
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2008

Exact and Approximation Algorithms for
Computing Reversal Distances in Genome
Rearrangement
Euna Park
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Park, Euna, "Exact and Approximation Algorithms for Computing Reversal Distances in Genome Rearrangement" (2008). Master's
Projects. 104.
DOI: https://doi.org/10.31979/etd.qm9e-d3gt
https://scholarworks.sjsu.edu/etd_projects/104

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70407855?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/104?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Exact and Approximation Algorithms for Computing

Reversal Distances in Genome Rearrangement

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Euna Park

Spring 2008

© 2008

Euna Park

ALL RIGHTS RESERVED

 ii

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Sami Khuri

Dr. Robert Chun

Mr. Frank Butt

APPROVED FOR THE UNIVERSITY

 iii

Acknowledgements

First of all I would like to express my gratitude to Dr. Sami Khuri of San Jose State
University for providing the motivation, resources, and invaluable advice for me to
accomplish this writing project.

I would also like to express my appreciation to Dr. Robert Chun of San Jose State
University for his support, comments on my work, and valuable academic advice.

And special thanks go to Mr. Frank Butt not only for providing useful comments but
also for encouraging and pushing me to accomplish this long academic goal.

I am also grateful for my co-workers, Alvin Cho, Amy Cho, and Frank Chan, who
proofread this paper patiently taking the time out of their busy schedules.

Finally, I would like to dearly thank my husband, Sean, for his enduring patient and
my two kids, Erin and Andrew, for understanding my busy schedule.

 iv

Abstract

Genome rearrangement is a research area capturing wide attention in molecular biology.
The reversal distance problem is one of the most widely studied models of genome
rearrangements in inferring the evolutionary relationship between two genomes at
chromosome level. The problem of estimating reversal distance between two genomes is
modeled as sorting by reversals. While the problem of sorting signed permutations can
have polynomial time solutions, the problem of sorting unsigned permutations has been
proven to be NP-hard [4]. This work introduces an exact greedy algorithm for sorting by
reversals focusing on unsigned permutations. An improved method of producing cycle
decompositions for a 3/2-approximation algorithm and the consideration of 3-cycles for
reversal sequences are also presented in this paper.

 v

TABLE OF CONTENTS:

1. Introduction...1

2. Terminologies ...2

3. Greedy Approach for 2-Approximation Algorithm ..5

4. Cycle Decomposition Approach for 3/2-Approximation ..7

5. Exact Greedy Algorithm..13

6. Cycle Decomposition using Vertex Cover ...15

7. Generating 2-reversals using 3-cycles..22

8. Running Time..27

9. Experimental Runs ..27

10. Conclusion ..28

Appendix A...30

References...37

LIST OF ALGORITHMS:

Algorithm 1. 4-approximation algorithm [1] ..6

Algorithm 2. 2-approximation algorithm [8] ..7

Algorithm 3. 3/2-approximation algorithm for signed permutations [6]11

Algorithm 4. 3/2-approximation algorithm for sorting by reversals [11]13

Algorithm 5. Exact greedy algorithm...14

Algorithm 6. Algorithm using vertex cover [11] ..22

Algorithm 7. Approximation algorithm using 2 and 3-cycles ...26

 vi

LIST OF FIGURES:

Figure 1. Breakpoints of π = 2 3 1 6 5..4

Figure 2. A breakpoint graph G(π) of π = 3 1 5 2 6 4 ...4

Figure 3. A cycle decomposition of G(π) ...5

Figure 4. Another cycle decomposition of G(π) ...5

Figure 5. Breakpoint graphs G(π) and G(π’) ..9

Figure 6. An unoriented 2-cycle in G(π) ..10

Figure 7. Breakpoint graph after a reversal [7, 1] from Figure 5.....................................10

Figure 8. Breakpoint graph G(π) [11] ..11

Figure 9. Two 2-cycles which share a gray edge in a breakpoint graph G(π) [11]...........12

Figure 10. Exact greedy algorithm path ...15

Figure 11. Matching Graph F(π) for π = 9 3 4 6 5 8 7 1 10 2..16

Figure 12. A maximum matching M of F(π) for π = 9 3 4 6 5 8 7 1 10 2........................16

Figure 13. Ladder graph L(M) from M in Figure 12 ..17

Figure 14. Another maximum matching M of F(π) for π = 9 3 4 6 5 8 7 1 10 217

Figure 15. Ladder graph L(M) from M in Figure 14 ..17

Figure 16. Two-cycle graph T(π) from Figure 8...18

Figure 17. Minimum vertex cover V’ and V-V’ in T(π) from Figure 1618

Figure 18. A 2-cycle set of a breakpoint graph G(π) ..19

Figure 19. Two-cycle graph T(π) from Figure 18...19

Figure 20. Steps of determining edge disjoint 2-cycles using vertex cover V’21

Figure 21. Edge-disjoint 2-cycles of Figure 18 ..21

Figure 22. Two shapes of 2-cycles in G(π)...23

 vii

Figure 23. Eight shapes of 3-cycles in G(π) ...24

Figure 24. The cycles after each reversal from Figure 23...25

LIST OF TABLES:

Table 1. Performance comparison of the three algorithms..30

Table 2. Performance comparison of the two approximation algorithms, permutation size

20 ..30

Table 3. Performance comparison of the two approximation algorithms, permutation size

30 ..30

Table 4. Performance comparison of the two approximation algorithms, permutation size

40 ..31

Table 5. Performance comparison of the two approximation algorithms, permutation size

50 ..31

Table 6. Performance comparison of the two approximation algorithms, permutation size

60 ..31

Table 7. Performance comparison of the two approximation algorithms, permutation size

70 ..32

Table 8. Performance comparison of the two approximation algorithms, permutation size

80 ..32

Table 9. Performance comparison of the two approximation algorithms, permutation size

90 ..32

Table 10. Performance comparison of the two approximation algorithms, permutation

size 100 ...33

 viii

Table 11. Performance comparison for the consideration of 3-cycles, permutation size 20

..33

Table 12. Performance comparison for the consideration of 3-cycles, permutation size 30

..33

Table 13. Performance comparison for the consideration of 3-cycles, permutation size 40

..34

Table 14. Performance comparison for the consideration of 3-cycles, permutation size 50

..34

Table 15. Performance comparison for the consideration of 3-cycles, permutation size 60

..34

Table 16. Performance comparison for the consideration of 3-cycles, permutation size 70

..35

Table 17. Performance comparison for the consideration of 3-cycles, permutation size 80

..35

Table 18. Performance comparison for the consideration of 3-cycles, permutation size 90

..35

Table 19. Performance comparison for the consideration of 3-cycles, permutation size

100 ..36

 1

1. Introduction

Gene ordering is changed by a genome rearrangement event and the genomic architecture
of a species is altered by a series of genome rearrangements [1]. While the gene level
evolution is measured by local mutations such as insertions, substitutions, and deletions,
genetic evolution at the chromosome level is based on global rearrangement events.
Reversals and translocations are the most common rearrangement events observed in
mammalian genetic evolution. A reversal event changes the order of genes acting on the
same chromosome while a translocation rearranges the genes swapping segments
between two chromosomes.

Since Dobzhansky and Sturtevant introduced an evolutionary tree showing a
scenario with 17 reversals for Drosophila pseudoobscura and Miranda in 1938, analysis
through genome rearrangement by reversals is actively being used to infer the
evolutionary relationship between two different species. In 1984 Nadeau and Taylor
estimated that about 250 genomic rearrangement events have occurred between human
and mice genomes in the process of divergence for approximately 80 million years [1]. In
1987, O’Brien showed that the only difference between the two most well-known
bacteria, Escherichia coli and Salmonella typhimurium, is a reversal of a long substring
of the genomic sequence in terms of gene orders [2].

Genome rearrangement by reversals alone has been considered a worthwhile study to
understand evolutionary distance of different species at the chromosome level.
Algorithmic study of genome rearrangement by reversals has been widely discussed since
Watterson, Ewens, Hall, and Morgan introduced the first definition of the reversal
distance problem in 1982 [3]. Genome rearrangement by reversals provides a good
method of studying evolutionary history between two species. However, finding a series
of rearrangements that transforms one genome into another is a challenging
combinatorial problem. Estimating the reversal distance between two genomes has been
modeled as sorting by reversals problem and the problem has been proven to be NP-hard
by Caprara in 1997 [4].

In 1995 Kececioglu and Sankoff introduced the first approximation algorithm, which
guarantees an approximation ratio of 2, for the problem by using a greedy technique [5].
Algorithmic approach for sorting by reversals problem has been further studied and a 7/4-
approximation algorithm has been proposed by Bafna and Pevzner in 1996 [6]. In their
paper, Bafna and Pevzner introduced the breakpoint graph and the cycle decomposition
technique for the problem. They also showed sorting signed permutations can be solved
easily compared to sorting unsigned permutations.

