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ABSTRACT 

Software (system) architecture knowledge is a critical element in making effective 

design/ implementation decisions for Information Technology departments within 

companies. This knowledge can be codified and/ or personalized so as to harness the 

advantages and avoid the missed steps of implementers before us. In research of 

architecture knowledge enablement, there have been a few ventures, including but not 

limited to, Processcentric Architecture Knowledge Management Environment (PAKME) 

[3] and Architecture Design Decision Support System (ADDSS) [4]. In study of these 

ventures, we find modest attempts at focusing on dissecting types of architecture 

knowledge and enabling access to details through web tools. The purpose of this paper is 

to document the design and features of a web tool, namely Visualized Architecture 

Knowledge Management Collaboration Services (VAKMCS) and its approach in 

providing an innovative way at accessing and interacting with architecture information to 

make sound investment decision on IT projects.  
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1.0 INTRODUCTION 

 Organizations like Cisco Systems, Inc. spend millions of dollars on a yearly basis 

in implementing/ procuring information technology (IT) system solutions to meet the 

needs of their business/ clients. While each organization has its own means of authorizing 

IT projects (e.g. Portfolio Management Office), there is a lack of support in making 

informed decisions regarding investment on a new IT solution or re-using existing 

solutions. Leveraging architectural and system information regarding current portfolio of 

applications/ solutions to make decisions on how to meet business needs is the core focus 

of this paper. It is proposed that by implementing software (system) architecture 

knowledge base that supports association of community driven context can benefit a 

company in making informed decisions on where to invest their dollars when it comes to 

IT solutions.   

This section highlights the significance of architecture knowledge management 

and the context for utilization of this knowledge in an information technology project 

lifecycle. It describes the benefits of and pitfalls from lack of leveraging architectural 

knowledge for design and implementation decisions in a project. The specific issues 

around architecture knowledge addressed in this project are discussed in section 1.3.    

1.1 KNOWLEDGE MANAGEMENT  

Illustrated by Zack [1999a], who states that business organizations are coming to 

view knowledge as their most valuable and strategic resource. Nonaka [1998] agrees, 

saying that “in an economy where the only certainty is uncertainty, the one sure source of 

lasting competitive advantage is knowledge. [1] 
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Knowledge management (KM) is a field that continues to evolve in its approach and 

has led to the branching of specialized applications for intellectual property management 

within a specific domain. KM has been categorized to have multiple approaches like: 

• Codification, aimed at making tacit knowledge explicit and;  

• Personalization, intended to support knowledge sharing by describing who knows 

what.  

Codification strategy does make sense when addressing architectural content since 

architects using the information themselves are quite savvy with information systems and 

adapt/ adopt quickly. The nature of an architect’s vocation requires the codifying 

information through modeling techniques and identifying architectural patterns. [2] Cost 

of codification is outweighed by benefits due to high-level reusable representation/ 

storage of the architectural data. Industry as a whole has focused on personalization 

methodology but is moving towards codification. 

Well articulated potential impacts of improper information systems architectural 

documentation management is provided [2] as:  

• The evolution of a system becomes complex and cumbersome, resulting in violations 

of the fundamental design decisions. 

• Inability to identify design errors. 

• Inadequate clarification of arguments and information sharing about the design and 

process. 
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Figure 1. Architectural Knowledge Management Strategies in Research and Industry 
Source: [1] 

The above figure describes the trend for Architectural Knowledge Management (AKM) 

and using this as well as one of the suggest approaches by Babar [2]: 

• Phase 1: Use personalization for “decision making process is a rather unstructured 

process in which the architectural solution space is explored and ideas are coined” 

This way architects will be able to maintain/ leverage knowledge that might be 

tougher to codify (i.e. stored in a defined manner). 

• Phase 2:  Codification used for “the design space is outlined by approved 

architectural decisions, and a stable architectural design emerges.” 

1.2 ARCHITECTURE PROCESS 

Described within this section of the document are details associated with the overall 

architecture process. This process definition has been defined leveraging the Cisco 

Systems, Inc. internal project lifecycle documentation.  
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Figure 2. A diagrammatic representation of the project lifecycle for Cisco Systems, Inc. 

