViewAggregator 

ViewAggregator is a class that helps PipeSort to aggregate tuples for a 

specific view.  PipeSort creates an instance of ViewAggregator for every view on 

a processing path.  When PipeSort reads a tuple from DataLoader, it passes the 

tuple to the ViewAggregators.  Since the tuples from DataLoader are sorted in 

order, it is easy for ViewAggregator to implement the sum aggregation function.  
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For every tuple that ViewAggregator receives, it extracts the values of the 

columns that the corresponding view has.  If this is the first tuple ViewAggregator 

has ever read, save it. For the rest of incoming tuples, if the dimension values 

are the same as the saved tuple, ViewAggregator accumulates the measure of 

the saved tuple with the measure of the new tuple.  Otherwise, ViewAggregator 

will output the saved tuple to the file that represents the view and then replaces 

the saved tuple with the incoming tuple.  Figure 14 shows the activity diagram of 

ViewAggregator. 

Extract data from the incoming tuple

Output the saved tuple to disk

Same dimension values

Otherwise

Replace the saved tuple with the incoming tuple

Accumulate the measure

 

Figure 14. Activity diagram of ViewAggregator 

4.3. BUC1 

Our design of BUC basically follows the design of Beyer and 

Ramakrishnan in 1996.  Given a binary input file generated from DataFormatter, 
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our algorithm generates a data cube for the input data.  Each view of the data 

cube will be presented as a file.  Let D be the number of dimensions of the input 

data.  There will be 2D number of files created for the data cube.  For simplicity, 

we will implement only one aggregation function: sum. 

We implement three versions of BUC: BUC1, BUC2, and BUC3.  The 

implementation of BUC1 follows the original design of BUC and it supports 

single-dimensional partitioning.  BUC2 is the advanced version of BUC1.  We 

restructure the design of BUC1 and optimize the algorithm on memory and I/O 

usage.  It supports two-dimensional partitioning based on our implementation on 

multi-dimensional partitioning.  BUC3 is the improved version of BUC2 and the 

final version of our implementation. 

BUC1 consists of the following basic components: Main, Memory, 

DataLoader, DataPartitioner, OutputRec, RecordWriter, and CountingSort.  Main 

is the main class of the algorithm and the execution begins there.  Memory 

illustrates a resizable memory table for the algorithm and allows us to configure 

the memory usage of the algorithm.  Memory is the same component as we 

discussed in section 4.2.  DataLoader is responsible to load the input data into 

Memory.  DataPartitioner divides the input data into numbers of partitions when 

Memory cannot hold the entire input data.  OutputRec is a data class that keeps 

an integer array for the current aggregated tuple.  The length of the integer array 

equals the total number of dimensions plus one. RecordWriter is a class that 
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writes the aggregated tuples to files.  CountingSort is the countingSort algorithm 

that sorts the tuples in Memory. Figure 15 shows the class diagram of BUC1. 

 

Main

Memory

DataLoader

DataPartitioner

OutputRec RecordWriter CountingSort

 

Figure 15. Class diagram of BUC1 

The execution logic of BUC1 is divided into two sections.  If the input data 

can fit into Memory entirely, BUC1 executes bucInternal, which is in-memory 

BUC algorithm that Beyer and Ramakrishnan described in 1996.  If Memory 

cannot hold the entire input data, BUC1 executes bucExternal, which will partition 

the data and run bucInternal on each partition.  Figure 16 shows the global 

activity diagram of BUC1. 
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bucInternal

Input Size > Memory Size Otherwise

bucExternal

 

Figure 16: Activity diagram of BUC1 in a global view 

The logic of bucInternal can be implemented as a recursive method.  

During initialization, bucInternal sets every element of the array of OutputRec to 

be ALL, which represents as -1.  If an element contains a value other than -1, this 

means that bucInternal is working on a view that projects this dimension.  Given 

a set of tuples in Memory, we pass the positions of the boundaries of the set (ie, 

LEFT and RIGHT) and a column number to bucInternal (ie, D).  For example, if 

we can load the entire input data N into Memory, we will invoke bucInternal with 

parameter LEFT = 0, RIGHT = N-1 and D = 0.  It aggregates the measure of 

each tuple and saves the result in OutputRec.  If the set contains only one tuple, 

bucInternal will write the tuple to the files of the ancestors of the current view.  

Otherwise, bucInternal will send OutputRec to RecordWriter to write the 

aggregated tuple in OutputRec to disk.  For each dimension d from D to the total 

number of dimensions, bucInternal sorts the tuples between LEFT and RIGHT by 

dimension d.  We found that tuples with the same value on dimension d don’t 

need to be sorted and this makes CountingSort shine in BUC.  For each group of 
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tuples that share the same value on dimension d, bucInternal sets the value to 

the d-th element of the array of OutputRec, and then runs itself on this group with 

D = d + 1.  After going through every group, bucInternal resets the d-th element 

of the array of OutputRec to ALL.  Figure 17 and 18 shows the algorithm of 

bucInternal. 

Procedure bucInternal(LEFT, RIGHT, DIMENSION) 

Inputs:  

LEFT: the position of the most-left tuple in Memory 

RIGHT: the position of the most-right tuple in Memory 

DIMENSION: the current dimension that we are working 

on 

Global: 

 OUTPUTREC: the aggregated tuple 

 NUM_OF_DIMENSIONS: the total number of dimensions 

Begin 

 Aggregate(LEFT, RIGHT) 

 If RIGHT = LEFT 

  Write OUTPUTREC to ancestors 

  Exit 

 End If 

 Write OUTPUTREC 

 For each d from DIMENSION to NUM_OF_DIMENSIONS 

  C = Cardinality(d) 

  dataCount[] = Partition(LEFT, RIGHT, d) 

  k = LEFT 

  For each i from 0 to C – 1 

   C = dataCount[i] 

   If c >= 1 

    OUTPUTREC[d] = k 

    bucInternal(k, k+c-1,d+1) 

    k = k + c 

   End If 

  End For 

  OUTPUTREC[d] = ALL 

 End For 

End 

 

Figure 17. Algorithm of bucInternal 
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Procedure Aggregate(LEFT, RIGHT) 

Inputs:  

LEFT: the position of the most-left tuple in Memory 

RIGHT: the position of the most-right tuple in Memory 

Global: 

 OUTPUTREC: the aggregated tuple 

 MEMORY: the memory that stores the tuples 

Begin 

 Accumulate the measure of the tuples between LEFT and 

RIGHT 

 Save the sum in OUTPUTREC 

End 

 

Procedure Partition(LEFT, RIGHT, d, C) 

Inputs: 

LEFT: the position of the most-left tuple in Memory 

RIGHT: the position of the most-right tuple in Memory 

 d: the current dimension 

 C: the cardinality of the current dimension 

Output: 

 dataCount: an integer array in length C.  It tells the 

    the number of tuples with the same value on 

    dimension d 

Global: 

 MEMORY: the memory that stores the tuples 

Begin 

Perform CountingSort on Memory from LEFT to RIGHT on 

d. 

For each i from LEFT to RIGHT 

 dataCount[Memory[i][d]] += 1 

End For 

End 

Figure 18. Procedures that are used in bucInternal 

After we develop bucInternal, the design of bucExternal is simple.  The 

execution logic of bucExternal is described below.  During initialization, all 

dimension values of OutputRec are set to be ALL.  Suppose D is the total 

number of dimensions of the input data.  For each dimension d from 0 to D – 1, 

bucExternal initializes Memory with (D – d + 1) columns.  The first (D – d) 
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columns are used to keep the dimension values from d to D -1.  The last column 

is used to keep the measure.  bucExternal calls DataLoader to load the tuples 

from the input to Memory.  During the loading process, DataLoader discards any 

dimension values before d.  When Memory is full, bucExternal reads the tuples 

from Memory and sends them to DataPartitioner for partitioning.  This step is 

repeated until all input data has been partitioned.  If the aggregated tuple for the 

ALL view hasn’t been output yet, bucExternal writes it to disk.  For each partition 

p that we’ve created, bucExternal assigns the d-th dimension value of OutputRec 

to be the d-th dimension value of the tuples in p.  Memory is resized according to 

p and DataLoader loads the partition to Memory.  bucExternal runs bucInternal 

on this partition.  Before bucExternal moves forward to the next dimension, it 

reset the d-th dimension value of OutputRec to ALL.  Figure 19 shows the activity 

diagram of bucExternal. 
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Initialize OutputRec

Position to the next dimension

Initalize Memory

DataLoader loads input to Memory

DataPartitioner distributes tuples to the corresponding partition

Write OutputRec for view ALL
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of view ALL?