A signed permutation can be used to represent gene orders for a genome when the
directions of genes are known. Directions of genes are determined by sequencing entire
genomes, which requires significant amount of effort by biologists. Gene orders are also
derived by comparative physical mapping, which most available experimental genome
data are based on. However, physical maps do not provide correct information about gene
directions, thus, unsigned permutations are used to present genomes in most cases. In this
work sorting by reversals refers to sorting unsigned permutations unless it specifically
mentions signed permutation cases.

In 1998 Christie proposed an improved approximation, which achieves a
performance ratio of 3/2. So far the best known algorithm for sorting by reversals has an

 2

approximation ratio of 1.375 [7]. However, Christie introduced a milestone approach of
maximizing edge-disjoint cycles for cycle decompositions using the maximum matching
technique.

This work describes an exact algorithm using the greedy technique and an improved
method of finding the maximum number of edge-disjoint cycles for cycle
decompositions. An improved method of finding a sequence of reversals for achieving
lower reversal distances by using 3-cycles is also presented in this work. The problem
and important terminologies are formally defined in the following section. Section 3 and
Section 4 describe the greedy approach and the cycle decomposition approach,
respectively. The exact greedy algorithm for the problem is presented in Section 5. In
Section 6 a new graph, called the two-cycle graph, is introduced and an improved
technique of generating edge-disjoint cycles using the two-cycle graph is presented. The
consideration of 3-cycles for finding a series of reversals is described in Section 7. The
running time of the approximation algorithm that uses the proposed methods is described
in Section 8. In Section 9, the experimental results of the proposed algorithms are
described. Some concluding remarks are followed in the last section.

2. Terminologies

A couple of milestone papers introduced important concepts used to srdrmtug dy sorting
by reversals problem. Most terms were defined either by Kececioglu and Sankoff [5], or
Bafna and Pevzner [6]. Some of those terms are described in what follows.

Given two permutations σ = (σ1 σ2 . . . σn) and τ = (τ1 τ2 . . . τn), which represent the

order of n genes in two chromosomes, a reversal ρ on interval [i, j] of the permutation (1
[i < j [n+1) transforms σ into the permutation,

σwρ[i, j] = (σ1 σ2 … σi-1 σj σj-1 … σi+1 σi σj+1 … σn).

In essence, σwρ reverses genes σi , σi+1 , … , σj-1 , σj . The reversal distance problem is to
find a series of reversals ρ1, ρ2, ... , ρt such that σ w ρ1 w ρ2 w ... w ρt = τ and t is minimum.
The minimum t denotes the reversal distance between σ and τ.

An inverse permutation is a permutation in which the value of elements and the
position of elements are exchanged. In essence, an inverse permutation undoes the action
of performing a permutation. Applying a permutation and then its inverse permutation is
equivalent to applying the identity permutation, where the identity permutation is given
by ι = (1 2 … n). The reversal distance between σ and τ is equal to the reversal distance
between τqo w σ and the identity permutation ι, where τqo is the inverse of τ that
satisfies τqo w τ = ι. For example, consider

τ = (2 3 1 5 4),
where τ1 = 2, τ2 = 3, τ3 = 1, τ4 = 5, and τ5 = 4. Then,

 3

τqo = (3 1 2 5 4),
where τ1qo = 3, τ2qo = 1, τ3qo = 2, τ4qo = 5, and τ5qo = 4.

We can verify
τqo w τ1 = τ2qo = 1
τqo w τ2 = τ3qo = 2
τqo w τ3 = τ1qo = 3
τqo w τ4 = τ5qo = 4
τqo w τ5 = τ4qo = 5,
which is τqo w τ = ι.

Now we have σ = (5 2 4 1 3),
where σ1 = 5, σ2 = 2, σ3 = 4, σ4 = 1, and σ5 = 3. Then,

τqo w σ1 = τ5qo = 4
τqo w σ2 = τ2qo = 1
τqo w σ3 = τ4qo = 5
τqo w σ4 = τ1qo = 3
τqo w σ5 = τ3qo = 2

We can see that transforming σ into τ is equivalent to transforming τqo w σ into ι.

σ t τ τqo w σ t ι
5 2 4 1 3
5 2 3 1 4
1 3 2 5 4
2 3 1 5 4

4 1 5 3 2
4 1 2 3 5
3 2 1 4 5
1 2 3 4 5

When we take π = τqo w σ as an input permutation, the reversal distance problem

can be modeled as the problem of finding the reversal distance between π and ι, and is
called sorting by reversals problem. The reversal distance between π and ι is denoted by
d(ππππ).

A breakpoint of a permutation π is defined as a pair of adjacent positions in its
identity permutation but not adjacent in π. In other words, (i, i+1) forms a breakpoint if
|π i+1 - π i | g 1, where 0 [i [n. A pair of consecutive elements πi and πi+1 , 0 [i [n, is
called an adjacency if |π i+1 - π i | = 1. The value 0 for π0 and the value n + 1 for πn+1 are
added to handle the boundaries of permutation π. (0, 1) forms a breakpoint if π1 g 1 and
(n, n+1) forms a breakpoint if πn g n. Thus, the maximum number of breakpoints, which
is denoted by b(π), is n + 1 for the permutation of size n and b(ι) = 0, for the identity
permutation ι. Figure 1 shows breakpoints of a permutation π = 2 3 1 6 5 4.

 4

0 h 2 3 h 1 h 6 5 4 h 7f

Figure 1. Breakpoints of π = 2 3 1 6 5

A strip is defined as a sequence of consecutive positions surrounded by breakpoints

but has no internal breakpoints. In other words, an interval [i, j] is a strip if (i-1, i) and (j,
j+1) are breakpoints and there is no breakpoint between them. A strip is defined as an
increasing strip if the elements in the strip are in increasing order or as a decreasing strip
if those are in decreasing order. From Figure 1, [2 3] is an increasing strip and [6 5 4] is a
decreasing strip. A single element strip, except for π0 and πn+1 , can be considered as
either an increasing strip or a decreasing strip. Strips that π0 and πn+1 belong to are always
considered as increasing strips.

A breakpoint graph G(π), which is an edge colored graph derived from permutation
π, is defined with n+2 vertices, 0, 1,…, n, n+1, by connecting two vertices with a black
edge if the two vertices represent two elements that form a breakpoint and with a gray
edge if the two vertices represent two elements that are adjacent in the identity
permutation but not adjacent in π. In other words, two vertices, i and j, are connected by a
black edge if | i - j | = 1 but | πj - πi | g 1 and by a gray edge if | πj - πi | = 1 but | i - j | g 1,
where 0 [i , j [n+1.

Figure 2 shows a breakpoint graph of G(π), for π = 3 1 5 2 6 4. In Figure 2 thick
black lines represent black edges and dotted lines represent grey edges.

Figure 2. A breakpoint graph G(π) of π = 3 1 5 2 6 4

A cycle in a graph G(V, E) is defined for a sequence of vertices, v1 v2 …vm = v1, if (vi,

vi+1) c E for 1 [i [m - 1. In an edge colored graph, a cycle is called alternating if the
colors of every two consecutive edges of the cycle are distinct. A balanced vertex v in an
edge colored graph is a vertex in which the colors are equally distributed among the
edges incident to it. A graph in which every vertex is balanced is called a balanced graph.

The breakpoint graph G(π) is a balanced graph since every vertex has the same
number of black edges and gray edges. A balanced graph has at least one alternating
Eulerian cycle in every connected component, where an Eulerian cycle is a cycle that
visits every edge exactly once and returns to the starting point. Therefore, a breakpoint
graph G(π) contains one or more alternating Eulerian cycles. Figure 3 shows two Eulerian
cycles in the breakpoint graph G(π) from Figure 2.

 5

Figure 3. A cycle decomposition of G(π)

A balanced edge colored graph can be decomposed into cycles which are edge-

disjoint from one another. Thus, an edge disjoint cycle decomposition can be found for a
breakpoint G(π). However, there are many different cycle decompositions for the same
G(π). Figure 4 shows another cycle decomposition for the G(π) from Figure 2.

Figure 4. Another cycle decomposition of G(π)

c(π) denotes the maximum number of cycles derived from a cycle decomposition of

G(π). The size of a cycle is determined by the number of black edges that belongs to it.
An l-cycle denotes a cycle with l black edges. A cycle is called oriented if the cycle
contains a reversal that removes one or two breakpoints. Otherwise, the cycle is called
unoriented. A reversal that removes k breakpoints is denoted by k-reversal, where k
c { 0, 1, 2 }.

3. Greedy Approach for 2-Approximation Algorithm

The first serious approach for sorting by reversals problem was introduced by
Kececioglu and Sankoff in 1995 [5]. They found a greedy algorithm, which provides a
performance ratio of 2 for computing reversal distances. The greedy algorithm is based
on two concepts of gene permutation: breakpoint and strip.

As seen in Section 2, a breakpoint of a permutation π is an adjacent pair of
elements in its identity permutation but not adjacent in π. The identity permutation ι is
the only permutation whose number of breakpoints is zero. Solving sorting by
reversals aims to decrease b(π) to zero. A reversal changes only two breakpoints at the
end of the interval. In other words, a reversal ρ on interval [i, j] affects only two
positions, (i-1, i) and (j, j+1), and removes at most 2 breakpoints.

b(π) - b(π wρ) c {0, 1, 2}

 6

Thus, the greedy strategy is to choose a reversal that decreases b(π) by the largest
number in the current permutation π.

