
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2009

Visualized Architecture Knowledge Management
Collaboration Services
Ashish Kaul
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Kaul, Ashish, "Visualized Architecture Knowledge Management Collaboration Services" (2009). Master's Projects. 67.
DOI: https://doi.org/10.31979/etd.a6rs-hrvc
https://scholarworks.sjsu.edu/etd_projects/67

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/67?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Visualized Architecture Knowledge Management Collaboration Services

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

By, Ashish Kaul
MSCS, CSU – San Jose State University

Spring 2009

1

Copyright © 2009

Ashish Kaul

All Rights Reserved

2

ABSTRACT

Software (system) architecture knowledge is a critical element in making effective

design/ implementation decisions for Information Technology departments within

companies. This knowledge can be codified and/ or personalized so as to harness the

advantages and avoid the missed steps of implementers before us. In research of

architecture knowledge enablement, there have been a few ventures, including but not

limited to, Processcentric Architecture Knowledge Management Environment (PAKME)

[3] and Architecture Design Decision Support System (ADDSS) [4]. In study of these

ventures, we find modest attempts at focusing on dissecting types of architecture

knowledge and enabling access to details through web tools. The purpose of this paper is

to document the design and features of a web tool, namely Visualized Architecture

Knowledge Management Collaboration Services (VAKMCS) and its approach in

providing an innovative way at accessing and interacting with architecture information to

make sound investment decision on IT projects.

3

ACKNOWLEDGEMENTS

Thanks Dr. Teng Moh, for your patience and understanding over the past years

while I attempted to do the impossible. Dr. Moh has motivated me to push for excellence

in every facet of my life. His constant support and accommodation of personal and

professional conflicts against project time lines and deliverables has helped alleviate

much of the anxiety associated with completing this project. Thanks much.

I also appreciate the time that both Dr. Agustin Araya and Dr. Sami Khuri have

dedicated to participate as project committee members.

It has been a challenging experience completing the requirements for my degree,

yet I feel honored to have finished it under the tutelage of the faculty at San Jose State

University.

Thank you.

4

TABLE OF CONTENTS

1.0 INTRODUCTION..9

1.1 KNOWLEDGE MANAGEMENT ..9
1.2 ARCHITECTURE PROCESS ...11
1.3 PROBLEM ADDRESSED ..12

2.0 RELATED WORK ..15
2.1 PAKME..15
2.2 ADDSS...18

3.0 VAKMCS ...21
3.1 MOTIVATION ..22
3.2 SEARCH ..24
3.3 TEXTUAL TAGGING ..25
3.4 IMAGE TAGGING..28
3.5 VISUALIZATION ...30
3.6 FEEDBACK...31
3.7 USER REPUTATION..31
3.8 VERSIONS ..32

4.0 DESIGN ...34
4.1 DATABASE SCHEMA...36
4.2 DATA ACCESS LAYER ..40
4.3 BUSINESS LOGIC & PRESENTATION LAYER...41
4.4 VAKMS SOFTWARE DESIGN ...42
4.4.1 TAG CLOUDS..43
4.4.2 SEARCH RESULTS...44
4.4.3 BROWSE RESULTS..44
4.4.4 IMAGE MAPPING...45
4.4.5 USER REPUTATION...47
4.4.6 VISUALIZATION ..48
4.4.7 VERSIONS ...49

5.0 SOFTWARE TOOLS, DEVELOPMENT KITS USED ..51
6.0 VAKMCS VS. PAKME ..54

6.1 SOFTWARE COMPONENTS ..54
6.2 KNOWLEDGE DEFINITION...54
6.3 FEATURE COMPARISON...55
6.3.1 SEARCH/ BROWSE ..56
6.3.2 VERSIONS ...56

7.0 VAKMCS VS. ADDSS ..57
7.1 SOFTWARE COMPONENTS ..57
7.2 KNOWLEDGE DEFINITION...57
7.3 FEATURE COMPARISON...58
7.3.1 BROWSE ..59
7.3.2 VERSIONS ...59

8.0 POSSIBLE FUTURE WORKS ...60
8.1 CHAT & EMAIL ...60

5

8.2 SEARCH ENGINE ..60
8.3 VERSIONS ..60
8.4 VISUALIZATION ...61
8.5 REPORTING ...61
8.6 USER & IMAGE PERSPECTIVE ..61

9.0 POSSIBLE REAL WORLD IMPLEMENTATION ..62
9.1 PROCESS...64
9.2 GOVERNANCE ..64

10.0 REFERENCES...66

6

LIST OF TABLES

1. Approaches to Architectural Knowledge Management ..13
2. The entities and their definition as supported by VAKMCS...21
3. A breakdown of actions leading to different pages and content in VAKMCS..............22
4. A breakdown of the pages and the tag functions implemented in VAKMCS...............26
5. A table containing the details associated with the data layer of VAKMCS36
6. A list of common functions across the entities found in the data access layer..............40
7. Basic comparison of VAKMCS and PAKME...55
8. Basic comparison of VAKMCS and ADDSS..58

7

LIST OF FIGURES

1. Architectural Knowledge Management Strategies in Research and Industry11
2. A diagrammatic representation of the project lifecycle for Cisco Systems, Inc............12
3. The interface to capture a general scenario within PAKME ...15
4. A template to present patterns in PAKME ..16
5. A process model of reusing design options for PAKME...16
6. A meta-model for architecture design decisions..19
7. A stacked look at the entities and features of VAKMCS ..22
8. VAKMCS home page contains the top ten users of the site..23
9. A screenshot of search results page on VAKMCS ..25
10. A screen shot that shows how related tags are displayed with the results27
11. A screenshot of the details page showing different tagging functions27
12. A screenshot of the image upload UI...29
13. A screenshot of the image after it has been tagged..29
14. A screenshot of visualization feature on VAKMCS..31
15. A screenshot of Feedback and User reputation..32
16. A screenshot of the version feature..33
17. Layered technology stack for VAKMCS...34
18. Software architecture of VAKMCS...35
19. An ER diagram of VAKMCS entities and their relationships.....................................38
20. An ER diagram of VAKMCS entities and tags, images & feedback39
21. A block diagram of the business logic and presentation layer of VAKMCS42
22. Top ten tags flow ...43
23. Search flow ..44
24. Browse flow...45
25. Image add (left) and view (right) flow...46
26. View user reputation flow..47
27. Add user rating flow ..48
28. Visualization flow..49
29. Versions flow...50
30. A possible VAKMCS integration at Cisco ..50

8

1.0 INTRODUCTION

 Organizations like Cisco Systems, Inc. spend millions of dollars on a yearly basis

in implementing/ procuring information technology (IT) system solutions to meet the

needs of their business/ clients. While each organization has its own means of authorizing

IT projects (e.g. Portfolio Management Office), there is a lack of support in making

informed decisions regarding investment on a new IT solution or re-using existing

solutions. Leveraging architectural and system information regarding current portfolio of

applications/ solutions to make decisions on how to meet business needs is the core focus

of this paper. It is proposed that by implementing software (system) architecture

knowledge base that supports association of community driven context can benefit a

company in making informed decisions on where to invest their dollars when it comes to

IT solutions.

This section highlights the significance of architecture knowledge management

and the context for utilization of this knowledge in an information technology project

lifecycle. It describes the benefits of and pitfalls from lack of leveraging architectural

knowledge for design and implementation decisions in a project. The specific issues

around architecture knowledge addressed in this project are discussed in section 1.3.

