
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2010

How Smart is your Android Smartphone?
Deepika Mulani
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Mulani, Deepika, "How Smart is your Android Smartphone?" (2010). Master's Projects. 68.
DOI: https://doi.org/10.31979/etd.pkjt-phq7
https://scholarworks.sjsu.edu/etd_projects/68

CORE Metadata, citation and similar papers at core.ac.uk

Provided by SJSU ScholarWorks

https://core.ac.uk/display/70407822?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/68?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

HOW SMART IS YOUR ANDROID SMARTPHONE?

A Project Report
Presented to

The Faculty of the Department of Computer Science
San José State University

In Partial Fulfillment
of the Requirements for the Degree

Master of Computer Science

by
Deepika Mulani

May 2010

SAN JOSÉ STATE UNIVERSITY

The Undersigned Project Committee Approves the Project Titled

HOW SMART IS YOUR ANDROID SMARTPHONE?

by
Deepika Mulani

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Mark Stamp Department of Computer Science Date

Dr. Jon Pearce Department of Computer Science Date

Dr. Chris Pollett Department of Computer Science Date

APPROVED FOR THE UNIVERSITY

Associate Dean Office of Graduate Studies and Research Date

ABSTRACT

HOW SMART IS YOUR ANDROID SMARTPHONE?

by Deepika Mulani

Smart phones are ubiquitous today. These phones generally have access to

sensitive personal information and, consequently, they are a prime target for attackers. A

virus or worm that spreads over the network to cell phone users could be particularly

damaging.

Due to a rising demand for secure mobile phones, manufacturers have increased

their emphasis on mobile security. In this project, we address some security issues

relevant to the current Android smartphone framework. Specifically, we demonstrate an

exploit that targets the Android telephony service. In addition, as a defense against the

loss of personal information, we provide a means to encrypt data stored on the external

media card. While smartphones remain vulnerable to a variety of security threats, this

encryption provides an additional level of security.

 iv

ACKNOWLEDGEMENT

I would like to thank to Dr. Mark Stamp, my project advisor, for his guidance and

support throughout my Masters’ degree and project. I would like to thank him especially for his

belief in me to work on this project. I would like to thank Dr. Chris Pollett and Dr. Jon Pearce for

their guidance and suggestions while I was working on this project.

And special thanks to my dear husband Kamlesh for believing in me and being my pillar

of support in all my endeavors. I thank him for being a constant source of encouragement to

realize my potential and providing timely help and support in my work.

 v

TABLE OF CONTENTS

1.0 Introduction ... 1

1.1 Objective of the Project... 2

1.2 Order of the Project ... 2

2.0 Android Framework .. 3

2.1 Introduction ... 3

2.2 Application behavior ... 4

2.3 Application components.. 5

2.4 Application level security framework ... 6

2.5 Files and preferences... 8

2.6 Android limitation... 8

3.0 iPhone and Symbian Mobile Frameworks .. 9

3.1 iPhone security architecture .. 9

3.2 Symbian’s security framework.. 10

4.0 Mobile Phone Risks .. 13

5.0 Best Practices .. 14

6.0 Experiment Details and Results .. 15

6.1 Exploiting telephony security.. 15

6.2 Tapping incoming call... 17

6.3 Aborting outgoing voice call... 21

6.4 Validation .. 21

7.0 Security Feature for Android... 22

7.1 Encryption of files stored on SD card ... 23

 vi

7.2 Encryption limitations ... 26

7.3 Decryption algorithm .. 28

7.4 Validation .. 30

8.0 Conclusion... 31

References ... 32

 vii

LIST OF FIGURES

Figure 1. Android architecture ... 4

Figure 2. Android applications component IPC ... 6

Figure 3. Symbian certification and signing process ... 12

Figure 4. XML Permissions for telephony exploitation.. 16

Figure 5. Install time notification of permissions ... 17

Figure 6. Code for receiving incoming voice call number and registering for notification.......... 18

Figure 7. Message sent on new incoming call .. 19

Figure 8. Code for SMS sending... 20

Figure 9. Incoming voice call notification .. 20

Figure 10. XML registering for outgoing call notification ... 21

Figure 11. Outgoing voice call aborted... 22

Figure 12. Code for encryption ... 25

Figure 13. Encryption of file on external media ... 26

Figure 14. External media unavailable on encryption... 27

Figure 15. Switching off USB storage .. 28

Figure 16. Decryption successful .. 29

Figure 17. Decryption failure .. 30

 viii

LIST OF TABLES

Table 1. Android manifest permission protection levels... 7

1

1.0 Introduction

Mobile phones are no longer devices restricted to making voice callsthey can run most

of the processes that one expects from a desktop computer. Mobile phones are equipped with

applications such as e-mail clients, chat clients, short messaging service (SMS), and multimedia

messaging service (MMS). Most smartphones are equipped with cameras so that one can have

personal pictures and videos on the phone. Communication between two mobile devices is no

longer limited to the services of a GSM provider. One can have two mobile phones communicate

with the help of Bluetooth, external media cards, or the Internet. Thanks to the efforts of the

World Wide Web Consortium (W3C) and Open Mobile Alliance (OMA), being away from one’s

laptop does not mean being disconnected from the rest of the Internet world.