Yes

No

Load a new partition to Memory

update OutputRec dimension value

Execute bucInternal on this partition

Reset the dimension value of OutputRec to ALL

More partitions?
Yes

No

Go through all 

dimensions?

Yes

No

 

Figure 19. Activity diagram of bucExternal 

4.3.1. OutputRec 

OutputRec is a data class that holds the current aggregated tuple.  It is 

composited by an integer value for storing the aggregated measure and an 

integer array for storing the dimension values.  The length of the integer array 

equals the total number of dimensions of the input data.  We can determine 

which view the current aggregated tuple belongs to by reading the integer array.  

If a dimension value in the integer array does not equal to -1 (e.g. ALL), the 

corresponding view is projecting the corresponding column.  For example, 

Suppose the input data has four dimensions (A, B, C, and D) and the integer 
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array is { -1, 4, -1, 3 }.  The view for this aggregated tuple is view BC.  An integer 

array in { -1, -1, -1, -1 } is for view ALL. 

4.3.2. DataLoader 

This class is responsible for loading the input data into Memory.  Since we 

don’t need to load all dimension values into Memory in bucExternal, it is 

designed to be able to discard the first numbers of dimension values of each 

tuple before writing the partial tuple to Memory in order to reduce the number of 

I/Os. 

4.3.3. RecordWriter 

Given OutputRec, RecordWriter writes the aggregated tuple to the file of 

the corresponding view.  For better performance, RecordWriter keeps an 

OutputStream of every opened file in memory and does not close it until the life 

cycle of RecordWriter reaches the end.  It also provides a recursive method, 

writeAncestors, to write the aggregated tuple to the ancestors of the 

corresponding view for optimization.  Figure 20 shows the algorithm of 

writeAncestors. 
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Procedure writeAncestors(OUTPUTREC, MEMORY, ROW) 

Input: 

 OUTPUTREC: the aggregated tuple 

 MEMORY: the memory table 

 ROW: the row index of the aggregated tuple in MEMORY 

Begin 

 Write OUTPUTREC 

 dimensions[] = OUPUTREC.dimenions 

 For each j from dimensions.length – 1 to 0 

  If dimensions[j] = ALL Then  

Exit 

  End If 

  Copy = OUTPUTREC 

  Copy[j[ = MEMORY[row][j] 

  writeAncestors(Copy, MEMORY, ROW) 

 End For 

End 

Figure 20. Algorithm of writeAncestors 

4.3.4. DataPartitioner 

DataPartitioner is a class that partitions the input data into multiple groups 

by columns.  Partitioning by column means that tuples, which have the same 

dimensional value on the specified column, will go to the same partition.  When 

DataPartitioner receives a tuple, it checks the dimension value of the specified 

column and sends it to the corresponding partition.  Tuples of each partition will 

be written in a temporary file, which will be loaded by DataLoader later on.    

4.4. BUC2 

BUC2 is the first version of our implementation on multi-dimensional 

partitioning in BUC.  In the previous design of BUC1, if we cannot keep the entire 

input data in Memory, we will partition the data by dimension and save each 
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partition into a file.  We then load each partition back to Memory and execute 

bucInternal on the partition.  The limitation of this algorithm is that it cannot 

handle a partition, which size is larger than Memory.  BUC algorithm will not be 

able to generate a data cube correctly if only a portion of a partition is loaded in 

Memory.  The approach of solving this problem is described in section 3. 

Our design of this algorithm will generate the optimal set of processing 

paths when single-dimensional partitioned data requires two-dimensional 

partitioning.  We believe that generating the optimal set of processing paths for 

every single-dimensional partition we encounter will allow our algorithm to reach 

the best performance because the data distribution of each single-dimensional 

partition is different.  A new set of processing path is required for a single-

dimensional partition in order to reduce the number of I/Os. 

We have made an optimization in BUC2 regarding the way to write tuples 

in a partition file.  In BUC1, tuples with the same dimension value on the 

partitioning column go to the same partition file.  Writing the entire tuple to the 

file, we waste space on saving the same dimension value and also waste time on 

writing and reading the same dimension value.  In BUC2, we skip writing the 

common dimension value into a partition file but write the value on the file name.  

Our evaluation shows that this optimization improves the performance of BUC2. 
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We restructure our design from BUC1 and the basic components of BUC2 

are: Main, Memory, InMemoryBUC, PartitionBUC, ExtendedPartitionBUC, and 

PipeSort.  Main is the main class that contains the setting of BUC2 and it is the 

place where the execution begins.  Memory is same component from BUC1.  

InMemoryBUC is a class that computes a data cube from tuples in memory.  It is 

a modification of the bucInternal procedure in BUC1.  PartitionBUC is a class that 

computes a data cube with single-dimensional partitioning.  This class is a 

modification of the bucExternal procedure in BUC2.  If PartitionBUC needs to the 

second partitioning on a partitioned data, PartitionBUC will pass the execution to 

ExtendedPartitionBUC, which is responsible for performing two-dimensional 

partitioning.  For simplicity, our implementation handles up to two-dimensional 

partitioning as we believe that the computation logic beyond two-dimensional 

partitioning is similar.  PipeSort is used by ExtendedPartitionBUC to compute the 

missing views.  Figure 21 shows the general structure of BUC2. 

Main

PartitionBUC InMemoryBUC

ExtendedPartitionBUC PipeSort

Memory
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Figure 21. General class diagram of BUC2 

The global execution logic of BUC2 is described as follows.  After the 

initialization in Main, PartitionBUC will load the input data into Memory.  If the 

entire input data can fit in Memory, PartitionBUC will call InMemoryBUC to 

compute a data cube.  Otherwise, PartitionBUC will partition the data into 

numbers of partitions.  It then loads each partition into Memory and tries to 

compute a data cube based on the partition by calling InMemoryBUC.  If Memory 

cannot contain the entire partition, PartitionBUC will pass the execution to 

ExtendedPartitionBUC for two-dimensional partitioning.  Figure 22 shows the 

activity diagram of BUC2. 

PartitionBUC loads input data to Memory

InMemoryBUC computes a data cube

Data fits in Memory

Data doesn’t fit

in Memory

Partition the input data

Partition fits in Memory

ExtendedPartitionBUC performs two-dimensional partitioning

Otherwise

 

Figure 22. Activity diagram of BUC2 
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4.4.1. InMemoryBUC 

InMemoryBUC is a class that implements the in-memory version of BUC.  

Unlike BUC1 that has only the bucInternal procedure to compute a data cube, 

InMemoryBUC provides two methods: InMemoryBUC.run and 

InMemoryBUC.runWithoutAll.  InMemoryBUC.run generates the entire data 

cube; on the other hand, InMemoryBUC.runWithoutAll generates all views of a 

data cube except the view All.  Figure 23 and 24 shows the algorithms of 

InMemoryBUC. 