1.1 KNOWLEDGE MANAGEMENT

Illustrated by Zack [1999a], who states that business organizations are coming to

view knowledge as their most valuable and strategic resource. Nonaka [1998] agrees,

saying that “in an economy where the only certainty is uncertainty, the one sure source of

lasting competitive advantage is knowledge. [1]

9

Knowledge management (KM) is a field that continues to evolve in its approach and

has led to the branching of specialized applications for intellectual property management

within a specific domain. KM has been categorized to have multiple approaches like:

• Codification, aimed at making tacit knowledge explicit and;

• Personalization, intended to support knowledge sharing by describing who knows

what.

Codification strategy does make sense when addressing architectural content since

architects using the information themselves are quite savvy with information systems and

adapt/ adopt quickly. The nature of an architect’s vocation requires the codifying

information through modeling techniques and identifying architectural patterns. [2] Cost

of codification is outweighed by benefits due to high-level reusable representation/

storage of the architectural data. Industry as a whole has focused on personalization

methodology but is moving towards codification.

Well articulated potential impacts of improper information systems architectural

documentation management is provided [2] as:

• The evolution of a system becomes complex and cumbersome, resulting in violations

of the fundamental design decisions.

• Inability to identify design errors.

• Inadequate clarification of arguments and information sharing about the design and

process.

10

Figure 1. Architectural Knowledge Management Strategies in Research and Industry
Source: [1]

The above figure describes the trend for Architectural Knowledge Management (AKM)

and using this as well as one of the suggest approaches by Babar [2]:

• Phase 1: Use personalization for “decision making process is a rather unstructured

process in which the architectural solution space is explored and ideas are coined”

This way architects will be able to maintain/ leverage knowledge that might be

tougher to codify (i.e. stored in a defined manner).

• Phase 2: Codification used for “the design space is outlined by approved

architectural decisions, and a stable architectural design emerges.”

1.2 ARCHITECTURE PROCESS

Described within this section of the document are details associated with the overall

architecture process. This process definition has been defined leveraging the Cisco

Systems, Inc. internal project lifecycle documentation.

11

Figure 2. A diagrammatic representation of the project lifecycle for Cisco Systems, Inc.

Essentially within the lifecycle, the major architectural deliverables reside within

Phase 1, 2 and 3. Overall, the architect would be consulted throughout the lifecycle;

however their major contributions lie in the beginning of the project. The architect is

enabled by documents prepared by both business and IT project team members including,

but not limited to:

• Business requirements

• Major requirements lists

• Gap analysis [current to future]

• Impact analysis

• Scope

Leveraging these documents the architect then evaluates the current systems and

decides on how to best support the needs of the business by accommodating most if not

all the requirements by proposing a to-be state (architecture). It is this process that this

project will support to improve, by allowing architects to have insight into best practices

and already implemented solutions, in turn allowing organizations to invest their IT

dollars more wisely.

1.3 PROBLEM ADDRESSED

This project focuses on implementing a solution for architectural knowledge

management to allow reusability and validation within an IT organization. Within

architectural knowledge management, the specific area of interest is enabling the retrieval

12

of system architecture information for already implemented solutions within a company.

To understand the scope and research conducted in this domain, multiple journals and

articles were reviewed which confirmed the lack of existing support for appropriate

system architecture level knowledge management.

The tool is focused around supporting a process for any company’s IT organization to

leverage as a “starting point” for all projects. The tool, for now named, Visualized

Architectural Knowledge Management Collaboration Services (VAKMCS), will include

a subset of features that would finally enable the ultimate goal of managing system

architecture information efficiently and effectively. Following below are details of the

software implementation for VAKMCS.

As will be highlighted with some details in the related works section of this document,

there are potential systems that address the domain of architectural knowledge

management, however the implementations are far from a complete solution. The

research however provides different approaches and justification for architecture

knowledge management. Below is a table that shows some of the known architecture

knowledge management systems.

Approach Description
ADDSS A web-based tool for recording architectural design decisions.
PAKME A process based knowledge management environment for generic and

project-specific knowledge.
DGA DDR A design decision rationale documentation technique for decision goals

and design alternatives.
GRIFFIN A software architecture project memory to manage know-why and

know-how.
RFP A knowledge repository for reusing best practices with a questionnaire

as a front-end.
VCC Architectural rules disseminated by means of small text-based

documents.
RBS A knowledge base harboring reusable quality criteria.

13

DSTO An architectural knowledge management tool to improve architectural
evaluation practices.

Table 1. Approaches to Architectural Knowledge Management
Source: [1]

Two specific architecture knowledge management solutions were reviewed in detail

and leveraged as guidance for driving definition of this project. In review, it was noted

that there is a lack of consolidation of information and collaboration (to enable feedback

and design improvements). Both systems have addressed the key factor of tracking

design rationale for an architecture, however, the organization of this information is

almost segregated from the rest of the knowledge (i.e. to access design rationale, you

must choose to explicitly chose to view further details). VAKMCS consolidate and

present the architectural information.

There is an intelligent visual factor that is missing from both implementations.

VAKMCS will provide features based on image mapping to enhance the search and

filtering functionality of the knowledge base.

VAKMCS solution hopes to drive efficiency in using stored knowledge for

architectural decision by presenting multiple ways to search. The available options for

search are browse by tag or word search.

Finally, a major component missing in both implementations is the ability to

understand the contributor of architecture. The VAKMCS will enable features that will

allow users leverage the reputation of an architecture contributor before deciding on a

particular solution for their own project.

14

2.0 RELATED WORK

This section highlights research conducted in architecture knowledge

management domain. Based on [2] details listed in research attempts and

implementations at proving an AKM solution, several approaches have been defined. The

tools specifically chosen as references for this project for clear definition of

implementation were the Processcentric Architecture Knowledge Management

Environment (PAKME) [3] and Architecture Design Decision Support System (ADDSS)

[4].

2.1 PAKME

The PAKME application has an underlying framework provided by Hipergate, a

CRM and groupware open-source project. This tool approaches the AKM problem by

providing the following [3]: user interface, knowledge management, repository

management, search and reporting. Below are some examples of how PAKME enables

such functionality:

Figure 3. The interface to capture a general scenario within PAKME
Source: [3]

15

Figure 4. A template to present patterns in PAKME
Source: [3]

The documentation identifies a process that would be used to get the best value

out of the tool. This process is defined by the following figure:

Figure 5. A process model of reusing design options for PAKME
Source: [3]

16

Strengths of Implementation

This implementation has robust criteria of the knowledge content. The system

collects the following data regarding architecture:

General scenario: this is described with a name, a description, a source, date entered and

versions.

Pattern: software/ hardware implementation pattern details described with a name, type,

description, context, problem, solution, parent (if any), related patterns (if any), forces (if

any), tactics (if any), Affected attributes (positive/negative), general scenarios met with

this pattern and examples (if any).

Analysis Model: software analysis models described with a name, dependant parameter,

independent parameter, equivalent model(s) and rules.

Architecturally Significant Requirement Listing: non-functional requirements described

with a name, description, type, analysis model, date proposed, proposed by and quality

factor.

Tactic: tactic options for implementation described by name, description, rationale, child

of tactic, aim, consequence, strategies, analysis model, applicability, associated rules,

assumptions and documents.

