
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2009

Available Bandwidth Inference Based On Node-
Centric Clusters
Seetharam Samptur
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Samptur, Seetharam, "Available Bandwidth Inference Based On Node-Centric Clusters" (2009). Master's Projects. 110.
DOI: https://doi.org/10.31979/etd.bjkv-j9hu
https://scholarworks.sjsu.edu/etd_projects/110

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70407861?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/110?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

AVAILABLE BANDWIDTH INFERENCE BASED ON NODE-CENTRIC CLUSTERS

A Project Report

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Computer Science

by

Seetharam Samptur

April 2009

© 2009

Seetharam Samptur

ALL RIGHTS RESERVED

SAN JOSÉ STATE UNIVERSITY

The Undersigned Project Committee Approves the Project Titled

AVAILABLE BANDWIDTH INFERENCE BASED ON NODE-CENTRIC CLUSTERS

by
Seetharam Samptur

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

 Dr. Mark Stamp, Department of Computer Science Date

__

 Dr. Robert Chun, Department of Computer Science Date

__

 Dr. Praveen Yalagandula, HP Labs Date

APPROVED FOR THE UNIVERSITY

__

 Associate Dean Date

ABSTRACT

AVAILABLE BANDWIDTH INFERENCE BASED ON NODE-CENTRIC CLUSTERS

by Seetharam Samptur

 End-to-End Available Bandwidth (AB) is a real-time network metric that is useful

for a wide range of applications including content distribution networks, multimedia

streaming applications and overlay networks. In a large network with several thousand

nodes, it is infeasible to perform all-pair bandwidth measurements as AB measurements

could induce traffic overhead along the path. Also because of its dynamic nature, the

measurements have to be performed frequently thus imposing significant probe traffic

overhead on the network.

 In this paper, we discuss a clustering based distributed algorithm to infer the AB

between any pair of nodes in a large network based on measurements performed on a

subset of end-to-end paths. The algorithm was validated on Planet-Lab and for some

nodes, 80% of the inferences were within 50% of the actual value.

 v

ACKNOWLEDGEMENTS

 I would like to thank my advisor, Dr. Mark Stamp, for his guidance, encouragement

and support. I would also like to thank Dr. Robert Chun for his time and effort. A

special thanks to Dr. Praveen Yalagandula for introducing me to the interesting field of

Internet Network Measurements and also for his valuable suggestions.

 Thanks to my parents for their constant encouragement and support with

everything I do. Lastly, but most importantly, I want to take this opportunity to thank my

wife, Sravanthi, and my daughter, Aishwarya, for tolerating my absence during my

course work. This project would not have been possible without their support.

 vi

TABLE OF CONTENTS

1 Terms and Abbreviations used in this document ..1

2 Introduction ...3

3 Available Bandwidth Inference – Applications ..5

3.1 Content Distribution Network ...5

4 Architecture and Design ..9

4.1 Overview ..9

4.2 Network Data Collection..13

4.3 Network Topology Construction..13

4.3.1 Different Tools/Protocols Considered for Topology Discovery ...15

4.3.2 Forward Topology View ...18

4.3.3 Reverse Topology View..19

4.4 Clustering ...21

4.4.1 K‐means ...21

4.4.2 Fuzzy‐C ...22

4.4.3 K‐medoid..22

4.4.4 Clustering Around Netroids (CAN) ...23

4.4.5 Destination Clusters...26

4.4.6 Source Clusters ..26

4.5 Inference Algorithm...28

4.6 AB Inference Examples ..32

5 Experimental Evaluation ..34

5.1 Software Tools ...34

5.2 PlanetLab ...34

5.3 Scalable Sensing Service – S3..34

5.4 End‐to‐End Available Bandwidth Measurement tools ..36

 vii

5.4.1 Pathload ...36

5.4.2 Spread PaiR Unused Capacity Estimate (Spruce)...37

5.4.3 Pathchirp..37

5.4.4 Conclusion ‐ AB Measurement Tool ..37

5.5 Deployment ...38

5.5.1 Network Data Collection..38

5.5.2 Clustering Analysis ...39

5.5.3 Available Bandwidth Inference Measurements ..42

6 Related Work ...52

7 Conclusion..55

7.1 Future Work...55

References..57

 viii

 TABLE OF FIGURES

Figure 1 - Content Distribution Network ..5

Figure 2 - Client Initiates Request for Content ...6

Figure 3 - All-Pairs AB Measurements without AB Inference ...7

Figure 4 - Few Pairs AB Measurements with AB Inference Engine ..7

Figure 5 - Server Provides Client with Content ..8

Figure 6 – AB Inference Peer-to-Peer Distributed Architecture...10

Figure 7 – AB Inference Program and Data Flow Diagram ...12

Figure 8 –Topology View from Source to Destination...19

Figure 9 –Topology View from Destination to Source...20

Figure 10 – IP Aliasing ... 27

Figure 11 – AB Inference from A to B with Overlapping path EF...30

Figure 12 - AB Inference from A to B with Non-overlapping path XY ...31

Figure 13 - S3 Sensor Pod ..35

Figure 14 - Clustering Analysis ..40

Figure 15 – Destination Clustering Analysis ..41

Figure 16 - Source Cluster Analysis ...42

Figure 17 – AB Inference Measurement Subset (planetlab1.xeno.cl.cam.ac.uk)44

Figure 18 - Actual vs. Inferred Available Bandwidth (planetlab1.xeno.cl.cam.ac.uk)...............................45

Figure 19 - CDF of Deviation in Inferred AB (planetlab1.xeno.cl.cam.ac.uk) ..46

Figure 20 - Critical values for sr (Wiki: Rhotable) ..47

Figure 21 - Spearman's Rank Order Correlation Coefficient Subset (planetlab1.xeno.cl.cam.ac.uk)48

 ix

Figure 22 - AB Inference Measurement Subset (vn1.cs.wustl.edu)..49

Figure 23 - Actual vs. Inferred Available Bandwidth (vn1.cs.wustl.edu) ..50

Figure 24 - CDF of Deviation in Inferred AB (vn1.cs.wustl.edu) ..50

Figure 25 - Spearman's Rank Order Correlation Coefficient Subset (vn1.cs.wustl.edu)............................51

 x

 INDEX OF TABLES

Table 1 –Destination Cluster Data ..40

Table 2 – Source Cluster Data ..41

 1

1 Terms and Abbreviations used in this document

Available Bandwidth – Available Bandwidth (AB) between any two nodes at any

instance is the maximum throughput on the path between them taking into account the

traffic at that time.

Available Capacity – Available Capacity between any two nodes at any given time is the

maximum throughput on the path between them assuming there is no traffic.

Boa – Boa is a single-tasking HTTP server (Boa Web Server, 2005).

Content Delivery Network – Content Delivery Network (CDN) is a system of

networked computers that deliver content to end users.

Destination Clusters – Destination clusters on a node N are clusters that contain nodes

that share the first few hops along the paths from node N.

Emulab – Emulab is a network testbed available for researchers to evaluate their systems

(Emulab - Network Emulation Testbed, 2002).

Pathchrip – Pathchrip is an active probing tool for estimating the available bandwidth on

a communication network (Vinay J. Ribeiro, 2003).

PlanetLab – PlanetLab is an open platform for developing, deploying, and accessing

planetary-scale services (PlanetLab: Global Research Network).

 2

Pathload – Pathload (Dovrolis) is a bandwidth estimation tool.

Pathneck – Pathneck is an active probing tool for identifying bottlenecks along a path

(Pathneck, Ningning Hu (CMU), 2004).

Scalable Sensing Service – Scalable Sensing Service (S3)is a scalable, secure and

reliable service that provides the system states for both individual nodes as well as for

the network in real time.

Source Clusters – Source clusters on a node N are clusters that contain nodes that share

the last few hops along the paths to node N.

Spread PaiR Unused Capacity Estimate – Spruce is an available bandwidth estimation

tool.

