San Jose State University

SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2009
Visualized Architecture Knowledge Management
Collaboration Services

Ashish Kaul
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd projects

Part of the Computer Sciences Commons

Recommended Citation
Kaul, Ashish, "Visualized Architecture Knowledge Management Collaboration Services" (2009). Master’s Projects. 67.

DOI: https://doi.org/10.31979/etd.a6rs-hrvc
https://scholarworks.sjsu.edu/etd_projects/67

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact

scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/67?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Visualized Architecture Knowledge Management Collaboration Services

A Writing Project
Presented to
The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

By, Ashish Kaul
MSCS, CSU - San Jose State University
Spring 2009

Copyright © 2009
Ashish Kaul

All Rights Reserved
2

ABSTRACT

Software (system) architecture knowledge is a critical element in making effective
design/ implementation decisions for Information Technology departments within
companies. This knowledge can be codified and/ or personalized so as to harness the
advantages and avoid the missed steps of implementers before us. In research of
architecture knowledge enablement, there have been a few ventures, including but not
limited to, Processcentric Architecture Knowledge Management Environment (PAKME)
[3] and Architecture Design Decision Support System (ADDSS) [4]. In study of these
ventures, we find modest attempts at focusing on dissecting types of architecture
knowledge and enabling access to details through web tools. The purpose of this paper is
to document the design and features of a web tool, namely Visualized Architecture
Knowledge Management Collaboration Services (VAKMCS) and its approach in
providing an innovative way at accessing and interacting with architecture information to

make sound investment decision on IT projects.

ACKNOWLEDGEMENTS

Thanks Dr. Teng Moh, for your patience and understanding over the past years
while | attempted to do the impossible. Dr. Moh has motivated me to push for excellence
in every facet of my life. His constant support and accommodation of personal and
professional conflicts against project time lines and deliverables has helped alleviate
much of the anxiety associated with completing this project. Thanks much.

| also appreciate the time that both Dr. Agustin Araya and Dr. Sami Khuri have
dedicated to participate as project committee members.

It has been a challenging experience completing the requirements for my degree,
yet | feel honored to have finished it under the tutelage of the faculty at San Jose State
University.

Thank you.

TABLE OF CONTENTS

L.O INTRODUCTION. ..ottt 9
1.1 KNOWLEDGE MANAGEMENT ..ot 9
1.2 ARCHITECTURE PROCESScco oo 11
1.3 PROBLEM ADDRESSEDooiiiiiiiiiiie s 12

2.0 RELATED WORKooiiiiiiiiiii e 15
2.1 PAKME ... 15
2.2 ADDSS ... 18

SO VAKMES ... 21
SIMOTIVATION Lo 22
B2 SEARGCH ... 24
33 TEXTUAL TAGGINGooiiiiiii s 25
A IMAGE TAGGING.ot 28
3.9 VISUALIZATION ... 30
B0 FEEDBACK ...t 31
3.7 USER REPUTATION ..ottt 31
BB VERSIONS ... 32

A0 DESIGN ..o 34
4.1 DATABASE SCHEMA ..o 36
4.2 DATA ACCESS LAYER ..o 40
4.3 BUSINESS LOGIC & PRESENTATION LAYER......cccooiiiiiiiiiieiiee 41
4.4 VAKMS SOFTWARE DESIGNccoiiiiiiiiii e 42
441 TAG CLOUDS.ot 43
4.4.2 SEARCH RESULTS ...t 44
4.4.3 BROWSE RESULTSooiiiiiiiici e 44
444 IMAGE MAPPINGcooi e 45
4.4.5 USER REPUTATION......ciiiiiiiiiii e 47
4.4.6 VISUALIZATION ..ot 48
447 VERSIONS ... 49

5.0 SOFTWARE TOOLS, DEVELOPMENT KITS USEDcoocoiiiiiiiiiiciii 51

6.0 VAKMCECS VS. PAKME ..o 54
6.1 SOFTWARE COMPONENTS ..o 54
6.2 KNOWLEDGE DEFINITION......cooiiiiiiiiiiiii s 54
6.3 FEATURE COMPARISON......ooiiiiiiiiiiisee s 55
6.3.1 SEARCH/ BROWISE ..ottt e 56
6.3.2 VERSIONS ... oo 56

7.0 VAKMUECS VS. ADDSS ... 57
7.1 SOFTWARE COMPONENTS ..o 57
7.2 KNOWLEDGE DEFINITION......coiiiiiiiiiiii s 57
7.3 FEATURE COMPARISON......ooiiiiiiiiiiiiiee s 58
T3 L BROWSE ... 59
T.3.2VERSIONS ... 59

8.0 POSSIBLE FUTURE WORKS ... 60
8.1 CHAT & EMAIL ..o 60

8.2 SEARCH ENGINE ..ot 60

8.3 VERSIONS ..o 60
8.4 VISUALIZATION ...ttt 61
8.9 REPORTINGoooiii s 61
8.6 USER & IMAGE PERSPECTIVEooiiii s 61
9.0 POSSIBLE REAL WORLD IMPLEMENTATIONccooiiiiiiiiieee e 62
.1 PROGCESS. ... s 64
9.2 GOVERNANCEo 64
10.0 REFERENCES ... 66

LIST OF TABLES

1. Approaches to Architectural Knowledge Managementcccccovevieneninnieencninnnnnnn 13
2. The entities and their definition as supported by VAKMCS........c..cccovvvviievenn e 21
3. A breakdown of actions leading to different pages and content in VAKMCS.............. 22
4. A breakdown of the pages and the tag functions implemented in VAKMCS................ 26
5. A table containing the details associated with the data layer of VAKMCS.................. 36
6. A list of common functions across the entities found in the data access layer.............. 40
7. Basic comparison of VAKMCS and PAKME ... 55
8. Basic comparison of VAKMCS and ADDSS..........ccooiiieiiiie e 58

LIST OF FIGURES

1. Architectural Knowledge Management Strategies in Research and Industry 11
2. A diagrammatic representation of the project lifecycle for Cisco Systems, Inc............ 12
3. The interface to capture a general scenario within PAKMEcccooviiiinniencinnnn. 15
4. A template to present patterns in PAKMEccocooiiiiieie e 16
5. A process model of reusing design options for PAKME...........cccociviiiiiiinnenccee, 16
6. A meta-model for architecture design deCiSIONS.........cccccveveiiierieeii e 19
7. A stacked look at the entities and features of VAKMCS ..., 22
8. VAKMCS home page contains the top ten users of the Site.........cccecvvveviveinneincniene 23
9. A screenshot of search results page on VAKMCS ... 25
10. A screen shot that shows how related tags are displayed with the results................... 27
11. A screenshot of the details page showing different tagging functionsc...c....... 27
12. A screenshot of the image upload Ul...........ccooeiiiiieiiiie e 29
13. A screenshot of the image after it has been tagged...........cooeverieiieiinie e 29
14. A screenshot of visualization feature on VAKMCS..........ccoooiiiiiineni s 31
15. A screenshot of Feedback and User reputation...............ccovvereieenenienien e 32
16. A screenshot of the Version TRALUIE...........ccviiieiiiee s 33
17. Layered technology stack for VAKMCS.........ccoiiiiiiiiee e 34
18. Software architecture 0f VAKIMCS ..o s 35
19. An ER diagram of VAKMCS entities and their relationships...........ccccccovvviiiiiiennns 38
20. An ER diagram of VAKMCS entities and tags, images & feedbackc.cccocue..ee. 39
21. A block diagram of the business logic and presentation layer of VAKMCS.............. 42
22. TOP LEN TAYS TIOW ..ot ns 43
23. SEAICH TIOW ... 44
24, BIOWSE TIOW ...ttt bbb bbb 45
25. Image add (left) and view (right) FIOW.........ccceveiiiiiiic e 46
26. View USEr reputation FlOW..........cccooiiiiiiiiiecee s 47
27. Add USEr rating FIOWcovoiieiee e e 48
28. VISUALIZATION FIOWeiiiieiicie e et ns 49
29. VEISIONS TIOWcviiiiiiciiceee bbbttt 50
30. A possible VAKMCS integration @t CISCOcoverueriirerienierisieieiesie e 50

1.0 INTRODUCTION

Organizations like Cisco Systems, Inc. spend millions of dollars on a yearly basis
in implementing/ procuring information technology (IT) system solutions to meet the
needs of their business/ clients. While each organization has its own means of authorizing
IT projects (e.g. Portfolio Management Office), there is a lack of support in making
informed decisions regarding investment on a new IT solution or re-using existing
solutions. Leveraging architectural and system information regarding current portfolio of
applications/ solutions to make decisions on how to meet business needs is the core focus
of this paper. It is proposed that by implementing software (System) architecture
knowledge base that supports association of community driven context can benefit a
company in making informed decisions on where to invest their dollars when it comes to
IT solutions.

This section highlights the significance of architecture knowledge management
and the context for utilization of this knowledge in an information technology project
lifecycle. It describes the benefits of and pitfalls from lack of leveraging architectural
knowledge for design and implementation decisions in a project. The specific issues
around architecture knowledge addressed in this project are discussed in section 1.3.

1.1 KNOWLEDGE MANAGEMENT

Illustrated by Zack [1999a], who states that business organizations are coming to
view knowledge as their most valuable and strategic resource. Nonaka [1998] agrees,
saying that “in an economy where the only certainty is uncertainty, the one sure source of

lasting competitive advantage is knowledge. [1]

Knowledge management (KM) is a field that continues to evolve in its approach and
has led to the branching of specialized applications for intellectual property management
within a specific domain. KM has been categorized to have multiple approaches like:

e Caodification, aimed at making tacit knowledge explicit and,;
e Personalization, intended to support knowledge sharing by describing who knows
what.

Codification strategy does make sense when addressing architectural content since
architects using the information themselves are quite savvy with information systems and
adapt/ adopt quickly. The nature of an architect’s vocation requires the codifying
information through modeling techniques and identifying architectural patterns. [2] Cost
of codification is outweighed by benefits due to high-level reusable representation/
storage of the architectural data. Industry as a whole has focused on personalization
methodology but is moving towards codification.

Well articulated potential impacts of improper information systems architectural

documentation management is provided [2] as:

e The evolution of a system becomes complex and cumbersome, resulting in violations
of the fundamental design decisions.

e Inability to identify design errors.

e Inadequate clarification of arguments and information sharing about the design and

process.

