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ABSTRACT 

AVAILABLE BANDWIDTH INFERENCE BASED ON NODE-CENTRIC CLUSTERS 

by Seetharam Samptur 
 

       End-to-End Available Bandwidth (AB) is a real-time network metric that is useful 

for a wide range of applications including content distribution networks, multimedia 

streaming applications and overlay networks.  In a large network with several thousand 

nodes, it is infeasible to perform all-pair bandwidth measurements as AB measurements 

could induce traffic overhead along the path. Also because of its dynamic nature, the 

measurements have to be performed frequently thus imposing significant probe traffic 

overhead on the network.  

          In this paper, we discuss a clustering based distributed algorithm to infer the AB 

between any pair of nodes in a large network based on measurements performed on a 

subset of end-to-end paths.  The algorithm was validated on Planet-Lab and for some 

nodes, 80% of the inferences were within 50% of the actual value.
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1 Terms and Abbreviations used in this document 
 

Available Bandwidth – Available Bandwidth (AB) between any two nodes at any 

instance is the maximum throughput on the path between them taking into account the 

traffic at that time. 

 
Available Capacity – Available Capacity between any two nodes at any given time is the 

maximum throughput on the path between them assuming there is no traffic. 

 
Boa – Boa is a single-tasking HTTP server  (Boa Web Server, 2005). 

 
Content Delivery Network – Content Delivery Network (CDN) is a system of 

networked computers that deliver content to end users. 

 
Destination Clusters – Destination clusters on a node N are clusters that contain nodes 

that share the first few hops along the paths from node N. 

 
Emulab – Emulab is a network testbed available for researchers to evaluate their systems 

(Emulab - Network Emulation Testbed, 2002 ). 

 
Pathchrip – Pathchrip is an active probing tool for estimating the available bandwidth on 

a communication network  (Vinay J. Ribeiro, 2003). 

 
PlanetLab – PlanetLab is an open platform for developing, deploying, and accessing 

planetary-scale services  (PlanetLab: Global Research Network).  
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Pathload – Pathload  (Dovrolis) is a bandwidth estimation tool. 

 
Pathneck – Pathneck is an active probing tool for identifying bottlenecks along a path  

(Pathneck, Ningning Hu (CMU), 2004). 

 
Scalable Sensing Service  –  Scalable Sensing Service (S3)is a scalable, secure and 

reliable service that provides the system states for  both individual nodes as well as for 

the network in real time. 

 
Source Clusters – Source clusters on a node N are clusters that contain nodes that share 

the last few hops along the paths to node N. 

 
Spread PaiR Unused Capacity Estimate –  Spruce is an available bandwidth estimation 

tool. 
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2 Introduction 
 
        A wide range of applications including content-distribution networks, video 

streaming applications, and peer-to-peer applications are based on overlay network 

infrastructure.  Akamai content delivery network is an effective overlay network that 

solves the problem of delivering content in a scalable and reliable way (Dilley, Maggs, 

Parikh, Prokop, Sitaraman, & Weihl, 2002).  Akamai's infrastructure works with the 

content providers and allocates more servers to sites experiencing high traffic and directs 

client requests to the nearest server.  The criteria used in choosing a server include 

availability and distance.  Availability is determined by the server's current load, 

while distance is determined based on dynamic link characteristics such as end-to-end 

available bandwidth. 

         End-to-End Available Bandwidth (AB) between any two nodes is the maximum 

throughput on the path between them and is highly dependent on the real-time traffic load 

along the path.  However, in a large network with several thousand nodes, it is infeasible 

to perform all-pair bandwidth measurements for the following reasons: 

a. Measuring AB in a network with N nodes would require N2 AB 

measurements. 

b. AB can vary over short timescales because of its dynamic nature (Shriram, 

2007). 

c. It is challenging to perform accurate end-to-end pair-wise AB 

measurements in a large distributed network due to interference of existing 

traffic (Song & Yalagandula, Jan 2007).  
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        For these reasons, there is a strong need for an AB inference technique that is both 

scalable and accurate in inferring AB between various network nodes.  The problem of 

designing scalable monitoring services has received considerable attention in the recent 

past (Praveen Yalagandula, 2006).  Also, Broute, a scalable AB estimation system based 

on a client-server route sharing model, has been proposed by researchers from Carnegie 

Mellon.  Broute uses special nodes called the landmark nodes, and also a per-hop AB 

estimation tool to monitor all-pair AB measurements.  Pathneck (Pathneck, Ningning Hu 

(CMU), 2004), the tool used in Broute for determining an upper-bound on AB was 

primarily developed to identify bottlenecks in the internet. The paper by (Alok Shriram S. 

B., 2007) proposes scalable end-to-end AB inference algorithms that shows better results 

compared to other solutions.  However, the drawback with these algorithms is that the 

solution is not distributed. 

          In this paper, we discuss a clustering based distributed algorithm to infer AB 

between any pair of nodes in a large network based on measurements performed on a 

subset of end-to-end paths.   
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3 Available Bandwidth Inference – Applications 
 
         Available Bandwidth estimations are useful in many applications including content 

distribution networks, video streaming etc.  In this section, we present an application 

where the algorithm described in this paper can be used to reduce the number of AB 

calculations in a large network.  

3.1 Content Distribution Network 

        A Content Distribution Network (CDN), shown in Figure 1, is a system of servers 

networked together over the Internet in an attempt to deliver content to the end users 

quickly and efficiently. 

 

 

Figure 1 - Content Distribution Network 
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         The servers satisfy requests from clients, in this case, end-users by providing the 

requested content.  In some instances, the server may not have the requested content and 

has to obtain it from one of the networked servers connected in its CDN.  The server can 

query the AB inference engine described in this paper to identify the destination server 

with best AB among all the servers.   

 

 

Figure 2 - Client Initiates Request for Content 
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Figure 3 - All-Pairs AB Measurements without AB Inference 

 

  

Figure 4 - Few Pairs AB Measurements with AB Inference Engine 
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Figure 5 - Server Provides Client with Content 

 

         As shown in Figure 5, the actual number of AB measurements was reduced by 50% 

in the example use case.  Certain AB measurement tools induce traffic into the network 

and the subsequent reduction in AB measurements will translate to an increased AB for 

rest of the applications.  
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4 Architecture and Design 
 
        This section describes the high level architecture and detailed design of the AB 

inference algorithm.  

4.1 Overview 

        The AB inference algorithm described in this paper is based on node-centric 

clusters.  This approach involves building clusters dynamically based on nodes in the 

network.  For each node, the network configuration is split into two different cluster 

views – source clusters and destination clusters.  Cluster heads are identified for these 

node-centric cluster views and AB measurements are performed on a subset of end-to-

end paths.  These measurements are used to infer the AB metric for any node pair in the 

network.  Since the clusters are node-centric, it is easy for a node to self-adapt to a 

different cluster view to improve the inference results. 

       As shown in Figure 6, the inference engine is executed on all nodes in the network.  