 3

2 Introduction

 A wide range of applications including content-distribution networks, video

streaming applications, and peer-to-peer applications are based on overlay network

infrastructure. Akamai content delivery network is an effective overlay network that

solves the problem of delivering content in a scalable and reliable way (Dilley, Maggs,

Parikh, Prokop, Sitaraman, & Weihl, 2002). Akamai's infrastructure works with the

content providers and allocates more servers to sites experiencing high traffic and directs

client requests to the nearest server. The criteria used in choosing a server include

availability and distance. Availability is determined by the server's current load,

while distance is determined based on dynamic link characteristics such as end-to-end

available bandwidth.

 End-to-End Available Bandwidth (AB) between any two nodes is the maximum

throughput on the path between them and is highly dependent on the real-time traffic load

along the path. However, in a large network with several thousand nodes, it is infeasible

to perform all-pair bandwidth measurements for the following reasons:

a. Measuring AB in a network with N nodes would require N2 AB

measurements.

b. AB can vary over short timescales because of its dynamic nature (Shriram,

2007).

c. It is challenging to perform accurate end-to-end pair-wise AB

measurements in a large distributed network due to interference of existing

traffic (Song & Yalagandula, Jan 2007).

 4

 For these reasons, there is a strong need for an AB inference technique that is both

scalable and accurate in inferring AB between various network nodes. The problem of

designing scalable monitoring services has received considerable attention in the recent

past (Praveen Yalagandula, 2006). Also, Broute, a scalable AB estimation system based

on a client-server route sharing model, has been proposed by researchers from Carnegie

Mellon. Broute uses special nodes called the landmark nodes, and also a per-hop AB

estimation tool to monitor all-pair AB measurements. Pathneck (Pathneck, Ningning Hu

(CMU), 2004), the tool used in Broute for determining an upper-bound on AB was

primarily developed to identify bottlenecks in the internet. The paper by (Alok Shriram S.

B., 2007) proposes scalable end-to-end AB inference algorithms that shows better results

compared to other solutions. However, the drawback with these algorithms is that the

solution is not distributed.

 In this paper, we discuss a clustering based distributed algorithm to infer AB

between any pair of nodes in a large network based on measurements performed on a

subset of end-to-end paths.

 5

3 Available Bandwidth Inference – Applications

 Available Bandwidth estimations are useful in many applications including content

distribution networks, video streaming etc. In this section, we present an application

where the algorithm described in this paper can be used to reduce the number of AB

calculations in a large network.

3.1 Content Distribution Network

 A Content Distribution Network (CDN), shown in Figure 1, is a system of servers

networked together over the Internet in an attempt to deliver content to the end users

quickly and efficiently.

Figure 1 - Content Distribution Network

 6

 The servers satisfy requests from clients, in this case, end-users by providing the

requested content. In some instances, the server may not have the requested content and

has to obtain it from one of the networked servers connected in its CDN. The server can

query the AB inference engine described in this paper to identify the destination server

with best AB among all the servers.

Figure 2 - Client Initiates Request for Content

 7

Figure 3 - All-Pairs AB Measurements without AB Inference

Figure 4 - Few Pairs AB Measurements with AB Inference Engine

 8

Figure 5 - Server Provides Client with Content

 As shown in Figure 5, the actual number of AB measurements was reduced by 50%

in the example use case. Certain AB measurement tools induce traffic into the network

and the subsequent reduction in AB measurements will translate to an increased AB for

rest of the applications.

 9

4 Architecture and Design

 This section describes the high level architecture and detailed design of the AB

inference algorithm.

4.1 Overview

 The AB inference algorithm described in this paper is based on node-centric

clusters. This approach involves building clusters dynamically based on nodes in the

network. For each node, the network configuration is split into two different cluster

views – source clusters and destination clusters. Cluster heads are identified for these

node-centric cluster views and AB measurements are performed on a subset of end-to-

end paths. These measurements are used to infer the AB metric for any node pair in the

network. Since the clusters are node-centric, it is easy for a node to self-adapt to a

different cluster view to improve the inference results.

 As shown in Figure 6, the inference engine is executed on all nodes in the network.

A client node is the node that generates the AB inference request for the distributed

system. All nodes in the network assume the role of a client node when generating

inference requests. The peer-to-peer architecture is one method to structure the inference

application such that identical software components or engines are executed on different

nodes in the network. Each engine performs a subset of measurements and

communicates the results to its peers using TCP/IP as the communication mechanism.

With this approach the problem of inferring AB between any node pair is divided into

identical sub-problems that are solved independently by each node. The information

 10

computed on all these nodes is required to infer AB between any node pair and hence the

connectivity to the network is vital. Unlike traditional peer-to-peer networks, discovering

peer nodes is simple because the inference algorithm is executed in a controlled

environment with every node aware of the network topology.

Figure 6 – AB Inference Peer-to-Peer Distributed Architecture

 The node-centric approach inherently makes the algorithm distributed thus

removing the dependence on a centralized server. The software is logically divided into

two components, client and server inference engine. The server on each node has access

to information on the AB between the node on which it is executing and the other nodes

in the network. For information on AB between other nodes, the server communicates

with its peer running on the other nodes. The client can request the local server for

information on AB between any two nodes in the network. The server will infer the AB

 11

between the requested nodes based on the information on the local node and based on the

information it receives from its peer components. Additionally, this solution is scalable

as new nodes are added to the network because the new nodes have access to AB

information available on other nodes in the network.

 The overall program flow for the server is as shown in Figure 7. The computations

performed at each node in the network can be broadly divided into following tasks:

• Network data collection

• Network topology construction

• Cluster formation and Cluster head selection

• AB measurements and Inference

Each of these tasks is described in subsequent sections.

 12

Generate traceroute
information from a node
to rest of the nodes in the
network.

Form network topology
at the node using the
traceroute information
generated from previous
step

1

2

Traceroute
Output files

Topology
Tree

3

4

Form network clusters
and form k-clusters each
of same or varying size.

Select cluster heads
based on cluster
formation.

Path Capacity
output

Compute path capacity
between the node and
the rest of the nodes in
the networkNote:

Steps 3 and 4
can be reversed.

1

5

Perform AB measurements

Legend External scripts/tasks based on
S3 generate network stats
periodically.

Available inference algorithm
executing on each node in the
network.

 Figure 7 – AB Inference Program and Data Flow Diagram

 13

4.2 Network Data Collection

 One of the first steps is to gather various network data for evaluating the algorithm.

The network topology is required to determine the connections between various nodes in

the network. Additionally, the path capacity, the maximum possible end-to-end

throughput that is fixed between two end nodes, is also required as it is used to select

cluster heads on forming clusters.

 The process of generating the topology information is highly dependent on the

number of nodes in the network and the tool used to gather the information. Hence, the

data collection time could be quite high since AB inference will be used on a large

network. However, these networks are expected to have very few changes, if any, over

long periods of time. For these reasons, it is efficient to perform the data collection once

at the beginning and to update any changes by an external entity. Hence, the data

collection component is developed as Perl scripts that are executed periodically to update

the network topology and path capacity metrics.

4.3 Network Topology Construction

 Network topology is the interconnection between directly connected nodes in a

network (Siamwalla, 1998). The nodes can be either hosts or routers that connect these

hosts in the network. In a large network, hosts and routers can be added (removed) to

(from) the network thus making it difficult to determine an accurate topology in real-

time. Additionally, the tools available to determine the interconnections may introduce

some errors in the topology discovery because of complexity in routing protocols. A

 14

typical router can have several IP interfaces to connect to different sub-nets. Based on

the tools used, each of these interfaces could end up as a router in the topology. There

are some standard protocols such as SNMP that can be used to overcome the multiple

interface problems and to deduce an accurate network topology. However, not all nodes

have a SNMP agent installed on them to provide the required topology information. The

challenge is to identify tools that are widely deployed, impose the least possible overhead

and discover an accurate topology.

 Most applications that use AB inference to improve performance are deployed in a

controlled network environment. For example, a content distribution network will

include a number of servers that distribute content and the nodes that host the content are

pre-determined and their information is available. However, the physical topology of the

network including the routers and the ports that connect the different end hosts is required

in order to generate clusters required to infer AB between all nodes in the network.