The first mobile phone virus, Cabir, was created in 2004 and targeted for Symbian OS-

based phones. This virus replicated itself on Bluetooth wireless networks [1]. Since then, there

have been many similar versions of the virus and a few new ones. However, the number of

mobile phone viruses is significantly fewer than computer viruses.

One major difference between PC and mobile phone viruses has been that it is more

difficult for mobile virus infections to spread as fast as computer viruses can. This is due to the

variety of mobile platforms; lack of documentation and lack of support tools has led to less

exploitation of vulnerabilities [1].

However, the trend has been to synchronize computers with smartphones. Hence, the

threat to all critical and private data has become twofold. Even worse is that smartphones come

with a built-in billing system; a virus can cause immediate financial loss. Most of the threats

interrupt user productivity, drain the battery, increase messaging charges, and have the potential

to damage users’ reputations.

http://en.wikipedia.org/wiki/Bluetooth

2

With the rich variety of data centric applications available, it is important that the

smartphone be made smart to preserve user privacy. Various platforms have evolved in the

process to achieve this goal. Some of the current mobile platforms such as Symbian, Android,

and so on, have taken steps to ensure that their architecture is build around security.

1.1 Objective of the Project

The objective of this project is to identify security holes and any missing security features

in Android’s architecture. Using this as a starting point, the goal is to develop a prototype

application that serves as a justification for our findings.

1.2 Order of the Project

Section 2 begins with a discussion of the Android security architecture and some of its

limitations. Section 3 briefly covers the security architecture of iPhone and Symbian, comparing

them with Android’s architecture. Section 4 lists some mobile phone risks, and Section 5 briefly

covers some of the best practices that users of smartphones should follow for their personal

security.

Section 6 discusses in detail the telephony exploitation that we have successfully

deployed on Android phones. This malicious behavior tries to breach the user’s privacy by

retrieving all his or her contacts and sending an SMS message on each incoming voice call. It

also prevents the user from dialing any numbers, hence exploiting the most basic feature of a

phone.

Section 7 covers the implementation details and limitations of the security enhancement

we have developed for dealing with external data. In the current Android framework, each

application has private access of the data stored on the internal phone memory. However, this is

3

not applicable to data stored on an external media card. In our solution, we encrypt the data

being written to external media and store the encryption key on the phone memory, which is

private to the application that uses this solution.

Section 8 concludes our work and reiterates our goals and achievements while studying

the security architecture of smartphone operating systems, and provides the scope for further

study.

2.0 Android Framework

2.1 Introduction

Android is the mobile phone platform led by Google’s Open Handset Allowance (OHA).

Android has a unique security model in which the user is in complete control of the device. It is

an open source platform based on Linux. All applications are written in Java and compiled into a

custom byte-code (DEX) [6]. Each application executes in its own process with its own instance

of the Dalvik virtual machine interpreter [2].

4

Figure 1. Android architecture [6]

2.2 Application behavior

Every application in Android runs as a separate process with a unique UID, unlike a

desktop computer where all the applications run with the same UID. The UID of an application

in Android protects its data. Programs cannot typically read or write each other’s data, and

sharing between applications must be done explicitly [3]. Due to this feature, a compromise such

as a buffer overflow attack [3,17] is restricted to the application and its data. However, it is

important to note that an application can launch another program that will run with the launching

application’s UID.

5

For a developer to run an application on the Android phone, his or her application needs

to be signed. Developers can generate self-signed certificates and use this for code signing. Code

signing is done to enable developers to update their own applications without creating

complicated interfaces and permissions.

2.3 Application components

Applications are comprised of components. Components interact using Intent messages

[6]. Recipient components assert their desire to receive Intent messages by defining Intent filters

[6]. There are four types of components used to construct applications:

1. Activity components interact with the user via the touchscreen and keypad. Only one

activity is active at a time, and processing is suspended for all other activities [5].

2. Service components provide for background processing when an application’s

activity leaves focus and another GUI application comes in the foreground [6].

3. Broadcast receiver components provide a general mechanism for asynchronous event

notifications [6]. The receivers receive Intent messages that are implicitly addressed

with action strings; for instance, dialing a number is associated with the action

OUTGOING_CALL_ACTION.

4. Content provider components are the preferred method for sharing data between

applications [5]. These APIs implement an SQL-like interface; however, the backend

implementation is up to the application developer.