Procedure InMemoryBUC.run(LEFT, RIGHT, DIMENSION) 

Inputs:  

LEFT: the position of the most-left tuple in Memory 

RIGHT: the position of the most-right tuple in Memory 

DIMENSION: the current dimension that we are working 

on 

Global: 

 OUTPUTREC: the aggregated tuple 

 NUM_OF_DIMENSIONS: the total number of dimensions 

Begin 

 Aggregate(LEFT, RIGHT) 

 If RIGHT = LEFT 

  Write OUTPUTREC to ancestors 

  Exit 

 End If 

 Write OUTPUTREC 

 InMemory.runWithoutAll(LEFT, RIGHT, DIMENSION) 

End 

Figure 23. Algorithm of InMemoryBUC 
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Procedure InMemoryBUC.runWithoutAll(LEFT, RIGHT, DIMENSION) 

Inputs:  

LEFT: the position of the most-left tuple in Memory 

RIGHT: the position of the most-right tuple in Memory 

DIMENSION: the current dimension that we are working 

on 

Global: 

 OUTPUTREC: the aggregated tuple 

 NUM_OF_DIMENSIONS: the total number of dimensions 

Begin 

 For each d from DIMENSION to NUM_OF_DIMENSIONS 

  C = Cardinality(d) 

  dataCount[] = Partition(LEFT, RIGHT, d) 

  k = LEFT 

  For each i from 0 to C – 1 

   C = dataCount[i] 

   If c >= 1 

    OUTPUTREC[d] = k 

    InMemoryBUC.run(k, k+c-1,d+1) 

    k = k + c 

   End If 

  End For 

  OUTPUTREC[d] = ALL 

 End For 

End 

 

Note: The implementation of Procedure Aggregate and 

Partition is the same as we described in BUC1. 

Figure 24. Procedure that is used in InMemoryBUC 

4.4.2. PartitionBUC 

PartitionBUC is a class that governs the entire execution logic of BUC2.  

This class consists of the following basic components: DataLoader, 

DataPartitioner, InMemoryBUC, and ExtendedPartitionBUC.  DataLoader is 

responsible for loading the input data or partitioned data into Memory.  The 

implementation of DataLoader is the same as we described in BUC1.  
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DataPartitioner is responsible for performing partition by dimension.  The 

implementation of this class is a little different to the implementation in BUC1 

because of the optimization we implement.  InMemoryBUC is the in-memory 

version of BUC and we have described it already in the previous section.  

ExtendedPartitionBUC is a class that contains our implementation on multi-

dimensional partitioning.  Figure 25 shows the class diagram of PartitionBUC. 

DataLoader DataPartitioner

PartitionBUC

ExtendedPartitionBUCInMemoryBUC

Figure 25. Class diagram of PartitionBUC 

The execution logic of PartitionBUC is described as below.  Let D be the 

total number of dimensions of input.  For each dimension d, PartitionBUC 

initializes Memory to have (D – d + 1) columns and load the input into Memory.  

Any dimension value, which order is less than d, will be skipped during the 

loading process.  If DataLoader can load all data into Memory, PartitionBUC will 

run InMemoryBUC.run to generate a data cube.  If DataLoader can load all data 

into Memory and view All has already been created, PartitionBUC will run 

InMemoryBUC.runWithoutAll instead.  PartitionBUC will move onto the next 

dimension if PartitionBUC can load the entire input into Memory.  Otherwise, 

PartitionBUC will ask DataPartitioner to partition the data until the entire input is 

partitioned.  After that, PartitionBUC will generate view All if the view hasn’t been 

generated yet.  PartitionBUC then loads every partition into Memory.  For every 
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partition it loads, PartitionBUC will update outputRec[d] with the common 

dimension value of the partition.  If a partition can be fit into Memory, 

PartitionBUC will invoke InMemoryBUC.run(); otherwise, it will invoke 

ExtendedPartitionBUC to handle additional partitioning.  Before PartitionBUC 

moves onto the next dimension, it will reset outputRec[d] back to ALL.  Figure 26 

shows the activity diagram of PartitionBUC. 

Initialize OutputRec

Position to the next dimension

Initalize Memory

DataLoader loads input to Memory

DataPartitioner distributes tuples to the corresponding partition

Write OutputRec for view ALL

Load a new partition to Memory

update OutputRec dimension value

InMemoryBUC.run

Reset the dimension value of OutputRec to ALL

More partitions?
Yes

No

Go through all 

dimensions?

Yes

No

InMemoryBUC.run

InMemoryBUC.runWithoutAll

Data fits in 

Memory
View All 

exists

View All doesn’t exist
Otherwise

View All doesn’t 

exist

Otherwise

ExtendedPartitionBUC

Data fits in 

Memory

Otherwise

 

Figure 26. Activity diagram of partitionBUC 
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4.4.3. DataPartitioner 

DataPartitioner helps partitioning data and write tuples to the 

corresponding partition files.   Its implementation is similar to the implementation 

in BUC1 except that we will skip writing the dimension value of the partitioning 

column to the partition file.  The dimension value will be indicated in the file 

name. 

4.4.4. ExtendedPartitionBUC 

ExtendedPartitionBUC contains our implementation of two-dimensional 

partitioning logic.  It consists of the following basic components: DataLoader, 

DataPartitioner, InMemoryBUC, ProcessingPath, ProcessingTreeManager, 

PlanGenerator and PipeSort.  ProcessingPath is a data structure that represents 

a processing path.  The duty of ProcessingTreeManager is to create a 

processing tree for the current two-dimensional partitioning.  

ExtendedPartitionBUC then summits the tree to PlanGenerator to generate the 

optimal set of processing paths for the partition.  PipeSort generates the missing 

tuples, according to the processing paths.  Figure 27 shows the class diagram of 

ExtendedPartitonBUC. 
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ExtendedPartitionBUC

DataLoaderDataPartitioner

InMemoryBUC

ProcessingPath

ProcessingTreeManager

PipeSort

1 *

PlanGenerator

 

Figure 27. Class diagram of ExtendedPartitionBUC 

The execution logic of ExtendedPartitionBUC is described as below.  

ProcessingTreeManager constructs a processing tree for the current single-

dimensional partition.  On each node of the processing tree, 

ExtendedPartitionBUC saves the current file position of the corresponding view 

for marking the left boundary of the upcoming aggregated tuples.  DataLoader 

then loads the partition into Memory and DataPartitioner performs two-

dimensional partitioning.  ExtendedPartitionBUC executes InMemoryBUC.run to 

compute a data cube for each of the partitions.  After it goes through all the 

partitions, it updates the current file position of every view on the processing tree 

for marking the right boundary of the aggregated tuples.  If the left boundary 

points to the same position as the right boundary, the corresponding view has no 

aggregated tuple and we call it as a missing view.  ExtendedPartitionBUC then 

sends the updated processing tree to PlanGenerator, which generates the 

optimal set of processing paths.  PipeSort generates the missing tuples, 



 
 

52 
 

according to the processing paths.  Figure 28 shows the activity diagram of 

ExtendedPartitionBUC. 

ProcessingTreeManager constructs a processing tree

Update the left boundary of each view

Load partition to Memory

Partition the data in Memory
More data

Otherwise

Load a two-dimensional parition into Memory

InMemoryBUC.run

More partitions

Update the right boundary of each view

PlanGenerator generates the optimal set of processing paths

PipeSort generates views for every path

 

Figure 28. Activity diagram of ExtendedPartitionBUC 

4.4.5. Processing Tree 

A processing tree is a data structure that is generated by 

ProcessingTreeManager.  It is composited by numbers of TreeNode, which is a 

simple class that represents a view.  A TreeNode contains a view ID, a reference 

to its parent, a Boolean flag indicating whether sorting is required to generate this 

view from its parent, a list of reference to its children, a file position for the left 

boundary of the aggregated tuples from the current partition, and a file position of 
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the right boundary of the same tuples.  A view ID is a string consists of 0 and 1.  

If the i-th character of a view ID is 1, the corresponding view is projecting the i-th 

dimension.  For example, given input with four dimensions (A, B, C, and D), the 

ID for view ACD will be 1011. 

4.4.6. ProcessingPath 

ProcessingPath is a data class that represents a processing path in 

BUC2.  It consists of a list of view IDs, each of which represents the view that this 

path travels to.  The first view ID represents the source view that we will read 

from in order to generate the rest of the views on the list. 