 Topology discovery can be an active or a passive process (R. Siamwalla, July 1998).

Active mechanisms require sending/receiving protocol packets to determine the paths

between the nodes in the network. Passive techniques rely on the data on the network to

populate the topology database. A passive approach can analyze packets that are sent and

received over various ports on the device to determine a list of nodes in the network and

their interconnections. Since the passive technique relies on network traffic, it is useful

in environments where such traffic is available at times to deduce the topology. This

project is validated on a research network that does not have predictable traffic at all

times. Hence, we consider tools based on active mechanism in this project.

 15

4.3.1 Different Tools/Protocols Considered for Topology Discovery

 This section includes the various tools and protocols based on active mechanisms

that were considered for identifying the network topology. Three methods are

investigated before selecting one of the techniques suitable for solving the inference

problem.

4.3.1.1 SNMP based network management tools

 Simple Network Management Protocol (SNMP) is a widely used network

management protocol used for network monitoring. SNMP agents are deployed on the

various nodes in the network and a SNMP manager running on a host extracts the

information from the SNMP agents. On devices that support SNMP, in order to gain

advantage over competitors, most vendors implement SNMP agents that

expose proprietary Management Information Base (MIB) thus making it difficult to

develop software that can work with agents from multiple vendors. The physical

topology MIB, RFC2922 (Jones, 2000) provides a standardized way to identify

connections between network ports and to discover network addresses of the SNMP

agents. It describes the various MIB objects that can be used to learn the physical

network topology. One of the major drawbacks of SNMP is that not all devices have

SNMP support and thus use of SNMP to determine the network topology is restricted to

intranets built around SNMP-based devices.

 16

4.3.1.2 Domain Name System (DNS)

 The DNS associates information for the different domains in a distributed database

system that is based on a client-server model. The nodes that manage the database are

called the domain name servers or name servers for short. A DNS query can be initiated

from a DNS resolver to retrieve information about the domain managed by a name

server. NSLOOKUP is an application that can be used to retrieve various name server

records from a name server. This application can be used to initiate a zone transfer to

retrieve all the name server (NS) records from a primary name server. Since the NS

records contain sensitive information, most name servers are configured to enable zone

transfers only between inter-dependent name servers or transfers are protected by

enforcing encryption on the payloads (Paul Albitz, 2001).

4.3.1.3 Traceroute

 Traceroute is a network utility used to determine the path a packet would take from

source machine to destination. It uses the IPv4 protocol time to live (TTL) field or the

IPv6 hop limit field to determine the routers/gateways on the path. An UDP request

destined to an unused port is sent to the destination with a TTL (or hop limit) set to 1 and

increases it by 1 until the max hop value is reached. At each stage, the gateway that

receives the request with a TTL (or hop limit) value of 1, will respond with an ICMP

TIME EXCEEDED response and the destination will respond with a PORT

UNREACHABLE message (Wiki: Traceroute). On receiving each ICMP response, the

lists of routers along the path are populated.

 17

Issues with using traceroute:

1. All packets may not take the same path and hence the output could be confusing at

times.

2. Some routers on the path may not respond to the ICMP request on the interface

3. Dependence on TTL field leads to dependence on implementations. Some

implementations could be buggy; some may not follow the protocol and may end up

forwarding packets with a TTL value of 0.

4. The IP address of the router indicates the interfaces on which the packets are received

and not the interfaces on which the packets are forwarded subsequently.

 18

5. Since TTL is a TCP field, layer-2 switches in the network will go undetected

resulting in a less detailed topology.

6. Sending probe requests to every router along the path results in considerable network

overhead.

4.3.1.4 Conclusion - Topology Discovery Tool

 In addition to the tools described above, there are also tools based on proprietary

protocols such Cisco Discovery Protocol, Foundry discovery protocol etc. However,

these can only be used in intranets where all the devices support such protocols.

 Since most networks include devices from different vendors, use of SNMP or other

proprietary protocols is not an option. For security reasons, the DNS servers may be

configured to block any requests to retrieve the name server records. Most nodes respond

to traceroute requests for network monitoring purposes. Hence, in spite of some known

issues, traceroute seemed to be a suitable tool that could be used to discover an

approximate topology of a large network.

4.3.2 Forward Topology View

 AB inference between two nodes could be different depending on the direction of

the path. The AB between two nodes, X and Y, will vary depending on the source node,

i.e. AB(X Y) can be different from AB(Y X) because of the network topology. The

reason for this is that the end-to-end paths between two nodes may be different depending

on the route established between the two end hosts. Hence, the forward topology from

 19

each node to every other node in the network is constructed to identify all the routers

along the paths to various destinations.

Figure 8 –Topology View from Source to Destination

 In Figure 8, the route from a source host to a destination host is shown with two

routers along the path. This step also provides information about the different hosts that

share routers and hence the same segments along the way from the source node. This

forward topology data is used to create destination clusters that will help reduce the

number of AB measurements.

4.3.3 Reverse Topology View

 Similar to the forward topology view, the view from all the nodes to the source node

is essential in inferring the AB from any node to the source node. This view is termed

 20

the reverse topology view from other end nodes to the source node and contains

information on all the routers shared by the other nodes when communicating to the

source node.

Source
Host

Destination
Host

Router
Legend

Host

 Figure 9 –Topology View from Destination to Source

 The route information obtained in this step is used to form source clusters similar to

the destination clusters formed using the forward topology view. The route from the

destination host to the source host is shown in Figure 9. Note that this reverse route is

entirely different from the forward route used to traverse from the source host to the

destination host.

 21

4.4 Clustering

 The term cluster is overloaded and refers to different things based on the type of

application. The applications are diverse and can range from clustering computers,

clustering data points for statistical data analysis and clustering network nodes. The

clustering algorithms are generic and can be applied to most problems including the AB

inference problem. In the context of this problem, clustering is the process of organizing

nodes into groups whose members are similar based on certain criteria.

Clustering methods (Wiki: Data clustering, 2008) can be broadly classified as follows:

• Partitioning algorithms

• Hierarchical algorithms

• Density-based algorithms

• Grid-based algorithms

This project involves identifying nodes that have similar characteristics and clustering the

nodes into clusters. Of the different clustering methods mentioned above, the partitioning

algorithms are ideal for this project. Some of the partitioning clustering algorithms

including K-means, K-medoid and Fuzzy-C were investigated.

4.4.1 K-means

 The K-means algorithm assigns each node to the cluster’s centroid. The centroid is

a node that forms a good representative of its cluster. A set of K centroids are chosen at

random or based on criteria applicable to the problem. The rest of the nodes are added to

the clusters based on the distance of the node to one of the K centroids. The “distance”

 22

could be the shortest path between the nodes or based on a path overlap between the

nodes.

The algorithm steps for the standard K-means (Wiki: Data clustering, 2008) clustering

are:

1) Choose the number of clusters, K.

2) Randomly generate K clusters and determine the cluster heads, or directly

generate K random objects as cluster heads.

3) Assign each node to the nearest cluster center.

4) Re-compute the new cluster centers.

5) Repeat the two previous steps until the cluster configurations do not change.

4.4.2 Fuzzy-C

 The Fuzzy-C clustering algorithm is similar to the K-means algorithm except that

each object can be assigned to one or more clusters. The coefficients for each object are

computed to determine its distance from the cluster center. The degree with which an

object is considered to be part of a cluster is inversely proportional to its distance from

the cluster center (Wiki: Data clustering, 2008).

4.4.3 K-medoid

 The K-medoid clustering algorithm finds representative objects called medoid,

which is the most centrally located object in the cluster.

 23

The algorithm steps for the standard K-means (Wiki: Data clustering, 2008) clustering

are:

1) Start from an initial set of K medoids to form K clusters

2) Add each data object to the cluster with most similar medoid.

3) Randomly select a non-medoid in each cluster.