Design Option: options described by name, description, notes, rationale, patterns, tactics,

constraints, assumptions, rules, documents, consideration for architecture decision, usage

in architecture decision and inspiration for other designs.

Glossary: definition of terms.

These criteria drive the ability to well define architecture components. They system

considers primarily software development architecture and some system architecture.

17

The system also enables the knowledge to be stored as either project based or

general knowledge. By differentiating between the two, the system allows general

knowledge as consideration for a particular project. This delineation of the two could

have been used as a means to support collaboration, however, that approach was not

addressed.

Weakness of Implementation

The weakness of this implementation is collaboration. The system allows for

versioning, however, comments and contributions cannot be addressed without directly

changing the details of particular architecture knowledge.

This system also does not enable a physical mapping of content through

architecture image capturing. Though you can reference architecture design through

documentation, the system does not have the capacity to enable a picture driven

interaction with the knowledge.

There are no helpful hints on search, a person has to either browse the entire

catalog of information or have strong sense of what they are looking for, and this feature

can be counterproductive at times.

2.2 ADDSS

The ADDSS application features include views from multiple perspectives/ user

groups, graphical representations, collaboration support, iterative versioning provisions,

personalization, software patterns library, designs dependencies and obviously rational

for designs. A formal depiction of this feature set is described below with a UML

diagram. [4]

18

Figure 6. A meta-model for architecture design decisions
Source: [4]

Strengths of Implementation

Important features that are highlighted within the tool include personalization and

multiple view perspectives which are potentials for the project.

There is an available library of potential design patterns that can be leveraged for

software architecture. The design patterns are described with a name, a description, a type

and an image. These can be used to associate with decisions detailed in the system.

Version/ Iteration facility is available but with minimal functionality.

Weakness of Implementation

The review of this tool shows many possible areas of improvement including the

usability and lack of intuitive process for storing and retrieving/ using the architectural

knowledge. The tool itself is focused on software architecture knowledge, rather than

19

system architecture, but provides a foundation that is applicable for the scope of this

project.

Overall the implementation is quite rudimentary and the proposed solution has not

yet been realized to its full capacity. There are many disjointed features that need to be

cohesive for usability.

20

3.0 VAKMCS

 In this section of the document we will describe the features that are implemented

as part of this project. VAKMCS is a web based tool that leverages both existing stored

architecture information and enables organic community driven context for better

usability. Below is a table that defines the entities for which VAKMCS provides services

to access details.

Entity Definition
Requirement A feature that is enabled by a system or integration.
System A software application which services a set of requirements.
Integration Medium of communication between two systems.
Ecosystem A set of systems and integrations which services business purpose.
Project An implemented IT project containing details associated with

systems, integrations and teams involved.
User A contributor/ viewer of VAKMCS.
Table 2. The entities and their definition as supported by VAKMCS

In the following sections we will be describing the services provided by

VAKMCS to enable informed decision making for IT spending. Below is a stack diagram

that portrays the high level solution overview of VAKMCS. The entities essentially

depict data sources that are related by the service layer. The services layer not only

relates the data sources, but also enables features that facilitate the knowledge access. By

allowing entities to be tagged, rated, searched etc. the VAKMCS implementation will

attempt to improve the experience of using/ consuming the stored knowledge.

21

Figure 7. A stacked look at the entities and features of VAKMCS

VAKMCS renders the knowledge on different views based on action a user takes

on the system. The actions and the content of resulting pages are described below in the

table.

Action Page Content
Access system Home page The homepage contains high level activity and

knowledge details within the system. The page
enables search, browse by tags, and provides
statistics on content and users.

Search Search result page Renders the results in a grid format matching the
search string of a user. Also shows associated tags
with the entities matching the search criteria.

Browse by tag Tag result page Renders the results in a grid format match the tag
clicked by a user. Also shows other associated
tags with the resulting entities.

Get details Details page Renders all captured details about an entity. Also
provides access to other functions like image
mapping, visualization, adding tags etc.

Table 3. A breakdown of actions leading to different pages and content in VAKMCS

3.1 MOTIVATION

As is noticed in many companies, more often than not, after any architecture

knowledge base is implemented, the community lacks the motivation to update the

knowledge and hence discontinues leveraging the system for lack of reliability of

22

information to make appropriate decisions. The solution implemented as part of this

project delves into resolving this factor by providing a dynamic look into who has

contributed to the site and what rating they receive by their peers. By enabling this

feature, it is proposed that there is more likely hood of users to continue to update their

knowledge and usage as they may be rewarded for their positive contributions. It is not

the intention of this project to provide a complete solution for motivation, but rather a

simple implementation that depicts how the system can receive greater adoption and

usage.

Below screenshot shows the motivation feature as implemented in VAKMCS. As

highlighted (red box) in the screenshot, the top ten users are shown at the entry point of

the site. This factor can drive positive competition between peers and improve utilization

of the system. The top ten users are discerned based on the highest average rating (out of

5) a contributor of the site receives.

Figure 8. VAKMCS home page contains the top ten users of the site

23

3.2 SEARCH

 VAKMCS provides the ability to perform a common search across all

architectural entities (requirements, systems, integrations, ecosystems and projects). The

search is driven by text matching based on the title and description of an entity. This

feature provides the ability for a user to get a holistic view of the architecture information

and decide to drill down into the appropriate area (entity) of search based on the initial

search results. The initial search results render two assets for a user:

• A title that defines the entity and is clickable for further information

• Tags associated with the entities that match the search criteria

The tags allow for a user to redefine their search criteria to a more appropriate term (as

tags are community driven content for organic context definition) or simply use browse

by tags to get appropriate results.

 Below is a screenshot of VAKMCS search results page. In this screenshot, the

user is searching by the text “search” to find systems that provide search services within

the company. The results show systems that match the search text (highlighted in red

box), as well as, the tags associated with the systems that match the search text

(highlighted in green box). The user can choose to change perspective of the search and

look within requirements, integrations, ecosystems or projects to see matches for the

same criteria.

24

Figure 9. A screenshot of search results page on VAKMCS

3.3 TEXTUAL TAGGING

As depicted in the stack diagram in the introduction of this section, tagging

service enables a community driven context to be added to knowledge. Users have the

ability to tag entities (requirements, systems, integrations, ecosystems and projects) to

provide multiple contexts to the same information.

The tag clouds rendered on the web pages are dynamically arrange themselves in

varying sizes based on number of times a particular knowledge has been tagged with

same text. The more times an item is tagged with the same text, the larger the disparity in

size between not as commonly used texts for tags. This feature helps the user understand

what are the most common connotations associated with the knowledge they wish to

25

ascertain. By leveraging this feature during browsing the user can also better identify how

they should search for the appropriate information within the knowledge base.

Browsing by tags can be leveraged in multiple pages within VAKMCS.

Depending on where a user is within the application, there are different options to browse

by tags. The pages and the browsing by tag features applied through VAKMCS are

described below in the table.

Page Tag feature description
Home page By providing the top ten tags associated with each entity

(requirements, systems, integrations, ecosystems and projects)
VAKMCS enables the user to have a starting point for their search.
The user can click on the tag and begin their search for the
appropriate entity.
The top ten tags are determined based on the entity and the
maximum number of times a particular knowledge item is tagged
with the same text.

Search results page As described in section 3.2, along with the results of a search by
matching the text, the search page provides tags that are associated
with the results.
Users can choose to browse by tags from search page if they wish.