10

Unintentional Intentional

Personalization
(/d’

Codification

Awareness
Figure 1. Architectural Knowledge Management Strategies in Research and Industry
Source: [1]

The above figure describes the trend for Architectural Knowledge Management (AKM)

and using this as well as one of the suggest approaches by Babar [2]:

e Phase 1: Use personalization for “decision making process is a rather unstructured
process in which the architectural solution space is explored and ideas are coined”
This way architects will be able to maintain/ leverage knowledge that might be
tougher to codify (i.e. stored in a defined manner).

e Phase 2: Codification used for *“the design space is outlined by approved
architectural decisions, and a stable architectural design emerges.”

1.2 ARCHITECTURE PROCESS
Described within this section of the document are details associated with the overall

architecture process. This process definition has been defined leveraging the Cisco

Systems, Inc. internal project lifecycle documentation.

11

Phase 1 Fhase 2 Phase 3 Fhasze 4 Phase & Fhasze B Phase 7

Analysis Q Design Q Build & Unit Test Enterprize Test Q Implementation Q Suppart & Maintenance

Fs Fs Fs F S Fs
Concept Execite Design Readiness Piast-Prioject
Coarnrnit Commit Rewiew Rienigs Aszessment

[CC) [EC] [OR] [RR] [FFA]

Figure 2. A diagrammatic representation of the project lifecycle for Cisco Systems, Inc.
Essentially within the lifecycle, the major architectural deliverables reside within
Phase 1, 2 and 3. Overall, the architect would be consulted throughout the lifecycle;
however their major contributions lie in the beginning of the project. The architect is
enabled by documents prepared by both business and IT project team members including,
but not limited to:
e Business requirements
e Major requirements lists
e Gap analysis [current to future]
e Impact analysis
e Scope
Leveraging these documents the architect then evaluates the current systems and
decides on how to best support the needs of the business by accommodating most if not
all the requirements by proposing a to-be state (architecture). It is this process that this
project will support to improve, by allowing architects to have insight into best practices
and already implemented solutions, in turn allowing organizations to invest their IT
dollars more wisely.
1.3 PROBLEM ADDRESSED
This project focuses on implementing a solution for architectural knowledge
management to allow reusability and validation within an IT organization. Within
architectural knowledge management, the specific area of interest is enabling the retrieval

12

of system architecture information for already implemented solutions within a company.
To understand the scope and research conducted in this domain, multiple journals and
articles were reviewed which confirmed the lack of existing support for appropriate
system architecture level knowledge management.

The tool is focused around supporting a process for any company’s IT organization to
leverage as a “starting point” for all projects. The tool, for now named, Visualized
Architectural Knowledge Management Collaboration Services (VAKMCS), will include
a subset of features that would finally enable the ultimate goal of managing system
architecture information efficiently and effectively. Following below are details of the
software implementation for VAKMCS.

As will be highlighted with some details in the related works section of this document,
there are potential systems that address the domain of architectural knowledge
management, however the implementations are far from a complete solution. The
research however provides different approaches and justification for architecture
knowledge management. Below is a table that shows some of the known architecture

knowledge management systems.

Approach Description

ADDSS A web-based tool for recording architectural design decisions.

PAKME A process based knowledge management environment for generic and
project-specific knowledge.

DGA DDR A design decision rationale documentation technique for decision goals
and design alternatives.

GRIFFIN A software architecture project memory to manage know-why and
know-how.

RFP A knowledge repository for reusing best practices with a questionnaire
as a front-end.

VCC Architectural rules disseminated by means of small text-based
documents.

RBS A knowledge base harboring reusable quality criteria.

13

DSTO An architectural knowledge management tool to improve architectural
evaluation practices.

Table 1. Approaches to Architectural Knowledge Management
Source: [1]

Two specific architecture knowledge management solutions were reviewed in detail
and leveraged as guidance for driving definition of this project. In review, it was noted
that there is a lack of consolidation of information and collaboration (to enable feedback
and design improvements). Both systems have addressed the key factor of tracking
design rationale for an architecture, however, the organization of this information is
almost segregated from the rest of the knowledge (i.e. to access design rationale, you
must choose to explicitly chose to view further details). VAKMCS consolidate and
present the architectural information.

There is an intelligent visual factor that is missing from both implementations.
VAKMCS will provide features based on image mapping to enhance the search and
filtering functionality of the knowledge base.

VAKMCS solution hopes to drive efficiency in using stored knowledge for
architectural decision by presenting multiple ways to search. The available options for
search are browse by tag or word search.

Finally, a major component missing in both implementations is the ability to
understand the contributor of architecture. The VAKMCS will enable features that will
allow users leverage the reputation of an architecture contributor before deciding on a

particular solution for their own project.

14

2.0 RELATED WORK

This section highlights research conducted in architecture knowledge
management domain. Based on [2] details listed in research attempts and
implementations at proving an AKM solution, several approaches have been defined. The
tools specifically chosen as references for this project for clear definition of
implementation were the Processcentric Architecture Knowledge Management
Environment (PAKME) [3] and Architecture Design Decision Support System (ADDSS)
[4].
2.1 PAKME

The PAKME application has an underlying framework provided by Hipergate, a
CRM and groupware open-source project. This tool approaches the AKM problem by
providing the following [3]: user interface, knowledge management, repository
management, search and reporting. Below are some examples of how PAKME enables

such functionality:

A hipergate :: Edit General Scenario - Microsoft Internet Explorer provided by D... | @@
Edit General Scenario (=]

Mame Canceling commands *-

-Syst-ems should allow users to cancel-operaﬁ-ons, A user invokes an _:-_J'
operation, then no longer wants the operation to be performed.

Description poicans

=l

Source 7L;iser-Deﬂned7:

Pattern | g i
W L (if source is Faffery)

Documents [Please add documents.) ‘n’ Add Documents

Keywords (piease add keywords.] P add Keywords
Logs (it is created only if Revision Feasor is not empty)

Revision
Reason

Figure 3. The interface to capture a general scenario within PAKME
Source: [3]

15

M hipergate

View Pattern

Name

Type

Description

Context

:: Wiew Pattern - Business Delegate - Microsoft Internet Explorer provided b...

Business Delegate

Design pattern

This pattern reduces coupling between tiers and prowides an entry point for
accessing the services that are prowvided by another tier. It may also prowide results
caching for common recuests to improve performance. It typically uses a Service
Locator to locate a service.

In a distributed system, clients mawy be exposed to the complesxity of dealing with
the distributed components that prowvide services.

[£)E)=)

Presentation-tier components interact c.i:l.rectly with business serwvices, which
exposes the implementation details of the services to the chents. Such a direct
mteraction makes the clients vulnerable te any changes in the busmess serces.

Problem

'Use Business Delegate to reduce coupling between presentation-ter chents and
business services. The Business Delegate hides the underlying implementation

|Solution
details of the business service

Parent Ne Parent Available
|[Forces 1) Business Service
Tactics 13 Dalegate Proscy 2) De}.cgate Adagter
I [- Posirively
|Affected 1) Performance
Anributes Negatively
1)y Complezity 2) Introduce new laver
sl 1) BD-S6 2) BD-S2
cenario
Usage
Exaimplne 1) E-Cormmerce

Figure 4. A template to present patterns in PAKME

Source: [3]

The documentation identifies a process that would be used to get the best value

out of the tool. This process is defined by the following figure:

Software
Architecture
Reqguirement

l

M ews Architecture
Decision neseded

Hlace new Design
Decision Case into
repository

~ storc
Update the modified
Design Decisian

Case %

@ [Reattaim

FAodify & Design
Decision Case

D} esign
Decision

search

nowledge
Repositary

Cas o

b Ter

[Reawiise

REthiEVe

D

Retriewved
Design Decisoin
Case

De sign
Decision
Ratiaonale

P v

Design Decision

e

[R=
==

Archite cture
Reguirement

l

Architecture
D ecision
Rationale

Architecture
D ecisian
rmade

Figure 5. A process model of reusing design options for PAKME

Source: [3]

16

Strengths of Implementation

This implementation has robust criteria of the knowledge content. The system
collects the following data regarding architecture:
General scenario: this is described with a name, a description, a source, date entered and
versions.
Pattern: software/ hardware implementation pattern details described with a name, type,
description, context, problem, solution, parent (if any), related patterns (if any), forces (if
any), tactics (if any), Affected attributes (positive/negative), general scenarios met with
this pattern and examples (if any).
Analysis Model: software analysis models described with a name, dependant parameter,
independent parameter, equivalent model(s) and rules.
Architecturally Significant Requirement Listing: non-functional requirements described
with a name, description, type, analysis model, date proposed, proposed by and quality
factor.
Tactic: tactic options for implementation described by name, description, rationale, child
of tactic, aim, consequence, strategies, analysis model, applicability, associated rules,
assumptions and documents.
Design Option: options described by name, description, notes, rationale, patterns, tactics,
constraints, assumptions, rules, documents, consideration for architecture decision, usage
in architecture decision and inspiration for other designs.
Glossary: definition of terms.
These criteria drive the ability to well define architecture components. They system

considers primarily software development architecture and some system architecture.

17

The system also enables the knowledge to be stored as either project based or
general knowledge. By differentiating between the two, the system allows general
knowledge as consideration for a particular project. This delineation of the two could
have been used as a means to support collaboration, however, that approach was not
addressed.

Weakness of Implementation

The weakness of this implementation is collaboration. The system allows for
versioning, however, comments and contributions cannot be addressed without directly
changing the details of particular architecture knowledge.

This system also does not enable a physical mapping of content through
architecture image capturing. Though you can reference architecture design through
documentation, the system does not have the capacity to enable a picture driven
interaction with the knowledge.

There are no helpful hints on search, a person has to either browse the entire
catalog of information or have strong sense of what they are looking for, and this feature
can be counterproductive at times.

2.2 ADDSS

The ADDSS application features include views from multiple perspectives/ user
groups, graphical representations, collaboration support, iterative versioning provisions,
personalization, software patterns library, designs dependencies and obviously rational
for designs. A formal depiction of this feature set is described below with a UML

diagram. [4]

18

Funciwnal & non-func ioenal reqg wirenuen s

Sarstenn = £
F T
develops i=mSup poorte
b
Project Archite ciure Ve exarmine =
]
G izlrterested
gronys affects Stale o lder
takes=s
Iteratiomn R Decisiomn
<{> Sityle
Dexision Model
{F;' {} Paibbern
Queries Varitaton Poinit
Constraints Dependencices

Figure 6. A meta-model for architecture design decisions
Source: [4]

Strengths of Implementation

Important features that are highlighted within the tool include personalization and
multiple view perspectives which are potentials for the project.