Kececioglu and Sankoff focused on decreasing strips for choosing a reversal that
reduces the number of breakpoints based on Theorem 1.

Theorem 1 [5]
If a permutation π contains a decreasing strip, then there is a reversal ρ that decreases the
number of breakpoints in π, that is, b(π w ρ) < b(π).

A naive greedy algorithm for sorting by reversals can be implemented in the

following way, which achieves a performance guarantee of 4.

Let π be a permutation and ρ be a reversal operation.

SORTINGBYREVERSALS4(π)

1 while b(π) > 0
2 if π has a decreasing strip
3 Among all reversals, choose reversal ρ minimizing b(π w ρ)
4 else
5 Choose a reversal ρ that flips an increasing strip in π
6 π = π w ρ
7 return π

Algorithm 1. 4-approximation algorithm [1]

The greedy algorithm tries to reduce the number of breakpoints. The worst case

occurs when there are no decreasing strips in the current permutation. In that case, one
reversal of any increasing strip is taken to produce a decreasing strip even though it does
not remove any breakpoint. Thus, two reversals are required to remove at least one
breakpoint when there is no decreasing strip remaining in the current permutation. In
other words, SORTINGBYREVERSALS4(π) removes at least one breakpoint in every step if
the current permutation has a decreasing strip and the algorithm eliminates at least one
breakpoint in every two steps if the permutation has no decreasing strips. Thus,
SORTINGBYREVERSALS4(π) performs the permutation sorting in at most 2b(π). The
approximation ratio is at most 2b(π)/d(π), where d(π) refers to the minimal number of
reversals. Considering that at most two breakpoints are eliminated by a reversal, d(π) m
b(π)/2 can be the lower bound of reversal distance. Therefore, SORTINGBYREVERSALS4(π)
guarantees a performance ratio of 4 since 2b(π) / [b(π)/2] = 4 [1].

Kececioglu and Sankoff introduced an important theorem which improves the
performance ratio of the greedy algorithm.

 7

Theorem 2 [5]
Suppose π is a permutation with a decreasing strip. If all reversals that remove
breakpoints from π leave no decreasing strips, then there is a reversal that removes two
breakpoints from π.

This theorem was nicely proven in [5]. Based on Theorem 2 the greedy approach can
achieve a guaranteed approximation ratio of 2.

SORTINGBYREVERSALS2(π)

1 while b(π) > 0
2 if π has a decreasing strip
3 k = the smallest label in a decreasing strip
4 ρ = the reversal that cuts after k and after k-1
5 if π w ρ has no decreasing strip
6 l = the largest label in a decreasing strip
7 ρ = the reversal that cuts before l and before l+1
8 else
9 ρ = the reversal that cuts the first two breakpoints
10 π = π w ρ
11 return π

Algorithm 2. 2-approximation algorithm [8]

SORTINGBYREVERSALS2(π), shown in Algorithm 2, chooses a reversal which reduces

two breakpoints if there is no decreasing strip that remains after the reversal. The
elimination of two breakpoints compensates the case of the permutation with no
decreasing strip, which requires two reversal steps for removing at least one breakpoint,
after the reversal. Thus, SORTINGBYREVERSALS2(π) requires at most b(π) reversals to sort
the permutation π into its identity permutation guaranteeing a performance ratio of 2.

4. Cycle Decomposition Approach for 3/2-Approximation

Bafna and Pevzner demonstrated sorting by reversals of signed permutations can be
solved with guaranteed error bound 3/2 [6]. They also proposed a 7/4-approximation
algorithm for unsigned permutations [6]. In 1998, Christie showed the performance ratio
of 3/2 can be achieved for computing the reversal distance of unsigned permutations [11].
The 3/2-approximation algorithm for signed permutations and Christie’s 3/2-
approximation algorithm are described in this section.

Bafna and Pevzner first introduced a new lower bound of the reversal distance by
showing that there is a strong relationship between the reversal distance of a permutation
π and the number of cycles in a maximum cycle decomposition of the breakpoint graph
G(π). Theorem 3 was proven in [6] and Theorem 4 is derived from Theorem 3.

 8

Theorem 3 [6]
Let ρ be an arbitrary reversal of π for a given breakpoint graph G(π).
Then, fb(π, ρ) - fc(π, ρ) [1 for every permutation π and reversal ρ, where fb(π, ρ) is
the decrease in the number of breakpoints and fc(π, ρ) is the decrease of the number of
cycles in a maximum decomposition by the reversal ρ.

Theorem 4 [6]
d(π) m b(π) – c(π) for every permutation π.

Suppose that ρt,ρt-1, ... ρ1 is a shortest series of reversals that transforms π into the

identity permutation π0. Let πi-1 = πi,ρi, where i = 1, 2, …, t. By applying Theorem3 we get

d(πi) = d(πi-1) + 1
 m d(πi-1) + fb(πi, ρi) - fc(πi, ρi)
 = d(πi-1) + (b(πi) – b(πi-1)) - (c(πi) – c(πi-1)) [6]

Since d(π0) = b(π0) = c(π0) = 0, d(πi) – (b(πi) – c(πi)) m d(πi-1) – (b(πi-1) – c(πi-1)) m …
m d(π0) – (b(π0) – c(π0)) = 0. Therefore, d(π) m b(π) – c(π).

Theorem 4 offers a tighter lower bound than d(π) m b(π)/2 in terms of the number of

cycles in a maximum cycle decomposition. 2-approximation algorithm by Keccecioglu
and Sankoff was based on the lower bound d(π) m b(π)/2. Bafna and Pevzner proposed an
improved approximation algorithm based on the new lower bound, d(π) m b(π) – c(π).
Rather than finding a maximum cycle decomposition of π, they focused on finding a
cycle decomposition with the maximum number of 2-cycles.

The lower bound, d(π) m b(π) – c(π), can be described in terms of the number of 2-
cycles in a cycle decomposition of G(π) as follows.

d(π) m b(π) – c2(π) – (c(π) – c2(π))
 m b(π) – c2(π) – 1/3 (b(π) – 2c2(π))
 = 2/3 b(π) – 1/3 c2(π) [11]

where c2(π) is the number of 2-cycles and 1/3 (b(π) – 2c2(π)) is the maximum number of
cycles of greater than 2 black edges in a permutation π.

Bafna and Pevzner showed a signed permutation can be sorted in at most b(π) – 1/2

c2(π) steps, achieving the performance ratios of 3/2. For the problem of sorting signed
permutations, they defined a transformation of a signed permutation π into an unsigned
permutation by substituting -i with 2i, 2i-1 and +i with 2i-1, 2i. The breakpoint graph for
the unsigned permutation π’ which transformed from a signed permutation π is defined in
the same way. Figure 5 shows the transformation of a singed permutation π = +4 -1 +3 -2
into π’ = 7 8 2 1 5 6 4 3.

 9

Figure 5. Breakpoint graphs G(π) and G(π’)

Given a cycle decomposition of G(π), a reversal on a cycle is the reversal ρ = [i , j],

where (i-1, i) and (j, j+1) are two breakpoints that belong to the same cycle. A cycle is
considered oriented when there is a 1 or 2-reversal on it. A cycle is considered unoriented
when there are no reversals that eliminate a breakpoint. Two cycles are called crossing
when one or more black edges of one cycle interleaves a black edge of the other in the
cycle decomposition. In the breakpoint graph G(π’) from Figure 5 the cycle [0 7 6 4 5 1]
and the cycle [8 2 3 9] are crossing.

Since each element in the transformed unsigned permutation π’ always contains an
adjacency on one side, every vertex of G(π’) has the maximum edge degree of 2. When
the maximum edge degree of each vertex is 2, there is no edge sharing between any two
cycles, therefore, there exists a unique cycle decomposition for G(π’). To show that a
permutation π’ can be sorted in less than b(π) steps, 2-reversals that do no have to be
compensated against 0-reversals need to be observed.

In the breakpoint graph a 2-reversal removes a 2-cycle while a 1-reversal shrinks a
longer cycle, thus, 2-reversals correspond to 2-cycle eliminations. However, 2-cycles are
not always oriented. When a 2-cycle is unoriented, there is no reversal that leads to the
elimination of the cycle. However, Bafna and Pevzner noted that any unoriented 2-cycle
has a crossing cycle and there exists a reversal on its crossing cycle that can orient the 2-
cycle.

Suppose a permutation π has an unoriented 2-cycle [x y y’ x’] in its breakpoint graph
G(π) as shown in Figure 6.