6

Figure 2. Android applications component IPC [3]

2.4 Application level security framework

Applications need approval to do things their user might object to, such as sending SMS

messages, using the contacts database, or using the camera. To keep track of what the application

is permitted to do, Android maintains manifest permissions that are enforced by the middleware

reference monitor. The permission label is a unique text string that can be defined by the OS as

well as by a third-party developer. These permissions indicate what resources and interfaces are

available to the application at run-time. An example of a permission is READ_CONTACTS,

which permits the application to read the user’s address book. In addition to reading and writing

data, permissions allow applications to access system services such as dialing a number without

prompting the user or taking complete control of the screen and obscuring the status bar.

A developer should specify all permissions that his or her application requires in the

AndroidManifest.xml file; however, it is not necessary that all permissions be granted. When the

application is getting installed, the user has the choice to decide whether or not to trust the

software based on the application’s promised features. and the permissions required. These

permissions are different from file permissions. Once an application is installed, its permissions

7

cannot be changed. The fewer permissions an application needs, the more comfortable the user

should feel installing the application.

Permissions have a protection level. The four protection levels are outlined in Table 1.

Table 1. Android manifest permission protection levels [2]

Normal

Permissions for application features with minor consequences such

as VIBRATE, which lets applications vibrate the device. Suitable for

granting rights not generally of keen interest to users; users can

review but may not be explicitly warned.

Dangerous

Permissions such as WRITE_SETTINGS or SEND_SMS are

dangerous as they could be used to reconfigure the device or incur

tolls. This level marks permissions in which the users will be

interested or be potentially surprised. Android will warn users about

the need for these permissions on install.

Signature

These permissions can be granted only to other applications signed

with the same key as this program. This allows secure coordination

without publishing a public interface.

SignatureOrSystem

Same as Signature except that programs on the system image also

qualify for access. This allows programs on custom Android systems

to also get the permission. This protection is to help integrate system

builds and won’t be typically used by developers.

The permission label policy is used to protect applications from each other and also

various components within an application. In the mobile phone environment, it is difficult for the

operating system to manage access control policies of hundreds of unknown applications.

Therefore, Android simplifies this by having the developers define their permission labels to

access their interfaces. By doing so, the developer does not need to know about existing and

future applications; permission labels allow the developer to indirectly influence security

decisions.

8

2.5 Files and preferences

Android uses UNIX-style file permissions [2]. Each application has its own area on the

file system that it owns [2,16]. This is similar to programs having a home directory to go along

with their User IDs. This feature is limited only to the internal phone memory and not the

external memory. The standard way for applications to expose their private data to other

applications is through content providers [16].

2.6 Android limitation

The current security policy of Android works on a static level only during installation to

identify whether the application is permitted all the requested permissions from the user. Once

the permission is granted, there is no way to govern to whom these rights are given or how they

are later exercised [3]. Permissions are asserted as vague suggestions as to what kinds of

protections the application desires. One must place good faith in the user and the OS to make

good choices about permissions granted to the application which, in many cases, may not be the

absolute best choice.

Due to the above architecture, Android system libraries have limited ability to control

installed third-party applications that can be granted permissions to use their interfaces. This

implies that there is no control to restrict an installed application based on its signatures. Further,

it is not possible to define the desirable configurations of an installed third-party application such

as the minimum version and the set of permissions it is allowed or disallowed.

This implies that Android applications built with the right set of permissions protect the

system from malicious applications but provides severely limited infrastructure for applications

to protect themselves.

9

3.0 iPhone and Symbian Mobile Frameworks

iPhone and Symbian are the two popular competitors of Android smartphones. Each of

these platforms has its own security model. A comparison of these architectures is essential to

understanding the current trends in mobile security.

3.1 iPhone security architecture

iPhone’s security features include encryption of data in transit and authorization by

strong passwords to corporate services. On iPhone 3GS, there is a new enhancement of hardware

encryption of data stored on the device [12]. Users of the device can be restricted from accessing

certain features by setting up device restrictions through configuration policies.

iPhone also comes with the feature of remote wipe, which is helpful in case of the device

being lost or stolen. The user of iPhone can login to his or her web account and issue the remote

command to securely wipe the the phone’s data, making it unrecoverable. It also supports

erasing of data from the device after a certain number of failed authorization attempts. To

provide secure access to corporate data, iPhone also integrates with VPN technologies [12].

It is mandatory that all iPhone applications be signed. Third party applications are

required to be signed by developers with an Apple-provided certificate. Runtime protection is

also available, which ensures that an application has not become untrusted since the last time it

was used. This is an important security feature that the Android platform lacks.

Apple’s app store is a guarded community. The apps that get listed have been certified by

Apple. The developers of the apps are required to be registered and pay annual subscription fees.

The app and each of its versions is evaluated by the Apple team, and any app that can potentially

pose a threat to personal data, contains inappropriate content, or breaks the law is rejected by

Apple.

10

At Google’s Android marketplace, the approach is fundamentally different: Any

application can be uploaded to the marketplace, and Google does not evaluate these apps. What

protects Android users from these apps is the concept of “capabilities” or “permissions” [8].

At installation, each app tells the Android OS what capabilities it requires. Based on the

usage and claim of the applications, it is up to the user to decide if the capabilities are

reasonable [8].