Essentially within the lifecycle, the major architectural deliverables reside within 

Phase 1, 2 and 3. Overall, the architect would be consulted throughout the lifecycle; 

however their major contributions lie in the beginning of the project. The architect is 

enabled by documents prepared by both business and IT project team members including, 

but not limited to: 

• Business requirements 

• Major requirements lists 

• Gap analysis [current to future] 

• Impact analysis 

• Scope 

Leveraging these documents the architect then evaluates the current systems and 

decides on how to best support the needs of the business by accommodating most if not 

all the requirements by proposing a to-be state (architecture). It is this process that this 

project will support to improve, by allowing architects to have insight into best practices 

and already implemented solutions, in turn allowing organizations to invest their IT 

dollars more wisely. 

1.3 PROBLEM ADDRESSED 

This project focuses on implementing a solution for architectural knowledge 

management to allow reusability and validation within an IT organization. Within 

architectural knowledge management, the specific area of interest is enabling the retrieval 
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of system architecture information for already implemented solutions within a company. 

To understand the scope and research conducted in this domain, multiple journals and 

articles were reviewed which confirmed the lack of existing support for appropriate 

system architecture level knowledge management. 

The tool is focused around supporting a process for any company’s IT organization to 

leverage as a “starting point” for all projects. The tool, for now named, Visualized 

Architectural Knowledge Management Collaboration Services (VAKMCS), will include 

a subset of features that would finally enable the ultimate goal of managing system 

architecture information efficiently and effectively. Following below are details of the 

software implementation for VAKMCS.  

As will be highlighted with some details in the related works section of this document, 

there are potential systems that address the domain of architectural knowledge 

management, however the implementations are far from a complete solution. The 

research however provides different approaches and justification for architecture 

knowledge management. Below is a table that shows some of the known architecture 

knowledge management systems. 

Approach Description 
ADDSS A web-based tool for recording architectural design decisions. 
PAKME A process based knowledge management environment for generic and 

project-specific knowledge. 
DGA DDR A design decision rationale documentation technique for decision goals 

and design alternatives. 
GRIFFIN A software architecture project memory to manage know-why and 

know-how. 
RFP A knowledge repository for reusing best practices with a questionnaire 

as a front-end. 
VCC Architectural rules disseminated by means of small text-based 

documents. 
RBS A knowledge base harboring reusable quality criteria. 
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DSTO An architectural knowledge management tool to improve architectural 
evaluation practices. 

Table 1. Approaches to Architectural Knowledge Management 
Source: [1] 
 

Two specific architecture knowledge management solutions were reviewed in detail 

and leveraged as guidance for driving definition of this project. In review, it was noted 

that there is a lack of consolidation of information and collaboration (to enable feedback 

and design improvements). Both systems have addressed the key factor of tracking 

design rationale for an architecture, however, the organization of this information is 

almost segregated from the rest of the knowledge (i.e. to access design rationale, you 

must choose to explicitly chose to view further details). VAKMCS consolidate and 

present the architectural information.  

There is an intelligent visual factor that is missing from both implementations. 

VAKMCS will provide features based on image mapping to enhance the search and 

filtering functionality of the knowledge base.  

VAKMCS solution hopes to drive efficiency in using stored knowledge for 

architectural decision by presenting multiple ways to search. The available options for 

search are browse by tag or word search. 

Finally, a major component missing in both implementations is the ability to 

understand the contributor of architecture. The VAKMCS will enable features that will 

allow users leverage the reputation of an architecture contributor before deciding on a 

particular solution for their own project. 

14 
 



2.0 RELATED WORK 

This section highlights research conducted in architecture knowledge 

management domain. Based on [2] details listed in research attempts and 

implementations at proving an AKM solution, several approaches have been defined. The 

tools specifically chosen as references for this project for clear definition of 

implementation were the Processcentric Architecture Knowledge Management 

Environment (PAKME) [3] and Architecture Design Decision Support System (ADDSS) 

[4]. 