 10

Figure 6. An unoriented 2-cycle in G(π)

Since (x x’) and (y y’) form gray edges, (y y’) cannot be adjacent and at least one black
edge exists between y and y’ . [x y y’ x’] forms a 2-cycle, thus, the black edge between y
and y’ belongs to another cycle. If the black edge between y and y’ does not form a cycle
with a black edge which interleaves with (x y) or (y’ x’), the cycle [x x’ y’ y] remains
isolated, which means there is no way of bringing x and x’, y and y’ together. Having an
isolated cycle cannot be a situation in sorting by reversals problem, therefore, an
unoriented 2-cycle has at least one crossing cycle. A reversal on the black edge between y
and y’ and a black edge which interleaves (x y) or (y’ x’) orients the cycle [x y y’ x’]
since it switches the position of x and y or y’ and x’.

From Figure 5, [8 2 3 9] is an unoriented 2-cycle. A reversal taking from 7 to 1 on its
crossing cycle orients the unoriented cycle as shown in Figure 7.

Figure 7. Breakpoint graph after a reversal [7, 1] from Figure 5

Bafna and Pevzner introduced the 3/2-approximation algorithm, shown in Algorithm

3, for sorting the unsigned permutation transformed from a signed permutation.
Bafna and Pevzner considered a round in the sorting by reversals as a series of

reversals until only 0-reversals remain, which means there are no decreasing strips in the
current permutation π’. If there is a 2-cycle in G(π’) at the beginning of any round, there
are at least two 2-reversals in that round since any round that starts with a 0-reversal is
followed by a 2-reversal based on Theorem 2. Since the number of 2-cycles decreases
only by 2-reversals and at most half of the 2-reversals need to be compensated against 0-
reversals, a permutation π’ can be sorted in at most b(π’) – 1/2c2(π’) achieving an
approximation ratio of 3/2.

SORTINGSIGNEDBYREVERSALS3OVER2(π’)

1 while b(π’) > 0
2 if π’ has a decreasing strip
3 ρ = SORTINGBYREVERSALS2(π’) (see Algorithm 2)
4 else

 11

5 if any 2-cycle C remains in G(π’)
6 find a cycle C’ that crosses C and take a 0-reversal on C’ to orient C
7 ρ = The 2-reversal on the 2-cycle C
8 else
9 ρ = any 0-reversal
10 π’ = π’ w ρ
11 return π

Algorithm 3. 3/2-approximation algorithm for signed permutations [6]

Christie showed that even unsigned permutations can be sorted in at most b(π) – 1/2

c2(π) reversal steps in [11]. He also focused on 2-cycles of a cycle decomposition of a
breakpoint graph G(π). However, every vertex in G(π) of a unsigned permutation π has
the maximum edge degree of 4. A unique cycle decomposition cannot be guaranteed
when the maximum edge degree of each vertex is greater than 2. There are multiple cycle
decompositions since one cycle can have common black edges or gray edges with other
cycles.

Christie introduced a matching graph F(π) of a permutation π for a cycle
decomposition of a breakpoint graph G(π). Each vertex in F(π) represents each black
edge in G(π). Two vertices are connected if the two vertices represent the black edges
that form a 2-cycle in G(π). Each edge in F(π), thus, represents a 2-cycle in G(π).

Given a graph G = (V, E), a set of edges which share no common vertex is called a
matching M in G. A maximum cardinality matching M of F(π) offers a set of 2-cycles
formed by disjoint black edges. However, 2-cycles represented by M are not always
edge-disjoint in terms of both black and gray edges. While M has no common black
edges since M cannot be a matching if it has a common vertex in F(π), M may have
common gray edges [11]. Figure 8 shows a gray edge shared by two 2-cycles in the
breakpoint graph G(π), π = 9 3 4 6 5 8 7 1 10 2. In G(π) from Figure 8 two 2-cycles, [0,
1, 10, 9] and [9, 10, 2, 3] have a common edge (9, 10) [11].

Figure 8. Breakpoint graph G(π) [11]

Thus, the M of F(π), which offers the cycles [0, 1, 10, 9] and [9, 10, 2, 3], does not
represent complete edge-disjoint 2-cycles.

Christie introduced another graph, called the ladder graph L(M), which is derived
from M of F(π). Each vertex in a ladder graph L(M) represents a 2-cycle from a matching
M. Isolated vertices in L(M) represent independent 2-cycles and vertices are connected
by an edge if 2-cycles have a common gray edge. The maximum edge degree of each

 12

vertex of L(M) is 2 since a 2-cycle contains two grey edges and each gray edge can be
shared by two different 2-cycles. Christie pointed out two 2-cycles that share a gray edge
are either all oriented or all unoriented as shown in Figure 9. Figure 9(a) shows all
oriented 2-cycles and Figure 9(b) shows all unoriented 2-cycles in a breakpoint graph
G(π).

 (a) (b)

Figure 9. Two 2-cycles which share a gray edge in a breakpoint graph G(π) [11]

The edge connected vertices are called ladder vertices. A ladder is defined when a

collection of vertices line up forming a path in L(M). The collections of 2-cycles shown
in Figure 9 are two types of the simplest forms of a ladder. Gray edge disjoint 2-cycles
can be simply determined by selecting every other vertex from a ladder. Thus, m/2 2-
cycles can be chosen for reversals among m ladder vertices from L(M).

Christie introduced the following propositions in [11]. Proofs of the propositions are
not described in this work. In what follows a component of C represents a collection of
cycles which interleave one another.

Proposition 1 [11]
If A is an oriented component of C which includes gray edges originating from k different
cycles of G(π), there is a series of elimination for A in k 2-reversals and all the other 1-
reversals.

Proposition 2[11]
If A is an unoriented component of C which includes gray edges originating from k
different cycles of G(π), there is a series of elimination for A in one 0-reversals and k 2-
reversals with all the other 1-reversals.

Based on the above propositions, Christie showed unsigned permutations can be
sorted at most b(π) – 1/2c2(π) reversal steps as described below. [11]

When L(M) has x ladder vertices and y isolated vertices, in other words, |M| = x + y,

there exists a cycle decomposition C of G(π) which includes at least x/2 2-cycles from
ladders and y isolated 2-cycles.

Let k be the number of oriented 2-cycles selected in C. Then, there are at least k 2-
reversals and no 0-reversals since there is a series of reversals that removes the oriented
2-cycles based on Proposition 1.

Let m be the number of unoriented components of C that contains gray edges
representing the 2-cycles which are not selected and also vertices representing l selected

 13

2-cycles. Then there is a series of reversals that contains at least l + m 2-reversals and m
0-reversals to eliminate m unoriented components based on Proposition 2.

Let n be the number of unoriented components of C that contains gray edges
representing p independent selected 2-cycles. Then there is a series of reversals that
includes at least p 2-reversals and n 0-reversals according to Proposition 2. We have n [
y/2 since every component represents at least two cycles, where y is the number of

independent 2-cycles in L(M).
Besides 1-reversals we can observe (k + l + p + m) 2-reversals and (m + n) 0-

reversals to sort a permutation π. This derives that a permutation π can be sorted in no
more than b(π) – (k + l + p + m) + (m + n) reversals. Since k + l + p m x/2 + y, k + l + p
– n m x/2 + y – n, and n [y/2 , we have x/2 + y – n m y/2 + x/2 . Furthermore x + y
= |M| and |M| m c2(π), therefore, y/2 + x/2 m c2(π)/2, which means (k + l + p – n)
m c2(π)/2. This shows that no more than b(π) – 1/2c2(π) reversals are required to sort a
permutation π [11].

Algorithm 4 shows the main steps of sorting a permutation π, which guarantees an
approximation ratio of 3/2.

SORTINGBYREVERSALS3OVER2MATCHING(π)

1 construct the breakpoint graph G(π) of π
2 construct the matching graph F(π) of G(π)
3 find a matching M for the F(π)
4 construct the ladder graph L(M) from M
5 find a cycle decomposition C that includes edge-disjoint 2-cycles using L(M)
6 find an elimination sequence of C

Algorithm 4. 3/2-approximation algorithm for sorting by reversals [11]

5. Exact Greedy Algorithm

The greedy algorithm that achieves 2-approximation is described in Section 2. The
greedy strategy can be applied for an optimal solution for sorting by reversals. An exact
algorithm using the greedy approach is proposed in this section.

Since sorting by reversals is a combinatorial problem, there are () reversals to
consider. The exact greedy algorithm finds an optimal solution by choosing a reversal
which eliminates breakpoints by the largest number in each reversal step. For the
algorithm all possible reversals on two breakpoints in a permutation π are observed. In
other words, it considers () reversals for an initial reversal, where b is b(π) for a
permutation π. A reversal ρ on two breakpoints can decrease b(π) by at most 2. The
reversal does not increase b(π) since it affects only the two breakpoint positions in the
current permutation π. In other words, any reversal that results in the following can be a
candidate.

b(π) - b(π wρ) c {0, 1, 2}

 14

The algorithm chooses all reversals which result in the same b(π), the lowest value of
b(π), after every reversal step. The result permutations are kept as candidates for the next
reversal step. The same greedy strategy is continued until a result permutation with no
breakpoints is achieved. A sequence of reversals that results in the identity permutation
offers an optimal solution for sorting by reversals.