4.4.7. ProcessingTreeManager 

ProcessingTreeManager is a class that constructs a processing tree for 

PlanGenerator to generate the optimal set of processing paths, which PipeSort 

will use to generate the missing tuples.  The algorithm to construct a processing 

tree is a recursive function called buildTree, which takes TreeNode as the only 

parameter.  The algorithm of buildTree is shown in Figure 29. 
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Procedure buildTree(TreeNode) 

Input: 

 TreeNode: a tree node 

Global: 

 d: the partitioning column 

 D: the total number of dimension 

Begin 

 For each dimension i from d+1 to D 

  If TreeNode.viewId[i] = 0 

   Continue 

  End If 

  CopyID = TreeNode.viewID 

  CopyID[i] = 0 

  ChildNode.viewID = CopyID 

  If CopyID shares the same prefix as TreeNode 

   ChildNode.sorted = true 

  End If 

  Add ChildNode under TreeNode 

  ChildNode.parent = TreeNode 

  buildTree(ChildNode) 

 End For 

End 

Figure 29. Algorithm of buildTree 

4.4.8. PlanGenerator 

Given a processing tree, PlanGenerator constructs the optimal set of 

processing paths by going through TreeNodes at the same level from bottom to 

top.  For each level, PlanGenerator gathers every distinct TreeNode that is 

qualified as a missing view into a set.  It then creates a cost table.  Each row of 

the cost table represents a parent of one of the TreeNodes.  Each column of the 

cost table represents one of the TreeNodes.  The value of row x and column y on 

a cost table means the cost to generate the y-th view from the x-th view.  

PlanGenerator then submits the cost table to the Hungarian algorithm to find the 
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minimum cost matching between the parent views and the child views.  This 

process is repeated until PlanGenerator goes through every level and reaches 

the top level.  Finally, PlanGenerator will construct the optimal set of processing 

paths based on the matching that the Hungarian algorithm returns.  Figure 30 

shows the activity diagram of PlanGenerator. 

Position to the bottom level of a lattice

Read TreeNodes and their parents

Fill in cost table

Run the Hungarian algorithm

Remove all edges except the ones described in the assignment from Hungarian

Move up 1 level

Traverse the processing treeConstruct processing paths

Reach the top level

More levels

 

Figure 30. Activity diagram of PlanGenerator 

4.4.9. PipeSort 

This is the simplified version of PipeSort comparing to the algorithm we 

described in section 4.2 because the construction of processing paths is 

removed.  The execution logic of this version of PipeSort is described as below.  
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Given a processing path, PipeSort sets the first view to be the source view and 

creates an instance of PipeSortHelper for each of the rest of the views.  

PipeSortHelper is the same class as ViewAggregator in section 4.2.4 except that 

the name is changed for clarity.  PipeSort performs external sorting on the tuples 

within the boundaries of the source view by MergeSort and reads the sorted 

tuples in order.  For every tuple it reads, PipeSort passes the tuple to every 

PipeSortHelper to generate the aggregated tuple for the corresponding view.  

4.5. BUC3 

BUC3 is the advanced version of BUC2.  The difference between the two 

algorithms is that BUC3 uses the same set of processing paths for all two-

dimensional partitions that are partitioned by the same pair of dimensions.  The 

only change we need to make is in ExtendedPartitionBUC, which now keeps a 

set of processing paths as its attribute.  The activity diagram of the modified 

version ExtendedPartitionBUC is shown in Figure 31. 
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ProcessingTreeManager constructs a processing tree

Update the left boundary of each view

Load partition to Memory

Partition the data in Memory

More data

Otherwise

Load a two-dimensional parition into Memory

InMemoryBUC.run

More partitions

Update the right boundary of each view

PlanGenerator generates the optimal set of processing paths

PipeSort generates views for every path

ProcessingPath is null

Otherwise

ProcessingPath is null

Otherwise

 

Figure 31. Activity diagram of the modified ExtendedPartitionBUC 

5. Evaluation 

We implemented PipeSort, BUC1, BUC2, and BUC3 in JAVA and 

compared them in terms of processing time and the number of read and write 

(R/W).  BUC1 was our first implementation on Bottom-Up Computation that only 

supported single-dimensional partitioning without optimization on memory usage 

and I/O reduction.  BUC2 was our second implementation on Bottom-Up 

Computation that supported up to two-dimensional partitioning with optimization 

on memory usage and I/O reduction.  However, this algorithm generated 

processing paths for every partition it encountered.  BUC3 was similar to BUC2 
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except that BUC3 generated processing paths once for a two-dimensional 

partitioned partition (e.g. AB1) under a single-dimensional partitioned partition 

(e.g. A) and used the same set of processing paths for the rest of two-

dimensional partitioned partitions (e.g. ABi) that were under the same single-

dimensional partitioned partition (e.g. A).  In the rest of this paper, if the behavior 

or the outcome is very similar among BUC1, BUC2, and BUC3, we will refer all 

three algorithms as BUC for simplicity; otherwise, we will refer the algorithms 

using their original names.  We generated 14 sets of sample data, which will be 

described in section 5.2, and fed them into the algorithms with different memory 

conditions: 10 MB, 1 MB, 500kB, and 250kB in order to trigger partitioning.   We 

analyzed the results from the perspective of the number of dimensions, sparsity 

and size of input. 

5.1. System Configuration 

We executed our algorithms on a computer, which was equipped with 

Intel® Core™ 2 Duo CPU at 2.50 GHz and 3 GB of memory.  Its operating 

system was Windows Vista™ Home Edition (32-bit) with Service Pack 1.  The 

algorithms were run in Java™ SE Runtime Environment in version 1.6.0.  During 

the execution, the computer was running in the minimum number of applications 

in order to reduce the noise of the results as much as possible. 
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5.2. Sample Generation 

Since we are interested in the performance of our algorithms when the 

properties of input data are changed, we have introduced three variables to our 

sample generation: the number of dimensions (D), sparsity (S), and the number 

of tuples (T).  We define sparsity (S) as the number of tuples (T) of input data 

divided by the multiplication of the size of the domain of all dimensions of the 

data.  Let A be the size of the domain of a dimension of a set of sample data.  In 

addition, suppose that A is the same for all dimensions in the sample data.  We 

then have the following equation: 

AD * S = T 

For a set of sample data with predefined D, S, and T, we obtain A through 

the above equation.  We then multiply A with a random number from 0 to 1 for 

each value in the sample data.  As the results, a sample data file can be treated 

as a T by D table filled with numbers. 

5.3. Measurement Methods 

We evaluated the processing time and the number of read and write of the 

algorithms by placing timestamps and counters in them.  To measure the 

processing time of each algorithm, we constructed a JAVA object (java.util.Date) 

at the beginning and at the end of the program separately.  When the execution 

was done, we subtracted the objects and found out the duration of the algorithm 

in microseconds.   
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The number of read and write (R/W) refers to the number of times for an 

algorithm to read/write a value from/to a storage device.  To measure R/W, we 

constructed a global counter in each algorithm, which incremented the counter 

when a value was transferred between memory and disk.  Such transfer was 

occurred in loading input data or generated views from files, external sorting, and 

writing views to files. 

5.4. Number of Dimensions 

We selected five sets of sample data to be our candidates for testing our 

algorithms.  Since we were interested in the relationship between the 

performance of our algorithms and the number of dimensions only, we chose the 

sets of data to have the same sparsity at 0.5 and the same data size at 400,000 

numbers of values.  The benchmark can be found in Appendix. 

For the tests under 10 MB of memory, we found that BUC was faster than 

PipeSort in processing in every test case.  The purpose of running the algorithms 

in such memory condition was to allow all four algorithms to perform in-memory 

cubing without any external sorting.  As the number of dimensions increased, the 

processing time of all algorithms increased exponentially. However, the rate of 

the exponential increase in PipeSort was larger than that in BUC.  In addition, 

BUC generally ran two times faster than PipeSort and the number of R/W of 

PipeSort was nearly double to that of BUC in every test case.  Figure 32 shows 
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the graph of the processing time versus the number of dimensions for this 

testing. 