4) Compute the cost of switching the current medoid with the randomly chosen non-

medoid. If the cost is low, choose the non-medoid as the new medoid.

5) Repeat steps 3 and 4 until there is no change in medoid.

 Adding nodes to multiple clusters will result in complicating the Inference algorithm

as it has to then optimally select one of the node clusters. Hence Fuzzy-C was not

considered for this project. With the K-medoid approach, the medoid is chosen and

replaced iteratively until the appropriate medoid is chosen for the cluster. This process

could result in a significant amount of time for large data set. Since we are dealing with a

large number of network nodes, this algorithm does not scale well. For these reasons, we

chose an algorithm that is based on K-means partitioning algorithm.

4.4.4 Clustering Around Netroids (CAN)

 An important component of a clustering algorithm is the distance measured

between two data points or nodes in this case. Domain knowledge is required to guide

the formulation of a suitable distance measure metric. As described in (Hartuv and

Shamir), the goal of any clustering analysis should satisfy two criteria: homogeneity:

elements in the same cluster should have high similarity and separation: elements in

 24

different clusters should have low similarity. Also, the similarity between the cluster

head and the other nodes in the cluster should be high. For the networking problem at

hand, we can choose the paths shared by nodes as a metric to determine the clusters.

 In this project, clusters are built around Network nodes on steroids or Netroids.

Netroids are nodes with best path capacity from the client node. The rest of the nodes are

added to these clusters based on Common Path Index (CPI). CPI is the number of hops

shared by the nodes from the client node.

The following clustering algorithm is a variant of the K-mean algorithm:

A. Cluster Head Selection Data

Compute the path capacities between the client node and all the other nodes in the

topology tree.

Sort the nodes in decreasing order of the path capacities.

B. Compute the router list for each node

The path from the client node to a destination node will include one or more hops

through routers.

As part of the topology formation, create a data structure (hash table) that stores the

node along with the list of routers on its path.

C. Generate a common path index (CPI) matrix

 For each node in the list

o Find the number of routers common in its path to the other node

 25

o Store the number in index (i, j) where i and j are the nodes under

consideration

 Note: The value for CPI (i, j) = CPI (j, i). Hence we need to run this step for n/2

nodes only and not n.

D. Initialize available nodes list with all nodes

Repeat Steps E and F until all nodes are assigned to clusters

E. Determine Cluster head

Choose the node with highest capacity (See step A.) as the cluster head.

F. Scan the row for the cluster head

 If the entry for an index is greater than or equal to some value

(For example: r/2 where r is the number of routers)

 Then

 Add that node to this cluster

 Remove the node from the available nodes list

 Repeat this step until all entries in the row have been scanned

 In our project, cluster heads are chosen and clusters are formed around these cluster

heads. The primary reason for this approach is that the cluster head selection is based on

the end-to-end path capacity and this information is available thus eliminating any

heuristics.

 26

4.4.5 Destination Clusters

 The AB Inference algorithm described in this paper is node-centric and hence

distributed on all the nodes in the network. The server component on each node executes

an instance of the clustering algorithm, CAN, described in section 4.4.4. It is applied on

the forward topology of the network from each node. The result is the formation of

destination clusters on a node with each cluster containing nodes that have similar CPI

from the node. In other words, for any node X, the destination cluster contains nodes that

share the first few hops from it. The reason for choosing nodes that share the first few

hops is because the AB from the client node to these nodes will have some correlation as

they share some hops along the way. The node in each destination cluster with the

maximum end-to-end capacity from node X is chosen as the destination cluster head.

4.4.6 Source Clusters

 The clustering algorithm is also applied to the reverse topology data to generate

source clusters. These clusters have nodes that share a similar CPI to the node on which

these clusters are being generated. For any node X, the source cluster contains nodes that

share the last few hops to the node X. The node in each source cluster with the maximum

end-to-end capacity to node X is chosen as the source cluster head.

 The information related to IP aliasing, when available, will yield better source

clusters. The IP alias resolution is the process of identifying IP addresses belonging to

the same router (Ken Keys, CAIDA). Each router in the network can have two or more

interfaces and each interface will have a different IP address. Since traceroute is used for

 27

constructing the topology, the traceroute results can have multiple addresses that point to

the same router. Hence, with IP alias information, the clustering algorithm will identify

nodes that share the same router even though the IP addresses of the routers in their

respective paths are different.

 The router connecting nodes A, B and X in Figure 10, has an IP addresses for each

of its three interfaces. Hence, without the IP alias information, the source cluster on node

X may not contain nodes A and B in the same cluster even though these nodes share the

same router on their first hop to node X. This could result in more number of clusters

thus increasing the number of AB measurements.

X

A B

193.174.67.2193.174.67.1

193.174.67.13

 Figure 10 – IP Aliasing

 However, the IP aliasing information is not required for destination clusters because

the data from node X to nodes A and B is always transmitted through a single interface

that is going into the router.

 28

4.5 Inference Algorithm

 This section describes the AB inference algorithm executed on all nodes in the

network. With this, the AB between any two nodes (A and B) in the network can be

inferred in a short time from any node X. The source and destination cluster information

will be used to reduce the total number of AB measurements during the inference

process.

The following notation is used in this section:

N = {X, X1, X2, X3…Xn-1} is the set of ‘n’ nodes in the network

DA: Destination cluster on node A

SA: Source cluster on node A

H(DA): Head of a destination cluster on node A

H(SA): Head of a source cluster on node A

DA(B): Destination cluster on node A containing node B

SA(B): Source cluster on node A containing node B

H(DA(B)): Head of destination cluster on node A containing node B

H(SA(B)): Head of source cluster on node A containing node B

 A B: Available bandwidth from node A to node B.

 Each node Xi performs measurements from itself to all the destination cluster heads.

Similarly it also requests the heads of all source clusters for the available bandwidth

information from the head of source clusters to itself. With this information, the

available bandwidth between any two nodes A and B is inferred as follows:

 29

Step – 1: Lookup AB from A and Head of the destination cluster on A containing B

A H(DA(B)) (1)

Step – 2: Lookup AB from Head of the source cluster on B containing A to B

H(SB(A)) B (2)

Step – 3: Infer AB using (1) and (2)

 A B = min{ A H(DA(B)) and H(SB(A)) B } (3)

 The end-to-end path between two nodes will have multiple hops and the available

bandwidth is usually equal to the bandwidth on hop that is the minimum of all hops.

Hence, we choose the minimum of the two AB measurements and not the average or

maximum in equation (3) above.

 Consider the scenario of possible overlaps between measurements used for

inferring the bandwidth on a path between two nodes A and B as shown in Figure 11.

The points E and F are intermediate points on the path from A to B where the path AB

intersects with paths CB and AD respectively.

 30

A

B

C = H(SB(A))

D = H(DA(B))

E

F

Figure 11 – AB Inference from A to B with Overlapping path EF

 Note that in the case of overlapping paths, the paths that do not overlap with the

intended path, DF and CE should not contain smaller bandwidth than the overlapped

paths because we chose the cluster head nodes that have maximum capacity and hence

we expect these links to have higher bandwidth.

 In the case where there is no overlap, as shown in Figure 12, the portion of

requested path that is not covered by the measured paths, XY, is assumed to be

bottleneck free.

 31

A

B

C = H(SB(A))

D = H(DA(B))

X

Y

Figure 12 - AB Inference from A to B with Non-overlapping path XY

 Also, we assume that the overlapping path EF in Figure 11and the non-

overlapping path XY in Figure 12 are not bottlenecks because these are the core links that

are expected to be well provisioned fibre optic links that have high capacity and

bandwidth as opposed to the last mile links, AE, FB, AX and YB.

 32

4.6 AB Inference Examples

 Assume a network N containing nodes, where:

N = {X, X1, X2, X3…Xn-1}

is the set of ‘n’ nodes in the network

 Assume the AB inference client executing on node X is interested in AB metric

between X and some other node Xi in the network.