There is an available library of potential design patterns that can be leveraged for
software architecture. The design patterns are described with a name, a description, a type
and an image. These can be used to associate with decisions detailed in the system.

Version/ Iteration facility is available but with minimal functionality.

Weakness of Implementation

The review of this tool shows many possible areas of improvement including the
usability and lack of intuitive process for storing and retrieving/ using the architectural

knowledge. The tool itself is focused on software architecture knowledge, rather than

19

system architecture, but provides a foundation that is applicable for the scope of this
project.

Overall the implementation is quite rudimentary and the proposed solution has not
yet been realized to its full capacity. There are many disjointed features that need to be

cohesive for usability.

20

3.0 VAKMCS

In this section of the document we will describe the features that are implemented
as part of this project. VAKMCS is a web based tool that leverages both existing stored
architecture information and enables organic community driven context for better
usability. Below is a table that defines the entities for which VAKMCS provides services

to access details.

Entity Definition

Requirement A feature that is enabled by a system or integration.

System A software application which services a set of requirements.

Integration Medium of communication between two systems.

Ecosystem A set of systems and integrations which services business purpose.

Project An implemented IT project containing details associated with
systems, integrations and teams involved.

User A contributor/ viewer of VAKMCS.

Table 2. The entities and their definition as supported by VAKMCS

In the following sections we will be describing the services provided by
VAKMCS to enable informed decision making for IT spending. Below is a stack diagram
that portrays the high level solution overview of VAKMCS. The entities essentially
depict data sources that are related by the service layer. The services layer not only
relates the data sources, but also enables features that facilitate the knowledge access. By
allowing entities to be tagged, rated, searched etc. the VAKMCS implementation will

attempt to improve the experience of using/ consuming the stored knowledge.

21

User Interface

Image

Services

Requirements
Integrations
Ecosystems

Projects
Entities

Figure 7. A stacked look at the entities and features of VAKMCS
VAKMCS renders the knowledge on different views based on action a user takes

on the system. The actions and the content of resulting pages are described below in the

table.
Action Page Content
Access system | Home page The homepage contains high level activity and

knowledge details within the system. The page
enables search, browse by tags, and provides
statistics on content and users.

Search Search result page | Renders the results in a grid format matching the
search string of a user. Also shows associated tags
with the entities matching the search criteria.

Browse by tag | Tag result page Renders the results in a grid format match the tag
clicked by a user. Also shows other associated
tags with the resulting entities.

Get details Details page Renders all captured details about an entity. Also
provides access to other functions like image
mapping, visualization, adding tags etc.

Table 3. A breakdown of actions leading to different pages and content in VAKMCS
3.1 MOTIVATION

As is noticed in many companies, more often than not, after any architecture
knowledge base is implemented, the community lacks the motivation to update the

knowledge and hence discontinues leveraging the system for lack of reliability of

22

information to make appropriate decisions. The solution implemented as part of this
project delves into resolving this factor by providing a dynamic look into who has
contributed to the site and what rating they receive by their peers. By enabling this
feature, it is proposed that there is more likely hood of users to continue to update their
knowledge and usage as they may be rewarded for their positive contributions. It is not
the intention of this project to provide a complete solution for motivation, but rather a
simple implementation that depicts how the system can receive greater adoption and
usage.

Below screenshot shows the motivation feature as implemented in VAKMCS. As
highlighted (red box) in the screenshot, the top ten users are shown at the entry point of
the site. This factor can drive positive competition between peers and improve utilization
of the system. The top ten users are discerned based on the highest average rating (out of

5) a contributor of the site receives.

¥ Mogzilla Fircfox &
File Edt Miew Histoy Bockmaks Tools Help

- @ 0 [[ttt mehash.com/akms? vy - | [[Glz] Goodle y:

2] MostVisited P Getting Started . Latest Headlines

| 7] akms © | L] http:24www mchash com/akms/ 3 | z

search l

i Top tem users: testAccount]? tastAccounts testhccount] &

Top 10 Requirement's Tags Top 10 System's Tags Top 10 Integration's Tags Top 10 EcoSystem's Tags Top 10 Project's Tags

results testing cln store cms data_transport pec lms-integration integral-7 learning ravenna lms cms vds
sitemninder SS0 authentication ¢lpy store deliveﬁrﬁ colt lems cert elearning cln store
authorization ecommerce cms search
ping_identity content management

certification-

manageiment

cert-mgint

content imanager

Total # of requirements so far: 38 | Total # of systems so far: 21 | Total# of integrations so far. 1 | Total # of scosystems so far: § | Total # of projects so far 6

| Done |?
distad] | 3 o & (@ 9 @ @ |) cs208Pei. |) wizip 5. | 58] cs298epo. |) aricles eq.. | =] 20510011 __ | = 29510002 |[[@ Mezilla F... | <« GDIEIFE 255aM

Figure 8. VAKMCS home page contains the top ten users of the site

23

3.2 SEARCH

VAKMCS provides the ability to perform a common search across all
architectural entities (requirements, systems, integrations, ecosystems and projects). The
search is driven by text matching based on the title and description of an entity. This
feature provides the ability for a user to get a holistic view of the architecture information
and decide to drill down into the appropriate area (entity) of search based on the initial
search results. The initial search results render two assets for a user:

e Atitle that defines the entity and is clickable for further information

e Tags associated with the entities that match the search criteria

The tags allow for a user to redefine their search criteria to a more appropriate term (as
tags are community driven content for organic context definition) or simply use browse
by tags to get appropriate results.

Below is a screenshot of VAKMCS search results page. In this screenshot, the
user is searching by the text “search” to find systems that provide search services within
the company. The results show systems that match the search text (highlighted in red
box), as well as, the tags associated with the systems that match the search text
(highlighted in green box). The user can choose to change perspective of the search and
look within requirements, integrations, ecosystems or projects to see matches for the

same criteria.

24

) AKMS - Mozilla Firefox M ES
File Edit Miew Higtory Bookmarks Toolz Help

T e A I \J‘ | http: fananen. mchash.com/akms/skms. phpTop=searchisearchT ext=seaich T I@ = | Google J-'
18] Most Visited ’ Getting Started .. Latest Headlines
|] ks | 7] akMs =1 |-

Use the tabs to choose the perspective of search

Search
Requirements Systems Integrations EcoSystems Projects

g e BT R— .

“ontent manager cms content management oms search |CMS media locator searchi
L s e N R i ammw%wm e

Systemns
Titls = ' Author
 hiedia Locator ppsthak
LCMS Search R =hmodi
Page|l |of L - =] show Preview Displaying topics 1 - 2 of 2
| Dane ’_#,

distad] | 2~ @@ 9@ © | %) csaPect. | 5] c2Biepartd. |) artickes egard.. | T 29510011 pek |) 23510002 pek|[B AKMS - Mo... [« DI 455aM
Figure 9. A screenshot of search results page on VAKMCS

3.3 TEXTUAL TAGGING

As depicted in the stack diagram in the introduction of this section, tagging
service enables a community driven context to be added to knowledge. Users have the
ability to tag entities (requirements, systems, integrations, ecosystems and projects) to
provide multiple contexts to the same information.

The tag clouds rendered on the web pages are dynamically arrange themselves in
varying sizes based on number of times a particular knowledge has been tagged with
same text. The more times an item is tagged with the same text, the larger the disparity in
size between not as commonly used texts for tags. This feature helps the user understand

what are the most common connotations associated with the knowledge they wish to

25

ascertain. By leveraging this feature during browsing the user can also better identify how
they should search for the appropriate information within the knowledge base.

Browsing by tags can be leveraged in multiple pages within VAKMCS.
Depending on where a user is within the application, there are different options to browse
by tags. The pages and the browsing by tag features applied through VAKMCS are

described below in the table.

Page Tag feature description

Home page By providing the top ten tags associated with each entity
(requirements, systems, integrations, ecosystems and projects)
VAKMCS enables the user to have a starting point for their search.
The user can click on the tag and begin their search for the
appropriate entity.

The top ten tags are determined based on the entity and the
maximum number of times a particular knowledge item is tagged
with the same text.

Search results page | As described in section 3.2, along with the results of a search by
matching the text, the search page provides tags that are associated
with the results.

Users can choose to browse by tags from search page if they wish.

Tag results page As in the search page, if a user decides to browse by tag, they will
not only be provided by entity that has been associated with the tag,
but also other tags associated with the results.

Details page Within the details page (where all stored details associated with an
entity are displayed) a user is provided with all tags associated with
all entities associated with given entity.

An example of this would be when a user looks at the details of a
particular system; they are also shown the related tags for all
systems, requirements, ecosystems, integrations and projects that
are in some way associated with the system.

Table 4. A breakdown of the pages and the tag functions implemented in VAKMCS
Below are screenshots from VAKMCS tag page and details page that highlight

the features described in the above table. On the tag page, we can see all the associated

tags associated with entities (shown in red box) that match the tag by which a user is

browsing. On the details page we can see the all the associated tags categorized by

26

entities in highlighted in a red box. Also seen on the same page is the ability for a user to

add a tag, as seen in the green box and identify a new context to the same information.

EDAKMS - Mozilla Firefox

File Edit VMiew History Bookmarks Tools Help

= =]

T C' K YR I \j |htlp £ v mchash.com/ akms/ akms. php?op=searchisearchT ext=#

[[F

Google _.v-'

|.5] Mostvisted @ Getting Staited = Latest Headlines

| 71 akms | L] AkMs

B3 | L] hitp:/ s mehash.com/akms/

Use the tabs to choose the perspective of search

Search

EcoSystems

Requirements Systems Inteqgrations Projects

Requirements

Title =— Author
Single =ign on askaul

Page|t of1 1= Show Preview Displaying topics 1 - 1 of 1

| Dane

distart] | 3 v | 4] C5298Proj... | k2] cs238repo.. | () aticles reg... |) 23510011.... | %% 23510002
O 3 9 23|

[+
[&akms - Y ton detais.. | [« GEIFE 505am

Figure 10. A screen shot that shows how related tags are displayed with the results

¥DAKMS - Mozilla Firefox

File Edit Wiew Histow Bockmarks Isck Help

=[={]

W € 0 & [[e mehash.com//akms/ skms. php Pop=searchisearchText=t

7 - G| Gongle P

2] Most Visited P Getting Started = Latest Headlines

ETCE Il | (71 akMs 3 |) htps At mehash.com/akms.