This system has the advantage of being enforced by a true platform. An application

cannot exploit any other resources to which it is not entitled. However, the disadvantage of this

trust system is that there is no way to be sure that an application will limit itself within the

defined boundary once it is installed. Any application can request capabilities and appear

legitimate on the surface, while in the background, it may be doing something malicious.

The bigger problem is that the marketplace relies on the user’s ability to evaluate the

risks of the application they want to download and run. Not all users are aware of security threats

and ways that their information can be compromised.

3.2 Symbian’s security framework

Symbian was one of the first smartphone operating systems, with its first phone based on

Symbian v6.0, released in 2001. Nokia acquired Symbian Software Limited in 2008 and, in

February 2010, Symbian source code became available as open source [14].

To free the users from the task of deciding about security of an application, Symbian OS

released Symbian v9.x, which introduced the concept of platform security. This includes

capabilities and Symbian signing. In early 2005, Symbian 9.1 was released and can run

applications that pass the constraints set by both the Android and iPhone platforms. This means

that, just as in Android, an application needs to enlist permissions or capabilities that its APIs

11

will use. This is exactly the UNIX-style permissions per process-based model; however, unlike

Android, this application is not available for market use without the signing process.

There are two types of certificates used by the Symbian community: A developer

certificate is used by the developer to sign his or her application and run on a specific phone.

This developer certificate contains the requested capabilities of the application but is confined to

run only on certain phones as specified by the International Mobile Equipment Identity (IMEI)

which are mentioned in the certificate request process. It is not possible to request more than 20

IMEI numbers in a developer certificate. This means that a malicious application does not spread

extensively as soon as it is developed.

The second certificate is the Symbian Signed Certificate, obtained through the Symbian

signing process. Just like iPhone, a Symbian application needs to be signed by a certifying

authority before deploying the application in the market. There is a cost associated with each

signing. One needs a publisher ID from Verisign, which costs $200 per year, and the Symbian

signing process has an additional cost of around $300 [9] per signature.

Once the application is ready to be deployed, it needs to be submitted to the Symbian

signed site [15]. There, the application is tested against criteria specified by Symbian. After the

testing is successfully completed, the application is certified and returned to the developer, who

can then distribute the application. This process is shown in Figure 3.

Since signing has a cost associated with it, it is unlikely that virus writers will be

submitting their apps for Symbian signing, in which case it is not possible to distribute malicious

applications.

12

Figure 3. Symbian certification and signing process [10]

 The Symbian signing process implies that the only likely way to hack a Symbian phone is

by disabling its platform security feature. Once this is done, an unsigned application can be

installed. Once platform security is disabled, the phone is at risk, allowing access to system files,

changing how the operating system works, and access to a wide variety of viruses, malware, and

so on.

 Therefore, the best a user of a Symbian smartphone can do is never to disable platform

security. Developers must not install applications signed with a developer certificate that can

internally disable platform security. It is not possible for attackers to do so as a developer

certificate can be obtained for a maximum 20 IMEI numbers and it is not possible to guess IMEI

number of any phone.

13

 Theoretically, Symbian’s platform security concept is more powerful than the security

model employed by current Android and iPhone smartphones because it is a fusion of the best

features of these two platforms’ security architecture.

 With the advent of smartphones and the variety of information these can hold, it is

necessary that the users of such phone become educated about the various intricacies and

security risks involved in their use.

4.0 Mobile Phone Risks

 The more popular an operating system, the more likely it is to be infected by a virus—

just as in the PC world. Microsoft Windows is more often subject to malicious attacks than is

Apple Macintosh. Similarly, in the mobile world, Android, iPhone, and Symbian-based phones

are the most popular targets for attack. Several risks factors indicate that most of the mobile

market is ripe for powerful new attacks. Some of these are:

1. Proof of concept viruses and variations of these have been published on the Internet

(e.g., Cabir virus provided a code base for VLASCO.A and DAMPIG.A) [7].

2. Most phones do not have security software or security policies [7].

3. Smartphones are capable of high-speed data transmission [7].

 Closed devices are less likely to be infected [7]. “Closed” means that the devices just

make calls and have a simple address book but do not have the ability to install third-party

applications.

 Web browsing increases the possibility of infection. Devices that enable third-party

application installation without OS restriction are at high risk for infection. The cost of a lost

device is small in comparison to the loss caused by compromised sensitive data. Such loss can

cause diminished customer confidence, financial loss, and brand damage.

14

 Infection can occur or spread through any of the following:

1. Inserting infected external media card.

2. Synchronizing with a PC that installs an infected file [7].

3. Web downloads [7].

4. Bluetooth communication etc.

5.0 Best Practices

 Most mobile phones operate on a corporate network but are disconnected for a long

period of time and often change locations. Therefore, it is essential that corporate companies take

care to prevent loss of personal sensitive information while reaping the benefits of increased

productivity.