Tag results page As in the search page, if a user decides to browse by tag, they will
not only be provided by entity that has been associated with the tag,
but also other tags associated with the results.

Details page Within the details page (where all stored details associated with an
entity are displayed) a user is provided with all tags associated with
all entities associated with given entity.
An example of this would be when a user looks at the details of a
particular system; they are also shown the related tags for all
systems, requirements, ecosystems, integrations and projects that
are in some way associated with the system.

Table 4. A breakdown of the pages and the tag functions implemented in VAKMCS

 Below are screenshots from VAKMCS tag page and details page that highlight

the features described in the above table. On the tag page, we can see all the associated

tags associated with entities (shown in red box) that match the tag by which a user is

browsing. On the details page we can see the all the associated tags categorized by

26

entities in highlighted in a red box. Also seen on the same page is the ability for a user to

add a tag, as seen in the green box and identify a new context to the same information.

Figure 10. A screen shot that shows how related tags are displayed with the results

Figure 11. A screenshot of the details page showing different tagging functions

27

3.4 IMAGE TAGGING

 As cliché as it may seem, a picture is worth more than thousand words. With that

in mind, VAKMCS, offers the capability to associate images with entities (systems and

integrations) via tagging. This feature allows for a user to upload an image and associate

tags within certain sections of the picture. Depending on the picture uploaded and how it

is tagged, users can get access to details around the ecosystem within which a particular

system may reside, its integrations and/ or other significant information. The image

tagging capability allows multiple images to be associated with one entity, e.g. an image

that depicts the systems categorization within an functional architecture diagram vs. an

image that depicts a how a system is integrated with other systems for certain functional

requirements.

 Below are a couple of screenshots of how a user can leverage this feature within

VAKMCS. The first screenshot displays UI a user uses to add an image and tags

associated with the image. The second screenshot shows how a user can view the image

and entities mapped within the image. In this second screenshot, the user must click on

the image as it appears in the details page of an entity to view the tags associated with

actual image.

28

Figure 12. A screenshot of the image upload UI

Figure 13. A screenshot of the image after it has been tagged

29

3.5 VISUALIZATION

 Visualization is a feature that enables the user to view the relationships of any

entity in a graphical format. This feature provides the user with an interactive graph to

view how different entities within the VAKMCS application are related to each other,

rather than only a textual display. The utilization of this feature is geared in helping users

easily find two critical pieces of information:

• For projects: find the systems and integrations that were delivered as part of the

project, as well as, find the project team members and the roles they play. By

providing a view into the project team, the user should be go outside of the tool and

connect with the appropriate person to get further information about a project that

may not be documented anywhere. This is key in the real world where often getting

first hand information from an involved party can provide more than just technical

information regarding an implementation / project.

• For integrations: find the systems integrated together based on a function. By

reviewing this information in a graphical rather than a textual format, a user could get

a more helpful view into the data.

Below is a screenshot that shows details associated with a project. The feature

provides the details about the relations between elements on the graph in the left panel.

As a user navigates the graph, the left panel dynamically updates to depict the

relationship details.

30

Figure 14. A screenshot of visualization feature on VAKMCS

3.6 FEEDBACK

 This feature allows the ability for a user to add feedback about a particular entity.

This feature focuses on motivating users’ to leverage the architecture information and

interact with it for validating and/ or questioning the knowledge. Based on the feedback

by a user, others can respond and add their thoughts around either a previous comment or

the actual entity. Another benefit of this feature is the ability for users to add additional

information that may have missed regarding the entity.

3.7 USER REPUTATION

 This feature of the application focuses on enabling users to understand the

reliability of a user as based by the community. As seen on many web 2.0 sites today,

with open access to add content to a site, it’s often overwhelming for users to find the

appropriate content without getting lost. These features enhance the ability for a user to

31

trust the content based on the rating of the author before leveraging it for their decision.

These features are also leveraged in motivating users to interact with the application and

get recognition for consistent positive and useful contribution. Star ratings are used to

allow users the ability to rate authors and an average score is shown for each author rated.

 Below is a screenshot of user reputation feature (shown in red box). Users have

the ability to rate by clicking on the stars below the text showing the author of a feedback.

The feedback can be viewed directly below the user reputation in the diagram below.

Figure 15. A screenshot of Feedback and User reputation

3.8 VERSIONS

 Versions feature on the application supports the ability for a user to do a quick

comparison between the details associated with the current entity and its predecessor and

successor if available. The feature does a comparison across the following details:

• Entity title

32

• Entity description

• Entity version

• Entity version description

• Tags associated with the different versions

• Entities associated with the entity (e.g. requirements associated with a system)

By reviewing this information, the user can get an understanding of the past roadmap

of the entity and see how well it aligns with a new prospective project that requires IT

funding. If details show an alignment, it would be beneficial for the user to reach out to

the responsible party and work on a possible avenue to leverage existing platforms.

Below is a screenshot of a project versioning output. The output does a string

comparison between the two entities to show differences between current and pre/ post

versions.

Figure 16. A screenshot of the Version feature

33

4.0 DESIGN

 In this section of the document are details regarding the design of VAKMCS. The

application was developed using Javascript/ HTML on client side, with PHP on the server

side and MySQL as the backend database. The application has a presentation layer

preparing the client side code supported by a business logic layer which performs

activities like processing data from the database that is provided by the data layer. Below

is a diagram that portrays the technology stack and where it resides in the application

layer.

Figure 17. Layered technology stack for VAKMCS

 The overall software architecture for VAKCMS leverages multiple software

components in aiding the implementation of the feature and functions realized by the

application. Below is a software architecture diagram that depicts the software

components and functions within the layers of the application, as mentioned above. In the

following sections the specifics around the different layers within the application are

described with the functions that they perform.

34

Figure 18. Software architecture of VAKMCS

35

4.1 DATABASE SCHEMA

 Below is the table that defines database schema for the VAKMCS application.

The application uses this schema to support all the features listed in section three of the

document.

Table Name Details
Ratings This table contains the relationship between a user and the

individual rating that he/ she received from other users of
the tool. The cardinality of the relationship between user
and his/ her rating is zero to many.

tComments This table contains the relationship between a system,
ecosystem, requirement or integration and its feedback. The
cardinality of the relationship for each entity to its feedback
is zero to many.

tEcoSystems This table contains the master details associated with an
Ecosystem. The table contains a hierarchy within itself of
the versions and its parent’s version.

tImageLocation This table stores details regarding an image used for image
mapping. It contains the server location of the image once
it has been updated by a user. The cardinality of the
relationship for each image within tImageLocation is one to
one for the image map information in tImages tables.

tImages This table contains the image map (coordinates within an
image associated with a tag) generated for an image once a
user tags.

tImagesTags This table contains the individual tags associated with the
images. The cardinality of the tags is many to one with
images.

tIntegrations This table contains the master details associated with an
integration. The table contains a hierarchy within itself of
the versions and its parent’s version.

tIntegrations_EcoSystems This table contains the integrations associated with
ecosystems. The cardinality of this relationship is one
ecosystem to many integrations.

tIntegrations_Projects This table contains the integrations associated with
projects. The cardinality of this relationship is one project
to many integrations.

tPeople This table contains basic information regarding a user. In a
real world situation the user information would be
integrated with an internal directory like LDAP.

tProjects This table contains the master details associated with a
project. The table contains a hierarchy within itself of the
versions and its parent’s version.