Use the tabs to chooss the perspective of s=arch

e T

Requirsments | Systems | Integrations | EcoSystems | Projects

Title: Partner Learning Connection

. Projects,

Description: The external irmplernentation of Saba LMS to enable partner training for i

sales of cormpany products,

Yersion: 1

|¥ersion Details: This is the first implementation,

Parent Yersion: 0

Author: testaccountd
e: o 1

Title —
Test title two
Single sign on

LME to Cortent “4nder Integration with
Ohits

Brequirement(s) tags matching System
¥sso ping_identity authentication siteminder guthorization
Bintegration(s) tags matching System
fpec Ims-integration
-

Images Associated with System
send hers Add Image |
Page[T of 1
- F]
z
= Enter your comment
O~ ...
2z i g Usernanne:
1 Comment:

gin ©

<

and grati hing systeny 1=
Huthor Type
askaul REQUIREMENT
askaul REQUIREMENT
testApcourt1® INTEGRATION

=] Showe PrevfRisplaying topics 1 - 3 of 3

]

| Done

[#

distan| | 3 - & (@ g @ () | =) Cs298Psct. | B8] cs298repartd.. | | articles regard. .| T 29510011.pek. | T 2951000200k . |[@ AKMS - Mo |« (DEIE &01AM

Figure 11. A screenshot of the details page showing different tagging functions

27

3.4 IMAGE TAGGING

As cliché as it may seem, a picture is worth more than thousand words. With that
in mind, VAKMCS, offers the capability to associate images with entities (systems and
integrations) via tagging. This feature allows for a user to upload an image and associate
tags within certain sections of the picture. Depending on the picture uploaded and how it
is tagged, users can get access to details around the ecosystem within which a particular
system may reside, its integrations and/ or other significant information. The image
tagging capability allows multiple images to be associated with one entity, e.g. an image
that depicts the systems categorization within an functional architecture diagram vs. an
image that depicts a how a system is integrated with other systems for certain functional
requirements.

Below are a couple of screenshots of how a user can leverage this feature within
VAKMCS. The first screenshot displays Ul a user uses to add an image and tags
associated with the image. The second screenshot shows how a user can view the image
and entities mapped within the image. In this second screenshot, the user must click on
the image as it appears in the details page of an entity to view the tags associated with

actual image.

28

- Example 1 -

Edit View Histary Bookmarks Tools

‘T c x VRT I |:'] |http://Www.mchash.cum/akms./‘irnagamap/examp\es/addimaga.php'f‘userid:askau\&\magelype:syslem&type\dzs&ﬁfﬁ s I ‘Google 5]

12| Most Wisited 4 Getting Started . Latest Headlines

= Select source

An image on your computer Uploaded

_newd_jpg- upload another (9 acmt

— = Image map areas

e ILabeIW\th numbers "[
Q@@ 4 m @zwm.lwﬂ%j output: | Standard imagemap =]

uﬁ"v:oords- [262.120600.1T 30 [serviees [rarget: [ihiz vindov: = |

1("'v:oords-| Jran: [[rarget | <nor ser> i |

— © Image

Learning Content Management Services

Jawa ML Jaus NS, Yieb Services

Speo.i Open Deploy

oy

Data Deploy

| Dore
@istat] | 3 v @& (5 9 @ & |2 wticks regarding eleaning | 151] £5258FjectRepoiva d.. |[@ Online Image Map E. «2@EUED s:r
Figure 12. A screenshot of the image upload Ul

¥ AKM:

File Edt ‘“iew History Bookmarks Tools Help

@E' c x R I |j ‘hltp:.v‘fwww mchash.com/akms/akms. php Pop=searchisearchT ext=searchit

IEI Most Wisited ’ Getting Started = Latest Headlines

] || AKMS & | | Untited)

'| Google ,"-:'

Use the tabs to cl Image Window %
L T T Cisco.com |
Reguirements S;
w Learning Content Management Services
siteminder . .

EcoSystem(s) ort J g;::mart ’ _all_'l;._cr.ea_(nn

learning e

Images Associ > Open APl Open Deploy

Iusend here —_———

i s s

g
Curi >
Bi er
Enter a tag pEll:
Tag: eaming " P
0 o Search APl | Media Locator | LCMS Reports *ﬁ
Username: w & r Java, | Perl L Java
***********) Confent Contributors.
W Cresting, Tagging Publishing] |
Cortert , ILSG Flanning
u”\ Records ;
Tags associated with this image: =
lems =1

|

| [rane
disat| | 9 v @ ([0 & O || aticles egarding sleaning | 5] C3298FrjectReportv2.d.. |[@) AKMS - Mozilla Firefox [« 2@EPMED 93tr
Figure 13. A screenshot of the image after it has been tagged

i

29

3.5 VISUALIZATION

Visualization is a feature that enables the user to view the relationships of any
entity in a graphical format. This feature provides the user with an interactive graph to
view how different entities within the VAKMCS application are related to each other,
rather than only a textual display. The utilization of this feature is geared in helping users
easily find two critical pieces of information:

e For projects: find the systems and integrations that were delivered as part of the
project, as well as, find the project team members and the roles they play. By
providing a view into the project team, the user should be go outside of the tool and
connect with the appropriate person to get further information about a project that
may not be documented anywhere. This is key in the real world where often getting
first hand information from an involved party can provide more than just technical
information regarding an implementation / project.

e For integrations: find the systems integrated together based on a function. By
reviewing this information in a graphical rather than a textual format, a user could get
a more helpful view into the data.

Below is a screenshot that shows details associated with a project. The feature
provides the details about the relations between elements on the graph in the left panel.

As a user navigates the graph, the left panel dynamically updates to depict the

relationship details.

30

) Visualization of Project - Mozilla Firefox

Eile Edit “iew Higtory Bookmarks Tools Help

- c g,.g (5] I |:] |hltp:/.fwww.mchash.cum/akms.frglaphFrD|Ecl7\ID7tP|o\ects=4 T7 o |'| Google >

2 Most Visited . Getting Started . Latest Headlines

|_1‘] ARMS |£3) | WY/ web colars - Wikipedia, the free encpclo.. ‘ |_“] Yisualization of Project E | F

Project Team /

Connections:

Customer Assessment Delivery
[refation: Team members asocisted with
mrafect)
testAccountls
(relstion: IT Frogram Manager)
testAccounts
(relastion: IT Sponsor)
testAccountl4
[relation: Business Sponsor)
shmadi
(refation: Eusiness Program Manager)

Project Team
testAccountls

bestAccountl?

(refation: Business Project Manager)
testAccountls

[relation: IT Frofect Manager)

/

| Done ,?
distad] | 3 - @ (@ & O | D oticks e, |) c5298Pn. |[@ Visualiz... | oss | Cows FTP | 5 ipswich.. | £ akms | [« & @S 102amm
Figure 14. A screenshot of visualization feature on VAKMCS

3.6 FEEDBACK

This feature allows the ability for a user to add feedback about a particular entity.
This feature focuses on motivating users’ to leverage the architecture information and
interact with it for validating and/ or questioning the knowledge. Based on the feedback
by a user, others can respond and add their thoughts around either a previous comment or
the actual entity. Another benefit of this feature is the ability for users to add additional
information that may have missed regarding the entity.
3.7 USER REPUTATION

This feature of the application focuses on enabling users to understand the
reliability of a user as based by the community. As seen on many web 2.0 sites today,
with open access to add content to a site, it’s often overwhelming for users to find the

appropriate content without getting lost. These features enhance the ability for a user to

31

trust the content based on the rating of the author before leveraging it for their decision.
These features are also leveraged in motivating users to interact with the application and
get recognition for consistent positive and useful contribution. Star ratings are used to
allow users the ability to rate authors and an average score is shown for each author rated.

Below is a screenshot of user reputation feature (shown in red box). Users have
the ability to rate by clicking on the stars below the text showing the author of a feedback.

The feedback can be viewed directly below the user reputation in the diagram below.

¥ AKMS - Mozilla Firefox MEE
File Edit ‘“iew History Bookmarks Toolz Help

- c X I B I http: /fuiaes. mchash.com/akms/skms. php?op=searchisearchT ext=kintana 2 i@ '| Google .

2| MostVisited P Getting Stated = Latest Headlines

Use the tabs to choose the perspective of search

Search
Requirements Systems Integrations EcoSystems Projects
Enter atag :J
Tag:
Username:

Page|l of1 =] Show Praview Mo topics ko display
author: testAccount2 Enter your comment
ated 4/5 (4 Votes)
Username:
Cornrment;
This is a test comment for the Kintana Deployment Solution, system.
**
author: testsccount1d
Rated 3.6/5 (5 Votes)
This is another test comment for the Kintana Deployment Solution,
systerm.,
**
-
4] i w
| Dane |dr‘
dlsad| | 3~ @& @ 9@ G | shikas s |) co2asPiokctfiepotva .. |[@ AKMS - Mozilla Firefox [« - @E® zmem

Figure 15. A screenshot of Feedback and User reputation
3.8 VERSIONS

Versions feature on the application supports the ability for a user to do a quick
comparison between the details associated with the current entity and its predecessor and
successor if available. The feature does a comparison across the following details:

e Entity title
32

e Entity description

e Entity version

e Entity version description

e Tags associated with the different versions

e Entities associated with the entity (e.g. requirements associated with a system)

By reviewing this information, the user can get an understanding of the past roadmap
of the entity and see how well it aligns with a new prospective project that requires IT
funding. If details show an alignment, it would be beneficial for the user to reach out to
the responsible party and work on a possible avenue to leverage existing platforms.

Below is a screenshot of a project versioning output. The output does a string
comparison between the two entities to show differences between current and pre/ post

Versions.