 

Figure 32. Processing time versus number of dimensions (10 MB) 

We did not collect the benchmark from BUC3 since the cubing logic with 

sufficient memory was the same as the logic of BUC2.  Hence, the benchmark 

from BUC3 would be the same as the benchmark from BUC2. 

For the tests under 1 MB of memory, we found that BUC was faster than 

PipeSort in processing in every test case.  The purpose of running the algorithms 

under such memory condition was to trigger external sorting in PipeSort and 

single-partitioning in BUC.  Similar to the benchmark in 10 MB of memory, the 

processing time of all algorithms were exponentially proportional to the number of 

dimensions and the processing time of PipeSort was still nearly double to the 
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processing time of BUC.  We also found that the processing time of BUC2 was 

less than that of BUC1.  Comparing to BUC1, The number of R/W of BUC2 was 

reduced at least 5% and the number of single dimensional partitioning in BUC2 

was reduced by at least 25%.  Figure 33 shows the graph of the processing time 

versus the number of dimensions for this testing. 

 

Figure 33. Processing time versus number of dimensions (1 MB) 

We didn’t evaluate BUC3 under 1MB of memory because the cubing logic 

was the same as the logic of BUC2 and two-dimensional partitioning didn’t 

happen in this memory condition.  The benchmark from BUC3 would be the 

same as that from BUC2. 

For the tests under 500 kB of memory, the performance of BUC was 

better than that of PipeSort although we didn’t collect enough data.  First of all, 
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the size of the memory wasn’t small enough for BUC3 to trigger two-dimensional 

partitioning.  Second of all, BUC3 failed on processing data in 10 dimensions and 

12 dimensions.  It required higher dimensional partitioning to handle these data.  

Regardless to these situations, BUC2 still performed at least 50% better than 

PipeSort.  Figure 34 shows the graph of the processing time versus the number 

of dimensions for this testing. 

We didn’t evaluate BUC1 because we understood that BUC2 performed 

better than BUC1 in the previous testing.  We also didn’t include the benchmark 

from BUC3 since no two-dimensional partitioning occurred in processing data in 

lower number of dimensions. 

 

Figure 34: Processing time versus number of dimensions (500 kB) 
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For the tests under 250 kB of memory, we collected mixed results.  Similar 

to the previous testing, we couldn’t collect the benchmark for input data in 10 

Dimensions and 12 Dimensions.  Fortunately, two-dimensional partitioning 

happened in processing data in 8 dimensions.  In processing data in 4 

dimensions and 6 dimensions, only single-dimensional partitioning occurred in 

BUC2; thus, the processing time of BUC was faster than the processing time of 

PipeSort. However, the processing time of BUC2 was larger than the processing 

time of PipeSort in processing data in 8 dimensions.  Figure 35 shows the graph 

of the processing time versus the number of dimensions for this testing. 

  

Figure 35. Processing time versus number of dimensions (250 KB) 

We didn’t evaluate BUC1 and the reasons were the same as we 

mentioned in the tests under 500 kB of memory. 
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5.5. Sparsity 

We selected five sets of sample data to be our candidates for testing our 

algorithms.  Since we were interested in the relationship between the 

performance of our algorithms and the sparsity only, we chose the sets of data 

that were in the same number of dimensions (8) and the same number of tuples 

(6000).  The benchmark can be found in Appendix. 

For the tests under 10 MB, BUC processed the sample data at least 4 

times faster than PipeSort in every test case.  Under such memory condition, all 

algorithms could process the data in memory without any partitioning or external 

sorting.  When sample data tended to be dense, all algorithms took less time to 

process the data entirely.  Particularly, the processing time of PipeSort was cut 

approximately 72% when the sparsity of the data increased to 0.9.  Figure 36 

shows the graph of the processing time versus the sparsity for this testing. 

We didn’t evaluate BUC3 in this testing because the computation logic of 

cubing with sufficient memory of BUC3 was the same as that of BUC2.  

Therefore, the benchmark from BUC3 should be similar to the benchmark of 

BUC2. 



 
 

66 
 

 

Figure 36. Processing time versus sparsity (10 MB) 

For the tests under 1 MB, BUC performed better than PipeSort in terms of 

processing time.  Under such memory condition, PipeSort performed external 

sorting and BUC performed single-dimensional partitioning.  We found that the 

processing time of all algorithms decreased as the sparsity of the data increased.  

Similar to the previous testing, the processing time of PipeSort was cut down 

significantly when the data tended to dense.  Figure 37 shows the graph of the 

processing time versus the sparsity of data for this testing. 

We didn’t evaluate BUC3 in this testing because two-dimensional 

partitioning didn’t happen under such memory condition.  The benchmark from 

BUC3 would be very similar to that of BUC2. 
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Figure 37. Processing time versus sparsity (1 MB) 

For the tests under 500 kB, BUC still performed better than PipeSort in 

terms of processing time.  Under such memory condition, PipeSort performed 

external sorting and BUC performed single-dimensional partitioning only.  All 

algorithms performed better when the sparsity of the data increased and this 

change was significant in PipeSort.  Figure 38 shows the graph of the processing 

time versus the sparisty of data for this testing. 

We didn’t evaluate BUC1 and BUC3 in this testing because we understood that 

BUC2 performed better than BUC1 in the previous testing and the logic of BUC3 

on handling single-dimensional partitioning was the same as that of BUC2.  The 

benchmark from BUC3 would be very similar to the benchmark from BUC2. 
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Figure 38. Processing time versus sparsity (500 kB) 

For the tests under 250 kB of memory, we collected mixed results.  Under 

such memory condition, external sorting occurred in PipeSort while two-

dimensional partitioning happened in BUC.  First of all, the processing time of all 

algorithms was reduced when the sparsity of the sample data increased and this 

change was significant in PipeSort.  Second of all, although BUC3 generally 

performed better than PipeSort in terms of processing time, BUC2 performed 

poorer than PipeSort by 20% to 60%.  Figure 39 shows the graph of the 

processing time versus the sparisty of data for this testing. 

Again, we didn’t evaluate BUC1 and the reasons were the same as we 

mentioned in the tests under 500 kB of memory. 



 
 

69 
 

 

Figure 39. Processing time versus sparsity (250 kB) 

5.6. Number of Tuples 

We selected five sets of sample data to be our candidates for testing our 

algorithms.  Since we were interested in the relationship between the 

performance of our algorithms and the size of input only, we chose the sets of 

data to have the same sparsity at 0.5 and the same number of dimensions (8).  

The benchmark can be found in Appendix. 

For the tests under 10 MB of memory, the performance of BUC was better 

than the performance of PipeSort.  The purpose of running the algorithms under 

this memory condition was to compare them on computing a data cube in 

memory without any external sorting or partitioning.  In terms of processing time, 

BUC was at least 3.8 times faster than PipeSort.  When processing the data in 
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120,000 tuples, the processing time of BUC was about 8.8 times faster than 

PipeSort.  Although BUC and PipeSort were scalable in terms of the size of input, 

the increasing rate on processing time of PipeSort was way higher than that of 

BUC.  Figure 40 shows the graph of processing time versus the number of tuples 

for this testing. 

 

Figure 40. Processing time versus size (10 MB) 

We evaluated BUC1 and BUC2, but not BUC3 in this testing.  We found 

that the processing time of BUC2 was between 2.2% and 3.7% less than the 

processing time of BUC1.  Since this testing didn’t trigger any partitioning and the 

logic of BUC3 on computing a data cube in memory was the same as the logic of 

BUC2, the benchmark of BUC3 would be the same as the benchmark of BUC2.  