 The following practices will help users take advantage of available smartphones while

minimizing the security risks [7].

1. If a mobile phone is lost or stolen, the service provider or phone manufacturer should

provide a device management feature to “wipe” all data.

2. Devices accessing corporate IT resources should access remote information over

VPNs for secure access.

3. Only authorized applications should be provided access to the network. Authorization

may be based on a user-prompted password before access begins. Authorization

should not be limited to the user’s acceptance at installation time.

4. Sensitive data in transit should always be encrypted. In addition, sensitive data on the

phone—such as calendar entries, phonebook contacts, product prices, customer

orders, and so on—should be encrypteds.

15

5. Smartphones should be shipped with antivirus software installed. This software

should have a feature that scans for third-party downloaded apps that keep running

for a long time and consistently access sensitive and private information. The virus

scan software should stop such applications and inform the user of such activity,

giving him or her the option of uninstalling it. Notable smartphone antivirus software

includes McAfee for Microsoft Windows Mobile devices, and Symantec Mobile

security for Symbian.

6. Risk assessment should be done before a business adopts the latest trend of mobility

through smartphones.

7. User education and training is essential to make users aware of the risks and liabilities

involved when using smartphone applications.

6.0 Experiment Details and Results

We have been successful in demonstrating Android’s security limitations by exploiting

Android’s telephony security. In addition, as mentioned in Section 2.5, the lack of security when

dealing with data stored externally has been considered, and a defense has been developed to

provide privacy to applications when handling external storage media.

6.1 Exploiting telephony security

We have implemented an Android activity and a receiver application which exploits the

current telephony security of the Android phone. This application intercepts any incoming call

and sends SMS to all the phonebook contacts with details of the call. Further, the application

receives a broadcast of an outgoing call and aborts this call.

16

The permissions required by our application are mentioned in the Androidmanifest.xml,

as shown in Figure 4.

Figure 4. XML Permissions for telephony exploitation

 When the application is installed on the phone, the user is notified of these permissions,

as shown in Figure 5. It is up to the user whether he or she wants to install the application or not.

It is very easy to deceive a novice user by promising a false set of features. This will often cause

the user accept all the enlisted permissions that the malicious application uses.

<uses-permission android:name="android.permission.CALL_PHONE" />
<uses-permission android:name="android.permission.MODIFY_PHONE_STATE"
/>
<uses-permission android:name="android.permission.READ_PHONE_STATE"
/>
<uses-permission
android:name="android.permission.PROCESS_OUTGOING_CALLS" />
<uses-permission
android:name="android.permission.ACCESS_COARSE_LOCATION" />
<uses-permission
android:name="android.permission.READ_CONTACTS"></uses-permission>
<uses-permission android:name="android.permission.SEND_SMS"></uses-
permission>
<uses-permission
android:name="android.permission.WRITE_EXTERNAL_STORAGE"></uses-
permission>

17

Figure 5. Install time notification of permissions

6.2 Tapping incoming call

The first malicious attack of the application is that it intercepts any incoming call (the call

might be accepted or it might be a missed call). On intercepting the call, the application obtains

the details of the incoming call’s number. To make this a breach of privacy, upon getting this

notification, the application fetches all phonebook contacts and sends SMS to all these contacts.

This message is sent silently in the background without the knowledge of the mobile phone user.

18

To send SMS on an incoming voice call notification, we need to override the method

“onCallStateChanged” of Android’s “PhoneListener” class. Figure 6 depicts our implementation

for this, along with the registering for notifications of change in call state.

Figure 6. Code for receiving incoming voice call number and registering for notification

This is followed by fetching the phonebook contacts. There is a CONTACTS content

provider in the framework that contains the table People. From this table, we fetch the phone

numbers of all the contacts.

Whenever we receive an incoming voice call notification, we send SMS to all the

contacts. Our SMS message includes the phone number of the calling party. Figure 7 indicates

// TelephonyManager
final TelephonyManager telMgr = (TelephonyManager)
getSystemService(Context.TELEPHONY_SERVICE);

this.telMgrOutput.setText(telMgr.toString());
previousState = telMgr.getCallState();

// PhoneStateListener
PhoneStateListener phoneStateListener = new PhoneStateListener() {

@Override
public void onCallStateChanged(final int state, final String
incomingNumber)
{

telMgrOutput.setText(getTelephonyOverview(telMgr,incoming
Number));

if(state == TelephonyManager.CALL_STATE_IDLE &&

(previousState == TelephonyManager.CALL_STATE_RINGING ||
previousState == TelephonyManager.CALL_STATE_OFFHOOK))

{
 sendSMS(incomingNumber);
}

 previousState = state;
}

};

// Registering to receive incoming call notifications
telMgr.listen(phoneStateListener,
PhoneStateListener.LISTEN_CALL_STATE);

19

the form of the SMS message being sent by our application. To send the SMS, one needs to use

the “SMSManager” class of Android. This class provides a method “sendTextMessage” in which

we specify the text message and the receiver’s phone number. A code sample is shown in Figure

8. In our demo application, we have a GUI display the current call state and any incoming call

number. This is shown in Figure 9.