 At each node in the network, the computations shown in (1) and (2) below are

performed periodically. For example at node X, the following metrics are computed

periodically:

(a) Measure AB from X to head of all destination clusters

X H(DX) (1)

(b) Measure AB from head of source clusters to X

H(SX) X (2)

Computing (1) is straightforward and it can be measured on node X itself.

Computing (2) is as follows:

 For each source cluster S
X
on X

 Contact H(S
X
) requesting for AB from H(S

X
) to X computed

at H(S
X
)

Example - 1

Infer AB from node X and say node X3

Assume X3 is the head of a destination cluster on node X

 33

The AB from X to X3 is a simple lookup as the value was obtained in (1) above.

Example – 2

Infer AB from node X and say X4

Assume X4 is NOT head of any destination cluster on node X

 X X4 = min { ABVal_1, ABVal_2 } (3)

Computing ABVal_1

ABVal_1 is computed on node X as follows:

1) A lookup on X4 will provide the destination cluster X4 is part of and also the head

of that destination cluster, H(DX(X4)).

2) Run pathchirp to get AB from node X to H(DX(X4))

X H(DX(X4)) (4)

Computing ABVal_2

ABVal_2 is computed on node X4 as follows:

1) A lookup on X in the source clusters will provide the source cluster X is part of.

2) Using the cluster information, lookup for the head of that source cluster,

H(SX4(X)).

3) Run pathchrip to get AB from node H(SX4(X)) to X4

 H(SX4(X)) X4 (5)

Finally, compute (3) using (4) and (5) to complete inference on AB from node X to X4.

X X4 = min { X H(DX(X4)), H(SX4(X)) X4 }

 34

5 Experimental Evaluation

 In this section, we discuss the software tools both third-party software as well as

software developed for this experiment, a PlanetLab (PlanetLab: Global Research

Network) testbed used for evaluating the AB inference algorithm and the test results.

5.1 Software Tools

 The project involved processing a large number of traceroute output files generated

using Scalable Sensing Service (S3) (Praveen Yalagandula, 2006). Perl scripts were

developed to parse these files to generate information pertaining to routes between

different nodes in the system. These routing data files were further analyzed using a

distributed AB inference algorithm. The algorithm was implemented using Java as it is

suitable for distributed computing.

5.2 PlanetLab

 PlanetLab is a network testbed that has evolved over a period of time to aid

researchers in conducting distributed experiments in network measurement, peer-to-peer

networks, content distribution, resource management, authentication, distributed file

systems, and many other areas (Neil Spring, 2006). A wide number of experiments are

in progress at any time on around 700 nodes located around the world.

5.3 Scalable Sensing Service – S3

 S3, a scalable, secure and reliable service was developed to provide the system

states, both individual node as well as the network in real time (Praveen Yalagandula,

 35

2006). The S3 architecture includes web-based sensor pods used to execute and collect

data periodically. The sensor pods shown in Figure 13 provide a secure web interface

that provides APIs to query, control and notify events. The backend includes a controller

that triggers management agents and a repository containing policies and test results.

Figure 13 - S3 Sensor Pod

 (Praveen Yalagandula, 2006)

 An implementation of S3 module is available on PlanetLab testbed. The secure web

interface is provided by BOA (Boa Web Server, 2005), a single-tasking embedded web

server, designed for speed and security. It is written in C and has been ported to many

UNIX flavors. The sensor pods are implemented as CGI scripts that invoke network

 36

management and measurement applications such as ping, traceroute, pathneck, pathchrip

etc.

5.4 End-to-End Available Bandwidth Measurement tools

 There are a number of publicly available bandwidth estimation tools based on

different methodologies. The different tools include: abing, cprobe, pathchirp, pathload

and Spruce. In (Alok Shriram M. M., 2005), the authors compare these tools for

accuracy and operational characteristics along with the factors that impact the tools

performance. The bandwidth estimation tools have to be very fast and less intrusive as

accurate results are required in real-time. This section provides a brief description of

some of these tools.

5.4.1 Pathload

 Pathload estimates the end-to-end available bandwidth by sending stream of UDP

packets at a rate higher than the available bandwidth in the path. The relative one-way

packet delays show an increasing trend when the packet stream rate is higher and no

delay when the stream rate is lower than the available bandwidth (Dovrolis). It uses a

fleet of N streams to estimate the available bandwidth. The drawback with this tool is

that it has to be executed on both the sender and receiver to determine the available

bandwidth between them.

 37

5.4.2 Spread PaiR Unused Capacity Estimate (Spruce)

 Spruce derives estimates of available bandwidth from the amount of delay

introduced by the network between paired packets. It sends 14 back-to-back UDP packet

pairs with a waiting interval of 160-1400 ms between pair probes (Alok Shriram M. M.,

2005). Each packet is time-stamped at both the sender and receiver ends and the sender

estimates the available bandwidth based on the packet inter-arrival time. One drawback

of this tool is that the internal algorithm requires the available capacity between the

sender and receiver.

5.4.3 Pathchirp

 Pathchrip is an active probing available bandwidth estimation tool that uses an

exponentially spaced chirp probing train (Vinay J. Ribeiro, 2003). The primary

advantage of this technique over the packet pair techniques used by pathload and spruce

is that the number of packets is reduced by half. It estimates the available bandwidth

along a path by launching a number of packet chirps from sender to receiver and then

conducting a statistical analysis at the receiver.

5.4.4 Conclusion - AB Measurement Tool

 Based on the experimental results described in (Alok Shriram M. M., 2005),

pathchirp is considered as one of the better tools for measuring available bandwidth and

hence is used in this project.

 38

5.5 Deployment

 The experiments were conducted on data collected from PlanetLab network that

includes computers located in various parts of the world.

5.5.1 Network Data Collection

 The first step involved identifying the topology of the test bed by generating

traceroute information from each node to every other node in the network. The process

resulted in large number of text files containing the traceroute information at each node.

 Here are the steps followed to gather the data on the PlanetLab network:

a. Each node on the PlanetLab network has a BOA web server and a S3

service sensor pod in the form of a CGI script that supports applications

including ping, traceroute, pathneck etc.

b. On each node, start the CGI script with the command "traceroute",

destination set to other nodes in PlanetLab and source set to local node.

c. The previous step will result in one traceroute file per destination for each

source node. For example: Five nodes will result in permutation(5, 2) or

20 traceroute output files. In general with “n” nodes, we would have

permutation(n,2) traceroute files.

d. A Perl script was developed to pre-process the traceroute output file and

generate another set of files containing the routing information. The

resulting file is per destination similar to the ones generated in step (b)

 39

above but the contents are stripped to contain just the traceroute output

starting from the first hop to the last known good hop.

 The traceroute application is executed on all nodes and the routing information is

gathered to and from every other node in the network because of the possible asymmetry

in the results.

5.5.2 Clustering Analysis

 The AB inference algorithm can be used in many applications and some of these

applications may have limitations on the number of measurements that can be performed

periodically. Hence, it is useful for the application to configure the AB inference engine

to accept the number of clusters as a configuration parameter and to cluster the nodes into

the required number of clusters.

 This section describes the results obtained by using various clustering techniques

and will be useful for determining the appropriate clustering technique based on the

application use case. The clustering algorithm, CAN, described in section 4.4.4, is based

on common path index. The CPI, as described earlier, is the number of routers common

along the paths between two nodes from the client node.

5.5.2.1 Destination Cluster Analysis

 The experiment was run on PlanetLab network and there were 278 active nodes

when the traceroute results were captured. The clustering techniques, shown in Figure

14, are numbered 1 to 9, where technique #1 is most conservative method resulting in as

few clusters as possible. Technique #1 clusters all nodes that share at least one hop

 40

(Minimum CPI) from the client node while technique #1 attempts to cluster nodes that

share the maximum number of hops (Maximum CPI) from the client node. Technique #3

considers the average CPI and the rest of the methods are averages of prior methods.

Figure 14 - Clustering Analysis

 The number of destination clusters created for each of the 278 nodes was used to

compute the average number of destination clusters shown in Table 1. Similarly, the

same data was used to determine the maximum number of destination clusters created for

each technique.