¥ AKMS - Mozilla Firefox = [=1x]
File Edt Wiew Histoy Bookmarks Tools Help

= c M (&1 I I_] |htlp e mchash.comdakms/akms phpPop=searchisearchT ext=H T I" Google J‘

2] Most Visited #® Getting Stated . Latest Headlines

Use the tabs to choose the perspective of search

[Search|

Comparison Window X
Requirements = . . .
Compared: Project of reference ws. Drevious wersiom of project

Title: TestProjed -
URL: http://wwy PEPIEEt of reference
version: 2

Array
version Details
Parent Yersion| [0] == Project Title: TescProjectZ
Author: askaul [1] == Project Description:
Date: 2009-03-([2] ==~ DProject Wersion: 2
versions [3] =~ Project Version Details: Testing wersion
Enter a tag !
Pravious version
TEE) Array
Username: g
[0] == Project Title: TestProjectl
[1] == Project Descri ption:
[: [2] == Project Version: 1
[3] == Project Version Details: This is a test project to walidate the relationship integrity and test appli.
777777777777777 H
Differences hetween two versions [element #] [element 3] [+ = project of ref, - = previous version]:
0 : 0 : - Project Title: TestProjeccd
O : 0 : + Project T TestProject? -
2 : 2 : - Project ¥ 1
2 : 2 : + Project ¥ 2
3 : 3 : - Project ¥ n Details: This is a test project to validate the relstionship integrity and test applic:
3 : 3 : + Project ¥ n Details: Testing version

This project had no next versions

< | i

4| | Ll_l
| Done ’?
distar] | 2 (o @ @ 5 @ @ | InbosMioros.. | 2 San Lailstarte.. |) atticles ragardi.. |] C5288Fmisct. |[@ AKMS Mo |« (26) 1 S @EIIEE 1211 P

Figure 16. A screenshot of the Version feature

33

4.0 DESIGN

In this section of the document are details regarding the design of VAKMCS. The
application was developed using Javascript/ HTML on client side, with PHP on the server
side and MySQL as the backend database. The application has a presentation layer
preparing the client side code supported by a business logic layer which performs
activities like processing data from the database that is provided by the data layer. Below
is a diagram that portrays the technology stack and where it resides in the application

layer.

Presentation Layer

JavaScript

Business logic & Data access Layer

Figure 17. Layered technology stack for VAKMCS

The overall software architecture for VAKCMS leverages multiple software
components in aiding the implementation of the feature and functions realized by the
application. Below is a software architecture diagram that depicts the software
components and functions within the layers of the application, as mentioned above. In the
following sections the specifics around the different layers within the application are

described with the functions that they perform.

34

Presentation Layer

L L Ll L
Image \ Tag Star
™ Thumbnail In
| Il | |
|
I | # ses } uses} uses“ } Uses
I 1 [mmm—— bammam 1 ! ™ - |
I |
| | | l | | | | |
Perspectves| | [Ently mage Map | L1 Add Images . o .
i : } %Reation&hps % indow sl Feadback | T Thumbnai Visualization | T~ Tag Cloud User Reputaton
: |
Versions
% Fegdback fomn Widon
Presentation Laye: renders the Ul for VAKMCS, It ntsracts with
the Business Logic ayer t send requests and receive
responses to user actions
Business Logic Layer
Tag
Cloud
| I \ :
15t | s | uss | |
|
Encode Buld Add Buid l
Resuls Tag Cloud Tag Thumbal Use5 |
I
I | I
il | s | !
[T | |
Agegate Aogregate Aogregale Aogregete - Acqregete Add Aogregate AddImages L Viewlnaces [l Aggregate Add Aogregaie
Resuls Detals Relaticnships TagResuls W~ Feedhack ||~ Feedback [~ mages & Maps & Maps b Naps Ratings Ratings Versions
Business Logic ayer ineracs with Data Access layer foinert
R g = ane selectdata rom database.
(\
Legend
| Data Access Layer
| T ; G ; 6ol
Solbrecomponents Get Search Get & Ade Cet & Add
|D e i Resills Tag Releionshgs Foadback Versions
| GelTag 3t (et & Add
Resuls Ralings

Coded functons o
VAKMCS

2

| Dafabase s

yi Iteyatons

|

Data Layer

EcoSystems

Figure 18. Software architecture of VAKMCS

35

Requirements

SQL calllodalabase (data layer) via PH MySQL connecton
aceess functions and retreve ResultSet

W

4.1 DATABASE SCHEMA

Below is the table that defines database schema for the VAKMCS application.

The application uses this schema to support all the features listed in section three of the

document.

Table Name Details

Ratings This table contains the relationship between a user and the
individual rating that he/ she received from other users of
the tool. The cardinality of the relationship between user
and his/ her rating is zero to many.

tComments This table contains the relationship between a system,
ecosystem, requirement or integration and its feedback. The
cardinality of the relationship for each entity to its feedback
IS zero to many.

tEcoSystems This table contains the master details associated with an

Ecosystem. The table contains a hierarchy within itself of
the versions and its parent’s version.

timageLocation

This table stores details regarding an image used for image
mapping. It contains the server location of the image once
it has been updated by a user. The cardinality of the
relationship for each image within timageLocation is one to
one for the image map information in timages tables.

timages

This table contains the image map (coordinates within an
image associated with a tag) generated for an image once a
user tags.

timagesTags

This table contains the individual tags associated with the
images. The cardinality of the tags is many to one with
images.

tintegrations

This table contains the master details associated with an
integration. The table contains a hierarchy within itself of
the versions and its parent’s version.

tintegrations_EcoSystems

This table contains the integrations associated with
ecosystems. The cardinality of this relationship is one
ecosystem to many integrations.

tintegrations_Projects

This table contains the integrations associated with
projects. The cardinality of this relationship is one project
to many integrations.

tPeople This table contains basic information regarding a user. In a
real world situation the user information would be
integrated with an internal directory like LDAP.

tProjects This table contains the master details associated with a

project. The table contains a hierarchy within itself of the
versions and its parent’s version.

36

tProjects_People_Role

This table contains a relationship between a project and the
roles that people played within it. The cardinality is one
project to many people to one role.

tRequirements

This table contains the master details associated with a
requirement. The table contains a hierarchy within itself of
the versions and its parent’s version.

tRequirements_Integrations

This table maintains the relationship between integration
and its requirements. The cardinality between is one
integration to many requirements.

tRequirements_Systems

This table maintains the relationship between systems and
its requirements. The cardinality between is one system to
many requirements.

tRoles This table contains basic information regarding a role a
user played with a project.
tSystems This table contains the master details associated with a

system. The table contains a hierarchy within itself of the
versions and its parent’s version.

tSystems_EcoSystems

This table maintains the relationship between system and
the ecosystems it belongs to. The cardinality between is
one system to many ecosystems.

tSystems_ Integrations

This table maintains the relationship between systems and
its integrations. The cardinality between is one system to
many integrations.

tSystems_Projects

This table maintains the relationship between systems and
the projects it belongs to. The cardinality between is one
system to many projects.

tTags

This table maintains the relationship between any entity
(system, project, ecosystem, integration and requirement)
and the tag as added by a user. One entity has one-to-many
relationship with tags.

Table 5. A table containing the details associated with the data layer of VAKMCS

Below are the entity relationship (ER) diagrams for the VAKMCS. The first

diagram depicts the relationships of the entities (users, systems, requirements, projects,

integrations and ecosystems) to each other and second diagram depicts how the images,

tags and feedback are related to entities.

37

Legend

{Roles
ilD_tRoles" ¥ Primary key
3 his Foreign Key
b Parent ID
tPeople 7
2 1 ratings
Many W D _tPeople* |«
- Many ey tPetfopp:E = 1
tProject_People_Role y rating_id**
ilD_tProject_People_Role*
ilD_tProjects"
ilD_tPeople*
ilD_tRoles**)
Veny & : tintegrations 1
iID_tintegrations®
iParentlD_tintegrations™*
1
Many W Many Many

tintegrations_Projects

tintegrations_Ecosystems

iID_tintegrations_Projects”
IID_tintegrations™

iID_tintegrations_Ecosystems
iID_tintegrations™

1Systems_Integrations

* 3
I

Figure 19. An ER diagram of VAKMCS entities and their relationships

ilD_tSystems**

ID_tSystems_Integrations”

Idany v

tRequirements_Integrations

iID_tRequirements_Integrations™
iID_tRequirements*™
iID_tintegrations™

ID_tProjects™ iID_tEcoSystems™ ilD_tintegrations™*
Many Many M Mary &
1
tEcoSystems
ilD_tEcoSystems®
1 iParentlD_tEcoSystems™* 1
tProjects 1 tSystems
1
iID_tProjects* ¥ uay . iID_tSystems®
iParentiD_tProjects’** 1Systems_EcoSystems < iParentlD_tSystems***
Many
1 1 ilD_tSystems_EcoSystems* 1 1
ilD_tSystems™
ilD_tEcoSystems™
Many W
tRequirements_Systems
tSystems_Projects 7 ;
Men iID_tRequirements_Systems”
_‘ ilD_tSystems_Projects” ilD_tRequirements**
ilD_tSystems** Many |ilD_tSystems*™
ilD_tProjects™ Wy
\ 4 Many 1
tRequirements

tRequirements_Projects

iID_tRequirements_Projects”
iID_tRequirements™
iID_tProjects™

Many

38

Many A

lID_tRequirements*
IParentiD_tRequirements**

Legend
* Primary key
e Foreign Key
e Parent ID
sType Type of entity (e.g. system)
iTypelD Primary key of entity
timageLocation
ilD_timageLocation®
sURL_timageLocation
v Many 14
{Tags ,‘Ma”"'
1
ilD_tTagss* dMﬂL
sType_tComments™ timages
iTypelD_tComments** | Many iID_timages*
Many A sMapName_tlmages
sURL_timagelocation**
A
Many
timageTags
Many] |ilD_timageTags*
sMapMame_timages**
Many| | sType_iTags*
¥|iTypelD_tTags**
Many
1 1 1 i 1 1 1 1
tintegrations tEcoSystems tSystems tProjects tRequirements
ilD_tintegrations® iID_tEcoSystems® ilD_tSystems* ilD_tProjects* ilD_tRequirements*
iParentiD_tintegrations*** iParentlD_tEcoSystems** iParentlD_tSystems*** iParentlD_tProjects*** iParentiD_tRequirements***

1

1

1

1

\ J Mary Many A 4
Many tComments
Mary
Many ilD_tComments*

P sType_tComments™
iTypelD_tComments*™

Figure 20. An ER diagram of VAKMCS entities and tags, images & feedback

39

4.2 DATA ACCESS LAYER

Each entity (e.g. systems) uses the data access layer with a similar set of access
functions that enable the application (VAKMCS) to acquire related data from the
perspective of a particular entity. The set of functions that each entity leverages for
acquiring related data is described below in the table. Each function is called by the
business layer in response to an action by the user of VAKMCS. The table below breaks

down the data access by function, action and definition. The italics in the function name

are representative of where entity name

is substituted within the code.