Therefore, we didn’t spend time on evaluating BUC3 in this testing.  
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For the tests under 1 MB of memory, the performance of BUC was better 

than the performance of PipeSort.  The purpose of this testing was to trigger 

external sorting on PipeSort and single-partitioning on BUC.  Under such 

memory condition, the processing time of BUC was between 3.6 and 4.8 times 

faster than the processing time of PipeSort.  Although both algorithms were 

scalable in terms of the size of input, the increasing rate on the processing time 

of PipeSort was higher than that of BUC.  Figure 41 shows the graph of the 

processing time versus the number of tuples for this testing. 

 

Figure 41. Processing time versus size (1 MB)  

We evaluated BUC1 and BUC2, but not BUC3 in this testing.  We found 

that the processing time of BUC2 was between 9.3% and 31.9% less than the 

processing time of BUC1.  Since this testing didn’t trigger two-dimensional 
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partitioning and the logic of BUC3 on computing a data cube with single-

dimensional partitioning was the same as the logic of BUC2, the benchmark of 

BUC3 would be the same as the benchmark of BUC2.  Therefore, we didn’t 

spend time on evaluating BUC3 in this testing.  

For the tests under 500 kB of memory, we collected mixed results on the 

performance of the algorithms.  The purpose of this testing was to trigger two-

dimensional partitioning in BUC and this happened when we processed input 

data at 80,000 tuples and beyond.  For input data at 40,000 tuples and 60,000 

tuples, the processing time of BUC was 3.8 times faster than the processing time 

of PipeSort.  However, for input data at 80,000 and beyond, the processing time 

of BUC3 was only 1.5 times faster than the processing time of PipeSort; the 

processing time of BUC2 was even 1.13 times slower than the processing time of 

PipeSort.  Figure 42 shows the graph of the processing time versus the number 

of tuples for this testing. 
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Figure 42. Processing time versus size (500 kB) 

For the tests under 250 kB of memory, BUC3 had a better performance 

than PipeSort but BUC2 didn’t do well comparing to PipeSort.  Under this 

memory condition, two-dimensional partitioning happened in processing every 

set of input data.  We found that the processing time of BUC3 was about 1.5 

times faster than the processing time of PipeSort; on the other hand, BUC2 was 

in average of 1.54 times slower than the processing time of PipeSort.  Figure 43 

shows the graph of the processing time versus the number of tuples for this 

testing. 
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Figure 43. Processing time versus size (250 kB) 

6. Discussion 

Our evaluation helps us achieve the goals of our research.  The main goal 

of our research is to provide a heuristic implementation on multi-dimensional 

partitioning in BUC.  Based on our results, we found that our implementation was 

promising and considerable.  The optimization we implemented also improved 

the performance of BUC.  We were also able to compare PipeSort and BUC as 

well as to identify the characteristics of the algorithms, which agreed with other 

researchers in this area. 

Our results confirmed that our implementation for multi-dimensional 

partitioning in BUC was promising.  In most of the tests that involved BUC3, the 

performance of BUC3 was generally better by a margin than the performance of 
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PipeSort.  BUC is an algorithm that strongly demanded to have sufficient 

memory.  Without sufficient memory, BUC not only slowed down in terms of 

performance, but also stopped functioning.  Our heuristic approach enabled BUC 

to continue operating in such extreme memory condition; therefore, we can still 

benefit the high performance of BUC by using multi-dimensional partitioning. 

Generating a new set of processing paths for every two-dimensional 

partitioning that we encountered was a bad idea.  We thought that it was a good 

idea at the beginning since the data distribution was different from one partition 

to another.  For example, in an incident of two-dimensional partitioning, it is wise 

to generate a view from View A because the number of tuples in View A for this 

partitioning is the smallest among other views.  Generating child views from View 

A will require the minimum number of R/W.  However, in another incident of two-

dimensional partitioning, the number of tuples in View A for this partitioning is no 

longer the less among the others.  It will need to generate child views from 

another view to reach the minimum cost of R/W.  Unfortunately, generating a 

new set of processing paths for every two-dimensional partitioning involved 

executing the Hungarian algorithm, which complexity is O(n3).  The generation 

became a costly operation and slowed down the performance of BUC.  As we 

found out in our evaluation, the processing time of BUC2 in every test was nearly 

double to the processing time of BUC3.  In addition, BUC2 ran slower than 

PipeSort by from 29% to 158%.  Therefore, it is not wise to generate a new set of 

processing paths for every two-dimensional partitioning.  Instead, we generate a 
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set of processing paths for a two-dimensional partitioned data and reuse the 

same set of paths for other two-dimensional partitioned data that are under the 

same single-dimensional partitioned data.  Assuming that the data distribution of 

an input data is even and no skewed data is involved, we could rely on the only 

set of processing paths, which won’t be far from the optimal paths for every other 

partition. 

According to our evaluation, the optimization that we applied on BUC2 

improved the performance of BUC1 by an average of 15% in terms of processing 

time.  The optimization was designed to reduce the number of R/W and 

maximize the usage on the memory by not reading and writing duplicated data in 

tuples.  We found that the optimization cut down the number of R/W by an 

average of 14.7% and the number of partitioning by an average of 35%.  We 

recommended on implementing this optimization for any BUC algorithms that 

required partitioning. 

Our evaluation drew the similar results as other researchers regarding the 

characteristics of PipeSort and BUC.  First of all, our results showed that the time 

complexity and space complexity of PipeSort and BUC was exponentially 

proportional to the number of dimensions [2] [8].  Although the complexity of both 

algorithms was exponentially proportional to the number of dimensions, the 

increasing rate of PipeSort was much higher than the increasing rate of BUC.  

One of the possible reasons was that the number of R/W of BUC was only about 
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42% of the number of R/W of PipeSort in our evaluation.  This told us that how 

effective BUC was on utilizing the memory and reducing I/O costs.  Second of all, 

PipeSort didn’t scale well on processing sparse data [2] [6].  In our evaluation, 

the processing time of PipeSort on processing sparse data (sparsity at 0.1) was 

increased by 357% of the processing time of PipeSort on processing dense data 

(sparsity at 0.9).    Likewise, the processing time of BUC was increased by only 

218%, not to mention that the processing time of BUC was much less than that of 

PipeSort.  These results showed that PipeSort was good at processing dense 

data while BUC was good at processing sparse data. 

7. Future of Work 

One of the possible directions of this research is to implement the 

complete solution of multi-dimensional partitioning and perform evaluation.  We 

believed that, in the extreme memory condition, the logic of the algorithm will be 

very similar to PipeSort and the performance of this algorithm will not be able to 

catch up with the performance of PipeSort.  If this is the situation, we should 

investigate this turning point on when we should switch using PipeSort instead. 

Another possible direction of this research is to analyze the performance 

on processing skew data.  As we have discussed, our assumption of using one 

set of processing paths for all the two-dimensional partitioning under the same 

single-dimensional partitioning was based on the fact that the input data is evenly 

distributed.  If the input data is skew, selecting the optimal set of processing 
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paths will become critical.  This is because the processing paths are highly 

unlikely to be the optimal processing paths for most of the two-dimensional 

partitioning. 

The last, but not least, possible direction of this research is to estimate the 

size of views.  Having better estimation on the size of views will allow us to 

generate a better set of processing paths.  In fact, size estimation has always 

been one of the active research areas.  Since we don’t need to generate the 

processing paths until multi-dimensional partitioning is required, we will be able 

to collect more information and/or statistics of the input data to estimate the size 

of views.  We imagined that this problem will not be as difficult as a generic size 

estimation problem since our situation allows us to read or analyze parts of the 

input data during the processing time. 

8. Conclusion 

Our main goal in this research is to provide a practical implementation of 

multi-dimensional partitioning in BUC.  Our implementation extends from single-

dimensional partitioning, in which the new partition cannot fit in memory.  We 

partition the data by an additional dimension and run BUC on those new 

partitions.  Since this computation allows us to generate the aggregated tuples 

for partial views, we have to apply our modified version of PipeSort to generate 

the missing tuples.  The modified PipeSort makes use of the generated tuples 

and generates the optimal set of processing paths, which are used to compute 
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the missing tuples.  The results are promising and its performance is better than 

the performance of PipeSort in many perspectives in our evaluation.  We believe 

our approach lowers the memory requirement of BUC data cubing algorithm. 