Clustering technique 1 6 4 7 3 8 5 9 2
Avg. Destination Clusters 1 4 5 5 7 9 14 19 41
Max. Destination Clusters 46 113 116 106 136 187 220 226 156

Table 1- Destination Cluster Data

 41

Figure 15 – Destination Clustering Analysis

5.5.2.2 Source Cluster Analysis

 Similar to the destination clusters, the number of source clusters created for each

of the 278 nodes was used to compute the average number of source clusters shown in

Table 2. Also, the same data was used to determine the maximum number of destination

clusters created for each technique.

Clustering technique 1 6 4 7 3 8 5 9 2
Avg. Source Clusters 1 19 24 22 30 32 38 44 63
Max. Source Clusters 61 61 65 66 66 68 105 117 166

Table 2 - Source Cluster Data

 42

Figure 16 - Source Cluster Analysis

5.5.2.3 Conclusion – Cluster Analysis

 From the results for both the source and destination cluster analysis, we see that the

average number of source and destination clusters created increased linearly as expected

from the most conservative technique, #1 to the most restrictive technique, #9. This

information can be used to determine the best technique suitable for a node. Depending

on the memory availability on the node, the node may decide to choose one that creates

fewer clusters.

5.5.3 Available Bandwidth Inference Measurements

 The algorithm described in this paper was tested on PlanetLab (PlanetLab: Global

Research Network) and Emulab (Emulab - Network Emulation Testbed, 2002) networks

as they provide a geographically distributed platform suitable for this project. The tests

included executing the AB inference engine for different nodes located in US and

 43

Europe. The Java application accepted configuration parameters that allowed the user to

choose the test node, the clustering technique and the number of measurements to be

performed. Clustering technique #3, with average CPI was chosen as the clustering

method of these tests. A set of five nodes were chosen based on their geographical

location to get a good representation of all the nodes as we are testing a node-centric

algorithm. We discuss the results for two of these nodes in this paper.

5.5.3.1 Node Results: planetlab1.xeno.cl.cam.ac.uk

 A subset of AB inference measurements for node planetlab1.xeno.cl.cam.ac.uk is

shown in Figure 17. For each node, the inferred AB value was computed and compared

against the actual value to determine its deviation.

Destination Actual AB Inferred AB Deviation
Planetlab1.ie.cuhk.edu.hk 24.254921 26.68211 -10.007
planet1.zib.de 20.964064 22.809776 -8.80417
plab1-itec.uni-klu.ac.at 16.052383 17.444479 -8.67221
ent1.cs.nccu.edu.tw 8.046409 8.607523 -6.97347
Planetlab1.isi.jhu.edu 27.019152 28.900839 -6.96427
Planetlab1.cs.stevens-tech.edu 25.016403 26.735878 -6.87339
planet2.cs.ucsb.edu 22.918459 24.481089 -6.81822
Planetlab04.cs.washington.edu 4.234247 4.488182 -5.99717
Planetlab2.csres.utexas.edu 23.555752 24.886576 -5.64968
planetlab-01.naist.jp 26.833254 28.292778 -5.43924
planet2.l3s.uni-hannover.de 22.517841 23.686703 -5.19083
planetlab2.elet.polimi.it 23.176973 24.347116 -5.04873
pl4.planetlab.uvic.ca 16.74947 17.570864 -4.904
planetlab-02.naist.jp 24.847546 26.038326 -4.79234
planetlab1.eecs.wsu.edu 26.709494 27.957735 -4.6734
planetlab1.cs.purdue.edu 25.714848 26.90719 -4.63678
planetlab1.een.orst.edu 25.650787 26.756716 -4.31148
planetlab1.ceid.upatras.gr 14.30161 14.838045 -3.75087
planetlab11.millennium.berkeley.edu 16.575321 17.170305 -3.58958
planet-lab1.ufabc.edu.br 23.674725 24.453465 -3.28933
planetlab4.cse.nd.edu 4.916461 5.071445 -3.15235

 44

planetlab1.uc.edu 23.73589 24.281046 -2.29676
planetlab02.erin.utoronto.ca 21.4526 21.890673 -2.04205
planetlab3.mini.pw.edu.pl 2.857143 2.891776 -1.21215
planetlab1.cslab.ece.ntua.gr 27.536064 27.674194 -0.50163
planetlab3.xeno.cl.cam.ac.uk 25.465683 25.536839 -0.27942
planet1.l3s.uni-hannover.de 24.052637 23.909071 0.596883
planetlab4.inf.ethz.ch 5.52935 5.477408 0.939387
planetlab-01.ece.uprm.edu 27.836956 27.443813 1.412306
planetlab1.ewi.tudelft.nl 24.059845 23.709812 1.454843
planetlab-5.cs.princeton.edu 28.467436 27.777857 2.422343
planetlab-03.naist.jp 29.014782 27.502525 5.212023
planetlab1.ics.forth.gr 27.76452 26.308847 5.242925
planetlab1.elet.polimi.it 26.719261 25.275772 5.402429
planetlab1.sfc.wide.ad.jp 27.599812 26.072556 5.533574
planetlab3.hiit.fi 3.887295 3.665266 5.711658
planetlab1.dtc.umn.edu 27.698046 26.111338 5.728592
planetlab-1.di.fc.ul.pt 26.748945 25.152641 5.967727
planetlab1.cse.nd.edu 27.20229 25.52785 6.155511

Figure 17 – AB Inference Measurement Subset (planetlab1.xeno.cl.cam.ac.uk)

 Of the 278 available nodes, only 47% or 133 measurements were successful

because either the end node was down for maintenance because of which the actual value

was unavailable or the clusters heads were down because of which the inferred value was

unavailable. Of these successful results, 80.45% of the inferred values lie within + 50%

of the actual value.

 45

planetlab1.xeno.cl.cam.ac.uk

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

Actual (Mbps)

In
fe

rr
ed

 (M
bp

s)

Series1

Figure 18 - Actual vs. Inferred Available Bandwidth (planetlab1.xeno.cl.cam.ac.uk)

 We plot the actual and inferred values of AB in Figure 18. The results are scattered

but we see that the actual values are clustered around two points, 5Mbps and 30Mbps,

and in these cases, the inferred value closely matches the actual value. Figure 19 is the

plot of the cumulative distribution function.

 46

planetlab1.xeno.cl.cam.edu

0

0.2

0.4

0.6

0.8

1

1.2

-350 -300 -250 -200 -150 -100 -50 0 50 100 150

Deviation %

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty

Series1

Figure 19 - CDF of Deviation in Inferred AB (planetlab1.xeno.cl.cam.ac.uk)

Spearman Rank Order Correlation Coefficient

 The correlation coefficient is a number that can be used to determine the strength of

association between two variables. We use the Spearman rank order correlation

coefficient to determine the association between the actual AB and the inferred AB

values.

 To determine the Spearman’s rank correlation coefficient, we rank both the actual

AB and the inferred AB values from the node planetlab1.xeno.cl.cam.ac.uk to all the

other nodes in the network in ascending order. Let the actual rank and inferred ranks of

an ith pair of nodes with actual AB ai and inferred AB ii be ri
a and ri

i. The Spearman’s

rank correlation (Wiki: Spearman’s rank correlation coefficient, 2008) can be computed

using the equation shown below :

 47

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∑
−=

nn
drs 3

261

 The value of sr will be between +1, where a negative value indicates strong negative

correlation and a positive value indicates a strong positive correlation.

Interpreting Spearman’s Rank Correlation Coefficient

 The spearman’s coefficient, sr , is compared against the critical values shown in

Figure 20. The value N is the number of pairs of values used to compute the coefficient

and the values 0.05, 0.02 and 0.01 indicate the significance level. For ex: if sr = 0.71

with N=16, then the value sr is likely to occur by chance less than 1 out of 100 attempts

indicating a strong correlation between the pair of values used to compute sr .