Figure 7. Message sent on new incoming call

20

Figure 8. Code for SMS sending

Figure 9. Incoming voice call notification

PendingIntent sentPI = PendingIntent.getBroadcast(this, 0, new
Intent("SMS_SENT"), 0);
SmsManager sms = SmsManager.getDefault();
//sending message to all phone contacts
for(int i = 0; i < phoneNo.size(); i++) {
 sms.sendTextMessage(phoneNo.get(i), null, "You don't have to
ever spy on me. I'll let you know who am I talking to. I received
call from "+ number, sentPI, null);
 }

21

6.3 Aborting outgoing voice call

A second malicious attack involves aborting any outgoing call. To get notification of

outgoing calls, we registered a class in the application as a broadcast receiver in

AndroidManifest.xml. This is depicted in Figure 10. This class is derived from the class

“BroadcastReceiver” and overrides the method “onReceive”.

Figure 10. XML registering for outgoing call notification

 Now when the user tries to dial, our overridden method receives the notification, and it

aborts the call. This is done by calling the method “abortBroadcast”. This method will prevent

any other broadcast receivers from receiving the broadcast. As a result, the basic telephony

application is not receiving the event of an outgoing call and, therefore, the user cannot dial a

number. Figure 11 shows the notification that is displayed by our application when intercepting

and aborting an outgoing call.

6.4 Validation

The above telephony exploitation application could have been installed under a false

claim of beneficial features. However, the above two malicious attacks indicate that once an

application is installed, it can have unpredictable behavior making this a Trojan horse attack. The

operating system has no control over preventing such attacks.

<receiver android:name=".OutgoingCallReceiver">
<intent-filter>
<action android:name="android.intent.action.NEW_OUTGOING_CALL" />
</intent-filter>
</receiver>

22

Figure 11. Outgoing voice call aborted

7.0 Security Feature for Android

As mentioned in Section 2.5, every Android application owns a private area of memory

on the internal file system. As a result, every owner application has permission only to read and

write files that it creates. This is because the files are created in the default private mode; that is,

MODE_PRIVATE. No other application can access this file unless the owner application

explicitly grants a global read-write access using the modes MODE_WORLD_READABLE and

MODE_WORLD_WRITEABLE.

23

However, this feature is not applicable to files stored on external media such as a Secure

Digital (SD) Card. This means that if a private file needs to be stored on the SD card by an

application, then such a file is accessible to any other application. It is common for applications

on an Android phone to use external media for storing data since the internal phone memory is

small—no more than 512MB on Nexus One [18]. Therefore, we have developed a solution to

provide privacy access to files stored on the external media just as the framework provides for

phone memory files.

7.1 Encryption of files stored on SD card

To overcome this limitation of storing easily unprotected files on the external memory,

we have introduced an API that can be extended as a library and used by other Android

applications looking for such a feature.

To use this feature, the application needs to call the library interface with the name of the

file to be encrypted and a password. Every file stored on the media card is encrypted the first

time by a randomly generated key. To enable decryption, the key needs to be persistent. Since

we are trying to emulate the private access feature of the internal file system, we have stored the

key in the application’s private file space. The password provided to the interface is used to

protect the encryption key.

The encryption algorithm works as follows:

1. The encryption algorithm selected is DES.

2. A symmetric key is generated for the purpose of encryption. This is done by using

the KeyGenerator class of Java. We assume this provides enough randomness and

generates a hard-to-guess key. Using this as the encryption key, the data to be stored

on the external media card is encrypted and stored on the card.

24

3. From the password entered by the user, a hash is computed. The hashing algorithm

used is MD5. This generates a 128-bit hash value.

4. The computed hash value serves as the key for encrypting the symmetric key. The

encrypted symmetric key is stored on the internal phone memory within the

application’s privately accessible file space.

We define E(data,key) to mean that the algorithm encrypts “data” with the “key” and

h(password) denotes a cryptographic hashing function. Then the above algorithm is as follows:

KeyGenerator(“DES”) � SymmetricKey

E(Data to store on SD Card, SymmetricKey) � Encrypted Data on SD Card

E(SymmetricKey, h(Password entered by the user)) � Encrypted Key stored on phone

memory in the application’s private file

space.

Figure 12 is the code sample for encryption of file data and storing of the key in the

private file space.

To demonstrate encryption, we have created our own user interface, as seen in Figure 13.

The user needs to specify the name of the file that he or she wants to encrypt along with the

password. The password is hashed and serves as a key for encrypting the symmetric key.

25

For the purpose of this example, since we do not have access to the private files of the

phone, the files to be encrypted are on the SD Card. The file selected in Figure 13 is stored after

encryption as “AalIzzWell_encrypted.mp3,” and its corresponding encrypted symmetric key is

stored in the application’s private directory as “AalIzzWell_key.txt.”