A client node is the node that generates the AB inference request for the distributed 

system.  All nodes in the network assume the role of a client node when generating 

inference requests. The peer-to-peer architecture is one method to structure the inference 

application such that identical software components or engines are executed on different 

nodes in the network.  Each engine performs a subset of measurements and 

communicates the results to its peers using TCP/IP as the communication mechanism. 

With this approach the problem of inferring AB between any node pair is divided into 

identical sub-problems that are solved independently by each node.  The information 
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computed on all these nodes is required to infer AB between any node pair and hence the 

connectivity to the network is vital.  Unlike traditional peer-to-peer networks, discovering 

peer nodes is simple because the inference algorithm is executed in a controlled 

environment with every node aware of the network topology. 

 

 

Figure 6 – AB Inference Peer-to-Peer Distributed Architecture 

         

          The node-centric approach inherently makes the algorithm distributed thus 

removing the dependence on a centralized server.  The software is logically divided into 

two components, client and server inference engine.  The server on each node has access 

to information on the AB between the node on which it is executing and the other nodes 

in the network.  For information on AB between other nodes, the server communicates 

with its peer running on the other nodes.  The client can request the local server for 

information on AB between any two nodes in the network.  The server will infer the AB 
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between the requested nodes based on the information on the local node and based on the 

information it receives from its peer components.  Additionally, this solution is scalable 

as new nodes are added to the network because the new nodes have access to AB 

information available on other nodes in the network. 

         The overall program flow for the server is as shown in Figure 7.  The computations 

performed at each node in the network can be broadly divided into following tasks:  

• Network data collection  

• Network topology construction 

• Cluster formation and Cluster head selection 

• AB measurements and Inference 

Each of these tasks is described in subsequent sections. 
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Generate traceroute 
information from a node 
to rest of the nodes in the 
network.

Form network topology 
at the node using the 
traceroute information 
generated from previous 
step

1

2

Traceroute 
Output files

Topology 
Tree

3

4

Form network clusters 
and form k-clusters each 
of same or varying size.

Select cluster heads 
based on cluster 
formation.

Path Capacity 
output

Compute path capacity 
between the node and 
the rest of the nodes in 
the networkNote: 

Steps 3 and 4 
can be reversed.

1

5

Perform AB measurements  

Legend External scripts/tasks based on 
S3 generate network stats 
periodically.

Available inference algorithm 
executing on each node in the 
network.

 

                   Figure 7 – AB Inference Program and Data Flow Diagram 
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4.2 Network Data Collection 

         One of the first steps is to gather various network data for evaluating the algorithm.  

The network topology is required to determine the connections between various nodes in 

the network.  Additionally, the path capacity, the maximum possible end-to-end 

throughput that is fixed between two end nodes,  is also required as it is used to select 

cluster heads on forming clusters.  

          The process of generating the topology information is highly dependent on the 

number of nodes in the network and the tool used to gather the information.  Hence, the 

data collection time could be quite high since AB inference will be used on a large 

network.  However, these networks are expected to have very few changes, if any, over 

long periods of time.  For these reasons, it is efficient to perform the data collection once 

at the beginning and to update any changes by an external entity.  Hence, the data 

collection component is developed as Perl scripts that are executed periodically to update 

the network topology and path capacity metrics.  

4.3 Network Topology Construction 

          Network topology is the interconnection between directly connected nodes in a 

network (Siamwalla, 1998).  The nodes can be either hosts or routers that connect these 

hosts in the network.  In a large network, hosts and routers can be added (removed) to 

(from) the network thus making it difficult to determine an accurate topology in real-

time.  Additionally, the tools available to determine the interconnections may introduce 

some errors in the topology discovery because of complexity in routing protocols.  A 
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typical router can have several IP interfaces to connect to different sub-nets.  Based on 

the tools used, each of these interfaces could end up as a router in the topology.  There 

are some standard protocols such as SNMP that can be used to overcome the multiple 

interface problems and to deduce an accurate network topology.  However, not all nodes 

have a SNMP agent installed on them to provide the required topology information.  The 

challenge is to identify tools that are widely deployed, impose the least possible overhead 

and discover an accurate topology. 

         Most applications that use AB inference to improve performance are deployed in a 

controlled network environment.  For example, a content distribution network will 

include a number of servers that distribute content and the nodes that host the content are 

pre-determined and their information is available.  However, the physical topology of the 

network including the routers and the ports that connect the different end hosts is required 

in order to generate clusters required to infer AB between all nodes in the network.

        Topology discovery can be an active or a passive process (R. Siamwalla, July 1998).  

Active mechanisms require sending/receiving protocol packets to determine the paths 

between the nodes in the network.  Passive techniques rely on the data on the network to 

populate the topology database.  A passive approach can analyze packets that are sent and 

received over various ports on the device to determine a list of nodes in the network and 

their interconnections.  Since the passive technique relies on network traffic, it is useful 

in environments where such traffic is available at times to deduce the topology.  This 

project is validated on a research network that does not have predictable traffic at all 

times. Hence, we consider tools based on active mechanism in this project.  
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4.3.1 Different Tools/Protocols Considered for Topology Discovery 

          This section includes the various tools and protocols based on active mechanisms 

that were considered for identifying the network topology.  Three methods are 

investigated before selecting one of the techniques suitable for solving the inference 

problem.

4.3.1.1 SNMP based network management tools 
 
          Simple Network Management Protocol (SNMP) is a widely used network 

management protocol used for network monitoring.  SNMP agents are deployed on the 

various nodes in the network and a SNMP manager running on a host extracts the 

information from the SNMP agents.  On devices that support SNMP, in order to gain 

advantage over competitors, most vendors implement SNMP agents that 

expose proprietary Management Information Base (MIB) thus making it difficult to 

develop software that can work with agents from multiple vendors.  The physical 

topology MIB, RFC2922 (Jones, 2000) provides a standardized way to identify 

connections between network ports and to discover network addresses of the SNMP 

agents.  It describes the various MIB objects that can be used to learn the physical 

network topology.  One of the major drawbacks of SNMP is that not all devices have 

SNMP support and thus use of SNMP to determine the network topology is restricted to 

intranets built around SNMP-based devices. 
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4.3.1.2 Domain Name System (DNS) 
 
        The DNS associates information for the different domains in a distributed database 

system that is based on a client-server model.  The nodes that manage the database are 

called the domain name servers or name servers for short.  A DNS query can be initiated 

from a DNS resolver to retrieve information about the domain managed by a name 

server.  NSLOOKUP is an application that can be used to retrieve various name server 

records from a name server.  This application can be used to initiate a zone transfer to 

retrieve all the name server (NS) records from a primary name server.  Since the NS 

records contain sensitive information, most name servers are configured to enable zone 

transfers only between inter-dependent name servers or transfers are protected by 

enforcing encryption on the payloads  (Paul Albitz, 2001). 