36

tProjects_People_Role This table contains a relationship between a project and the
roles that people played within it. The cardinality is one
project to many people to one role.

tRequirements This table contains the master details associated with a
requirement. The table contains a hierarchy within itself of
the versions and its parent’s version.

tRequirements_Integrations This table maintains the relationship between integration
and its requirements. The cardinality between is one
integration to many requirements.

tRequirements_Systems This table maintains the relationship between systems and
its requirements. The cardinality between is one system to
many requirements.

tRoles This table contains basic information regarding a role a
user played with a project.

tSystems This table contains the master details associated with a
system. The table contains a hierarchy within itself of the
versions and its parent’s version.

tSystems_EcoSystems This table maintains the relationship between system and
the ecosystems it belongs to. The cardinality between is
one system to many ecosystems.

tSystems_Integrations This table maintains the relationship between systems and
its integrations. The cardinality between is one system to
many integrations.

tSystems_Projects This table maintains the relationship between systems and
the projects it belongs to. The cardinality between is one
system to many projects.

tTags This table maintains the relationship between any entity
(system, project, ecosystem, integration and requirement)
and the tag as added by a user. One entity has one-to-many
relationship with tags.

Table 5. A table containing the details associated with the data layer of VAKMCS

Below are the entity relationship (ER) diagrams for the VAKMCS. The first

diagram depicts the relationships of the entities (users, systems, requirements, projects,

integrations and ecosystems) to each other and second diagram depicts how the images,

tags and feedback are related to entities.

37

Figure 19. An ER diagram of VAKMCS entities and their relationships

38

Figure 20. An ER diagram of VAKMCS entities and tags, images & feedback

39

4.2 DATA ACCESS LAYER

 Each entity (e.g. systems) uses the data access layer with a similar set of access

functions that enable the application (VAKMCS) to acquire related data from the

perspective of a particular entity. The set of functions that each entity leverages for

acquiring related data is described below in the table. Each function is called by the

business layer in response to an action by the user of VAKMCS. The table below breaks

down the data access by function, action and definition. The italics in the function name

are representative of where entity name is substituted within the code. E.g.

getEntityBySearchByLimit represents getSystemBySearchByLimit,

getIntegrationBySearchByLimit etc.

Function Action Definition
getEntitybySearchByLimit Search by text

match
Returns the entities that match the
search string. The result set is limited
to 30 results at a time to allow for
paginated result display.

getEntityDetails Get details on
entity

Returns the details associated with the
entity. Depending on the entity the
details may differ slightly.

getEntitybyTagbyLimit Browse by tag
match

Returns the entities that have been
tagged with the text that matches the
browsed tag. The result set is limited
to 30 results at a time to allow for
paginated result display.

getRelatedEntityByEntityBy
Limit

Get details on
entity

Returns entities related to a specific
entity. E.g.
getSystemsByEcoSystemsByLimit,
where the function returns all systems
associated with the ecosystem.

getTagsByEntityTag Browse by tag
match

Returns the tags for all entities that
match based on the text of the tag used
to browse.

getTagsByEntitySearch Search by text
match

Returns the tags for all entities that
match based on the text of the search
criteria.

getMapNamesByEntity Get details on
entity

Returns the map names that match a
particular entity. This map is used to

40

render the image mapping feature.
getImagesByEntity Get details on

entity
Returns images associated with an
entity. The map names and images are
related to enable the image mapping
feature.

getPreviousEntityVersion Get details on
entity

Returns the previous version of an
entity if any.

getNextEntityVersion Get details on
entity

Returns the next version of an entity if
any.

getTagsByRelatedEntityByE
ntity

Get details on
entity

Returns the tags for all related entities.

getEntityComments Get details on
entity

Returns the comments associated with
entity.

Table 6. A list of common functions across the entities found in the data access layer

4.3 BUSINESS LOGIC & PRESENTATION LAYER

The business logic and the presentation layer of the application contain the

relationships and business rules that are not accommodated by the data layer. The

application uses these layers to encapsulate all relevant data based on entity and action to

render for the user. The presentation layer leverages the ExtJS JavaScript library

functions to make asynchronous calls to the server side PHP code (business logic) which

assimilates the data gathered from the data access layer. The PHP code performs four

main types of functions; gather information to display on index page, gather information

to display as part of search results on each tab (for each entity), gather information to

display as part of a browse results on each tab (for each entity) and gather information to

display as part of a drill down for details regarding a specific entity.

Below is a diagram that depicts the functions of the business logic and

presentation layer based on types of pages rendered by the application.

41

Figure 21. A block diagram of the business logic and presentation layer of VAKMCS

4.4 VAKMCS SOFTWARE DESIGN

VAKMCS leverages the ExtJS UI development kit to render the user interface,

results and tagging and feedback capabilities. The basic layout of the application uses

tabbed view of the entities (system, requirements etc.) and renders results within the

appropriate tab. ExtJS framework supports asynchronous calls to server side code which

VAKMCS implements for certain functionality and features. By rendering the results of a

search/ browse or results of related entities within an ExtJS grid, VAKMCS leverages the

framework to fire events based on the row selected. Based on the actions by the user,

either all tabs are updated (e.g. search) or a certain tab is updated (e.g. browse and

details). Both the feedback and tagging capabilities leverage the ExtJS forms to

asynchronously store the details added by a user.

42

VAKMCS also integrates multiple other tools to enable features like user

reputation, image mapping and visualization. In the following subsections of the

document significant components and their design will be described through diagrams.

The diagrams display key tasks performed as part of the flow, as well as, application

layers in which the leveraged/ reused software components are used to implement

VAKMCS features.

4.4.1 TAG CLOUDS

As stated in section three of this document, VAKMCS provides insight into the

architecture information stored by providing the ability to browse by tags related to an

entity. The design of this feature leveraged the software tool tag cloud. Tag cloud renders

a cloud of tags based on the text and a quantity: the greater the quantity for a particular

tag, the greater the size of the text of the tag within the cloud. The user has the option to

click on the tag rendered to browse an entity. As an example, the diagram below depicts

software flow for rendering top ten tags on the index page of VAKMCS.

Figure 22. Top ten tags flow

43

4.4.2 SEARCH RESULTS

 The search feature in VAKMCS renders the results for all entities in one call to

the server. This feature is enabled by using a grid within a tabbed layout from the ExtJS

JavaScript development kit. The search terms are matched within attributes of the

architecture information (using data access layer) and the results are encoded using Zend

JSON encoder (software tool). The ExtJS grid asynchronously calls the server side

business logic to create a data store (ExtJS uses the JSON encoded data) and renders the

results upon callback. The diagram below displays the flow for rendering the search

results on the search page in VAKMCS.

Figure 23. Search flow

4.4.3 BROWSE RESULTS

The browse functionality provided by VAKMCS enables the user to find

architecture information based on community driven context. This feature renders the

results in a similar fashion to that of a search, but only updates one entity (one tab on the

user interface) at a time with the result set. The design approach to realize this feature

44

leveraged ExtJS grid and Zend JSON encoder as used in search. The diagram below

displays the flow for rendering the browse results on the browse page in VAKMCS.