E.gQ.

getEntityBySearchByLimit represents getSystemBySearchByLimit,
getintegrationBySearchByLimit etc.
Function Action Definition

getEntitybySearchByLimit

Search by text
match

Returns the entities that match the
search string. The result set is limited
to 30 results at a time to allow for
paginated result display.

getEntityDetails

Get
entity

details on

Returns the details associated with the
entity. Depending on the entity the
details may differ slightly.

getEntitybyTagbyLimit

Browse by tag
match

Returns the entities that have been
tagged with the text that matches the
browsed tag. The result set is limited
to 30 results at a time to allow for
paginated result display.

getRelatedEntityByEntityBy
Limit

Get
entity

details on

Returns entities related to a specific
entity. E.g.
getSystemsByEcoSystemsByLimit,
where the function returns all systems
associated with the ecosystem.

getTagsByEntityTag Browse by tag | Returns the tags for all entities that
match match based on the text of the tag used
to browse.
getTagsByEntitySearch Search by text | Returns the tags for all entities that
match match based on the text of the search
criteria.
getMapNamesByEntity Get details on | Returns the map names that match a
entity particular entity. This map is used to

40

render the image mapping feature.

getimagesByEntity Get details on | Returns images associated with an
entity entity. The map names and images are
related to enable the image mapping
feature.
getPreviousEntityVersion Get details on | Returns the previous version of an
entity entity if any.
getNextEntityVersion Get details on | Returns the next version of an entity if
entity any.

getTagsByRelatedEntityByE | Get details on | Returns the tags for all related entities.
ntity entity

getEntityComments Get details on | Returns the comments associated with
entity entity.

Table 6. A list of common functions across the entities found in the data access layer
4.3 BUSINESS LOGIC & PRESENTATION LAYER

The business logic and the presentation layer of the application contain the
relationships and business rules that are not accommodated by the data layer. The
application uses these layers to encapsulate all relevant data based on entity and action to
render for the user. The presentation layer leverages the ExtJS JavaScript library
functions to make asynchronous calls to the server side PHP code (business logic) which
assimilates the data gathered from the data access layer. The PHP code performs four
main types of functions; gather information to display on index page, gather information
to display as part of search results on each tab (for each entity), gather information to
display as part of a browse results on each tab (for each entity) and gather information to
display as part of a drill down for details regarding a specific entity.

Below is a diagram that depicts the functions of the business logic and

presentation layer based on types of pages rendered by the application.

41

»Top 10 users

-Top 10 tags by entity
«Statistics

=Grid of results per entity
»Relsted tags per entity

=Details of entity
»Tags related to entity

=Tags related to entity relstionships
»\ersions

»Tag form

-Add imags

Wigw related images

=\izw commants

=Grid of related entities
»Wisuslizstion
=Add comments

browse

Figure 21. A block diagram of the business logic and presentation layer of VAKMCS

4.4 VAKMCS SOFTWARE DESIGN

VAKMCS leverages the ExtJS Ul development kit to render the user interface,

results and tagging and feedback capabilities. The basic layout of the application uses
tabbed view of the entities (system, requirements etc.) and renders results within the
appropriate tab. ExtJS framework supports asynchronous calls to server side code which
VAKMCS implements for certain functionality and features. By rendering the results of a
search/ browse or results of related entities within an ExtJS grid, VAKMCS leverages the
framework to fire events based on the row selected. Based on the actions by the user,
either all tabs are updated (e.g. search) or a certain tab is updated (e.g. browse and

details). Both the feedback and tagging capabilities leverage the ExtJS forms to

asynchronously store the details added by a user.

42

VAKMCS also integrates multiple other tools to enable features like user
reputation, image mapping and visualization. In the following subsections of the
document significant components and their design will be described through diagrams.
The diagrams display key tasks performed as part of the flow, as well as, application
layers in which the leveraged/ reused software components are used to implement
VAKMCS features.

4.4.1 TAG CLOUDS

As stated in section three of this document, VAKMCS provides insight into the
architecture information stored by providing the ability to browse by tags related to an
entity. The design of this feature leveraged the software tool tag cloud. Tag cloud renders
a cloud of tags based on the text and a quantity: the greater the quantity for a particular
tag, the greater the size of the text of the tag within the cloud. The user has the option to
click on the tag rendered to browse an entity. As an example, the diagram below depicts

software flow for rendering top ten tags on the index page of VAKMCS.

User visits index page of Tag clouds on
VAKMCS index page

TagCloud
application used
to render cloud.

Traverse the
result set and
builds tag clouds

Request top ten
tags per entity

v

SQL call to database via PHP MySQL
DB connection/ access functions and
retrieve resultSet

| [1 Presentation layer
| L] Business Logic layer

| T Data access layer
l [1 Datalayer

~—_ — - —_ — =

Figure 22. Top ten tags flow

4.4.2 SEARCH RESULTS

The search feature in VAKMCS renders the results for all entities in one call to
the server. This feature is enabled by using a grid within a tabbed layout from the ExtJS
JavaScript development kit. The search terms are matched within attributes of the
architecture information (using data access layer) and the results are encoded using Zend
JSON encoder (software tool). The ExtJS grid asynchronously calls the server side
business logic to create a data store (ExtJS uses the JSON encoded data) and renders the
results upon callback. The diagram below displays the flow for rendering the search

results on the search page in VAKMCS.

User enters
search term
Zend JSON

A Asynchronous response encoder

ExtJS Grid
rendered for each
entity (per tab)

for search results per tab application used
Asynchronous request (i.e. entity) objects for data
for search results per store.
tab (i.e. entity) T

JSON data store
creation for resultSet
for each entity

SQL call to database via PHP MySQL T
DB connection/ access functions and
retrieve resultSet

(

|

| L1 Presentation layer

| L1 Business Logic layer
N —
==

Data access layer

| ——

Data layer

Figure 23. Search flow
4.4.3 BROWSE RESULTS

The browse functionality provided by VAKMCS enables the user to find
architecture information based on community driven context. This feature renders the
results in a similar fashion to that of a search, but only updates one entity (one tab on the

user interface) at a time with the result set. The design approach to realize this feature

44

leveraged ExtJS grid and Zend JSON encoder as used in search. The diagram below

displays the flow for rendering the browse results on the browse page in VAKMCS.

User clicks on
a tag on Ul

ExtJS Grid
rendered for each
entity (per tab)

Zend JSON
Asynchronous response e"CI‘.’d‘:.' ;
for search results for one R e o JSON

Asynchronous request i i :

tab (i.e. entity) objects for data
for search results for store.

one tab (i.e. entity)

JSON data store
creation for resultSet
v for each entity

SQL call to database via PHP MySQL
DB connection/ access functions and
retrieve resultSet

[] Presentation layer

[] Business Logic layer
(I
]

Data access layer

| S U P ——

Data layer

Figure 24. Browse flow
4.4.4 IMAGE MAPPING

The image mapping feature of VAKMCS enables two functions: the first function
is the ability to add an image map related to a particular entity (e.g. system or integration),
while the second is the ability to view and interact with the image map. To enable the add
feature required the integration of an online image map editor (software tool). To enable
the view feature required leveraging ExtJS Window (development kit) functionality and
thumbnail capabilities provide

In respect to the add image functionality, the tool offers the ability to upload an
image and associated maps and context within the image. An image is associated with a
map of coordinates and tags. Once the user completes the image mapping process and is

ready to save the resulting map, the integration allows the ability to store the appropriate

45

relationships, by relating to a particular entity by its ID (based on where the user chose to
add an image) and others by tags within VAKMCS.

To view the map, the user navigates into the details page of a system, integration
or ecosystem and finds thumbnails (software tool) of the images. A relationship between
the image and the entities is based on either the ID of an entity (if a user actually added a
picture specifically for that entity) or by matching the tags associated with the image and
the entity. Upon clicking a thumbnail, an ExtJS Window pops-up to render the image and
the associated tags for the user. The diagram below displays the flow for adding and

viewing image maps in VAKMCS.

ExtJS window renders
image with map based
on online image map
> JavaScript

< User clicks “add image”

':'he IE o; on details page
entity for whicl
thye o User clicks thumnail on ExtJS Window for
going to be n A - detalls page meeter
Online image

added is sent
asa
parameter

mapping page v

Request Image Map details

Return image
location and map
Y

Upload Image

4

A SQL call to database via PHP MySQL
Tag Image DB connection/ access functions and
retrieve resultSet

‘ ‘ Save In:age Map ‘ ‘

"] Presentation layer
|] Business Logic layer

] Data access layer
! [1 Datalayer
|

~ =

Figure 25. Image add (left) and view flow (right)

46

4.4.5 USER REPUTATION

User reputation as described in section three of this document is driven by
star ratings given to users by contributors and reviewers of content within VAKMCS.
This feature integrates the StarRating software tool and associates users with a rating.
The ratings appear in associated with comments within VAKMCS on the details page. As
the comments are rendered, each author’s rating (calculated as an average) is rendered
along with the comment. The tool allows adding a rating to a user by an asynchronous
JavaScript call to the server side, upon completion, the rating on the details page reflects
the latest average. The diagrams below display the flow for add and viewing user

reputation on the details page in VAKMCS.

StarRating
- - licati d
User lands on Ratings displayed 1 enoode render
details page against each user rating against
user.
A
Request for users’ and their ratings
associated with an entity.
Returns an array of users’ and
¢ their ratings associated with an T T T T T T T
entity |Legend
A |)
SQL call to database via PHP MySQL i1 Presentation layer
DB connection/ access functions and '] Business Logic layer

- |
retrieve resultSet |[] Data access layer

| [] Datalayer

~—— e — — =

Figure 26. View user reputation flow

47

StarRating
application used
to encode render
rating against
user.

Q User rates an author D

Rating update on
details page

A

Asynchronous request to add a rating

to a user. Asynchronous response to
rating request with an
¢ update on average rating
score for author.

A

SQL call to database via PHP MySQL
DB connection/ access functions and
retrieve resultSet

’
|Legend

|
|1 Presentation layer
I] Business Logic layer

|] Data access layer
| [] Datalayer

~—— e —_ — =

Figure 27. Add user rating flow
4.4.6 VISUALIZATION

Visualization function in VAKMCS builds a graph based on an entity (project or
integration) and its relationships. It offers the user an ability to review relationships in a
moving visual format rather than a static table format. The visualization implementation
leverages JIT (JavaScript library) to render the graph. The implementation involved
organizing related data based on categories of relationships (e.g. for project: team
members, systems, integrations etc.) as accessed through the data layer and then encoding
it using Zend JSON encoder to finally rendering it using the JIT functions. The diagram

below portrays the visualization flow.