4.3.1.3 Traceroute
 
        Traceroute is a network utility used to determine the path a packet would take from 

source machine to destination.  It uses the IPv4 protocol time to live (TTL) field or the 

IPv6 hop limit field to determine the routers/gateways on the path.  An UDP request 

destined to an unused port is sent to the destination with a TTL (or hop limit) set to 1 and 

increases it by 1 until the max hop value is reached.  At each stage, the gateway that 

receives the request with a TTL (or hop limit) value of 1, will respond with an ICMP 

TIME EXCEEDED response and the destination will respond with a PORT 

UNREACHABLE message (Wiki: Traceroute).  On receiving each ICMP response, the 

lists of routers along the path are populated.  
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Issues with using traceroute:

1. All packets may not take the same path and hence the output could be confusing at 

times. 

2. Some routers on the path may not respond to the ICMP request on the interface 

3. Dependence on TTL field leads to dependence on implementations.  Some 

implementations could be buggy; some may not follow the protocol and may end up 

forwarding packets with a TTL value of 0. 

4. The IP address of the router indicates the interfaces on which the packets are received 

and not the interfaces on which the packets are forwarded subsequently. 
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5. Since TTL is a TCP field, layer-2 switches in the network will go undetected 

resulting in a less detailed topology.  

6. Sending probe requests to every router along the path results in considerable network 

overhead.  

4.3.1.4 Conclusion - Topology Discovery Tool  
          
         In addition to the tools described above, there are also tools based on proprietary 

protocols such Cisco Discovery Protocol, Foundry discovery protocol etc.  However, 

these can only be used in intranets where all the devices support such protocols. 

          Since most networks include devices from different vendors, use of SNMP or other 

proprietary protocols is not an option.  For security reasons, the DNS servers may be 

configured to block any requests to retrieve the name server records.  Most nodes respond 

to traceroute requests for network monitoring purposes.  Hence, in spite of some known 

issues, traceroute seemed to be a suitable tool that could be used to discover an 

approximate topology of a large network. 

 

4.3.2 Forward Topology View 

        AB inference between two nodes could be different depending on the direction of 

the path.  The AB between two nodes, X and Y, will vary depending on the source node, 

i.e. AB(X Y) can be different from AB(Y X) because of the network topology.  The 

reason for this is that the end-to-end paths between two nodes may be different depending 

on the route established between the two end hosts.  Hence, the forward topology from 
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each node to every other node in the network is constructed to identify all the routers 

along the paths to various destinations.  

 

Figure 8 –Topology View from Source to Destination 

 

          In Figure 8, the route from a source host to a destination host is shown with two 

routers along the path.  This step also provides information about the different hosts that 

share routers and hence the same segments along the way from the source node. This 

forward topology data is used to create destination clusters that will help reduce the 

number of AB measurements. 

4.3.3 Reverse Topology View 

        Similar to the forward topology view, the view from all the nodes to the source node 

is essential in inferring the AB from any node to the source node.  This view is termed 



 

 20

the reverse topology view from other end nodes to the source node and contains 

information on all the routers shared by the other nodes when communicating to the 

source node.  

           

Source 
Host

Destination 
Host

Router
Legend

Host

 

                Figure 9 –Topology View from Destination to Source  

         

        The route information obtained in this step is used to form source clusters similar to 

the destination clusters formed using the forward topology view.  The route from the 

destination host to the source host is shown in Figure 9.  Note that this reverse route is 

entirely different from the forward route used to traverse from the source host to the 

destination host.  
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4.4 Clustering 

        The term cluster is overloaded and refers to different things based on the type of 

application.  The applications are diverse and can range from clustering computers, 

clustering data points for statistical data analysis and clustering network nodes.  The 

clustering algorithms are generic and can be applied to most problems including the AB 

inference problem. In the context of this problem, clustering is the process of organizing 

nodes into groups whose members are similar based on certain criteria.  

Clustering methods (Wiki: Data clustering, 2008) can be broadly classified as follows:  

• Partitioning algorithms  

• Hierarchical algorithms  

• Density-based algorithms  

• Grid-based algorithms  

This project involves identifying nodes that have similar characteristics and clustering the 

nodes into clusters. Of the different clustering methods mentioned above, the partitioning 

algorithms are ideal for this project. Some of the partitioning clustering algorithms 

including K-means, K-medoid and Fuzzy-C were investigated. 

4.4.1 K-means    

          The K-means algorithm assigns each node to the cluster’s centroid.  The centroid is 

a node that forms a good representative of its cluster.  A set of K centroids are chosen at 

random or based on criteria applicable to the problem.  The rest of the nodes are added to 

the clusters based on the distance of the node to one of the K centroids.  The “distance” 
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could be the shortest path between the nodes or based on a path overlap between the 

nodes.   

The algorithm steps for the standard K-means (Wiki: Data clustering, 2008) clustering 

are:   

1) Choose the number of clusters, K.    

2) Randomly generate K clusters and determine the cluster heads, or directly 

generate K random objects as cluster heads.    

3) Assign each node to the nearest cluster center.    

4) Re-compute the new cluster centers.    

5) Repeat the two previous steps until the cluster configurations do not change.   

 

4.4.2 Fuzzy-C 

        The Fuzzy-C clustering algorithm is similar to the K-means algorithm except that 

each object can be assigned to one or more clusters. The coefficients for each object are 

computed to determine its distance from the cluster center. The degree with which an 

object is considered to be part of a cluster is inversely proportional to its distance from 

the cluster center (Wiki: Data clustering, 2008).  

4.4.3  K-medoid 

        The K-medoid clustering algorithm finds representative objects called medoid, 

which is the most centrally located object in the cluster.  
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The algorithm steps for the standard K-means (Wiki: Data clustering, 2008) clustering 

are:  

1) Start from an initial set of K medoids to form K clusters 

2) Add each data object to the cluster with most similar medoid.  

3) Randomly select a non-medoid in each cluster. 

4) Compute the cost of switching the current medoid with the randomly chosen non-

medoid. If the cost is low, choose the non-medoid as the new medoid. 

5) Repeat steps 3 and 4 until there is no change in medoid. 

 

        Adding nodes to multiple clusters will result in complicating the Inference algorithm 

as it has to then optimally select one of the node clusters.  Hence Fuzzy-C was not 

considered for this project.  With the K-medoid approach, the medoid is chosen and 

replaced iteratively until the appropriate medoid is chosen for the cluster.  This process 

could result in a significant amount of time for large data set.  Since we are dealing with a 

large number of network nodes, this algorithm does not scale well.  For these reasons, we 

chose an algorithm that is based on K-means partitioning algorithm. 

4.4.4 Clustering Around Netroids (CAN)  

            An important component of a clustering algorithm is the distance measured 

between two data points or nodes in this case.  Domain knowledge is required to guide 

the formulation of a suitable distance measure metric.  As described in (Hartuv and 

Shamir), the goal of any clustering analysis should satisfy two criteria: homogeneity: 

elements in the same cluster should have high similarity and separation: elements in 
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different clusters should have low similarity.  Also, the similarity between the cluster 

head and the other nodes in the cluster should be high.  For the networking problem at 

hand, we can choose the paths shared by nodes as a metric to determine the clusters.  