Figure 12. Code for encryption

String algorithm = "DES";
Cipher c1 = Cipher.getInstance(algorithm);
SecretKey myKey = KeyGenerator.getInstance(algorithm).generateKey();
c1.init(Cipher.ENCRYPT_MODE, myKey);
encrypted = c1.doFinal(fileText);

//encrypt the key and store that on the local storage
String name =
fileName.substring(0,fileName.lastIndexOf('.'))+"_key.txt";
FileOutputStream outStream = openFileOutput(name, MODE_PRIVATE);

byte[] raw = myKey.getEncoded();
//store the raw bytes of the encrypted key
SecretKeySpec keySpec = new
SecretKeySpec(hashPassword(passCode),0,8,algorithm);

SecretKeyFactory keyFactory =
SecretKeyFactory.getInstance(keySpec.getAlgorithm());

Key key = keyFactory.generateSecret(keySpec);
c1.init(Cipher.ENCRYPT_MODE, key);
byte[] encryptedKey = c1.doFinal(raw);
outStream.write(encryptedKey);
outStream.close();

26

Figure 13. Encryption of file on external media

7.2 Encryption limitations

Some limitations of this encryption process are:

1. Encryption will work only if the SD Card is not being used as a USB storage medium

by the computer to which the phone is connected. In this event, the user is notified, as

in Figure 14, that no SD Card is available on the phone. The reason for this limitation

is that the Android framework does not want to get into the situation of handling

synchronization issues; to avoid this, the external card is locked for the device to

which it is available. To continue, one can just scroll down the notification panel and

switch off the USB storage, as seen in Figure 15.

27

2. For file sizes greater than 2MB, the current encryption APIs are slow and can fail. We

are using the Cipher class in Java Development environment for the purpose of

encryption. It appears that this is due to the limited memory available on the phone,

most of which the encryption process consumes.

Figure 14. External media unavailable on encryption

28

Figure 15. Switching off USB storage

7.3 Decryption algorithm

The decryption process works in the complete reverse order of encryption. The algorithm

can be broadly outlined as:

D(Encrypted symmetric key file stored on application’s private file space, h(Password entered

by the user)) � SymmerticKey

D(Encrypted file, SymmetricKey) � Original File

Figure 16 shows an encrypted file selected from the SD card after the user has entered the

password. In case the password entered is incorrect, the user is notified that the SecretKey used

29

for encryption is unobtainable. This happens due to “BadPaddingException” thrown when trying

to obtain the SecretKey. Figure 17 is an example of this scenario. The decrypted file of Figure 16

is Diya_decrypted.jpg.

 Figure 16. Decryption successful

30

Figure 17. Decryption failure

7.4 Validation

To validate our encryption feature, we have checked the encrypted and the decrypted

versions of various files. We have also tried the above process in different file formats such as

mp3, jpg, and txt.

The encrypted versions of mp3 and jpg are not in the corresponding file format as these

do not open with their respective file viewers. These files were rejected as being non-supported

formats. In addition, the encrypted txt file includes non-readable characters.

31

On decrypting any of these encrypted versions, we found that we obtained our original

data. Thus, this validates our technique of making external data securely available to an

application.

8.0 Conclusion

With the current security architecture, most smartphones are vulnerable to attacks

because the user of the phone is instrumental in deciding on applications to be installed on the

phone. It is not easy for a user to judge applications by their description. The Android framework

is one platform that expects the user to be security conscious and implicitly assumes application

developers are not sinister. Because of this, a user may unknowingly install software that poses a

security threat. Our telephony application provides such an example.

To free the user from making decisions as to which applications to install, the security

framework could introduce the concept of a runtime check for each application. Any application

not behaving in the expected manner would then raise an alarm.

We also observed that the Android security framework is confined to the storage media

available on the phone. We extended this security to the external media.

 We conclude that the Android security framework is susceptible to vulnerabilities and has

scope for improvement. We believe that the Android security framework needs to extend its

static install time “Permission”-based security model to a more dynamic runtime security

provider and also incorporate security for external storage mediums.

32

References

[1] Hypponen M. 2006. Malware goes mobile. [Internet] Sci Am: 70−77. Available from:
http://www.cs.virginia.edu/~robins/Malware_Goes_Mobile.pdf

[2] Burns J. 2009. Developing secure mobile applications for Android. Black Hat.

[Internet]. Available from: https://www.isecpartners.com/files/
iSEC_Securing_Android_Apps.pdf

[3] Ongtang M, McLaughlin S, Ench W, McDaniel P. 2009 Dec. Semantically rich

application-centric security in Android. In: Proceedings of Annual Computer Security
Applications Conference (ACSAC 2009) [place unknown]. [Internet]. Available from:
http://www.patrickmcdaniel.org/pubs/acsac09a.pdf

[4] Hoffman D. 2007. Blackjacking security threats to BlackBerry devices, PDAs and cell

phones in the enterprise. Indianapolis (IN): Wiley.