The exact greedy algorithm is motivated by the fact that the largest decrease of b(π)
in each reversal step drives b(π) to zero in the minimal steps.

Let fb(π, ρai), fb(π, ρbi), and fb(π, ρci) be the decreases of b(π) after i-th reversal ρa ,

ρb, and ρc respectively, where 1 [i [t for the reversal distance t. Let the reversal ρa be a
sequence of reversals that decreases b(π) by the largest number in each reversal step. Let
the reversal ρb and ρc be two arbitrary reversals that decrease b(π) but not necessarily by
the largest number.

In other words,

fb(π, ρa1) m fb(π, ρb1) m fb(π, ρc1),
fb(π, ρa2) m fb(π, ρb2) m fb(π, ρc2),
fb(π, ρa3) m fb(π, ρb3) m fb(π, ρc3),
…………………………………..
fb(π, ρat) m fb(π, ρbt) m fb(π, ρct),

then,

fb(π, ρa1) + fb(π, ρa2) + …. + fb(π, ρat) m
fb(π, ρb1) + fb(π, ρb2) + …. + fb(π, ρbt) m
fb(π, ρc1) + fb(π, ρc2) + …. + fb(π, ρct).

When b(π) = fb(π, ρa1) + fb(π, ρa2) + …. + fb(π, ρat), the number of reversals t

through the reversals of ρa guarantees an optimal reversal distance while either the
reversals ρb and ρb do not guarantee the minimal t. When b(π) = fb(π, ρb1) + fb(π, ρb2) +
…. + fb(π, ρbt) or b(π) = fb(π, ρc1) + fb(π, ρc2) + …. + fb(π, ρct), we might get a
reversal distance which is smaller than t through the reversals of ρa. Thus, the optimal
reversal distance d(π) of a permutation π can be achieved by choosing a reversal which
decreases b(π) by the largest number in every reversal step.

Algorithm 5 shows the exact greedy algorithm.

SORTINGBYREVERSALSEXACT(π)

1 takes all possible reversals ρι on two breakpoints
2 ρι = reversals that result the smallest b(π)
3 πι = π w ρι
4 while b(πι) > 0
5 ρι = reversals that result the smallest b(πι)
6 πι = πι w ρι

Algorithm 5. Exact greedy algorithm

 15

The visual explanation of Algorithm 5 is shown in Figure 10. In Figure 10 the square
block on the top represents an initial permutation π and the lines inside the block show
breakpoints in π. Square blocks after the top block represent permutations resulted by
possible reversals from a previous step. Colored square blocks are shown as the result
permutations chosen by the greedy strategy. Colored square blocks with no lines at the
bottom show the identity permutations, which can be more than one solutions for the
permutation. Any reversal path generates the identity permutation at the bottom offers an
optimal reversal distance d(π).

Figure 10. Exact greedy algorithm path

Even though the greedy strategy achieves an optimal solution, the exact algorithm

requires keeping intermediate result permutations to determine the next best reversal. The
computational resource required by the algorithm increases as it approaches to middle
steps and decreases towards the end of the reversals.

6. Cycle Decomposition using Vertex Cover

The 3/2-approximation algorithms for sorting by reversals for signed permutations and
unsigned permutations are described in Section 3. Both approximation algorithms focus
on 2-cycles for a cycle decomposition of G(π) to maximize 2-reversals. Maximizing the
number of 2-cycles for a cycle decomposition of G(π) for unsigned permutations requires
finding a maximum edge-disjoint 2-cycles. Christie proposed a method of using a
maximum matching M of F(π) and ladder graph L(M) as described in Section 3. This
section introduces a new graph, called two-cycle graph, and an improved method of
generating complete edge-disjoint 2-cycles using the two-cycle graph to maximize the
number of 2-reversals.

 16

A maximum matching M of matching graph F(π) offers 2-cycles which do not have
common black edges with one another. The 2-cycles from a maximum matching M of
F(π), however, does not guarantee edge-disjoint 2-cycles since the 2-cycles may have
common gray edges. Ladder graph L(M) from the maximum matching M is used to find
complete edge-disjoint 2-cycles.

Figure 11 shows the matching graph F(π) for π = 9 3 4 6 5 8 7 1 10 2. F(π) can be
easily built from G(π), which is shown in Figure 8.

Figure 11. Matching Graph F(π) for π = 9 3 4 6 5 8 7 1 10 2

Vertices of F(π) are labeled in the left elements of black edges from the breakpoint graph
G(π). The black edge belonging to element 0 forms a 2-cycle with the black edge
belonging to 1 as shown in Figure 8. Thus, vertex 0 is connected to vertex 1 by an edge in
F(π). Vertex 1 and vertex 9 are connected to vertex 2 and vertex 10 respectively since
those black edges form 2-cycles in G(π). As Figure 11 shows, the black edge represented
by vertex 1 in F(π) is shared by two 2-cycles. Therefore, a maximum matching M
chooses only one 2-cycle formed by the black edge represented by vertex 1 since a
matching cannot have two edges which have a common vertex. Figure 12 shows a
maximum matching M of F(π).

Figure 12. A maximum matching M of F(π) for π = 9 3 4 6 5 8 7 1 10 2

The maximum matching M, shown in Figure 12, chooses 2-cycle [9 10 2 3] and [1 2 11
10] from Figure 8. A ladder graph L(M) built from the maximum matching M is shown
in Figure 13. Each vertex of L(M) represents a 2-cycle chosen by the maximum matching
M and labeled by the left most element belonging to each 2-cycle.

 17

Figure 13. Ladder graph L(M) from M in Figure 12

Since two 2-cycles in Figure 13 do not share a gray edge, two vertices in L(M) are not
edge connected. Therefore, both 2-cycles are chosen for reversals. Two edge-disjoint 2-
cycles, which is the maximum number of edge-disjoint 2-cycles for a permutation π = 9 3
4 6 5 8 7 1 10 2, are selected through a maximum matching M of F(π) followed by the
ladder vertex determination from L(M). However, the method of using a maximum
matching M of F(π) and ladder graph L(M) does not guarantee the maximum number of
edge-disjoint 2-cycles.

Figure 14 shows another maximum matching M of F(π) from Figure 11.

Figure 14. Another maximum matching M of F(π) for π = 9 3 4 6 5 8 7 1 10 2

The maximum matching M of F(π) shown in Figure 14 also offers two black edge

disjoint 2-cycles. However, the two 2-cycles form a ladder in the ladder graph L(M) from
the M as shown in Figure 15.

(a) Choosing 2-cycle [0 1 10 9] (b) Choosing 2-cycle [9 10 2 3]

Figure 15. Ladder graph L(M) from M in Figure 14

Since 2-cycle [0 1 10 9] and [9 10 2 3] have a common gray edge as shown in G(π) from
Figure 8, both of the 2-cycles cannot be selected for reversals. Thus, only one 2-cycle,
either [0 1 10 9] or [9 10 2 3], can be used for 2-reversals. This does not maximize 2-
reversals for sorting by reversals.

A maximum matching M of F(π) does not guarantee the best matching M of F(π)
for L(M) since information of gray edge sharing is unknown in F(π). Finding the

 18

maximum number of edge-disjoint 2-cycles can be improved by considering both black
edge sharing and gray edge sharing in the same selection step.

A two-cycle graph T(π) is introduced for the improved method of maximizing edge-
disjoint 2-cycles for cycle decompositions of G(π). Each vertex in T(π) represents a 2-
cycle in G(π). Two vertices are connected by an edge if the 2-cycles represented by the
vertices have either a common black edge or a common gray edge. Figure 16 shows the
two-cycle graph T(π) from G(π) in Figure 8.

Figure 16. Two-cycle graph T(π) from Figure 8

Each vertex is labeled by the left most element belonging to each 2-cycle. As shown in
G(π) from Figure 8, Vertex 0 and 9 are connected since 2-cycle [0 1 9 10] and [9 10 2 3]
have a common gray edge. Vertex 0 and 1 are connected since 2-cycle [0 1 9 10] and [1 2
11 10] have a common black edge.

Given a graph G = (V, E), a set of vertices which cover all edges in E is called vertex
cover of G. A minimum subset of vertex cover V’ in T(π) offers the minimum number of
2-cycles that cover all common edges. The maximum number of edge-disjoint 2-cycles
can be achieved by excluding V’ from V.

From Figure 16, {0} is the only minimum vertex cover V’ in T(π). V - V’ of T(π)
gives {9, 1}, which is the maximum set of edge-disjoint 2-cycles for reversals as shown
in Figure 17.

(a) Minimum vertex cover V’ (b) V – V’

Figure 17. Minimum vertex cover V’ and V-V’ in T(π) from Figure 16

 19

 Complementing a minimum vertex cover of T(π) guarantees a maximum set of
edge-disjoint 2-cycles while a maximum matching M of F(π) followed by L(M) does not
always offer an edge disjoint 2-cycle set of the maximum size.

The method of complementing a minimum vertex cover for finding a maximum set
of edge-disjoint 2-cycles is demonstrated using a more complicated instance of edge
sharing 2-cycles in the following.