         In this project, clusters are built around Network nodes on steroids or Netroids. 

Netroids are nodes with best path capacity from the client node.  The rest of the nodes are 

added to these clusters based on Common Path Index (CPI).  CPI is the number of hops 

shared by the nodes from the client node.  

 

The following clustering algorithm is a variant of the K-mean algorithm:  

A. Cluster Head Selection Data  

Compute the path capacities between the client node and all the other nodes in the 

topology tree.  

Sort the nodes in decreasing order of the path capacities. 

B. Compute the router list for each node 

The path from the client node to a destination node will include one or more hops 

through routers.  

As part of the topology formation, create a data structure (hash table) that stores the 

node along with the list of routers on its path.      

C. Generate a common path index (CPI) matrix 

        For each node in the list  

o Find the number of routers common in its path to the other node  
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o Store the number in index (i, j) where i and j are the nodes under 

consideration  

        Note: The value for CPI (i, j) = CPI (j, i). Hence we need to run this step for n/2 

nodes only and not n. 

D. Initialize available nodes list with all nodes  

Repeat Steps E and F until all nodes are assigned to clusters 

E. Determine Cluster head  

Choose the node with highest capacity (See step A.) as the cluster head. 

F. Scan the row for the cluster head  

        If the entry for an index is greater than or equal to some value  

(For example: r/2 where r is the number of routers)  

        Then  

  Add that node to this cluster  

  Remove the node from the available nodes list  

  Repeat this step until all entries in the row have been scanned 

     

         In our project, cluster heads are chosen and clusters are formed around these cluster 

heads.  The primary reason for this approach is that the cluster head selection is based on 

the end-to-end path capacity and this information is available thus eliminating any 

heuristics. 
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4.4.5 Destination Clusters 

       The AB Inference algorithm described in this paper is node-centric and hence 

distributed on all the nodes in the network.  The server component on each node executes 

an instance of the clustering algorithm, CAN, described in section 4.4.4.  It is applied on 

the forward topology of the network from each node.  The result is the formation of 

destination clusters on a node with each cluster containing nodes that have similar CPI 

from the node.  In other words, for any node X, the destination cluster contains nodes that 

share the first few hops from it.  The reason for choosing nodes that share the first few 

hops is because the AB from the client node to these nodes will have some correlation as 

they share some hops along the way. The node in each destination cluster with the 

maximum end-to-end capacity from node X is chosen as the destination cluster head.  

4.4.6 Source Clusters 

        The clustering algorithm is also applied to the reverse topology data to generate 

source clusters.  These clusters have nodes that share a similar CPI to the node on which 

these clusters are being generated.  For any node X, the source cluster contains nodes that 

share the last few hops to the node X.  The node in each source cluster with the maximum 

end-to-end capacity to node X is chosen as the source cluster head.  

       The information related to IP aliasing, when available, will yield better source 

clusters.  The IP alias resolution is the process of identifying IP addresses belonging to 

the same router (Ken Keys, CAIDA).  Each router in the network can have two or more 

interfaces and each interface will have a different IP address.  Since traceroute is used for 
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constructing the topology, the traceroute results can have multiple addresses that point to 

the same router.  Hence, with IP alias information, the clustering algorithm will identify 

nodes that share the same router even though the IP addresses of the routers in their 

respective paths are different. 

        The router connecting nodes A, B and X in Figure 10, has an IP addresses for each 

of its three interfaces.  Hence, without the IP alias information, the source cluster on node 

X may not contain nodes A and B in the same cluster even though these nodes share the 

same router on their first hop to node X.  This could result in more number of clusters 

thus increasing the number of AB measurements. 

X

A B

193.174.67.2193.174.67.1

193.174.67.13

 

    Figure 10 – IP Aliasing 

 

        However, the IP aliasing information is not required for destination clusters because 

the data from node X to nodes A and B is always transmitted through a single interface 

that is going into the router. 
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4.5 Inference Algorithm 

          This section describes the AB inference algorithm executed on all nodes in the 

network.  With this, the AB between any two nodes (A and B) in the network can be 

inferred in a short time from any node X.  The source and destination cluster information 

will be used to reduce the total number of AB measurements during the inference 

process.  

The following notation is used in this section: 

N = {X, X1, X2, X3…Xn-1} is the set of ‘n’ nodes in the network 

DA: Destination cluster on node A 

SA: Source cluster on node A 

H(DA): Head of a destination cluster on node A 

H(SA):  Head of a source cluster on node A 

DA(B): Destination cluster on node A containing node B 

SA(B):  Source cluster on node A containing node B 

H(DA(B)):  Head of destination cluster on node A containing node B 

H(SA(B)):  Head of source cluster on node A containing node B 

 A  B:  Available bandwidth from node A to node B.  

 

         Each node Xi performs measurements from itself to all the destination cluster heads. 

Similarly it also requests the heads of all source clusters for the available bandwidth 

information from the head of source clusters to itself.  With this information, the 

available bandwidth between any two nodes A and B is inferred as follows: 
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Step – 1: Lookup AB from A and Head of the destination cluster on A containing B 

A  H(DA(B))               (1) 

Step – 2: Lookup AB from Head of the source cluster on B containing A to B 

H(SB(A))  B                (2) 

Step – 3:  Infer AB using (1) and (2) 

 A  B = min{ A  H(DA(B))  and H(SB(A))  B }                    (3) 

       The end-to-end path between two nodes will have multiple hops and the available 

bandwidth is usually equal to the bandwidth on hop that  is the minimum of all hops. 

Hence, we choose the minimum of the two AB measurements and not the average or 

maximum in equation (3) above. 

          Consider the scenario of possible overlaps between measurements used for 

inferring the bandwidth on a path between two nodes A and B as shown in Figure 11.  

The points E and F are intermediate points on the path from A to B where the path AB 

intersects with paths CB and AD respectively. 



 

 30

A

B

C = H(SB(A))

D = H(DA(B))

E

F

 

Figure 11 – AB Inference from A to B with Overlapping path EF 

 

             Note that in the case of overlapping paths, the paths that do not overlap with the 

intended path, DF and CE should not contain smaller bandwidth than the overlapped 

paths because we chose the cluster head nodes that have maximum capacity and hence 

we expect these links to have higher bandwidth. 

           In the case where there is no overlap, as shown in Figure 12, the portion of 

requested path that is not covered by the measured paths, XY, is assumed to be 

bottleneck free.  
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A

B

C = H(SB(A))

D = H(DA(B))

X

Y

 

Figure 12 - AB Inference from A to B with Non-overlapping path XY 

 

           Also, we assume that the overlapping path EF in Figure 11and the non-

overlapping path XY in Figure 12 are not bottlenecks because these are the core links that 

are expected to be well provisioned fibre optic links that have high capacity and 

bandwidth as opposed to the last mile links, AE, FB, AX and YB.
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4.6 AB Inference Examples 

          Assume a network N containing nodes, where:  

N = {X, X1, X2, X3…Xn-1}  

is the set of ‘n’ nodes in the network 

           Assume the AB inference client executing on node X is interested in AB metric 

between X and some other node Xi in the network. 