Figure 24. Browse flow

4.4.4 IMAGE MAPPING

The image mapping feature of VAKMCS enables two functions: the first function

is the ability to add an image map related to a particular entity (e.g. system or integration),

while the second is the ability to view and interact with the image map. To enable the add

feature required the integration of an online image map editor (software tool). To enable

the view feature required leveraging ExtJS Window (development kit) functionality and

thumbnail capabilities provide

In respect to the add image functionality, the tool offers the ability to upload an

image and associated maps and context within the image. An image is associated with a

map of coordinates and tags. Once the user completes the image mapping process and is

ready to save the resulting map, the integration allows the ability to store the appropriate

45

relationships, by relating to a particular entity by its ID (based on where the user chose to

add an image) and others by tags within VAKMCS.

To view the map, the user navigates into the details page of a system, integration

or ecosystem and finds thumbnails (software tool) of the images. A relationship between

the image and the entities is based on either the ID of an entity (if a user actually added a

picture specifically for that entity) or by matching the tags associated with the image and

the entity. Upon clicking a thumbnail, an ExtJS Window pops-up to render the image and

the associated tags for the user. The diagram below displays the flow for adding and

viewing image maps in VAKMCS.

Figure 25. Image add (left) and view flow (right)

46

4.4.5 USER REPUTATION

 User reputation as described in section three of this document is driven by

star ratings given to users by contributors and reviewers of content within VAKMCS.

This feature integrates the StarRating software tool and associates users with a rating.

The ratings appear in associated with comments within VAKMCS on the details page. As

the comments are rendered, each author’s rating (calculated as an average) is rendered

along with the comment. The tool allows adding a rating to a user by an asynchronous

JavaScript call to the server side, upon completion, the rating on the details page reflects

the latest average. The diagrams below display the flow for add and viewing user

reputation on the details page in VAKMCS.

User lands on
details page

Request for users’ and their ratings
associated with an entity.

SQL call to database via PHP MySQL
DB connection/ access functions and

retrieve resultSet

Returns an array of users’ and
their ratings associated with an

entity

Ratings displayed
against each user

StarRating
application used
to encode render
rating against
user.

Legend

Presentation layer
Business Logic layer

Data access layer

Data layer

Figure 26. View user reputation flow

47

Figure 27. Add user rating flow

4.4.6 VISUALIZATION

Visualization function in VAKMCS builds a graph based on an entity (project or

integration) and its relationships. It offers the user an ability to review relationships in a

moving visual format rather than a static table format. The visualization implementation

leverages JIT (JavaScript library) to render the graph. The implementation involved

organizing related data based on categories of relationships (e.g. for project: team

members, systems, integrations etc.) as accessed through the data layer and then encoding

it using Zend JSON encoder to finally rendering it using the JIT functions. The diagram

below portrays the visualization flow.

48

Figure 28. Visualization flow

4.4.7 VERSIONS

 The versions feature of VAKMCS compares the current entity being viewed in

the details page with its previous and next versions if available/ authored. The

implementation collects all information associated with an entity and its versions into

three separate arrays and then leverages an array comparison script to provide the

differences. The differences are rendered on the UI through an ExtJS window upon user

clicking the “Versions” hyperlink on the details page. The diagram below portrays the

version feature flow.

49

Figure 29. Versions flow

50

5.0 SOFTWARE TOOLS, DEVELOPMENT KITS USED

Below is a list of components and their sources as utilized during the implementation of

the VAKMCS project. Also noted are the software architecture layers (as described in the

previous section of the document) where these components are utilized.

• Application for image uploading/ image mapping:

http://www.maschek.hu/imagemap/imgmap

This component is utilized in both the presentation and the business logic layers. The

user interface for adding an image map and viewing an image map are supported

through HTML and JavaScript while a PHP/ MySQL backend support the storage and

retrieval of the image and map itself.

• Application for ratings: http://boedesign.com/posts/23.html

This component is utilized in both the presentation and the business logic layers. The

user interface for viewing and adding a rating are supported through JavaScript while

a PHP/ MySQL backend support the storage and retrieval of ratings.

• Application for building tag-clouds based on tagging parameters:

 http://www.lotsofcode.com/php/tutorials/tag-cloud

This component is utilized in both the presentation and the business logic layers. The

user interface for viewing the tag clouds provides a style sheet and logic for rendering

the HTML cloud with varying sizes based on count, while the backend PHP/ MySQL

supports the retrieval of the tags themselves.

• JavaScript UI SDK: http://www.extjs.com

This user interface framework is utilized to render the layout and many of the input

and output user interface components of the presentation layer of VAKMCS. The

51

framework supports rendering output based on asynchronous calls to the PHP/

MySQL backend for retrieval of data in JSON format. The framework supports

storing user inputs through forms by sending asynchronous calls to the PHP/ MySQL

backend. The framework provides a vast library of out of box user interface

components including grids, forms, tabs and layouts as implemented within

VAKMCS for several features.

• Visualization JavaScript graphing library: http://thejit.org

This component is utilized in the presentation layer. The user interface for viewing

and interacting with the graph is supported by JavaScript fed through the backend

data by PHP/ MySQL in JSON format.

• Application for creating image thumbnails: authored by Ian Selby (ian@gen-x-

design.com)

This component is utilized in both the presentation and the business logic layers. The

user interface for viewing the thumbnail provides a style sheet and logic for rendering

the HTML and images while the backend PHP/ MySQL supports the resizing of the

images themselves.

• Application for encoding and decoding JSON: http://www.zend.com

This component is utilized in the business logic layer. The library enables data to be

encoded into JSON based on nested array definition. VAKMCS utilizes this feature to

render data in the requested format of the other software components used in the

implementation including visualization library and ExtJS framework.

52

• Application for version difference annotation: authored by Daniel Unterberger

(d.u.diff@holomind.de)

This component is utilized in the business logic layer. The library enables the

evaluation of the difference of two arrays by annotating the differences. This feature

is used as part of the versioning function of VAKMCS.

53

6.0 VAKMCS VS. PAKME

 This section of the document will disclose the implementation and design

differences between PAKME and VAKMCS. By providing a concise breakdown of the

differences, this paper will provide insight into the innovative aspects of VAKMCS.

Though multiple architecture knowledge management solutions were reviewed during the

discovery phase of the project, the paper focuses on PAKME for comparison as it was

one of the most complete implementations.

In the following sections significant differences in approach and function will be

discussed to provide a comparison.

6.1 SOFTWARE COMPONENTS

 The PAKME solution is built on top of an open source groupware platform,

Hipergate [1] that is extended to provide features for architecture knowledge storage and

retrieval. VAKMCS is built ground up leveraging and integrating existing point solutions

(e.g. star rating)/ frameworks to provide multiple perspectives into architecture data.

VAKMCS was built from scratch to allow freedom for implementation limitations found

in leveraging open source platforms. Another reason for choosing a bottom up route was

to change the perspective of the application functionality from technology centric

information to business centric information.

6.2 KNOWLEDGE DEFINITION

 One of the core differences between PAKME and VAKMCS is the way that

architecture knowledge is defined within the tool. PAKME defines knowledge by

scenarios, requirements, quality factors, analysis model, patterns, architecturally

significant requirement, architecture decision, alternative decision and findings.

54

VAKMCS defines knowledge by systems, requirements, integrations, ecosystems and

projects. The differentiation in approach is to accommodate different utilizations of the

knowledge. PAKME focuses more on providing access to technology centric information,

by enabling designers to use accumulated “wisdom” from different projects when

devising or analyzing architectural decisions [1], while VAKMCS focuses on business

centric information by providing search friendly access to existing solutions to decide

whether spending is needed for a new IT project.