2.1 PAKME 

The PAKME application has an underlying framework provided by Hipergate, a 

CRM and groupware open-source project. This tool approaches the AKM problem by 

providing the following [3]: user interface, knowledge management, repository 

management, search and reporting. Below are some examples of how PAKME enables 

such functionality: 

 
Figure 3. The interface to capture a general scenario within PAKME 
Source: [3] 
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Figure 4. A template to present patterns in PAKME 
Source: [3] 

 
The documentation identifies a process that would be used to get the best value 

out of the tool. This process is defined by the following figure: 

 
Figure 5. A process model of reusing design options for PAKME 
Source: [3] 
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Strengths of Implementation 

This implementation has robust criteria of the knowledge content. The system 

collects the following data regarding architecture:  

General scenario: this is described with a name, a description, a source, date entered and 

versions.  

Pattern: software/ hardware implementation pattern details described with a name, type, 

description, context, problem, solution, parent (if any), related patterns (if any), forces (if 

any), tactics (if any), Affected attributes (positive/negative), general scenarios met with 

this pattern and examples (if any). 

Analysis Model: software analysis models described with a name, dependant parameter, 

independent parameter, equivalent model(s) and rules. 

Architecturally Significant Requirement Listing: non-functional requirements described 

with a name, description, type, analysis model, date proposed, proposed by and quality 

factor. 

Tactic: tactic options for implementation described by name, description, rationale, child 

of tactic, aim, consequence,  strategies,  analysis model, applicability, associated rules, 

assumptions and documents.  

Design Option: options described by name, description, notes, rationale, patterns, tactics, 

constraints, assumptions, rules, documents, consideration for architecture decision, usage 

in architecture decision and inspiration for other designs.  

Glossary: definition of terms. 

These criteria drive the ability to well define architecture components. They system 

considers primarily software development architecture and some system architecture. 
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The system also enables the knowledge to be stored as either project based or 

general knowledge. By differentiating between the two, the system allows general 

knowledge as consideration for a particular project. This delineation of the two could 

have been used as a means to support collaboration, however, that approach was not 

addressed. 

Weakness of Implementation 

The weakness of this implementation is collaboration. The system allows for 

versioning, however, comments and contributions cannot be addressed without directly 

changing the details of particular architecture knowledge. 

This system also does not enable a physical mapping of content through 

architecture image capturing. Though you can reference architecture design through 

documentation, the system does not have the capacity to enable a picture driven 

interaction with the knowledge.  

There are no helpful hints on search, a person has to either browse the entire 

catalog of information or have strong sense of what they are looking for, and this feature 

can be counterproductive at times.   

2.2 ADDSS 

The ADDSS application features include views from multiple perspectives/ user 

groups, graphical representations, collaboration support, iterative versioning provisions, 

personalization, software patterns library, designs dependencies and obviously rational 

for designs. A formal depiction of this feature set is described below with a UML 

diagram. [4] 
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Figure 6. A meta-model for architecture design decisions 
Source: [4] 

Strengths of Implementation 

Important features that are highlighted within the tool include personalization and 

multiple view perspectives which are potentials for the project. 

There is an available library of potential design patterns that can be leveraged for 

software architecture. The design patterns are described with a name, a description, a type 

and an image. These can be used to associate with decisions detailed in the system. 

Version/ Iteration facility is available but with minimal functionality.   

Weakness of Implementation 

The review of this tool shows many possible areas of improvement including the 

usability and lack of intuitive process for storing and retrieving/ using the architectural 

knowledge. The tool itself is focused on software architecture knowledge, rather than 
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system architecture, but provides a foundation that is applicable for the scope of this 

project.  

Overall the implementation is quite rudimentary and the proposed solution has not 

yet been realized to its full capacity. There are many disjointed features that need to be 

cohesive for usability. 
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3.0 VAKMCS  

 In this section of the document we will describe the features that are implemented 

as part of this project. VAKMCS is a web based tool that leverages both existing stored 

architecture information and enables organic community driven context for better 

usability. Below is a table that defines the entities for which VAKMCS provides services 

to access details. 