The second goal of our research is to compare the performance of a top-

down data cubing algorithm and a bottom-up data cubing algorithm on 

processing input data with different kinds of properties.  We selected PipeSort 

and BUC as the candidates for our evaluation because both of them are the best 

representatives of their own types of data cubing algorithms.  We tested the 

algorithm with data in different numbers of dimensions, different levels of 

sparsity, and different size of memory.  Our results show agreements with the 

findings from existing literatures.  First of all, the performance of a data cubing 

algorithm is exponentially proportional to the number of dimensions.  Secondly, 

PipeSort performs better on dense data and BUC performs better on sparse 

data.  Finally, the performance of PipeSort does not scale well as the number of 

dimensions increases because of the increase of the number of I/Os and external 

sorting.  Comparing PipeSort and BUC side-by-side shows us the pros and cons 

of both types of data cubing algorithms. 
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APPENDIX 

Table 1 

Benchmark of BUC1 on data with different number of dimensions in 10 MB 

Number of 
Dimensions 

Number of 
Tuples 

Sparsity Time (ms) R/W 

4 100000 0.5 15242 1069182 

6 66666 0.5  29297 1949961 

8 50000 0.5  92570 5888334 

10 40000 0.5  327226 20441152 

12 33333 0.5  1529455 95392351 

 

 

Table 2 

Benchmark of BUC2 on data with different number of dimensions in 10 MB 

Number of 
Dimensions 

Number of 
Tuples 

Sparsity Time (ms) R/W 

4 100000 0.5 14679 1069182 

6 66666 0.5  28470 1949961 

8 50000 0.5  89950 5888334 

10 40000 0.5  314356 20441152 

12 33333 0.5  1460971 95392351 
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Table 3 

Benchmark of PipeSort on data with different number of dimensions in 10 MB 

Number of 
Dimensions 

Number of 
Tuples 

Sparsity Time (ms) R/W 

4 100000 0.5 216949 2337397 

6 66666 0.5  202363 5088524 

8 50000 0.5  394196 15231206 

10 40000 0.5  954158 46981580 

12 33333 0.5  5068487 208436485 

 

 

Table 4 

Benchmark of BUC1 on data with different number of dimensions in 1 MB 

Number of 
Dimensions 

Number of 
Tuples 

Sparsity Time (ms) R/W Number of 
1-D 

Partitioning 

4 100000 0.5 72275 5369182 88 

6 66666 0.5 105783 7883235 48 

8 50000 0.5 188136 13438334 40 

10 40000 0.5 436020 29601152 40 

12 33333 0.5 1624537 106158910 36 
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Table 5 

Benchmark of BUC2 on data with different number of dimensions in 1 MB 

Number of 
Dimensions 

Number 
of Tuples 

Sparsity Time (ms) R/W Number of 
1-D 

Partitioning 

4 100000 0.5 57018 4369182 66 

6 66666 0.5 82821 6216585 32 

8 50000 0.5 152692 11138334 25 

10 40000 0.5 375476 25841152 20 

12 33333 0.5 1500922 101792287 18 

 

 

Table 6 

Benchmark of PipeSort on data with different number of dimensions in 1 MB 

Number of 
Dimensions 

Number of 
Tuples 

Sparsity Time (ms) R/W 

4 100000 0.5 217183 8131365 

6 66666 0.5  269365 13410452 

8 50000 0.5  511322 26483110 

10 40000 0.5  1116944 60797620 

12 33333 0.5  6073283 292890373 
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Table 7 

Benchmark of BUC2 on data with different number of dimensions in 500 kB 

Number of 
Dimensions 

Number 
of Tuples 

Sparsity Time 
(ms) 

R/W Number of 
1-D 

Partitioning 

4 100000 0.5  61261 4569182 88 

6 66666 0.5  93444 7083243 48 

8 50000 0.5  170477 12538334 35 

 

 

Table 8 

Benchmark of PipeSort on data with different number of dimensions in 500 kB 

Number of 
Dimensions 

Number of 
Tuples 

Sparsity Time (ms) R/W 

4 100000 0.5  167185 8131365 

6 66666 0.5  238992 13410452 

8 50000 0.5  659006 41647294 
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Table 9 

Benchmark of BUC2 on data with different number of dimensions in 250 kB 

Number of 
Dimensions 

Number 
of Tuples 

Sparsity Time (ms) R/W Number of 
1-D 

Partitioning 

Number of 
2-D 

Partitioning 

4 100000 0.5 61261 4569182 88 0 

6 66666 0.5 93943 7083243 48 0 

8 50000 0.5 1224662 22746185 40 60 

 

 

Table 10 

Benchmark of BUC3 on data with different number of dimensions in 250 kB 

Number of 
Dimensions 

Number 
of Tuples 

Sparsity Time (ms) R/W Number of 
1-D 

Partitioning 

Number of 
2-D 

Partitioning 

4 100000 0.5 61261 4569182 88 0 

6 66666 0.5 93943 7083243 48 0 

8 50000 0.5 558683 22746185 40 60 
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Table 11 

Benchmark of PipeSort on data with different number of dimensions in 250 kB 

Number of 
Dimensions 

Number of 
Tuples 

Sparsity Time (ms) R/W 

4 100000 0.5 139714 8131365 

6 66666 0.5 266666 17274912 

8 50000 0.5 729207 48879022 

 

 

Table 12 

Benchmark of BUC1 on data with different sparsity in 10 MB 

Number of 
Dimensions 

Number of 
Tuples 

Sparsity Time (ms) R/W 

8 60000 0.1 190570 12340629 

8 60000 0.3 119933 7728959 

8 60000 0.5 106361 6855519 

8 60000 0.7 89653 5723761 

8 60000 0.9 57377 3640457 

 



lxxxvii 
 

 

APPENDIX (CONT’D) 

Table 13 

Benchmark of BUC2 on data with different sparsity in 10 MB 

Number of 
Dimensions 

Number of 
Tuples 

Sparsity Time (ms) R/W 

8 60000 0.1 185437 12340629 

8 60000 0.3 117062 7728959 

8 60000 0.5 104005 6855519 

8 60000 0.7 87033 5723761 

8 60000 0.9 56597 3640457 

 

 

Table 14 

Benchmark of PipeSort on data with different sparsity in 10 MB 

Number of 
Dimensions 

Number of 
Tuples 

Sparsity Time (ms) R/W 

8 60000 0.1 950961 29727401 

8 60000 0.3 629663 20624566 

8 60000 0.5 524784 18105547 

8 60000 0.7 409547 14993546 

8 60000 0.9 261815 9927459 
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Table 15 

Benchmark of BUC1 on data with different sparsity in 1 MB 

Number of 
Dimensions 

Number of 
Tuples 

Sparsity Time (ms) R/W Number of 
1-D 

Partitioning 

8 60000 0.1 305697 21400629 48 

8 60000 0.3 235934 16788959 40 

8 60000 0.5 222160 15915519 40 

8 60000 0.7 205374 14783761 40 

8 60000 0.9 173378 12700457 40 

 

 

Table 16 

Benchmark of BUC2 on data with different sparsity in 1 MB 

Number of 
Dimensions 

Number of 
Tuples 

Sparsity Time (ms) R/W Number of 
1-D 

Partitioning 

8 60000 0.1 260769 18640629 30 

8 60000 0.3 193035 14028959 25 

8 60000 0.5 180492 13155519 25 

8 60000 0.7 166296 12023761 25 

8 60000 0.9 135517 9940457 25 
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Table 17 

Benchmark of PipeSort on data with different sparsity in 1 MB 

Number of 
Dimensions 

Number of 
Tuples 

Sparsity Time (ms) R/W 

8 60000 0.1 1336686 72585905 

8 60000 0.3 1042345 57147426 

8 60000 0.5 658195 31725611 

8 60000 0.7 532288 27583882 

8 60000 0.9 377567 21018115 

 