48

JIT JavaScript
library used to
render the graph.

link on details page entity and !ts cat_egonzed
relationships

< User clicks on Visualize > Render a graph of the

Zend JSON
encoder
application used
to encode JSON
objects for data
store.

4

Request categorized results
of entity relationships

JSON object creation for
resultSet for categorized
entity relationships

SQL call to database via PHP MySQL
DB connection/ access functions and
retrieve resultSet

pm————————————
|Legend

|
|1 Presentation layer
'] Business Logic layer

| [] Data access layer
| [1 Datalayer

~—_— —— —- —_ — =

Figure 28. Visualization flow
4.4.7 VERSIONS

The versions feature of VAKMCS compares the current entity being viewed in
the details page with its previous and next versions if available/ authored. The
implementation collects all information associated with an entity and its versions into
three separate arrays and then leverages an array comparison script to provide the
differences. The differences are rendered on the Ul through an ExtJS window upon user
clicking the “Versions” hyperlink on the details page. The diagram below portrays the

version feature flow.

49

ExtJS window renders
versions with based on
output from Array Diff

ExtJS Window for
Versions
Array Diff application

used to generate
difference in versions.

User clicks on Versions
link on details page Parse the each version array

and return differences

¥ A

Request previous and next
versions of entity

Create array with entity
attributes and relationships
for each version (previous
A and next)

SQL call to database via PHP MySQL
DB connection/ access functions and
retrieve resultSet

e —————— —
|Legend

: [1 Presentation layer

I] Business Logic layer
|[_] Data access layer

| [] Datalayer

~—_ — e — =

Figure 29. Versions flow

50

5.0 SOFTWARE TOOLS, DEVELOPMENT KITS USED

Below is a list of components and their sources as utilized during the implementation of

the VAKMCS project. Also noted are the software architecture layers (as described in the

previous section of the document) where these components are utilized.

Application for image uploading/ image mapping:
http://www.maschek.hu/imagemap/imgmap

This component is utilized in both the presentation and the business logic layers. The
user interface for adding an image map and viewing an image map are supported
through HTML and JavaScript while a PHP/ MySQL backend support the storage and
retrieval of the image and map itself.

Application for ratings: http://boedesign.com/posts/23.html

This component is utilized in both the presentation and the business logic layers. The
user interface for viewing and adding a rating are supported through JavaScript while
a PHP/ MySQL backend support the storage and retrieval of ratings.

Application for building tag-clouds based on tagging parameters:
http://www.lotsofcode.com/php/tutorials/tag-cloud

This component is utilized in both the presentation and the business logic layers. The
user interface for viewing the tag clouds provides a style sheet and logic for rendering
the HTML cloud with varying sizes based on count, while the backend PHP/ MySQL
supports the retrieval of the tags themselves.

JavaScript Ul SDK: http://www.extjs.com

This user interface framework is utilized to render the layout and many of the input

and output user interface components of the presentation layer of VAKMCS. The

o1

framework supports rendering output based on asynchronous calls to the PHP/
MySQL backend for retrieval of data in JSON format. The framework supports
storing user inputs through forms by sending asynchronous calls to the PHP/ MySQL
backend. The framework provides a vast library of out of box user interface
components including grids, forms, tabs and layouts as implemented within
VAKMCS for several features.

Visualization JavaScript graphing library: http://thejit.org

This component is utilized in the presentation layer. The user interface for viewing
and interacting with the graph is supported by JavaScript fed through the backend
data by PHP/ MySQL in JSON format.

Application for creating image thumbnails: authored by lan Selby (ian@gen-x-
design.com)

This component is utilized in both the presentation and the business logic layers. The
user interface for viewing the thumbnail provides a style sheet and logic for rendering
the HTML and images while the backend PHP/ MySQL supports the resizing of the
images themselves.

Application for encoding and decoding JSON: http://www.zend.com

This component is utilized in the business logic layer. The library enables data to be
encoded into JSON based on nested array definition. VAKMCS utilizes this feature to
render data in the requested format of the other software components used in the

implementation including visualization library and ExtJS framework.

52

e Application for version difference annotation: authored by Daniel Unterberger

(d.u.diff@holomind.de)

This component is utilized in the business logic layer. The library enables the
evaluation of the difference of two arrays by annotating the differences. This feature

is used as part of the versioning function of VAKMCS.

53

6.0 VAKMCS VS. PAKME

This section of the document will disclose the implementation and design
differences between PAKME and VAKMCS. By providing a concise breakdown of the
differences, this paper will provide insight into the innovative aspects of VAKMCS.
Though multiple architecture knowledge management solutions were reviewed during the
discovery phase of the project, the paper focuses on PAKME for comparison as it was
one of the most complete implementations.

In the following sections significant differences in approach and function will be
discussed to provide a comparison.
6.1 SOFTWARE COMPONENTS

The PAKME solution is built on top of an open source groupware platform,
Hipergate [1] that is extended to provide features for architecture knowledge storage and
retrieval. VAKMCS is built ground up leveraging and integrating existing point solutions
(e.g. star rating)/ frameworks to provide multiple perspectives into architecture data.
VAKMCS was built from scratch to allow freedom for implementation limitations found
in leveraging open source platforms. Another reason for choosing a bottom up route was
to change the perspective of the application functionality from technology centric
information to business centric information.
6.2 KNOWLEDGE DEFINITION

One of the core differences between PAKME and VAKMCS is the way that
architecture knowledge is defined within the tool. PAKME defines knowledge by
scenarios, requirements, quality factors, analysis model, patterns, architecturally

significant requirement, architecture decision, alternative decision and findings.

54

VAKMCS defines knowledge by systems, requirements, integrations, ecosystems and
projects. The differentiation in approach is to accommodate different utilizations of the
knowledge. PAKME focuses more on providing access to technology centric information,
by enabling designers to use accumulated “wisdom” from different projects when
devising or analyzing architectural decisions [1], while VAKMCS focuses on business
centric information by providing search friendly access to existing solutions to decide
whether spending is needed for a new IT project.
6.3 FEATURE COMPARISON

Below are a set of features that differentiate PAKME and VAKMCS. Features for
search, versions are common to both platforms, however their implementations differ.
Features for browse, feedback, user reputation, image tagging and visualization are not
found in PAKME, but implemented in VAKMCS. Details regarding the VAKMCS
features lacking in PAKME have already been provided in section three, hence, a brief
outline of the implementation difference on shared features is provided in the following

subsections.

Feature PAKME VAKMCS
Motivation: enable functions that motivate users to v
participate and author content within architecture system.

Search: enable text based search of stored architecture v v
knowledge.

Textual Tagging: enable community driven context of v
stored architecture knowledge.

Image Tagging: enable community driven context of v
images.

Visualization: enable visual and graphical representation of v
architecture knowledge and its relationships.

Feedback: enable user feedback for architecture v
knowledge.

User Reputation: enable rating system to understand v
contributor of knowledge.

Versions: enable comparison of past and future iterations v v

55

of architecture knowledge.

Browse: enable category based search of architecture v v
knowledge.

Table 7. Basic comparison of VAKMCS and PAKME
6.3.1 SEARCH / BROWSE

PAKME and VAKMCS both perform search by text matches, however, PAKME
provides the ability to search by selecting the data element (e.g. title within a general
scenario) while VAKMCS searches the title and description fields of the entities.
PAKME also has a slightly more intelligent search functionality that allows the ability to
search by using bitwise logic. VAKMCS did not implement this functionality as it could
be tackled with search engine integration.

PAKME does not support categorized browse functionality, this limits the ability
for users to have both community driven context, as well as, the ability to have some
“hints” in how to search for a particular knowledge. VAKMCS leverages tagging to
provide users with a starting point for their search and should help the user find relevant
information more easily than PAKME.

6.3.2 VERSIONS

Both PAKME and VAKMCS provide the ability to track versions, however,
PAKME does not provide a quick view into the differences between two versions. This
feature allows users to have an insight into the past and future roadmap of an entity and
hence give some idea regarding possible alignment between business functions and lead

to leveraging existing solution rather than investing on a new implementation.

56

7.0 VAKMCS VS. ADDSS

This section of the document will disclose the implementation and design
differences between ADDSS and VAKMCS. By providing a concise breakdown of the
differences, this paper will provide insight into the innovative aspects of VAKMCS. Over
all, ADDSS falls short in its implementation of the proposed features. The tool is not
intuitive in usage and still has many features not implemented. Based on the available
literature and some hands on usage the following sections will show the differences in
approach and function between the two systems.
7.1 SOFTWARE COMPONENTS

Both ADDSS and VAKMCS are built ground up, and use PHP and MySQL.
While VAKMCS leverages ExtJS framework for its layout, ADDSS does not use any Ul
framework. Both ADDSS and VAKMCS have used thumbnail libraries for images,
however the purposes of the images are different.
7.2 KNOWLEDGE DEFINITION

As with PAKME, one of the core differences between ADDSS and VAKMCS is
type of architecture knowledge stored within the tool. ADDSS focuses on storing
information regarding design decisions and iterations in the decision making process,
while VAKMCS caters to knowledge by systems, requirements, integrations, ecosystems
and projects. The differentiation in approach is to accommodate different utilizations of
the knowledge. Like PAKME, ADDSS focuses more on providing access to technology
centric information, by enabling designers to use accumulated “wisdom” from different

projects when devising or analyzing architectural decisions [1], while VAKMCS focuses

57

on business centric information by providing search friendly access to existing solutions

to decide whether spending is needed for a new IT project.

7.3 FEATURE COMPARISON

Below are a set of features that differentiate ADDSS and VAKMCS. Features for

versions and browse are common to both platforms, however their implementations differ.

Features for search, feedback, textual tagging, user reputation, image tagging and

visualization are not found in ADDSS, but implemented in VAKMCS. Details regarding

the VACKMS features lacking in ADDSS have already been provided in section three,

hence, a brief outline of the implementation difference on shared features is provided in

the following subsections.

Feature ADDSS VAKMCS
Motivation: enable functions that motivate users to v
participate and author content within architecture system.

Search: enable text based search of stored architecture v
knowledge.

Textual Tagging: enable community driven context of v
stored architecture knowledge.

Image Tagging: enable community driven context of v
images.

Visualization: enable visual and graphical representation of v
architecture knowledge and its relationships.

Feedback: enable user feedback for architecture v
knowledge.

User Reputation: enable rating system to understand v
contributor of knowledge.