           At each node in the network, the computations shown in (1) and (2) below are 

performed periodically.  For example at node X, the following metrics are computed 

periodically: 

(a) Measure AB from X to head of all destination clusters   

X  H(DX)                                                                             ( 1 ) 

(b) Measure AB from head of source clusters to X 

H(SX)  X                                                      ( 2 ) 

Computing (1) is straightforward and it can be measured on node X itself. 

Computing (2) is as follows: 

       For each source cluster S
X 
on X 

  Contact H(S
X
) requesting for AB from H(S

X
) to X computed 

at H(S
X
) 

 

Example - 1  

Infer AB from node X and say node X3 

Assume X3 is the head of a destination cluster on node X 
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The AB from X to X3 is a simple lookup as the value was obtained in  (1) above. 

 

Example – 2  

Infer AB from node X and say X4 

Assume X4 is NOT head of any destination cluster on node X 

           X  X4  = min { ABVal_1,  ABVal_2 }       ( 3 ) 

Computing ABVal_1 

ABVal_1 is computed on node X as follows: 

1) A lookup on X4 will provide the destination cluster X4 is part of and also the head 

of that destination cluster, H(DX(X4)). 

2) Run pathchirp to get AB from node X to H(DX(X4)) 

X  H(DX(X4))                                             ( 4 ) 

Computing ABVal_2 

ABVal_2 is computed on node X4 as follows: 

1) A lookup on X in the source clusters will provide the source cluster X is part of.  

2) Using the cluster information, lookup for the head of that source cluster, 

H(SX4(X)). 

3) Run pathchrip to get AB from node H(SX4(X)) to X4 

            H(SX4(X))  X4           ( 5 ) 

 

Finally, compute (3) using (4) and (5) to complete inference on AB from node X to X4. 

X  X4  = min { X  H(DX(X4)),  H(SX4(X))  X4 } 
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5 Experimental Evaluation 
 
          In this section, we discuss the software tools both third-party software as well as 

software developed for this experiment, a PlanetLab (PlanetLab: Global Research 

Network) testbed used for evaluating the AB inference algorithm and the test results.  

5.1 Software Tools 

        The project involved processing a large number of traceroute output files generated 

using Scalable Sensing Service (S3) (Praveen Yalagandula, 2006).  Perl scripts were 

developed to parse these files to generate information pertaining to routes between 

different nodes in the system.  These routing data files were further analyzed using a 

distributed AB inference algorithm.  The algorithm was implemented using Java as it is 

suitable for distributed computing.  

5.2 PlanetLab 

        PlanetLab is a network testbed that has evolved over a period of time to aid 

researchers in conducting distributed experiments in network measurement, peer-to-peer 

networks, content distribution, resource management, authentication, distributed file 

systems, and many other areas (Neil Spring, 2006 ).  A wide number of experiments are 

in progress at any time on around 700 nodes located around the world.  

5.3 Scalable Sensing Service – S3 

        S3, a scalable, secure and reliable service was developed to provide the system 

states, both individual node as well as the network in real time (Praveen Yalagandula, 
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2006).  The S3 architecture includes web-based sensor pods used to execute and collect 

data periodically.  The sensor pods shown in Figure 13 provide a secure web interface 

that provides APIs to query, control and notify events.  The backend includes a controller 

that triggers management agents and a repository containing policies and test results.  

 

 

Figure 13 - S3 Sensor Pod 

    (Praveen Yalagandula, 2006) 

 

        An implementation of S3 module is available on PlanetLab testbed.  The secure web 

interface is provided by BOA (Boa Web Server, 2005), a single-tasking embedded web 

server, designed for speed and security.  It is written in C and has been ported to many 

UNIX flavors.  The sensor pods are implemented as CGI scripts that invoke network 
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management and measurement applications such as ping, traceroute, pathneck, pathchrip 

etc. 

5.4 End-to-End Available Bandwidth Measurement tools 

       There are a number of publicly available bandwidth estimation tools based on 

different methodologies.  The different tools include: abing, cprobe, pathchirp, pathload 

and Spruce.  In (Alok Shriram M. M., 2005), the authors compare these tools for 

accuracy and operational characteristics along with the factors that impact the tools 

performance.  The bandwidth estimation tools have to be very fast and less intrusive as 

accurate results are required in real-time.  This section provides a brief description of 

some of these tools. 

  

5.4.1 Pathload 

         Pathload estimates the end-to-end available bandwidth by sending stream of UDP 

packets at a rate higher than the available bandwidth in the path.  The relative one-way 

packet delays show an increasing trend when the packet stream rate is higher and no 

delay when the stream rate is lower than the available bandwidth (Dovrolis).  It uses a 

fleet of N streams to estimate the available bandwidth.  The drawback with this tool is 

that it has to be executed on both the sender and receiver to determine the available 

bandwidth between them.  
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5.4.2 Spread PaiR Unused Capacity Estimate (Spruce) 

        Spruce derives estimates of available bandwidth from the amount of delay 

introduced by the network between paired packets.  It sends 14 back-to-back UDP packet 

pairs with a waiting interval of 160-1400 ms between pair probes (Alok Shriram M. M., 

2005).  Each packet is time-stamped at both the sender and receiver ends and the sender 

estimates the available bandwidth based on the packet inter-arrival time.  One drawback 

of this tool is that the internal algorithm requires the available capacity between the 

sender and receiver. 

  

5.4.3 Pathchirp 

         Pathchrip is an active probing available bandwidth estimation tool that uses an 

exponentially spaced chirp probing train (Vinay J. Ribeiro, 2003).  The primary 

advantage of this technique over the packet pair techniques used by pathload and spruce 

is that the number of packets is reduced by half.  It estimates the available bandwidth 

along a path by launching a number of packet chirps from sender to receiver and then 

conducting a statistical analysis at the receiver. 

5.4.4 Conclusion - AB Measurement Tool 

         Based on the experimental results described in (Alok Shriram M. M., 2005), 

pathchirp is considered as one of the better tools for measuring available bandwidth and 

hence is used in this project. 
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5.5 Deployment 

        The experiments were conducted on data collected from PlanetLab network that 

includes computers located in various parts of the world.  

5.5.1 Network Data Collection 

        The first step involved identifying the topology of the test bed by generating 

traceroute information from each node to every other node in the network.  The process 

resulted in large number of text files containing the traceroute information at each node. 