6.3 FEATURE COMPARISON

 Below are a set of features that differentiate PAKME and VAKMCS. Features for

search, versions are common to both platforms, however their implementations differ.

Features for browse, feedback, user reputation, image tagging and visualization are not

found in PAKME, but implemented in VAKMCS. Details regarding the VAKMCS

features lacking in PAKME have already been provided in section three, hence, a brief

outline of the implementation difference on shared features is provided in the following

subsections.

Feature PAKME VAKMCS
Motivation: enable functions that motivate users to
participate and author content within architecture system.

Search: enable text based search of stored architecture
knowledge.

Textual Tagging: enable community driven context of
stored architecture knowledge.

Image Tagging: enable community driven context of
images.

Visualization: enable visual and graphical representation of
architecture knowledge and its relationships.

Feedback: enable user feedback for architecture
knowledge.

User Reputation: enable rating system to understand
contributor of knowledge.

Versions: enable comparison of past and future iterations

55

of architecture knowledge.
Browse: enable category based search of architecture
knowledge.

Table 7. Basic comparison of VAKMCS and PAKME

6.3.1 SEARCH / BROWSE

PAKME and VAKMCS both perform search by text matches, however, PAKME

provides the ability to search by selecting the data element (e.g. title within a general

scenario) while VAKMCS searches the title and description fields of the entities.

PAKME also has a slightly more intelligent search functionality that allows the ability to

search by using bitwise logic. VAKMCS did not implement this functionality as it could

be tackled with search engine integration.

PAKME does not support categorized browse functionality, this limits the ability

for users to have both community driven context, as well as, the ability to have some

“hints” in how to search for a particular knowledge. VAKMCS leverages tagging to

provide users with a starting point for their search and should help the user find relevant

information more easily than PAKME.

6.3.2 VERSIONS

 Both PAKME and VAKMCS provide the ability to track versions, however,

PAKME does not provide a quick view into the differences between two versions. This

feature allows users to have an insight into the past and future roadmap of an entity and

hence give some idea regarding possible alignment between business functions and lead

to leveraging existing solution rather than investing on a new implementation.

56

7.0 VAKMCS VS. ADDSS

 This section of the document will disclose the implementation and design

differences between ADDSS and VAKMCS. By providing a concise breakdown of the

differences, this paper will provide insight into the innovative aspects of VAKMCS. Over

all, ADDSS falls short in its implementation of the proposed features. The tool is not

intuitive in usage and still has many features not implemented. Based on the available

literature and some hands on usage the following sections will show the differences in

approach and function between the two systems.

7.1 SOFTWARE COMPONENTS

 Both ADDSS and VAKMCS are built ground up, and use PHP and MySQL.

While VAKMCS leverages ExtJS framework for its layout, ADDSS does not use any UI

framework. Both ADDSS and VAKMCS have used thumbnail libraries for images,

however the purposes of the images are different.

7.2 KNOWLEDGE DEFINITION

As with PAKME, one of the core differences between ADDSS and VAKMCS is

type of architecture knowledge stored within the tool. ADDSS focuses on storing

information regarding design decisions and iterations in the decision making process,

while VAKMCS caters to knowledge by systems, requirements, integrations, ecosystems

and projects. The differentiation in approach is to accommodate different utilizations of

the knowledge. Like PAKME, ADDSS focuses more on providing access to technology

centric information, by enabling designers to use accumulated “wisdom” from different

projects when devising or analyzing architectural decisions [1], while VAKMCS focuses

57

on business centric information by providing search friendly access to existing solutions

to decide whether spending is needed for a new IT project.

7.3 FEATURE COMPARISON

 Below are a set of features that differentiate ADDSS and VAKMCS. Features for

versions and browse are common to both platforms, however their implementations differ.

Features for search, feedback, textual tagging, user reputation, image tagging and

visualization are not found in ADDSS, but implemented in VAKMCS. Details regarding

the VACKMS features lacking in ADDSS have already been provided in section three,

hence, a brief outline of the implementation difference on shared features is provided in

the following subsections.

Feature ADDSS VAKMCS
Motivation: enable functions that motivate users to
participate and author content within architecture system.

Search: enable text based search of stored architecture
knowledge.

Textual Tagging: enable community driven context of
stored architecture knowledge.

Image Tagging: enable community driven context of
images.

Visualization: enable visual and graphical representation of
architecture knowledge and its relationships.

Feedback: enable user feedback for architecture
knowledge.

User Reputation: enable rating system to understand
contributor of knowledge.

Versions: enable comparison of past and future iterations
of architecture knowledge.

Browse: enable category based search of architecture
knowledge.

Table 8. Basic comparison of VAKMCS and ADDSS

58

7.3.1 BROWSE

Like PAKME, ADDSS does not support categorized browse functionality, and

thus limits the ability for users to have both community driven context, as well as, the

ability to have some “hints” in how to search for a particular knowledge.

7.3.2 VERSIONS

 Version management feature of ADDSS has better capabilities than VAKMCS.

The application provides multiple characteristics by which to differentiate a version. The

application also provides a means to view a chronological breakdown of the version from

inception. VAKMCS only uses simple descriptions and relationships to measure version

changes at time, as described in future project sections, there are opportunities for

enhancements in the future.

59

8.0 POSSIBLE FUTURE WORKS

8.1 CHAT & EMAIL

Allow the ability for a user to connect directly through the tool to a project team

member. By incorporating the communication between the team member of the project

and the user within the application we can capture the details of the communication and

make them another source of knowledge.

8.2 SEARCH ENGINE

 By adding a search engine layer between the data access and the database layer

one can improve the performance of the data access. Indexes can be built on new

relationships that are currently not functions in VAKMCS, e.g. mapping multiple search

terms (criteria) to multiple related entities at once. Other benefits of implementing a

search engine integration would include, but not be limited to, content generated

categories (e.g. search by common words within title and/ or description for certain

entities), and bitwise search.

8.3 VERSIONS

Versioning functions can be extended to have intelligence to add multiple features

and knowledge that can be leveraged outside of what VAKMCS offers. One of the key

areas of versioning that might be helpful for users of the system would be an intelligent

crawler that can use knowledge semantics to decide to relate entities that are not

explicitly connected, i.e. enhance versioning software to do intelligent difference

calculations to find newer versions of a particular entity. Another feature related to

versioning that might be helpful would be allowing the ability to compare images that are

60

related to see visually the changes in a particular entity over time. This feature could help

to architecturally understand the roadmap of the ecosystems.

8.4 VISUALIZATION

Currently visualization feature in VAKMCS provides the ability to access only

immediately related information regarding projects. An extension of this feature would be

to allow the visualization to change perspective by allowing multiple actions e.g. a user

should be allowed to change the diagram by entering search terms and perspective (e.g.

system, integration etc.).

8.5 REPORTING

Adding a function to generate reports (e.g. PDF format) with consolidated details

regarding an entity would be helpful in understanding the complete solution. Enhancing

VAKMCS with such a feature would also help users communicate outside of the tool by

printing such a report, or leveraging it for a presentation.

8.6 USER & IMAGE PERSPECTIVE

Currently VAKMCS does not afford the feature to search browse and perform

other functions on image and user functions like the entities. By enabling the image

perspective functionality, users would have a broader range of perspectives to choose

from and may decide to begin their search from a visual context (mapped images) rather

than a textual context. The user perspective feature would cater allowing the community

to track user participation within VAKMCS which could lead building features that help

to understand a user’s subject matter expertise and allow further opportunities to

collaborate.