 

Table 18 

Benchmark of BUC2 on data with different sparsity in 500 kB 

Number of 
Dimensions 

Number 
of Tuples 

Sparsity Time (ms) R/W Number of 1-D 
Partitioning 

8 60000 0.1 281689 20320629 42 

8 60000 0.3 213813 15708959 35 

8 60000 0.5 201879 14835519 35 

8 60000 0.7 184283 13703761 35 

8 60000 0.9 153848 11620457 35 
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Table 19 

Benchmark of PipeSort on data with different sparsity in 500 kB 

Number of 
Dimensions 

Number of 
Tuples 

Sparsity Time (ms) R/W 

8 60000 0.1 1439396 90477065 

8 60000 0.3 926109 57147426 

8 60000 0.5 806988 50337491 

8 60000 0.7 665122 42184594 

8 60000 0.9 349362 21018115 

 

 

Table 20 

Benchmark of BUC2 on data with different sparsity in 250 kB 

Number of 
Dimensions 

Number 
of Tuples 

Sparsity Time (ms) R/W Number of 
1-D 

Partitioning 

Number of 
2-D 

Partitioning 

8 60000 0.1 1743503 43740438 48 90 

8 60000 0.3 1544463 30356605 40 85 

8 60000 0.5 1273630 27190059 40 80 

8 60000 0.7 1234178 24759478 40 80 

8 60000 0.9 1167020 20095843 40 80 
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Table 21 

Benchmark of BUC3 on data with different sparsity in 250 kB 

Number of 
Dimensions 

Number 
of Tuples 

Sparsity Time (ms) R/W Number of 
1-D 

Partitioning 

Number of 
2-D 

Partitioning 

8 60000 0.1 882071 43740438 48 90 

8 60000 0.3 671159 30356605 40 85 

8 60000 0.5 626684 27190059 40 80 

8 60000 0.7 588245 24759478 40 80 

8 60000 0.9 514988 20095843 40 80 

 

 

Table 22 

Benchmark of PipeSort on data with different sparsity in 250 kB 

Number of 
Dimensions 

Number of 
Tuples 

Sparsity Time (ms) R/W 

8 60000 0.1 1348760 90477065 

8 60000 0.3 986902 66986946 

8 60000 0.5 871010 58747691 

8 60000 0.7 636371 42184594 

8 60000 0.9 452228 30456159 

 



xcii 
 

 

APPENDIX (CONT’D) 

Table 23 

Benchmark of BUC1 on data with different number of tuples in 10 MB 

Number of 
Dimensions 

Number of 
Tuples 

Sparsity Time (ms) R/W 

8 40000 0.5  72353 4548039 

8 60000 0.5  106361 6855519 

8 80000 0.5  128825 8299864 

8 100000 0.5  144066 9324829 

8 120000 0.5  157310 10117853 

 

 

Table 24 

Benchmark of BUC2 on data with different number of tuples in 10 MB 

Number of 
Dimensions 

Number of 
Tuples 

Sparsity Time (ms) R/W 

8 40000 0.5  69670 4548039 

8 60000 0.5  104005 6855519 

8 80000 0.5  125783 8299864 

8 100000 0.5  140385 9324829 

8 120000 0.5  152505 10117853 
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Table 25 

Benchmark of PipeSort on data with different number of tuples in 10 MB 

Number of 
Dimensions 

Number of 
Tuples 

Sparsity Time (ms) R/W 

8 40000 0.5  266760 11582967 

8 60000 0.5  524784 18105547 

8 80000 0.5  796115 22784125 

8 100000 0.5  1071767 26360213 

8 120000 0.5  1347247 29265552 

 

 

Table 26 

Benchmark of BUC1 on data with different number of tuples in 1 MB 

Number of 
Dimensions 

Number of 
Tuples 

Sparsity Time (ms) R/W Number of 
1-D 

Partitioning 

8 40000 0.5  149339 10588039 40 

8 60000 0.5  222160 15915519 40 

8 80000 0.5  282766 20379864 40 

8 100000 0.5  336399 24424829 40 

8 120000 0.5  388252 28237853 40 
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Table 27 

Benchmark of BUC2 on data with different number of tuples in 1 MB 

Number of 
Dimensions 

Number of 
Tuples 

Sparsity Time (ms) R/W Number of 
1-D 

Partitioning 

8 40000 0.5  101758 7308039 15 

8 60000 0.5  180492 13155519 25 

8 80000 0.5  245685 17899864 30 

8 100000 0.5  305043 22624829 35 

8 120000 0.5  348941 26077853 35 

 

 

Table 28 

Benchmark of PipeSort on data with different number of tuples in 1 MB 

Number of 
Dimensions 

Number of 
Tuples 

Sparsity Time (ms) R/W 

8 40000 0.5  373121 20373527 

8 60000 0.5  658195 31725611 

8 80000 0.5  1184571 65710229 

8 100000 0.5  1396621 78449633 

8 120000 0.5  1601091 89367768 
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Table 29 

Benchmark of BUC2 on data with different number of tuples in 500 kB 

Number of 
Dimensions 

Number 
of Tuples 

Sparsity Time (ms) R/W Number of 
1-D 

Partitioning 

Number of 
2-D 

Partitioning 

8 40000 0.5  129387 9348039 30 0 

8 60000 0.5  201879 14835519 35 0 

8 80000 0.5  1304535 29217059 40 25 

8 100000 0.5  1446354 39144149 40 60 

8 120000 0.5  1808852 48667438 40 90 

 

 

Table 30 

Benchmark of BUC3 on data with different number of tuples in 500 kB 

Number of 
Dimensions 

Number 
of Tuples 

Sparsity Time (ms) R/W Number of 
1-D 

Partitioning 

Number of 
2-D 

Partitioning 

8 40000 0.5  129387 9348039 30 0 

8 60000 0.5  201879 14835519 35 0 

8 80000 0.5  669224 29217059 40 25 

8 100000 0.5  797113 39144149 40 60 

8 120000 0.5  941912 48667438 40 90 
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Table 31 

Benchmark of PipeSort on data with different number of tuples in 500 kB 

Number of 
Dimensions 

Number of 
Tuples 

Sparsity Time (ms) R/W 

8 40000 0.5  501649 31616395 

8 60000 0.5  806988 50337491 

8 80000 0.5  1057727 65710229 

8 100000 0.5  1280339 78449633 

8 120000 0.5  1453952 89367768 

 

 

Table 32 

Benchmark of BUC2 on data with different number of tuples in 250 kB 

Number of 
Dimensions 

Number 
of Tuples 

Sparsity Time (ms) R/W Number of 
1-D 

Partitioning 

Number of 
2-D 

Partitioning 

8 40000 0.5  1143106 17322192 40 40 

8 60000 0.5  1273630 27190059 40 80 

8 80000 0.5  1686329 39373239 40 105 

8 100000 0.5  1793298 47704529 40 140 

8 120000 0.5  1897631 55188566 40 145 
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Table 33 

Benchmark of BUC3 on data with different number of tuples in 250 kB 

Number of 
Dimensions 

Number 
of Tuples 

Sparsity Time (ms) R/W Number of 
1-D 

Partitioning 

Number of 
2-D 

Partitioning 

8 40000 0.5  479326 17322192 40 40 

8 60000 0.5  626684 27190059 40 80 

8 80000 0.5  799281 39373239 40 105 

8 100000 0.5  908512 47704529 40 140 

8 120000 0.5  1012580 55188566 40 145 

 

 

Table 34 

Benchmark of PipeSort on data with different number of tuples in 250 kB 

Number of 
Dimensions 

Number of 
Tuples 

Sparsity Time (ms) R/W 

8 40000 0.5  474723 31616395 

8 60000 0.5  871010 58747691 

8 80000 0.5  1136975 76919381 

8 100000 0.5  1464232 99299489 

8 120000 0.5  1668607 113355336 
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