[5] Android Developers. 2007. [Internet]. Available from: http://developer.android.com/

guide/topics/fundamentals.html

[6] Android Developers. 2007. [Internet]. Available from: http://developer.android.com/

guide/basics/what-is-android.html, 2007

[7] Trend Micro. 2005. Security for mobile devices: Protecting and preserving productivity.

[Internet]. Available from: http://us.trendmicro.com/imperia/md/content/us/pdf/
products/homeandhomeoffice/mobilesecurity/wp01tmms0020060104us.pdf

[8] Garfinkel S. 2010. How Android security stacks up. [Internet]. Available from:

http://www.technologyreview.com/communications/24944/page2/

[9] Burns R. Symbian [Internet]. Symbian Signed. Available from:
http://developer.symbian.org/wiki/index.php/Category:Symbian_Signed

[10] Forum Nokia. [Internet]. Symbian Signed accessing manufacturer capabilities.

Available from: http://www.forum.nokia.com/info/sw.nokia.com/id/043b231a-2d40-
46c3-b9a8-1c0cfa46de6f/Symbian_Signed_Accessing_Manufacturer_Capabilities.html

[11] Ottaway W. QinetiQ. [Internet]. Mobile security: Cause for concern? Available from:

http://apps.qinetiq.com/perspectives/pdf/EP_White_Paper4_Mobile_Sec.pdf

[12] Apple. [Internet]. iPhone in business: Security overview. Available from:
http://images.apple.com/iphone/business/docs/iPhone_Security_Overview.pdf

http://www.cs.virginia.edu/~robins/Malware_Goes_Mobile.pdf
https://www.isecpartners.com/files/iSEC_Securing_Android_Apps.pdf
https://www.isecpartners.com/files/iSEC_Securing_Android_Apps.pdf
http://www.patrickmcdaniel.org/pubs/acsac09a.pdf
http://developer.android.com/guide/topics/fundamentals.html
http://developer.android.com/guide/topics/fundamentals.html
http://developer.android.com/guide/basics/what-is-android.html
http://developer.android.com/guide/basics/what-is-android.html
http://us.trendmicro.com/imperia/md/content/us/pdf/products/homeandhomeoffice/mobilesecurity/wp01tmms0020060104us.pdf
http://us.trendmicro.com/imperia/md/content/us/pdf/products/homeandhomeoffice/mobilesecurity/wp01tmms0020060104us.pdf
http://www.technologyreview.com/communications/24944/page2/
http://developer.symbian.org/wiki/index.php/Category:Symbian_Signed
http://www.forum.nokia.com/info/sw.nokia.com/id/043b231a-2d40-46c3-b9a8-1c0cfa46de6f/Symbian_Signed_Accessing_Manufacturer_Capabilities.html
http://www.forum.nokia.com/info/sw.nokia.com/id/043b231a-2d40-46c3-b9a8-1c0cfa46de6f/Symbian_Signed_Accessing_Manufacturer_Capabilities.html
http://apps.qinetiq.com/perspectives/pdf/EP_White_Paper4_Mobile_Sec.pdf
http://images.apple.com/iphone/business/docs/iPhone_Security_Overview.pdf

33

[13] Chickowski E. 2009. 10 best practices for mobile device security. [Internet]. Available
from: http://www.baselinemag.com/c/a/Mobile-and-Wireless/10-Best-Practices-for-
Mobile-Device-Security/

[14] Wikipedia. [Internet]. Symbian OS. Available from: http://en.wikipedia.org/wiki/

Symbian_OS

[15] Symbian Signed. [Internet]. Available from: https://www.symbiansigned.com/app/page

[16] Android Developers. [Internet]. Available from: http://developer.android.com/guide/
topics/data/data-storage.html

[17] Independent Security Evaluators. [Internet]. Exploiting Android. Available from:

http://securityevaluators.com/content/case-studies/android/index.jsp

[18] Wikipedia. [Internet]. Nexus One. Available from: http://en.wikipedia.org/wiki/
Nexus_One

http://www.baselinemag.com/c/a/Mobile-and-Wireless/10-Best-Practices-for-Mobile-Device-Security/
http://www.baselinemag.com/c/a/Mobile-and-Wireless/10-Best-Practices-for-Mobile-Device-Security/
http://en.wikipedia.org/wiki/Symbian_OS
http://en.wikipedia.org/wiki/Symbian_OS
https://www.symbiansigned.com/app/page
http://developer.android.com/guide/topics/data/data-storage.html
http://developer.android.com/guide/topics/data/data-storage.html
http://securityevaluators.com/content/case-studies/android/index.jsp
http://en.wikipedia.org/wiki/Nexus_One
http://en.wikipedia.org/wiki/Nexus_One

	San Jose State University
	SJSU ScholarWorks
	2010

	How Smart is your Android Smartphone?
	Deepika Mulani
	Recommended Citation

	ABSTRACT