N (the number of
pairs of values):

0.05 0.02 0.01

5 1 1
6 0.886 0.943 1
7 0.786 0.893 0.929
8 0.738 0.833 0.881
9 0.683 0.783 0.833

10 0.648 0.746 0.794
12 0.591 0.712 0.777
14 0.544 0.645 0.715
16 0.506 0.601 0.665
18 0.475 0.564 0.625
20 0.45 0.534 0.591
22 0.428 0.508 0.562
24 0.409 0.485 0.537
26 0.392 0.465 0.515
28 0.377 0.448 0.496
30 0.364 0.432 0.478

Figure 20 - Critical values for sr (Wiki: Rhotable)

Where Σ = summation,
 d = (ri

a - ri
i) and

 n = number of measurements

 48

 The table in Figure 21 shows a subset of the rank ordering and difference ‘d’

calculations for some of the measurements shown in Figure 17.

 The total number of measurement, n = 133 and Σ is 94673. Hence the value

computed, sr = 1-(6*94673 / (133*(133*133-1))) = 0.7585. Based on the information in

Figure 20, the value of 0.7585 suggests a fairly strong positive correlation between the

actual and inferred AB for the node planetlab1.xeno.cl.cam.ac.uk.

5.5.3.2 Node Results: vn1.cs.wustl.edu

 The results for node, vn1.cs.wustl.edu, is briefly discussed in this section. A subset

of measurements for this node is shown in Figure 22.

Actual Rank Inferred Rank D1 D2
21 98 -77 5929
1 30 -29 841
3 29 -26 676
39 79 -40 1600
37 73 -36 1296
41 69 -28 784
5 22 -17 289
50 123 -73 5329
48 94 -46 2116
35 60 -25 625
32 52 -20 400
30 51 -21 441
59 131 -72 5184

Figure 21 - Spearman's Rank Order Correlation Coefficient
Subset (planetlab1.xeno.cl.cam.ac.uk)

 49

Destination Actual AB Inferred AB Deviation
plab-2.sinp.msu.ru 5.567828 6.015182 -8.03462
planetlab1.cse.nd.edu 4.5641 4.913298 -7.65097
planetlab5.cs.duke.edu 4.264096 4.565757 -7.07444
planetlab2.byu.edu 7.183977 7.650455 -6.49331
planetlab-3.imperial.ac.uk 6.408414 6.799259 -6.09893
phil.cc.vt.edu 6.426438 6.77126 -5.36568
planetlab06.mpi-sws.mpg.de 5.408039 5.690492 -5.22284
planetlab1.cis.upenn.edu 6.260821 6.563991 -4.84234
planetlab03.cnds.unibe.ch 5.900004 6.158718 -4.38498
planetlab1.fit.vutbr.cz 6.289565 6.516424 -3.60691
planetlab2.inf.ethz.ch 5.610929 5.775923 -2.94058
planetlab-4.cs.princeton.edu 6.480654 6.620143 -2.15239
planetlab04.cnds.unibe.ch 4.439945 4.462431 -0.50645
planetlab1.eecs.wsu.edu 5.602197 5.61886 -0.29744
node-1.mcgillplanetlab.org 5.114754 5.129586 -0.28998
mars.planetlab.haw-hamburg.de 4.306139 4.307919 -0.04134
planetlab4.flux.utah.edu 6.302859 6.283828 0.301942
vn3.cs.wustl.edu 106.26028 105.933716 0.307325
planetlab1.eecs.jacobs-university.de 6.572195 6.536201 0.547671
planetlab01.cnds.unibe.ch 6.619369 6.566646 0.796496
vn2.cs.wustl.edu 105.84175 104.47282 1.293374
planetlab1.unl.edu 6.224894 6.112179 1.810714

Figure 22 - AB Inference Measurement Subset (vn1.cs.wustl.edu)

 In this case, of the 278 nodes, only 25% or 72 measurements were successful. Of

these successful results, 90.27% of the inferred values lie within +50% of the actual

value. Figure 23 and Figure 24 show the actual vs. inferred and the CDF respectively.

 50

vn1.cs.wustl.edu

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Actual (Mbps)

In
fe

rr
ed

 (M
bp

s)

Series1

Figure 23 - Actual vs. Inferred Available Bandwidth (vn1.cs.wustl.edu)

vn1.cs.wustl.edu

0

0.2

0.4

0.6

0.8

1

1.2

-100 -80 -60 -40 -20 0 20 40 60 80

Deviation %

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty

Series1

Figure 24 - CDF of Deviation in Inferred AB (vn1.cs.wustl.edu)

 51

Spearman Rank Order Correlation Coefficient

 The table in Figure 25shows a subset of the rank ordering and difference ‘d’

calculations for some of the measurements shown in Figure 22.

Actual Rank Inferred Rank D1 D2
16 70 -54 2916
20 67 -47 2209
35 69 -34 1156
45 68 -23 529
36 66 -30 900
8 43 -35 1225
9 37 -28 784
33 61 -28 784
4 26 -22 484
14 38 -24 576
7 27 -20 400
22 54 -32 1024
27 58 -31 961
32 57 -25 625

Figure 25 - Spearman's Rank Order Correlation Coefficient Subset
(vn1.cs.wustl.edu)

 The total number of measurement, n = 72 and Σ is 37100. Hence the value

computed, sr = 1-(6*37100 / (72*(72*72-1))) = 0.403499. Based on the information in

Figure 20, the value of 0.403499 suggests a fairly strong positive correlation between the

actual and inferred AB for the node vn1.cs.wustl.edu.

 52

6 Related Work

 Estimating end-to-end bandwidth is challenging because of its dynamic nature and

a number of tools have been developed to measure it. In a comparison study of

bandwidth measurement tools, bandwidth estimation experiments were conducted on a

high-speed testbed using publicly available bandwidth estimation tools (Alok Shriram M.

M., 2005). The different tools included: abing, pathchrip, pathload and Spruce. The

accuracy and operational characteristics of these tools and the factors that impact the

tools performance are analyzed. The authors concluded that pathload and pathchirp are

the most accurate tools for their experiments.

 While estimating AB is challenging, inferring end-to-end AB is more interesting and

has a wide range of applications. End-to-End AB is dependent on the available

bandwidth along the links that form the path. The bottleneck link, the one with the

smallest residual bandwidth is also the weakest link that determines the AB of the entire

path. The authors of BRoute claimed that the bottleneck links are primarily the links near

the end hosts termed edge segments, and hence only measured the AB on these links to

estimate the bandwidth of all paths (Ningning Hu, 2005). BRoute proposed two modes

for collecting end segment bandwidth, an infrastructure mode and a peer-to-peer mode.

The former used landmarks to which all nodes perform measurements or decide a subset

of paths to measure. However, each bandwidth landmark can support only a limited

number of nodes. The peer-to-peer mode is designed such that the nodes perform AB

measurements in a co-operative fashion. This method scales better than the infrastructure

 53

mode as this decentralizes the measurement process but frequent route changes makes the

measurements more complicated. A study by (Alok Shiram, 2003) showed that

identifying potential bottlenecks for each path based on links with minimum available

bandwidth leads to false positives.

 Research by (Alok Shriram S. B., 2007) describes three scalable algorithms with

decreasing probe overhead. The algorithm are based on end-to-end AB measurements

over a subset of nodes in the network as opposed to AB measurements over last hop links

as described in previous approaches. The crux of the algorithms is to group together

nodes that are likely to share bottleneck links and to select well provisioned head nodes

for each node’s cluster. The AB measurements are performed from each head-node to

nodes outside the cluster and the AB from other members of the cluster is then inferred

using the measurement from the head-node. The techniques described in (Alok Shriram

S. B., 2007) are evaluated on PlanetLab using the scalable sensing network service.

 This paper takes one step further in developing a scalable AB inference algorithm

that is also distributed. By distributing the computation across the various nodes in the

network, the actual number of AB measurements is reduced and hence the computation

time. The tests are performed using the current AB estimation tools that are more

accurate compared to tools developed in the past. The combination of current AB

estimation tools and a distributed algorithm for inferring AB has resulted in 80% of the

values within a deviation of +50% for some nodes.