Figure 18. A 2-cycle set of a breakpoint graph G(π)

Figure 18 shows a set of 2-cycles from an arbitrary breakpoint G(π). A two-cycle

graph T(π) is constructed from the G(π) as shown in Figure 19.

Figure 19. Two-cycle graph T(π) from Figure 18

Figure 19 shows a vertex set V = {1, 2, 3, 4, 5, 6, 7, 8, 9} in T(π). Vertex 1 is isolated

since it does not share either a black edge or a gray edge with any other vertex. The other
vertices are edge connected based on its black edge or gray edge shared. To find a
minimum vertex cover V’ of T(π), each edge degree of every vertex is observed. The
highest edge degree vertex can be the first candidate for V’ since it covers the largest
number of edges. V’ of T(π) can be determined by selecting the highest edge degree
vertex and removing it along with edges incident to it from T(π). Figure 20 shows the
steps of determining V’ of T(π) from Figure 19.

 20

(a)

(b)

(c)

 21

(d)

Figure 20. Steps of determining edge disjoint 2-cycles using vertex cover V’

First, vertex 5 in T(π) has the highest edge degree of 3, thus, it is removed along the
edges incident to it as shown in Figure 20(b). After vertex 5 is removed, the next highest
edge degree is 2, covered by vertex 3 or vertex 9. Vertex 3 is chosen in Figure 20(b) and
it is removed along its edges. In Figure 20(c), vertex 9 shows the highest edge degree,
therefore, it is removed along with its edges. After excluding vertex 9 and the edges
incident to it, no edges remain. All edges are covered by vertex 5, 3, and 9, thus, a
minimum vertex cover V’ = {5, 3, 8}. Since V’ represents a set of minimum 2-cycles that
cover all shared edges, V - V’ offers a maximum set edge-disjoint 2-cycles. The set of 2-
cycles {1, 2, 4, 6, 7, 9} shown in Figure 20(d) is the maximum size of edge-disjoint 2-
cycle set for G(π) from Figure 18. Figure 21 shows the edge-disjoint 2-cycles determined
by V - V’ from Figure 20.

Figure 21. Edge-disjoint 2-cycles of Figure 18

As shown in Figure 21, all 2-cycles determined by V - V’ do not have either a common
black edge or a common gray edge with one another. V - V’ achieves the maximum
number of edge-disjoint 2-cycles since V’ provides the minimum number of 2-cycles
which covers all common edges between the 2-cycles.

Algorithm 6 shows the algorithm using vertex cover.

 22

SORTINGBYREVERSALS3OVER2VERTEXCOVER(π)

1 construct the breakpoint graph G(π) of π
2 construct the two-cycle graph T(π) of G(π)
3 find a minimum vertex cover V’ of the T(π)
4 exclude V’ from T(π)
5 find a cycle decomposition C that contains edge-disjoint 2-cycles V-V’
6 DoReversals(π)

DoReversals(π)

1 while b(π) > 0
2 if there is a 2-cycle
3 if there is an oriented 2-cycle
4 ρ = the reversal on the oriented 2-cycle
5 else
6 if there is an oriented crossing cycle on any unoriented 2-cycle
7 ρ = the reversal on the crossing cycle
8 else
9 ρ = the reversal on any unoriented crossing cycle
10 else
11 if there is an oriented cycles
12 if there is an oriented 2-cycle
13 ρ = the reversal on the oriented 2-cycle
14 else
15 ρ = the reversal on any oriented cycle
16 else
17 ρ = the reversal on any unoriented cycle
18 π = π w ρ

Algorithm 6. Algorithm using vertex cover [11]

Algorithm 6 also achieves a performance ratio of 3/2. However, it improves the reversal
distance by maximizing the number of edge-disjoint 2-cycles, which can be used for 2-
reversals, based on the lower bound of b(π) – 1/2 c2(π).

7. Generating 2-reversals using 3-cycles

The 3/2-approximation algorithms described in this work focused on the number of 2-
cycles in cycle decompositions since 2-cycles produce 2-reversals, which remove
breakpoints by the largest number. 2-reversals are easily observed in 2-cycles since each
2-cycle is eliminated only by a 2-reversal. However, it can be observed that 3-cycles can
have potential 2-reversals. The strategy of finding 2-reversals is expanded to 3-cycles in
this section.

 23

A 3-cycle must be converted into a 2-cycle by a 1-reversal to be eliminated. Since
any cycle in a cycle decomposition of G(π) contains at least 2 black edges, a 3-cycle can
be removed only by a 1-reversal followed by a 2-reversal. All types of 3-cycles are
observed in what follows.

Let i, i+1, j, j+1, k, and k+1 be six elements in a permutation π, where 0 [i < j < k

[n, j g i + 1, and k g j + 1. Suppose (i, i+1), (j, j+1), and (k, k+1) are pairs of breakpoints
that form a 3-cycle in a cycle decomposition of G(π), which means |π i+1 - π i | g |π j+1 - π j |
g |π k+1 - π k | g 1. The three pairs of elements that form three black edges are included in
the same 3-cycle. The shape of the 3-cycle is determined by gray edges.

First, any elements of the six elements cannot form a gray edge with its neighbor
element since |π i+1 - π i | g |π j+1 - π j | g |π k+1 - π k | g 1. Thus, one element can form a gray
edge with one of four other elements except for its neighbor element. Its neighbor
elements can form a gray edge with one of the remaining elements except for the
neighbor element of its gray edge element since it forms a 2-cycle if two elements of a
black edge form gray edges with two elements of another black edge. The cases that one
pair of black edge elements forms gray edges with another pair of black edge elements
are shown in Figure 22. Thus, two elements that belong to a black edge must form gray
edges with two elements that belong to two different black edges.

Figure 22. Two shapes of 2-cycles in G(π)

After its neighbor element determines an element for a gray edge, there are only two
elements left. The remaining two elements form a gray edge.

In other words, the element i can form a gray edge with either j, j+1, k, or k+1. If i
chooses j+1 for a gray edge, i+1 can choose either k or k+1. If i+1 chooses k+1, then j and
k form another gray edge. Thus, there are only 8 possible shapes of 3-cycles. The 8
shapes of 3-cycles are shown in Figure 23.

It is observed that the 3-cycles shown in Figure 22(b) and Figure 22(e) are
unoriented 3-cycle types since any reversal cannot bring two elements connected by a
gray edge together. 3-cycles shown in Figure 22(a), Figure 22(d), and Figure 22(h) form
oriented cycles and generate unoriented 2-cycles after a 1-reversal. 3-cycles shown in
Figure 22(c), Figure 22(f), and Figure 22(g) are oriented cycle types and can generate
oriented 2-cycles after a 1-reversal. The cycles after the reversals on each two
breakpoints on the 3-cycles are shown in Figure 24.

 24

Figure 23. Eight shapes of 3-cycles in G(π)

 25

Figure 24. The cycles after each reversal from Figure 23

As described in Section 4, an unoriented 2-cycle has a crossing cycle that orients it.

An unoriented 3-cycle also has a crossing cycle that transforms it into an oriented cycle
since any cycle cannot be isolated in sorting by reversals problem. However, orienting an
unoriented 3-cycle can be expensive compared to taking a 1-reversal belonging to a k-
cycle, where k > 3, since a crossing cycle that orients the 3-cycle may be a 0-reversal.
Thus, unoriented 3-cycles are not considered in the proposed algorithm. Oriented 3-
cycles that generate unoriented 2-cycles are not considered in the algorithm either since it
is assumed that taking at least three reversal steps does not bring benefits compared to
taking 1-reversal from any oriented cycle at each reversal step. Therefore, only three
types of 3-cycles, which generate oriented 2-cycles, are considered in the algorithm. The
algorithm is shown in what follows.

 26

SORTINGBYREVERSALS3OVER2VERTEXCOVER(π)

1 construct the breakpoint graph G(π) of π
2 construct the two-cycle graph T(π) of G(π)
3 find a minimum vertex cover V’ of the T(π)
4 exclude V’ from T(π)
5 find a cycle decomposition C that contains edge-disjoint 2-cycles V-V’
6 DoReversals2N3(π)

DoReversals2N3(π)

1 while b(π) > 0
2 if there is a 2-cycle
3 if there is an oriented 2-cycle
4 ρ = the reversal on the oriented 2-cycle
5 else
6 if there is an oriented crossing cycle on any unoriented 2-cycle
7 ρ = the reversal on the crossing cycle
8 else
9 ρ = the reversal on any unoriented crossing cycle
10 else
11 if there is an oriented cycles
12 if there is an oriented 2-cycle generated by 1-reversal from a 3-cycle
13 ρ = the reversal on the oriented 2-cycle
14 else if there is a 3-cycle that generates an oriented 2-cycle
15 ρ = the reversal on the oriented 3-cycle
16 else
17 ρ = the reversal on any oriented cycle
18 else
19 ρ = the reversal on any unoriented cycle
20 π = π w ρ

Algorithm 7. Approximation algorithm using 2 and 3-cycles

Algorithm 7 takes a reversal on 2-cycles first. If there remain no 2-cycles, it takes a

1-reversal on any oriented cycle. Among oriented cycles, if there is a 3-cycle which
generates an oriented 2-cycle, a 1-reversal from the 3-cycle is taken first. To take
advantage of the oriented 2-cycle brought from the 3-cycle, the algorithm observes a 2-
reversal first before finding a 1-reversal. If there are no oriented cycles left, then a 0-
reversal is taken.