       Here are the steps followed to gather the data on the PlanetLab network: 

a. Each node on the PlanetLab network has a BOA web server and a S3 

service sensor pod in the form of a CGI script that supports applications 

including ping, traceroute, pathneck etc. 

b. On each node, start the CGI script with the command "traceroute", 

destination set to other nodes in PlanetLab and source set to local node. 

c. The previous step will result in one traceroute file per destination for each 

source node.  For example: Five nodes will result in permutation(5, 2) or 

20 traceroute output files. In general with “n” nodes, we would have 

permutation(n,2) traceroute files. 

d. A Perl script was developed to pre-process the traceroute output file and 

generate another set of files containing the routing information.  The 

resulting file is per destination similar to the ones generated in step (b) 
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above but the contents are stripped to contain just the traceroute output 

starting from the first hop to the last known good hop.  

        The traceroute application is executed on all nodes and the routing information is 

gathered to and from every other node in the network because of the possible asymmetry 

in the results. 

5.5.2 Clustering Analysis 

        The AB inference algorithm can be used in many applications and some of these 

applications may have limitations on the number of measurements that can be performed 

periodically.  Hence, it is useful for the application to configure the AB inference engine 

to accept the number of clusters as a configuration parameter and to cluster the nodes into 

the required number of clusters.  

        This section describes the results obtained by using various clustering techniques 

and will be useful for determining the appropriate clustering technique based on the 

application use case.  The clustering algorithm, CAN, described in section 4.4.4, is based 

on common path index.  The CPI, as described earlier, is the number of routers common 

along the paths between two nodes from the client node.  

5.5.2.1 Destination Cluster Analysis 
 
          The experiment was run on PlanetLab network and there were 278 active nodes 

when the traceroute results were captured.  The clustering techniques, shown in Figure 

14, are numbered 1 to 9, where technique #1 is most conservative method resulting in as 

few clusters as possible. Technique #1 clusters all nodes that share at least one hop 
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(Minimum CPI) from the client node while technique #1 attempts to cluster nodes that 

share the maximum number of hops (Maximum CPI) from the client node.  Technique #3 

considers the average CPI and the rest of the methods are averages of prior methods. 

 

Figure 14 - Clustering Analysis 

 The number of destination clusters created for each of the 278 nodes was used to 

compute the average number of destination clusters shown in Table 1.  Similarly, the 

same data was used to determine the maximum number of destination clusters created for 

each technique.  

Clustering technique 1 6 4 7 3 8 5 9 2
Avg. Destination Clusters 1 4 5 5 7 9 14 19 41
Max. Destination Clusters 46 113 116 106 136 187 220 226 156

 
Table 1- Destination Cluster Data 
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Figure 15 – Destination Clustering Analysis 

 

5.5.2.2 Source Cluster Analysis 
 
           Similar to the destination clusters, the number of source clusters created for each 

of the 278 nodes was used to compute the average number of source clusters shown in 

Table 2.  Also, the same data was used to determine the maximum number of destination 

clusters created for each technique.  

 

Clustering technique 1 6 4 7 3 8 5 9 2
Avg. Source Clusters 1 19 24 22 30 32 38 44 63
Max. Source Clusters 61 61 65 66 66 68 105 117 166

 
Table 2 - Source Cluster Data 
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Figure 16 - Source Cluster Analysis 

 

5.5.2.3 Conclusion – Cluster Analysis 
        
         From the results for both the source and destination cluster analysis, we see that the 

average number of source and destination clusters created increased linearly as expected 

from the most conservative technique, #1 to the most restrictive technique, #9.  This 

information can be used to determine the best technique suitable for a node.  Depending 

on the memory availability on the node, the node may decide to choose one that creates 

fewer clusters. 

 

5.5.3 Available Bandwidth Inference Measurements 

          The algorithm described in this paper was tested on PlanetLab (PlanetLab: Global 

Research Network) and Emulab (Emulab - Network Emulation Testbed, 2002 ) networks 

as they provide a geographically distributed platform suitable for this project. The tests 

included executing the AB inference engine for different nodes located in US and 
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Europe.  The Java application accepted configuration parameters that allowed the user to 

choose the test node, the clustering technique and the number of measurements to be 

performed.  Clustering technique #3, with average CPI was chosen as the clustering 

method of these tests.  A set of five nodes were chosen based on their geographical 

location to get a good representation of all the nodes as we are testing a node-centric 

algorithm.  We discuss the results for two of these nodes in this paper.  

 

5.5.3.1 Node Results: planetlab1.xeno.cl.cam.ac.uk 
 
          A subset of AB inference measurements for node planetlab1.xeno.cl.cam.ac.uk is 

shown in Figure 17.  For each node, the inferred AB value was computed and compared 

against the actual value to determine its deviation.  

Destination  Actual AB  Inferred AB Deviation 
Planetlab1.ie.cuhk.edu.hk 24.254921 26.68211 -10.007 
planet1.zib.de 20.964064 22.809776 -8.80417 
plab1-itec.uni-klu.ac.at 16.052383 17.444479 -8.67221 
ent1.cs.nccu.edu.tw 8.046409 8.607523 -6.97347 
Planetlab1.isi.jhu.edu 27.019152 28.900839 -6.96427 
Planetlab1.cs.stevens-tech.edu 25.016403 26.735878 -6.87339 
planet2.cs.ucsb.edu 22.918459 24.481089 -6.81822 
Planetlab04.cs.washington.edu 4.234247 4.488182 -5.99717 
Planetlab2.csres.utexas.edu 23.555752 24.886576 -5.64968 
planetlab-01.naist.jp 26.833254 28.292778 -5.43924 
planet2.l3s.uni-hannover.de 22.517841 23.686703 -5.19083 
planetlab2.elet.polimi.it 23.176973 24.347116 -5.04873 
pl4.planetlab.uvic.ca 16.74947 17.570864 -4.904 
planetlab-02.naist.jp 24.847546 26.038326 -4.79234 
planetlab1.eecs.wsu.edu 26.709494 27.957735 -4.6734 
planetlab1.cs.purdue.edu 25.714848 26.90719 -4.63678 
planetlab1.een.orst.edu 25.650787 26.756716 -4.31148 
planetlab1.ceid.upatras.gr 14.30161 14.838045 -3.75087 
planetlab11.millennium.berkeley.edu 16.575321 17.170305 -3.58958 
planet-lab1.ufabc.edu.br 23.674725 24.453465 -3.28933 
planetlab4.cse.nd.edu 4.916461 5.071445 -3.15235 
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planetlab1.uc.edu 23.73589 24.281046 -2.29676 
planetlab02.erin.utoronto.ca 21.4526 21.890673 -2.04205 
planetlab3.mini.pw.edu.pl 2.857143 2.891776 -1.21215 
planetlab1.cslab.ece.ntua.gr 27.536064 27.674194 -0.50163 
planetlab3.xeno.cl.cam.ac.uk 25.465683 25.536839 -0.27942 
planet1.l3s.uni-hannover.de 24.052637 23.909071 0.596883 
planetlab4.inf.ethz.ch 5.52935 5.477408 0.939387 
planetlab-01.ece.uprm.edu 27.836956 27.443813 1.412306 
planetlab1.ewi.tudelft.nl 24.059845 23.709812 1.454843 
planetlab-5.cs.princeton.edu 28.467436 27.777857 2.422343 
planetlab-03.naist.jp 29.014782 27.502525 5.212023 
planetlab1.ics.forth.gr 27.76452 26.308847 5.242925 
planetlab1.elet.polimi.it 26.719261 25.275772 5.402429 
planetlab1.sfc.wide.ad.jp 27.599812 26.072556 5.533574 
planetlab3.hiit.fi 3.887295 3.665266 5.711658 
planetlab1.dtc.umn.edu 27.698046 26.111338 5.728592 
planetlab-1.di.fc.ul.pt 26.748945 25.152641 5.967727 
planetlab1.cse.nd.edu 27.20229 25.52785 6.155511 