Versions: enable comparison of past and future iterations v v
of architecture knowledge.

Browse: enable category based search of architecture v v

knowledge.

Table 8. Basic comparison of VAKMCS and ADDSS

58

7.3.1 BROWSE

Like PAKME, ADDSS does not support categorized browse functionality, and
thus limits the ability for users to have both community driven context, as well as, the
ability to have some “hints” in how to search for a particular knowledge.
7.3.2 VERSIONS

Version management feature of ADDSS has better capabilities than VAKMCS.
The application provides multiple characteristics by which to differentiate a version. The
application also provides a means to view a chronological breakdown of the version from
inception. VAKMCS only uses simple descriptions and relationships to measure version
changes at time, as described in future project sections, there are opportunities for

enhancements in the future.

59

8.0 POSSIBLE FUTURE WORKS
8.1 CHAT & EMAIL

Allow the ability for a user to connect directly through the tool to a project team
member. By incorporating the communication between the team member of the project
and the user within the application we can capture the details of the communication and
make them another source of knowledge.
8.2 SEARCH ENGINE

By adding a search engine layer between the data access and the database layer
one can improve the performance of the data access. Indexes can be built on new
relationships that are currently not functions in VAKMCS, e.g. mapping multiple search
terms (criteria) to multiple related entities at once. Other benefits of implementing a
search engine integration would include, but not be limited to, content generated
categories (e.g. search by common words within title and/ or description for certain
entities), and bitwise search.
8.3 VERSIONS

Versioning functions can be extended to have intelligence to add multiple features
and knowledge that can be leveraged outside of what VAKMCS offers. One of the key
areas of versioning that might be helpful for users of the system would be an intelligent
crawler that can use knowledge semantics to decide to relate entities that are not
explicitly connected, i.e. enhance versioning software to do intelligent difference
calculations to find newer versions of a particular entity. Another feature related to

versioning that might be helpful would be allowing the ability to compare images that are

60

related to see visually the changes in a particular entity over time. This feature could help
to architecturally understand the roadmap of the ecosystems.
8.4 VISUALIZATION

Currently visualization feature in VAKMCS provides the ability to access only
immediately related information regarding projects. An extension of this feature would be
to allow the visualization to change perspective by allowing multiple actions e.g. a user
should be allowed to change the diagram by entering search terms and perspective (e.g.
system, integration etc.).
8.5 REPORTING

Adding a function to generate reports (e.g. PDF format) with consolidated details
regarding an entity would be helpful in understanding the complete solution. Enhancing
VAKMCS with such a feature would also help users communicate outside of the tool by
printing such a report, or leveraging it for a presentation.
8.6 USER & IMAGE PERSPECTIVE

Currently VAKMCS does not afford the feature to search browse and perform
other functions on image and user functions like the entities. By enabling the image
perspective functionality, users would have a broader range of perspectives to choose
from and may decide to begin their search from a visual context (mapped images) rather
than a textual context. The user perspective feature would cater allowing the community
to track user participation within VAKMCS which could lead building features that help
to understand a user’s subject matter expertise and allow further opportunities to

collaborate.

61

9.0 POSSIBLE REAL WORLD IMPLEMENTATION

As the purpose of this project is to meet the Masters’ requirements for graduation,
the VAKMCS solution is a standalone approach to accommodate architecture knowledge
management. In the real world data may not be stored in a single source of truth but
rather spread across the enterprise. To support VAKMCS features in an enterprise would
require more than just systems integration but also process, governance and

administration. Below is diagram that depicts a possible approach for Cisco’s integration

of VAKMCS.

2 2

~

., LIFERAY

Enterprise. Open Source For Life.

J
>

Presentation Layer

Proc. & Govern.

asnay 13 MaIIAdY

Data Access Layer

B

[&]

Figure 30. A possible VAKMCS integration at Cisco

As depicted in the diagram, Cisco already stores architecture information in
various forms and tools. The data layer above shows some of these tools (left to right) as
wiki, blog, document repository, forums, quality center for test cases and portfolio
management tool. The storage and retrieval of the architecture knowledge from within

one tool maybe incomplete or outdated, however, aggregating this knowledge in a

62

meaningful would be the benefit of integrating VAKMCS. It is at this level that process
and governance would be required to mandate certain data be recorded for existing and
new projects so that the information is utilized in a meaningful manner. More details on
the process, governance and administration are provided in the subsections.

The data access layer would consist of web services and search engine based
integration to enable architecture information consumption and utilization by VAKMCS.
There are multiple ways that Cisco can enable the access to content stored in the
independent sources; however, standard practices include RSS and web service with
XML/ JSON over HTTP.

The business logic layer would consist of the features provided by VAKMCS and
support building meaning relationships and an aggregated knowledge of related entities.
Unlike the implementation for the purposes of the Masters’ requirements for graduation,
in the real world, we could enhance VAKMCS to leverage only the business logic layer
and interact directly with existing data and data access layers. We could also enhance
VAKMCS to render the features as decoupled user interface elements (e.g. portlets,
widgets) to be consumed by an external presentation layer.

The presentation layer could continue to leverage the user interface as
implemented for this project; however, most enterprise’s today use portals and mash-ups
for presenting aggregated data across multiple sources. Based on experience, it is
probable that Cisco would lean in the same direction when integrating VAKMCS.

The following subsections identify some others aspects of success for integrating

VAKMCS into an enterprise like Cisco.

63

9.1 PROCESS

Building meaningful relationships utilizing VAKMCS would require an enterprise
to set up a process for indentifying and enforcing standard criteria for architecture
knowledge. The enterprise would need to regularly update these standards to support
changes. The kinds of standards that an enterprise like Cisco may chose to categorize and
relate their architecture data would include, but not be limited to, common terminology to
identify system details, integration details, requirements, application service providers vs.
internal applications etc. Enterprise evolution would constitute continued evolution and
growth of VAKMCS and would require building a process for managing changes and
release cycles for enhancements.
9.2 GOVERNANCE

A key factor to the success of integrating VAKMCS would be the governance and
“top down” support from management. Initiating a significant change such as integrating
VAKMCS would require education and adoption mandates from senior IT management
to the individual contributors. Some of the appropriate actions that would be required by
management include:
e A clear message on updating existing and creating new project documentation with

standardized criteria would be required of all IT personnel.
e A mandate should be set by management to first review possible internal solutions
leveraging VAKMCS before proposing a solution to meet the business needs.

e A program manager should be assigned to plan phases and updates for the VAKMCS

features.

64

e A council of architects and knowledge management experts would be appropriate for

updating standards as the enterprise evolves.

e A reward system should be implemented for recognizing positive contribution as

determined through ratings.

65

10.0 REFERENCES

1. Babar M.A. & Gorton I. (May 2007). Architecture Knowledge Management:
Challenges, Approaches, and Tools. Companion to the proceedings of the 29th
International Conference on Software Engineering ICSE COMPANION '07.1EEE
Computer Society

2. Barbar M.A. & Gorton I. (2007). A Tool for Managing Software Architecture
Knowledge. Second Workshop on Sharing and Reusing architectural Knowledge
Architecture, Rationale, and Design Intent. IEEE Computer Society.

3. Capilla R., Duefias J. C., Nava F., & Pérez S. (2006). A web-based tool for managing
architectural design decisions. ACM SIGSOFT Software Engineering Note. Article No. 4.

4. Becker M. & Falessi D. (2006). Documenting design decisions: A framework and its
evaluation in the ambient intelligence domain. IESE. IESE-Report VII, 34 pp. : I, Lit.
050.06/E

5. Becker M., Cantone G. & Falessi D. (2006). Design decision rationale: experiences
and steps ahead towards systematic use. SESSION: SHAring and Reusing architectural
Knowledge (SHARK '2006) paper abstracts. ACM SIGSOFT Software Engineering
Notes Volume 31, Issue 5.

6. Sunassee N.N. & Sewry D.A. (September 2003). An investigation of knowledge
management implementation strategies. Proceedings of the 2003 annual research
conference of the South African institute of computer scientists and information
technologists on Enablement through technology SAICSIT '03. South African Institute for
Computer Scientists and Information Technologists

7. Sunassee N.N. & Sewry D.A. (September 2002). Research papers: data’knowledge
management: A theoretical framework for knowledge management implementation.
Proceedings of the 2002 annual research conference of the South African institute of
computer scientists and information technologists on Enablement through technology
SAICSIT '02. South African Institute for Computer Scientists and Information
Technologists

8. Stewart K.A., Baskerville R., Storey V.C., Senn J.A., Raven A. & Long C. (September
2000). Research contributions: Confronting the assumptions underlying the management
of knowledge: an agenda for understanding and investigating knowledge management.
ACM SIGMIS Database, Volume 31 Issue 4. ACM Press

9. Ezingeard J., Leigh S. & Chandler-Wilde R. (December 2000). Knowledge
management at Ernst & Young UK: getting value through knowledge flows. Proceedings
of the twenty first international conference on Information systems ICIS '00. Association
for Information Systems

66

http://portal.acm.org/author_page.cfm?id=81319498812&coll=Portal&dl=GUIDE&trk=0&CFID=35020877&CFTOKEN=40101640

10. Hahn J. & Subramani M.R. (December 2000). A framework of knowledge
management systems: issues and challenges for theory and practice. Proceedings of the
twenty first international conference on Information systems ICIS '00. Association for
Information Systems

11. Herrmann T., Hoffmann M., Jahnke I., Kienle A., Kunau G., Loser K. & Menold N.
(November 2003). Knowledge management Il: Concepts for usable patterns of
groupware applications. Proceedings of the 2003 international ACM SIGGROUP
conference on Supporting group work GROUP '03. ACM Press

12. Dingseyr t., Djarraya H.K. & Rayrvik E. (December 2005). Practical knowledge
management tool use in a software consulting company. Communications of the
ACM, Volume 48 Issue 12. ACM Press

13. Agostini A., Albolino S., Michelis D.S., De Paoli F. & Dond Ri. Knowledge
Management |: Stimulating knowledge discovery and sharing. (November 2003).
Proceedings of the 2003 international ACM SIGGROUP conference on Supporting group
work GROUP '03. ACM Press

67

	San Jose State University
	SJSU ScholarWorks
	2009

	Visualized Architecture Knowledge Management Collaboration Services
	Ashish Kaul
	Recommended Citation

	ABSTRACT
	TABLE OF CONTENTS
	Strengths of Implementation
	Weakness of Implementation