 27

8. Running Time

The approximation algorithm described in Section 7 uses vertex cover to find a cycle
decomposition with the maximum number of 2-cycles. The algorithm considers 3-cycles
which generate oriented 2-cycles in the first priority for a reversal when there remain no
2-cycles chosen for the cycle decomposition.

The breakpoint graph G(π) can be constructed in O(n) time by using the inverse
permutation πqo. Black edges can be determined by checking πi -1 and πi +1 and gray
edges can be determined by checking π i -1qo and π i +1qo for πi of the permutation π,
where 0 < i < n.

The two-cycle graph T(π) is constructed in O(n5) time. Every vertex, which
represents a 2-cycle, in T(π) is determined by checking the two gray edges associated
with one black edge. If the other black edge that two gray edges are associated with is the
same black edge, then the two black edges and two gray edges form a 2-cycle. Since
black edges and gray edges are already determined in G(π), the vertices of T(π) are can
be found in O(n) time. Edges in T(π) are constructed in O(n5) time since it can be
determined by checking if the other 2-cycles contains the same black edge or gray edge
that belongs to a 2-cycle.

Given a graph G = (V, E), a minimum vertex cover can be found in O(|V||E|), where
|V| denotes the number of vertices and |E| denotes the number of edges in the graph.
When considering the two-cycle graph has at most n/2 vertices and n/2 edges for a
permutation with n elements, the minimum vertex cover V’ of T(π) can be found in O(n5)
time. The cycle decomposition C from V-V’ is found in O(n) time.

A 3-cycle that generates an oriented 2-cycle can be found in O(n) time by checking
black edges and gray edges in the current permutation. The series of reversals can be
found in O(n) time using T(π) and G(π). Therefore, the algorithm achieves the time
complexity of O(n5).

9. Experimental Runs

To test the efficiency of the algorithms that described in Section 6 and Section 7,
unsigned permutations with various sizes, 10, 20, …., 100, were randomly generated. Ten
permutations of each size are applied for estimating reversal distances. The experiments
have three main goals. The first is to observe how close reversal distance values to
optimal values are estimated by two 3/2-approximation algorithms. For the performance
comparison the reversal distance obtained by the exact greedy algorithm is used as an
optimal reversal distance. The performance measure used would be to see how close the
result is to the optimal values. Since the exact greedy algorithm requires a significant
computational time and storage for an optimal solution when the number of breakpoints
is large, as described in Section 5, only permutations with a small number of breakpoints
are applied for the first part of the experiments. In this section and the Appendix A the
3/2-approximation algorithm using a vertex cover for a cycle decomposition is referred to
as the ‘vertex cover algorithm’ or ‘Vertex Cover’ in short. The 3/2-approximation
algorithm using a maximum matching followed by the ladder graph for a cycle

 28

decomposition is referred to as the ‘maximum matching algorithm’ or ‘Maximum
Matching’ in short. The results of the first part of the experimental runs is shown in Table
1 in Appendix A.

As can be seen in Table 1, the vertex cover algorithm produces the same results as
the exact greedy algorithm in 7 out of 10 cases. The result shows the two algorithms
achieve the reversal distances which are close to the optimal values.

The second goal of the experimental runs is to compare the performances of the
vertex cover and the maximum matching algorithms. Ten permutations of sizes, 20, 30,
…., 90, 100, are applied for estimating reversal distances. We counted the number of 2-
cycles and compared the reversal distances obtained by the two approximation algorithms
for each permutation. The results are shown in Table 2 to Table 10 in Appendix A.

In most cases the two algorithms result in the same number of 2-cycles and reversal
distances as shown in Table 2 to Table 10. In several cases the vertex cover algorithm
shows slightly higher numbers of 2-cycles. However, the higher number of 2-cycles does
not always produce lower reversal distances since unoriented 2-cycles, which are selected
in a cycle decomposition, require 0-reversals followed by 2-reversals. Taking 1-reversals
without considering unroiented 2-cycles occasionally take advantage of oriented 2-cycles
generated in the intermediate reversal steps, which are not identified in the cycle
decomposition step. However, it is observed in several cases that the higher numbers of
2-cycles obtained by the vertex cover algorithm produce the lower reversal distances in
Table 6 and Table 8. Note that the size of the permutations does not affect the result of
the experiments for the second part.

The third goal of the experimental runs is to observe how the use of 3-cycles affects
the reversal distance in the approximation algorithm. In this section and Appendix A the
approximation algorithm which considers 3-cycles is referred to as the ‘3-cycle
algorithm’ or ‘3-cycle’ in short. The 3-cycle algorithm uses the vertex cover method, thus,
the performance is compared to the vertex cover algorithm. The results are shown in
Table 11 to Table 20 in Appendix A.

As shown in the result tables, the 3-cycle algorithm outperforms the reversal
distances in many cases. The result shows 3-cycles can be actively used for producing 2-
reversals in intermediate reversal steps to achieve the better reversal distance.

10. Conclusion

Genome rearrangement by reversals has served an important role in understanding
evolutionary history between two species in terms of reversal distance. The sorting by
reversals problem is modeled to find a series of reversals that converts one genome into
another.

This paper introduced a new exact greedy algorithm. The exact algorithm offers an
optimal reversal distance, however, it requires significant computational time and storage
for the solution compared to approximation algorithms when the number of breakpoints
is large.

An improved method of finding a cycle decomposition with the maximum number of
2-cycles for the problem is also proposed in this work. The proposed method of finding a
maximum 2-cycles using a minimum vertex cover outperforms the method of using a

 29

maximum matching and a ladder graph in terms of maximizing the number of edge-
disjoint 2-cycles. The algorithm also achieves better time complexity compared to the
algorithm introduced in [11], which uses a maximum matching and a ladder graph for a
cycle decomposition. Christie described the proposed algorithm in [11] requires O(n)
running time. The proposed algorithm in this paper achieves the time-complexity of
O(n5), which is better than O(n).

This work also proposed the method of producing 2-reversals by using oriented 3-
cycles. The result of the experiments shows that oriented 3-cycles can be actively used to
reduce the reversal distance in general. The 3-cycles have not been focused in cycle
decompositions for sorting by reversals. Formulating a more efficient way of using 3-
cycles can be further studied to achieve a better approximation ratio based on 2-cycles
and 3-cycles for sorting by reversals.

 30

Appendix A

π b(π) d(π)
 Exact Greedy Maximum Matching Vertex Cover
1 11 7 8 7
2 8 5 5 5
3 10 6 7 7
4 9 5 6 5
5 9 6 7 8
6 11 7 7 8
7 2 1 1 1
8 8 5 6 5
9 9 6 6 6

10 9 5 5 5

Table 1. Performance comparison of the three algorithms

Permutation size = 20
π b(π) Maximum Matching Vertex Cover
 c2(π) d(π) c2(π) d(π)
1 15 2 11 2 11
2 19 2 14 2 14
3 11 4 6 4 6
4 11 3 8 3 8
5 13 1 11 1 11
6 15 2 13 2 13
7 8 4 4 4 4
8 15 0 13 0 13
9 15 1 11 1 11

10 14 2 11 2 12

Table 2. Performance comparison of the two approximation algorithms, permutation size
20

Permutation size = 30
π b(π) Maximum Matching Vertex Cover
 c2(π) d(π) c2(π) d(π)
1 20 2 15 2 15
2 28 2 22 3 23
3 28 2 22 3 22
4 30 4 26 4 26
5 30 2 24 2 24
6 29 2 22 2 23
7 12 0 12 0 12
8 28 2 22 2 23
9 30 1 25 1 25

10 27 2 22 2 22

Table 3. Performance comparison of the two approximation algorithms, permutation size
30

 31

Permutation size = 40
π b(π) Maximum Matching Vertex Cover
 c2(π) d(π) c2(π) d(π)
1 40 2 34 2 34
2 39 2 32 2 32
3 25 1 20 1 20
4 41 4 32 4 32
5 38 4 31 4 31
6 39 2 33 3 33
7 39 1 31 1 31
8 29 4 23 4 23
9 25 4 17 4 17

10 21 2 17 2 17

Table 4. Performance comparison of the two approximation algorithms, permutation size
40

Permutation size = 50
π b(π) Maximum Matching Vertex Cover
 c2(π) d(π) c2(π) d(π)
1 33 2 27 2 27
2 31 1 27 1 27
3 21 0 18 0 18
4 16 0 15 0 15
5 28 1 24 1 25
6 45 2 38 2 38
7 24 1 21 1 21
8 49 1 42 1 42
9 42 5 36 5 37

10 19 2 18 2 18

Table 5. Performance comparison of the two approximation algorithms, permutation size
50