 

Figure 17 – AB Inference Measurement Subset (planetlab1.xeno.cl.cam.ac.uk) 

        

            Of the 278 available nodes, only 47% or 133 measurements were successful 

because either the end node was down for maintenance because of which the actual value 

was unavailable or the clusters heads were down because of which the inferred value was 

unavailable.  Of these successful results, 80.45% of the inferred values lie within + 50% 

of the actual value.  
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Figure 18 - Actual vs. Inferred Available Bandwidth (planetlab1.xeno.cl.cam.ac.uk) 

 
         We plot the actual and inferred values of AB in Figure 18.  The results are scattered 

but we see that the actual values are clustered around two points, 5Mbps and 30Mbps, 

and in these cases, the inferred value closely matches the actual value.  Figure 19 is the 

plot of the cumulative distribution function.  
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Figure 19 - CDF of Deviation in Inferred AB (planetlab1.xeno.cl.cam.ac.uk) 

 

Spearman Rank Order Correlation Coefficient 

        The correlation coefficient is a number that can be used to determine the strength of 

association between two variables.  We use the Spearman rank order correlation 

coefficient to determine the association between the actual AB and the inferred AB 

values.  

          To  determine the Spearman’s rank correlation coefficient, we rank both the actual 

AB and the inferred AB values from the node planetlab1.xeno.cl.cam.ac.uk to all the 

other nodes in the network in ascending order.  Let the actual rank and inferred ranks of 

an ith pair of nodes with actual AB ai and inferred AB ii be ri
a and ri

i.  The Spearman’s 

rank correlation  (Wiki: Spearman’s rank correlation coefficient, 2008) can be computed 

using the equation shown below : 
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        The value of sr will be between +1, where a negative value indicates strong negative 

correlation and a positive value indicates a strong positive correlation.   

Interpreting Spearman’s Rank Correlation Coefficient 

         The spearman’s coefficient, sr , is compared against the critical values shown in 

Figure 20.  The value N is the number of pairs of values used to compute the coefficient 

and the values 0.05, 0.02 and 0.01 indicate the significance level.  For ex: if  sr = 0.71 

with N=16, then the value sr  is likely to occur by chance less than 1 out of 100 attempts 

indicating a strong correlation between the pair of values used to compute sr . 

N (the number of 
pairs of values): 

0.05 0.02 0.01 

5 1 1  
6 0.886 0.943 1 
7 0.786 0.893 0.929 
8 0.738 0.833 0.881 
9 0.683 0.783 0.833 

10 0.648 0.746 0.794 
12 0.591 0.712 0.777 
14 0.544 0.645 0.715 
16 0.506 0.601 0.665 
18 0.475 0.564 0.625 
20 0.45 0.534 0.591 
22 0.428 0.508 0.562 
24 0.409 0.485 0.537 
26 0.392 0.465 0.515 
28 0.377 0.448 0.496 
30 0.364 0.432 0.478 

 

Figure 20 - Critical values for sr  (Wiki: Rhotable) 

Where Σ = summation,  
             d = (ri

a - ri
i) and  

             n = number of measurements 
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           The table in Figure 21 shows a subset of the rank ordering and difference ‘d’ 

calculations for some of the measurements shown in Figure 17.  

 

 

 

 

 

 

 

 

   

        The total number of measurement, n = 133 and Σ is 94673.  Hence the value 

computed,  sr  = 1-(6*94673 / (133*(133*133-1))) = 0.7585.  Based on the information in 

Figure 20, the value of 0.7585 suggests a fairly strong positive correlation between the 

actual and inferred AB for the node planetlab1.xeno.cl.cam.ac.uk.  

5.5.3.2 Node Results: vn1.cs.wustl.edu 
 
        The results for node, vn1.cs.wustl.edu, is briefly discussed in this section.  A subset 

of measurements for this node is shown in Figure 22.  

 

 

Actual Rank Inferred Rank D1 D2 
21 98 -77 5929 
1 30 -29 841 
3 29 -26 676 
39 79 -40 1600 
37 73 -36 1296 
41 69 -28 784 
5 22 -17 289 
50 123 -73 5329 
48 94 -46 2116 
35 60 -25 625 
32 52 -20 400 
30 51 -21 441 
59 131 -72 5184 

Figure 21 - Spearman's Rank Order Correlation Coefficient 
Subset (planetlab1.xeno.cl.cam.ac.uk) 
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Destination  Actual AB  Inferred AB Deviation 
plab-2.sinp.msu.ru 5.567828 6.015182 -8.03462 
planetlab1.cse.nd.edu 4.5641 4.913298 -7.65097 
planetlab5.cs.duke.edu 4.264096 4.565757 -7.07444 
planetlab2.byu.edu 7.183977 7.650455 -6.49331 
planetlab-3.imperial.ac.uk 6.408414 6.799259 -6.09893 
phil.cc.vt.edu 6.426438 6.77126 -5.36568 
planetlab06.mpi-sws.mpg.de 5.408039 5.690492 -5.22284 
planetlab1.cis.upenn.edu 6.260821 6.563991 -4.84234 
planetlab03.cnds.unibe.ch 5.900004 6.158718 -4.38498 
planetlab1.fit.vutbr.cz 6.289565 6.516424 -3.60691 
planetlab2.inf.ethz.ch 5.610929 5.775923 -2.94058 
planetlab-4.cs.princeton.edu 6.480654 6.620143 -2.15239 
planetlab04.cnds.unibe.ch 4.439945 4.462431 -0.50645 
planetlab1.eecs.wsu.edu 5.602197 5.61886 -0.29744 
node-1.mcgillplanetlab.org 5.114754 5.129586 -0.28998 
mars.planetlab.haw-hamburg.de 4.306139 4.307919 -0.04134 
planetlab4.flux.utah.edu 6.302859 6.283828 0.301942 
vn3.cs.wustl.edu 106.26028 105.933716 0.307325 
planetlab1.eecs.jacobs-university.de 6.572195 6.536201 0.547671 
planetlab01.cnds.unibe.ch 6.619369 6.566646 0.796496 
vn2.cs.wustl.edu 105.84175 104.47282 1.293374 
planetlab1.unl.edu 6.224894 6.112179 1.810714 

 

Figure 22 - AB Inference Measurement Subset (vn1.cs.wustl.edu) 

          In this case, of the 278 nodes, only 25% or 72 measurements were successful.  Of 

these successful results, 90.27% of the inferred values lie within +50% of the actual 

value.  Figure 23 and Figure 24 show the actual vs. inferred and the CDF respectively.  
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Figure 23 - Actual vs. Inferred Available Bandwidth (vn1.cs.wustl.edu) 
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Figure 24 - CDF of Deviation in Inferred AB (vn1.cs.wustl.edu) 
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Spearman Rank Order Correlation Coefficient 

        The table in Figure 25shows a subset of the rank ordering and difference ‘d’ 

calculations for some of the measurements shown in Figure 22.  