61

9.0 POSSIBLE REAL WORLD IMPLEMENTATION

 As the purpose of this project is to meet the Masters’ requirements for graduation,

the VAKMCS solution is a standalone approach to accommodate architecture knowledge

management. In the real world data may not be stored in a single source of truth but

rather spread across the enterprise. To support VAKMCS features in an enterprise would

require more than just systems integration but also process, governance and

administration. Below is diagram that depicts a possible approach for Cisco’s integration

of VAKMCS.

Figure 30. A possible VAKMCS integration at Cisco

 As depicted in the diagram, Cisco already stores architecture information in

various forms and tools. The data layer above shows some of these tools (left to right) as

wiki, blog, document repository, forums, quality center for test cases and portfolio

management tool. The storage and retrieval of the architecture knowledge from within

one tool maybe incomplete or outdated, however, aggregating this knowledge in a

62

meaningful would be the benefit of integrating VAKMCS. It is at this level that process

and governance would be required to mandate certain data be recorded for existing and

new projects so that the information is utilized in a meaningful manner. More details on

the process, governance and administration are provided in the subsections.

 The data access layer would consist of web services and search engine based

integration to enable architecture information consumption and utilization by VAKMCS.

There are multiple ways that Cisco can enable the access to content stored in the

independent sources; however, standard practices include RSS and web service with

XML/ JSON over HTTP.

 The business logic layer would consist of the features provided by VAKMCS and

support building meaning relationships and an aggregated knowledge of related entities.

Unlike the implementation for the purposes of the Masters’ requirements for graduation,

in the real world, we could enhance VAKMCS to leverage only the business logic layer

and interact directly with existing data and data access layers. We could also enhance

VAKMCS to render the features as decoupled user interface elements (e.g. portlets,

widgets) to be consumed by an external presentation layer.

 The presentation layer could continue to leverage the user interface as

implemented for this project; however, most enterprise’s today use portals and mash-ups

for presenting aggregated data across multiple sources. Based on experience, it is

probable that Cisco would lean in the same direction when integrating VAKMCS.

 The following subsections identify some others aspects of success for integrating

VAKMCS into an enterprise like Cisco.

63

9.1 PROCESS

 Building meaningful relationships utilizing VAKMCS would require an enterprise

to set up a process for indentifying and enforcing standard criteria for architecture

knowledge. The enterprise would need to regularly update these standards to support

changes. The kinds of standards that an enterprise like Cisco may chose to categorize and

relate their architecture data would include, but not be limited to, common terminology to

identify system details, integration details, requirements, application service providers vs.

internal applications etc. Enterprise evolution would constitute continued evolution and

growth of VAKMCS and would require building a process for managing changes and

release cycles for enhancements.

9.2 GOVERNANCE

 A key factor to the success of integrating VAKMCS would be the governance and

“top down” support from management. Initiating a significant change such as integrating

VAKMCS would require education and adoption mandates from senior IT management

to the individual contributors. Some of the appropriate actions that would be required by

management include:

• A clear message on updating existing and creating new project documentation with

standardized criteria would be required of all IT personnel.

• A mandate should be set by management to first review possible internal solutions

leveraging VAKMCS before proposing a solution to meet the business needs.

• A program manager should be assigned to plan phases and updates for the VAKMCS

features.

64

• A council of architects and knowledge management experts would be appropriate for

updating standards as the enterprise evolves.

• A reward system should be implemented for recognizing positive contribution as

determined through ratings.

65

10.0 REFERENCES

1. Babar M.A. & Gorton I. (May 2007). Architecture Knowledge Management:
Challenges, Approaches, and Tools. Companion to the proceedings of the 29th
International Conference on Software Engineering ICSE COMPANION '07.IEEE
Computer Society

2. Barbar M.A. & Gorton I. (2007). A Tool for Managing Software Architecture
Knowledge. Second Workshop on Sharing and Reusing architectural Knowledge
Architecture, Rationale, and Design Intent. IEEE Computer Society.

3. Capilla R., Dueñas J. C., Nava F., & Pérez S. (2006). A web-based tool for managing
architectural design decisions. ACM SIGSOFT Software Engineering Note. Article No. 4.

4. Becker M. & Falessi D. (2006). Documenting design decisions: A framework and its
evaluation in the ambient intelligence domain. IESE. IESE-Report VII, 34 pp. : Ill., Lit.
050.06/E

5. Becker M., Cantone G. & Falessi D. (2006). Design decision rationale: experiences
and steps ahead towards systematic use. SESSION: SHAring and Reusing architectural
Knowledge (SHARK '2006) paper abstracts. ACM SIGSOFT Software Engineering
Notes Volume 31, Issue 5.

6. Sunassee N.N. & Sewry D.A. (September 2003). An investigation of knowledge
management implementation strategies. Proceedings of the 2003 annual research
conference of the South African institute of computer scientists and information
technologists on Enablement through technology SAICSIT '03. South African Institute for
Computer Scientists and Information Technologists

7. Sunassee N.N. & Sewry D.A. (September 2002). Research papers: data/knowledge
management: A theoretical framework for knowledge management implementation.
Proceedings of the 2002 annual research conference of the South African institute of
computer scientists and information technologists on Enablement through technology
SAICSIT '02. South African Institute for Computer Scientists and Information
Technologists

8. Stewart K.A., Baskerville R., Storey V.C., Senn J.A., Raven A. & Long C. (September
2000). Research contributions: Confronting the assumptions underlying the management
of knowledge: an agenda for understanding and investigating knowledge management.
ACM SIGMIS Database, Volume 31 Issue 4. ACM Press

9. Ezingeard J., Leigh S. & Chandler-Wilde R. (December 2000). Knowledge
management at Ernst & Young UK: getting value through knowledge flows. Proceedings
of the twenty first international conference on Information systems ICIS '00. Association
for Information Systems

66

http://portal.acm.org/author_page.cfm?id=81319498812&coll=Portal&dl=GUIDE&trk=0&CFID=35020877&CFTOKEN=40101640

67

10. Hahn J. & Subramani M.R. (December 2000). A framework of knowledge
management systems: issues and challenges for theory and practice. Proceedings of the
twenty first international conference on Information systems ICIS '00. Association for
Information Systems

11. Herrmann T., Hoffmann M., Jahnke I., Kienle A., Kunau G., Loser K. & Menold N.
(November 2003). Knowledge management II: Concepts for usable patterns of
groupware applications. Proceedings of the 2003 international ACM SIGGROUP
conference on Supporting group work GROUP '03. ACM Press

12. Dingsøyr t., Djarraya H.K. & Røyrvik E. (December 2005). Practical knowledge
management tool use in a software consulting company. Communications of the
ACM, Volume 48 Issue 12. ACM Press

13. Agostini A., Albolino S., Michelis D.S., De Paoli F. & Dond Ri. Knowledge
Management I: Stimulating knowledge discovery and sharing. (November 2003).
Proceedings of the 2003 international ACM SIGGROUP conference on Supporting group
work GROUP '03. ACM Press

	San Jose State University
	SJSU ScholarWorks
	2009

	Visualized Architecture Knowledge Management Collaboration Services
	Ashish Kaul
	Recommended Citation

	ABSTRACT
	TABLE OF CONTENTS
	Strengths of Implementation
	Weakness of Implementation