Permutation size = 60
π b(π) Maximum Matching Vertex Cover
 c2(π) d(π) c2(π) d(π)
1 28 4 23 4 23
2 37 4 30 4 30
3 50 2 45 3 43
4 47 2 42 2 42
5 45 4 36 5 36
6 27 1 26 1 26
7 26 1 22 1 22
8 29 2 25 2 25
9 33 1 27 1 27

10 35 1 31 1 31

Table 6. Performance comparison of the two approximation algorithms, permutation size
60

 32

Permutation size = 70
π b(π) Maximum Matching Vertex Cover
 c2(π) d(π) c2(π) d(π)
1 37 1 34 1 34
2 44 2 36 3 36
3 39 0 35 0 35
4 43 1 37 1 37
5 49 0 43 0 43
6 50 0 46 0 46
7 47 1 41 1 41
8 37 2 34 2 34
9 14 0 14 0 14

10 33 0 28 0 28

Table 7. Performance comparison of the two approximation algorithms, permutation size
70

Permutation size = 80
π b(π) Maximum Matching Vertex Cover
 c2(π) d(π) c2(π) d(π)
1 44 0 41 0 41
2 48 4 42 4 42
3 50 4 44 4 44
4 39 1 36 1 36
5 58 1 52 1 52
6 55 1 49 1 49
7 58 4 58 4 58
8 49 2 46 3 45
9 50 2 46 2 42

10 47 0 45 0 45

Table 8. Performance comparison of the two approximation algorithms, permutation size
80

Permutation size = 90
π b(π) Maximum Matching Vertex Cover
 c2(π) d(π) c2(π) d(π)
1 65 2 60 3 60
2 65 2 56 3 56
3 50 2 47 3 47
4 55 1 50 1 50
5 68 4 62 4 62
6 40 0 37 0 37
7 59 3 50 3 50
8 58 2 49 3 49
9 57 2 51 3 51

10 53 3 51 3 51

Table 9. Performance comparison of the two approximation algorithms, permutation size
90

 33

Permutation size = 100
π b(π) Maximum Matching Vertex Cover
 c2(π) d(π) c2(π) d(π)
1 51 2 47 3 47
2 81 6 72 6 72
3 70 2 63 3 63
4 57 2 51 3 51
5 60 1 56 1 56
6 84 2 74 3 74
7 76 4 69 4 69
8 70 0 64 0 64
9 68 2 60 2 61

10 68 1 63 1 63

Table 10. Performance comparison of the two approximation algorithms, permutation
size 100

Permutation size = 20
π b(π) Matching VertexCover 3-Cycle
 d(π) d(π) c3(π) used d(π)
1 15 11 11 2 11
2 19 14 14 2 14
3 11 6 6 0 6
4 11 8 8 0 8
5 13 11 11 3 10
6 15 13 13 2 13
7 8 4 4 0 4
8 15 13 13 4 12
9 15 11 11 3 12

10 14 11 12 1 12

Table 11. Performance comparison for the consideration of 3-cycles, permutation size 20

Permutation size = 30
π b(π) Matching VertexCover 3-Cycle
 d(π) d(π) c3(π) used d(π)
1 20 15 15 3 15
2 28 22 23 5 22
3 28 22 22 5 20
4 30 26 26 5 24
5 30 24 24 6 23
6 29 22 23 6 20
7 12 12 12 1 12
8 28 22 23 5 22
9 30 25 25 7 23

10 27 22 22 3 22

Table 12. Performance comparison for the consideration of 3-cycles, permutation size 30

 34

Permutation size = 40
π b(π) Matching VertexCover 3-Cycle
 d(π) d(π) c3(π) used d(π)
1 40 34 34 10 32
2 39 32 32 7 32
3 25 20 20 5 21
4 41 32 32 5 32
5 38 31 31 5 30
6 39 33 33 6 31
7 39 31 31 7 33
8 29 23 23 3 23
9 25 17 17 2 17

10 21 17 17 3 17

Table 13. Performance comparison for the consideration of 3-cycles, permutation size 40

Permutation size = 50
π b(π) Matching VertexCover 3-Cycle
 d(π) d(π) c3(π) used d(π)
1 33 27 27 4 26
2 31 27 27 3 28
3 21 18 18 3 17
4 16 15 15 1 15
5 28 24 25 5 23
6 45 38 38 8 35
7 24 21 21 3 21
8 49 42 42 8 42
9 42 36 37 6 33

10 19 18 18 3 18

Table 14. Performance comparison for the consideration of 3-cycles, permutation size 50

Permutation size = 60
π b(π) Matching VertexCover 3-Cycle
 d(π) d(π) c3(π) used d(π)
1 28 23 23 4 23
2 37 30 30 4 30
3 50 45 43 5 43
4 47 42 42 8 38
5 45 36 36 7 36
6 27 26 26 2 26
7 26 22 22 4 21
8 29 25 25 3 25
9 33 27 27 5 29

10 35 31 31 5 29

Table 15. Performance comparison for the consideration of 3-cycles, permutation size 60

 35

Permutation size = 70
π b(π) Matching VertexCover 3-Cycle
 d(π) d(π) c3(π) used d(π)
1 37 34 34 6 31
2 44 36 36 5 36
3 39 35 35 5 35
4 43 37 37 6 36
5 49 43 43 9 42
6 50 46 46 8 42
7 47 41 41 6 40
8 37 34 34 3 34
9 14 14 14 1 14

10 33 28 28 5 29

Table 16. Performance comparison for the consideration of 3-cycles, permutation size 70

Permutation size = 80
π b(π) Matching VertexCover 3-Cycle
 d(π) d(π) c3(π) used d(π)
1 44 41 41 6 39
2 48 42 42 6 41
3 50 44 44 8 44
4 39 36 36 4 34
5 58 52 52 8 50
6 55 49 49 7 48
7 58 58 58 7 50
8 49 46 45 3 44
9 50 46 42 5 43

10 47 45 45 6 40

Table 17. Performance comparison for the consideration of 3-cycles, permutation size 80

Permutation size = 90
π b(π) Matching VertexCover 3-Cycle
 d(π) d(π) c3(π) used d(π)
1 65 60 60 5 60
2 65 56 56 8 55
3 50 47 47 2 47
4 55 50 50 10 45
5 68 62 62 7 60
6 40 37 37 5 36
7 59 50 50 7 48
8 58 49 49 6 49
9 57 51 51 7 51

10 53 51 51 5 48

Table 18. Performance comparison for the consideration of 3-cycles, permutation size 90

 36

Permutation size = 100
π b(π) Matching VertexCover 3-Cycle
 d(π) d(π) c3(π) used d(π)
1 51 47 47 5 45
2 81 72 72 9 73
3 70 63 63 11 57
4 57 51 51 6 50
5 60 56 56 4 58
6 84 74 74 10 73
7 76 69 69 9 66
8 70 64 64 9 61
9 68 60 61 11 59

10 68 63 63 10 59

Table 19. Performance comparison for the consideration of 3-cycles, permutation size
100

 37

References

[1] Jones N, Pevzner P. An Introduction to Bioinformatics Algorithms. MIT Press. 2004.

[2] O’Brien, S.J., editor. Genetic Maps. Cold Spring Harbor Laboratory. 1987.

[3] Watterson, G.A., W.J. Ewens, T.E. Hall, and A. Morgan. The chromosome inversion
problem. Journal of Theoretical Biology 99, 1-7, 1982.

[4] A. Caprara. Sorting by reversals is difficult. In Proceedings of the first International
Conference on Computational Molecular Biology, pages 75-83, New York, January 19-
22 1997. ACM Press.

[5] J. Kececioglu and D. Sankoff. Exact and approximation algorithms for sorting by
reversals, with application to genome rearrangement. Algorithmica, 13:180-210, 1995.

[6] V. Bafna and P. A. Pevzner. Genome rearrangements and sorting by reversals. SIAM
Journal on Computing, 25(2):272-289, 1996.

[7] P. Berman, S. Hannenhalli, M. Karpinski. 1.375-Approximation Algorithm for
Sorting by Reversals. 2001.

[8] Setubal C, Meidanis J. Introduction to Computational Molecular Biology. PWS
Publishing. 1st edition. 1997.

[9] Skomorokhov A. Genetic Algorithms:APL2 Implementation and a Real Life
Application. Institute of Atomic Engergetics. 1997.

[10] Misevicius A. A Fast hybrid Genetic Algorithm for the Quadratic Assignement
Problem. Kaunas University of Technology. 2006.

[11] Christie, D.A. A 3/2-Approximation Algorithm for Sorting by Reversals.
Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, 244-
252. 1998.

[12] L. lovasz and M.D. Plummer. Annals of Discrete Mathematics (29): Matching
Theory. Number 121 in North-Holland Mathematics Studies. North-Holland, Amsterdam,
1986.

	San Jose State University
	SJSU ScholarWorks
	2008

	Exact and Approximation Algorithms for Computing Reversal Distances in Genome Rearrangement
	Euna Park
	Recommended Citation

	cs298_report