Actual Rank Inferred Rank D1 D2 
16 70 -54 2916 
20 67 -47 2209 
35 69 -34 1156 
45 68 -23 529 
36 66 -30 900 
8 43 -35 1225 
9 37 -28 784 
33 61 -28 784 
4 26 -22 484 
14 38 -24 576 
7 27 -20 400 
22 54 -32 1024 
27 58 -31 961 
32 57 -25 625 

 

Figure 25 - Spearman's Rank Order Correlation Coefficient Subset 
(vn1.cs.wustl.edu) 

 

          The total number of measurement, n = 72 and Σ is 37100. Hence the value 

computed,  sr  = 1-(6*37100 / (72*(72*72-1))) = 0.403499. Based on the information in 

Figure 20, the value of 0.403499 suggests a fairly strong positive correlation between the 

actual and inferred AB for the node vn1.cs.wustl.edu.  
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6 Related Work 
 
          Estimating end-to-end bandwidth is challenging because of its dynamic nature and 

a number of tools have been developed to measure it.  In a comparison study of 

bandwidth measurement tools, bandwidth estimation experiments were conducted on a 

high-speed testbed using publicly available bandwidth estimation tools (Alok Shriram M. 

M., 2005).  The different tools included: abing, pathchrip, pathload and Spruce.  The 

accuracy and operational characteristics of these tools and the factors that impact the 

tools performance are analyzed.  The authors concluded that pathload and pathchirp are 

the most accurate tools for their experiments. 

       While estimating AB is challenging, inferring end-to-end AB is more interesting and 

has a wide range of applications.  End-to-End AB is dependent on the available 

bandwidth along the links that form the path.  The bottleneck link, the one with the 

smallest residual bandwidth is also the weakest link that determines the AB of the entire 

path.  The authors of BRoute claimed that the bottleneck links are primarily the links near 

the end hosts termed edge segments, and hence only measured the AB on these links to 

estimate the bandwidth of all paths (Ningning Hu, 2005).  BRoute proposed two modes 

for collecting end segment bandwidth, an infrastructure mode and a peer-to-peer mode. 

The former used landmarks to which all nodes perform measurements or decide a subset 

of paths to measure.  However, each bandwidth landmark can support only a limited 

number of nodes.  The peer-to-peer mode is designed such that the nodes perform AB 

measurements in a co-operative fashion.  This method scales better than the infrastructure 
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mode as this decentralizes the measurement process but frequent route changes makes the 

measurements more complicated.  A study by (Alok Shiram, 2003) showed that 

identifying potential bottlenecks for each path based on links with minimum available 

bandwidth leads to false positives. 

         Research by (Alok Shriram S. B., 2007) describes three scalable algorithms with 

decreasing probe overhead.  The algorithm are based on end-to-end AB measurements 

over a subset of nodes in the network as opposed to AB measurements over last hop links 

as described in previous approaches.  The crux of the algorithms is to group together 

nodes that are likely to share bottleneck links and to select well provisioned head nodes 

for each node’s cluster.  The AB measurements are performed from each head-node to 

nodes outside the cluster and the AB from other members of the cluster is then inferred 

using the measurement from the head-node.  The techniques described in (Alok Shriram 

S. B., 2007) are evaluated on PlanetLab using the scalable sensing network service. 

        This paper takes one step further in developing a scalable AB inference algorithm 

that is also distributed.  By distributing the computation across the various nodes in the 

network, the actual number of AB measurements is reduced and hence the computation 

time.  The tests are performed using the current AB estimation tools that are more 

accurate compared to tools developed in the past.  The combination of current AB 

estimation tools and a distributed algorithm for inferring AB has resulted in 80% of the 

values within a deviation of +50%  for some nodes. 
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7 Conclusion 
 

        The primary goal of this project was to reduce the total number of AB measurements 

in a large network and at the same time lower the error rate on AB inference compared to 

existing techniques.  The results on the PlanetLab network were very promising but not 

stellar.  Since the inference algorithm described in this paper is node-centric, the results 

were mixed based on tests conducted on a set of nodes.  The number of successful 

measurements was only around 50% after repeated attempts because of network topology 

problems.  For few nodes, 80% of the measurements were in the deviation range of + 

50% which matches the results from an existing inference algorithm described in 

(Ningning Hu, 2005).  However, for some of the nodes, there was a weak correlation 

between the actual AB value and the inferred AB value.  Since the algorithm is node-

centric, the weak correlation is observed for some nodes and is related to the selection of 

cluster heads.  The correlation can be improved by adapting a different clustering 

technique for each node.  Since the technique is based on distributed computing, the 

solution is highly scalable and seamlessly integrates new nodes that are added to the 

network.  The results on the PlanetLab testbed were promising for some nodes and hence 

the engine can be deployed by websites that distribute content from multiple geographical 

locations. 

7.1 Future Work 

        The AB inference algorithm described in this paper is a first step towards providing 

a distributed and scalable AB estimation solution.  As mentioned earlier, the results look 
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promising for certain nodes and there is scope for improvements for nodes that had weak 

correlation between the actual and inferred values.  First, this paper proposes various 

clustering techniques that are tuned based on the common path index between all nodes 

in the network.  For the case study on PlanetLab, one of the techniques was chosen for all 

nodes.  However, since the algorithm is node-centric further investigations are needed to 

evaluate the best clustering technique for each node.  This may require some trial and 

error method to find the best cluster head(s) using the techniques described in this paper 

until the inference error is significantly reduced.  

         Second, the clustering method discussed here determines the cluster head and then 

forms clusters around the cluster head.  An alternative approach that needs further 

investigation is to first group nodes that share a common metric and then select a cluster 

head that is superior compared to other nodes in terms of the chosen metric.  This could 

result in better cluster formation thus leading to reduction in inference error. 

        Finally, the clustering algorithm discussed in this paper is a variant of K-means, one 

of the partitioning algorithms.  The software developed for this project is modular and 

designed to dynamically swap the clustering algorithm.  Future research in this field can 

take advantage of this feature by reusing the software to test other clustering algorithms 

in an attempt to reduce the inference error.  
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