 54

 55

7 Conclusion

 The primary goal of this project was to reduce the total number of AB measurements

in a large network and at the same time lower the error rate on AB inference compared to

existing techniques. The results on the PlanetLab network were very promising but not

stellar. Since the inference algorithm described in this paper is node-centric, the results

were mixed based on tests conducted on a set of nodes. The number of successful

measurements was only around 50% after repeated attempts because of network topology

problems. For few nodes, 80% of the measurements were in the deviation range of +

50% which matches the results from an existing inference algorithm described in

(Ningning Hu, 2005). However, for some of the nodes, there was a weak correlation

between the actual AB value and the inferred AB value. Since the algorithm is node-

centric, the weak correlation is observed for some nodes and is related to the selection of

cluster heads. The correlation can be improved by adapting a different clustering

technique for each node. Since the technique is based on distributed computing, the

solution is highly scalable and seamlessly integrates new nodes that are added to the

network. The results on the PlanetLab testbed were promising for some nodes and hence

the engine can be deployed by websites that distribute content from multiple geographical

locations.

7.1 Future Work

 The AB inference algorithm described in this paper is a first step towards providing

a distributed and scalable AB estimation solution. As mentioned earlier, the results look

 56

promising for certain nodes and there is scope for improvements for nodes that had weak

correlation between the actual and inferred values. First, this paper proposes various

clustering techniques that are tuned based on the common path index between all nodes

in the network. For the case study on PlanetLab, one of the techniques was chosen for all

nodes. However, since the algorithm is node-centric further investigations are needed to

evaluate the best clustering technique for each node. This may require some trial and

error method to find the best cluster head(s) using the techniques described in this paper

until the inference error is significantly reduced.

 Second, the clustering method discussed here determines the cluster head and then

forms clusters around the cluster head. An alternative approach that needs further

investigation is to first group nodes that share a common metric and then select a cluster

head that is superior compared to other nodes in terms of the chosen metric. This could

result in better cluster formation thus leading to reduction in inference error.

 Finally, the clustering algorithm discussed in this paper is a variant of K-means, one

of the partitioning algorithms. The software developed for this project is modular and

designed to dynamically swap the clustering algorithm. Future research in this field can

take advantage of this feature by reusing the software to test other clustering algorithms

in an attempt to reduce the inference error.

 57

References

Alok Shiram, J. K. (2003). Identifying Bottleneck Links Using Distributed End‐to‐end. Available

Bandwidth Measurements. ISMA 2003 Bandwidth Estimation Workshop. San Diego:
ISMA 2003.

Alok Shriram, M. M. (2005). Comparison of Public End‐to‐End Bandwidth Estimation Tools on
High Speed Links. Passive and Active Network Measurement (pp. 306‐320). Boston:
SpringerLink.

Alok Shriram, S. B. (2007). Scalable End to End Available Bandwidth Inference.

Bill Cheswick, H. B. (2000). Mapping and visualizing the Internet. Proceedings of the General
Track: 2000 USENIX Annual Technical Conference (pp. 1‐12). San Diego: USENIX 2000.

Boa Web Server. (2005, Febraury 23). Retrieved 11 12, 2008, from http://www.boa.org/:
http://www.boa.org/documentation/boa‐1.html#ss1.1

Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman, R., & Weihl, B. (2002). Globally distributed
content delivery. Internet Computing, IEEE (pp. 50 ‐ 58). IEEE Internet Computing
Magazine .

Dovrolis, C. (n.d.). Pathload tutorial. Retrieved 12 19, 2008, from www.cc.gatech.edu/:
www.cc.gatech.edu/fac/Constantinos.Dovrolis/pathload_tutorial.html

Emulab ‐ Network Emulation Testbed. (2002 , October 1). Retrieved 9 21, 2008, from
http://www.emulab.net/: http://www.emulab.net/

Fiuczynski, M. E. (2006). PlanetLab: overview, history, and future directions. ACM SIGOPS
Operating Systems Review (pp. 6‐10). New York: ACM.

Jones, A. B. (2000, September). RFC2922 ‐ Physical Topology MIB. U.S.A.

Ken Keys, C. A. (2009). IP Alias Resolution Techniques. San Diego: IP Alias Resolution Techniques.

Lee, S.‐J., Sharma, P., Banerjee, S., Basu, S., & Fonseca, R. o. (2005). Measuring Bandwidth
between PlanetLab Nodes. Passive and Active Network Measurement (pp. 292‐305).
Boston: SpringerLink.

Matteucci, M. (n.d.). Tutorial: Clustering. Retrieved Oct 5, 2008, from http://home.dei.polimi.it/:
http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/

 58

Neil Spring, L. P. (2006). Using PlanetLab for network research: myths, realities, and best
practices. ACM SIGOPS Operating Systems Review , 17‐24.

Ningning Hu, P. S. (2005). Exploiting internet route sharing for large scale available bandwidth
estimation. Proceedings of the 5th ACM SIGCOMM conference on Internet Measurement
(pp. 16‐16). Berkeley: USENIX Association.

pathChirp: Efficient Available Bandwidth Estimation for Network Paths. (2003). Retrieved 2 3,
2009, from http://www.spin.rice.edu/Software/pathChirp/:
http://www.spin.rice.edu/Software/pathChirp/

Pathneck, Ningning Hu (CMU). (2004). Retrieved 2 4, 2009, from
http://www.cs.cmu.edu/~hnn/pathneck/: http://www.cs.cmu.edu/~hnn/pathneck/

Paul Albitz, C. L. (2001). DNS and Bind. O'Reilly.

PlanetLab: Global Research Network. (n.d.). Retrieved October 2008, from http://www.planet‐
lab.org/: http://www.planet‐lab.org/

Praveen Yalagandula, P. S.‐J. (2006). S3: A Scalable Sensing Service for Monitoring Large
Networked Systems. Proceedings of the 2006 SIGCOMM workshop on Internet network
management (pp. 71‐76). Pisa, Italy : ACM.

R. Siamwalla, R. S. (July 1998). Discovering Internet Topology.

Shamir, E. H. (March 10, 1999). A Clustering Algorithm based on Graph Connectivity.

Shriram, A. K. (2007). Empirical Evaluation of Techniques for Measuring Available Bandwidth.
INFOCOM 2007. 26th IEEE International Conference on Computer Communications. IEEE
(pp. 2162‐2170). Anchorage: IEEE.

Song, H. H., & Yalagandula, P. (Jan 2007). Real‐time End‐to‐end Network Monitoring in Large
Distributed Systems.; . 2nd International Conference on 7‐12 Jan. 2007 Page(s):1 ‐ 10.
Communication Systems Software and Middleware , 1‐10.

Vinay J. Ribeiro, R. H. (2003). pathChirp: Efficient Available Bandwidth Estimation for Network
paths. SLAC‐PUB‐9732 .

Wiki: Data clustering. (2008, September 12). Retrieved Nov 14, 2008, from
http://en.wikipedia.org: http://en.wikipedia.org/wiki/Data_clustering

Wiki: Rhotable. (n.d.). Retrieved March 2, 2009, from http://www.sussex.ac.uk/:
http://www.sussex.ac.uk/Users/grahamh/RM1web/Rhotable.htm

 59

Wiki: Spearman’s rank correlation coefficient. (2008, August). Retrieved Feb 2009, from
http://en.wikipedia.org/wiki/Spearman’s_rank_correlation_coefficient:
http://en.wikipedia.org/wiki/Spearman’s_rank_correlation_coefficient

Wiki: Traceroute. (n.d.). Retrieved June 18, 2009, from http://en.wikipedia.org/wiki/Traceroute:
http://en.wikipedia.org/wiki/Traceroute

	San Jose State University
	SJSU ScholarWorks
	2009

	Available Bandwidth Inference Based On Node-Centric Clusters
	Seetharam Samptur
	Recommended Citation

	Microsoft Word - CS298Report.doc