Entity Definition 
Requirement A feature that is enabled by a system or integration. 
System A software application which services a set of requirements. 
Integration Medium of communication between two systems. 
Ecosystem A set of systems and integrations which services business purpose. 
Project An implemented IT project containing details associated with 

systems, integrations and teams involved.  
User A contributor/ viewer of VAKMCS. 
Table 2. The entities and their definition as supported by VAKMCS 

In the following sections we will be describing the services provided by 

VAKMCS to enable informed decision making for IT spending. Below is a stack diagram 

that portrays the high level solution overview of VAKMCS. The entities essentially 

depict data sources that are related by the service layer. The services layer not only 

relates the data sources, but also enables features that facilitate the knowledge access. By 

allowing entities to be tagged, rated, searched etc. the VAKMCS implementation will 

attempt to improve the experience of using/ consuming the stored knowledge. 
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Figure 7. A stacked look at the entities and features of VAKMCS 

VAKMCS renders the knowledge on different views based on action a user takes 

on the system. The actions and the content of resulting pages are described below in the 

table.  

Action Page Content 
Access system Home page The homepage contains high level activity and 

knowledge details within the system. The page 
enables search, browse by tags, and provides 
statistics on content and users. 

Search Search result page Renders the results in a grid format matching the 
search string of a user. Also shows associated tags 
with the entities matching the search criteria. 

Browse by tag Tag result page Renders the results in a grid format match the tag 
clicked by a user. Also shows other associated 
tags with the resulting entities. 

Get details Details page Renders all captured details about an entity. Also 
provides access to other functions like image 
mapping, visualization, adding tags etc. 

Table 3. A breakdown of actions leading to different pages and content in VAKMCS 
 
3.1 MOTIVATION 

As is noticed in many companies, more often than not, after any architecture 

knowledge base is implemented, the community lacks the motivation to update the 

knowledge and hence discontinues leveraging the system for lack of reliability of 
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information to make appropriate decisions. The solution implemented as part of this 

project delves into resolving this factor by providing a dynamic look into who has 

contributed to the site and what rating they receive by their peers.  By enabling this 

feature, it is proposed that there is more likely hood of users to continue to update their 

knowledge and usage as they may be rewarded for their positive contributions. It is not 

the intention of this project to provide a complete solution for motivation, but rather a 

simple implementation that depicts how the system can receive greater adoption and 

usage.  

Below screenshot shows the motivation feature as implemented in VAKMCS. As 

highlighted (red box) in the screenshot, the top ten users are shown at the entry point of 

the site. This factor can drive positive competition between peers and improve utilization 

of the system. The top ten users are discerned based on the highest average rating (out of 

5) a contributor of the site receives. 

 
Figure 8. VAKMCS home page contains the top ten users of the site 
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3.2 SEARCH 

 VAKMCS provides the ability to perform a common search across all 

architectural entities (requirements, systems, integrations, ecosystems and projects). The 

search is driven by text matching based on the title and description of an entity. This 

feature provides the ability for a user to get a holistic view of the architecture information 

and decide to drill down into the appropriate area (entity) of search based on the initial 

search results. The initial search results render two assets for a user: 

• A title that defines the entity and is clickable for further information 

• Tags associated with the entities that match the search criteria 

The tags allow for a user to redefine their search criteria to a more appropriate term (as 

tags are community driven content for organic context definition) or simply use browse 

by tags to get appropriate results.  

 Below is a screenshot of VAKMCS search results page. In this screenshot, the 

user is searching by the text “search” to find systems that provide search services within 

the company. The results show systems that match the search text (highlighted in red 

box), as well as, the tags associated with the systems that match the search text 

(highlighted in green box). The user can choose to change perspective of the search and 

look within requirements, integrations, ecosystems or projects to see matches for the 

same criteria. 
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Figure 9. A screenshot of search results page on VAKMCS 

3.3 TEXTUAL TAGGING 

As depicted in the stack diagram in the introduction of this section, tagging 

service enables a community driven context to be added to knowledge. Users have the 

ability to tag entities (requirements, systems, integrations, ecosystems and projects) to 

provide multiple contexts to the same information.  

The tag clouds rendered on the web pages are dynamically arrange themselves in 

varying sizes based on number of times a particular knowledge has been tagged with 

same text. The more times an item is tagged with the same text, the larger the disparity in 

size between not as commonly used texts for tags. This feature helps the user understand 

what are the most common connotations associated with the knowledge they wish to 
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ascertain. By leveraging this feature during browsing the user can also better identify how 

they should search for the appropriate information within the knowledge base.  

Browsing by tags can be leveraged in multiple pages within VAKMCS. 

Depending on where a user is within the application, there are different options to browse 

by tags. The pages and the browsing by tag features applied through VAKMCS are 

described below in the table. 

Page Tag feature description 
Home page By providing the top ten tags associated with each entity 

(requirements, systems, integrations, ecosystems and projects) 
VAKMCS enables the user to have a starting point for their search. 
The user can click on the tag and begin their search for the 
appropriate entity. 
The top ten tags are determined based on the entity and the 
maximum number of times a particular knowledge item is tagged 
with the same text.   

Search results page As described in section 3.2, along with the results of a search by 
matching the text, the search page provides tags that are associated 
with the results.  
Users can choose to browse by tags from search page if they wish. 

Tag results page As in the search page, if a user decides to browse by tag, they will 
not only be provided by entity that has been associated with the tag, 
but also other tags associated with the results. 

Details page Within the details page (where all stored details associated with an 
entity are displayed) a user is provided with all tags associated with 
all entities associated with given entity. 
An example of this would be when a user looks at the details of a 
particular system; they are also shown the related tags for all 
systems, requirements, ecosystems, integrations and projects that 
are in some way associated with the system. 

Table 4. A breakdown of the pages and the tag functions implemented in VAKMCS 

 Below are screenshots from VAKMCS tag page and details page that highlight 

the features described in the above table. On the tag page, we can see all the associated 

tags associated with entities (shown in red box) that match the tag by which a user is 

browsing. On the details page we can see the all the associated tags categorized by 
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entities in highlighted in a red box. Also seen on the same page is the ability for a user to 

add a tag, as seen in the green box and identify a new context to the same information. 

 
Figure 10. A screen shot that shows how related tags are displayed with the results 
 

 
Figure 11. A screenshot of the details page showing different tagging functions 
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3.4 IMAGE TAGGING 

 As cliché as it may seem, a picture is worth more than thousand words. With that 

in mind, VAKMCS, offers the capability to associate images with entities (systems and 

integrations) via tagging. This feature allows for a user to upload an image and associate 

tags within certain sections of the picture. Depending on the picture uploaded and how it 

is tagged, users can get access to details around the ecosystem within which a particular 

system may reside, its integrations and/ or other significant information. The image 

tagging capability allows multiple images to be associated with one entity, e.g. an image 

that depicts the systems categorization within an functional architecture diagram vs. an 

image that depicts a how a system is integrated with other systems for certain functional 

requirements.  

 Below are a couple of screenshots of how a user can leverage this feature within 

VAKMCS. The first screenshot displays UI a user uses to add an image and tags 

associated with the image. The second screenshot shows how a user can view the image 

and entities mapped within the image. In this second screenshot, the user must click on 

the image as it appears in the details page of an entity to view the tags associated with 

actual image. 
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Figure 12. A screenshot of the image upload UI 

 
Figure 13. A screenshot of the image after it has been tagged 

29 
 



3.5 VISUALIZATION 

 Visualization is a feature that enables the user to view the relationships of any 

entity in a graphical format. This feature provides the user with an interactive graph to 

view how different entities within the VAKMCS application are related to each other, 

rather than only a textual display. The utilization of this feature is geared in helping users 

easily find two critical pieces of information: 

• For projects: find the systems and integrations that were delivered as part of the 

project, as well as, find the project team members and the roles they play. By 

providing a view into the project team, the user should be go outside of the tool and 

connect with the appropriate person to get further information about a project that 

may not be documented anywhere. This is key in the real world where often getting 

first hand information from an involved party can provide more than just technical 

information regarding an implementation / project. 

• For integrations: find the systems integrated together based on a function. By 

reviewing this information in a graphical rather than a textual format, a user could get 

a more helpful view into the data. 

Below is a screenshot that shows details associated with a project. The feature 

provides the details about the relations between elements on the graph in the left panel. 

As a user navigates the graph, the left panel dynamically updates to depict the 

relationship details. 
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Figure 14. A screenshot of visualization feature on VAKMCS 

3.6 FEEDBACK 

 This feature allows the ability for a user to add feedback about a particular entity. 

This feature focuses on motivating users’ to leverage the architecture information and 

interact with it for validating and/ or questioning the knowledge. Based on the feedback 

by a user, others can respond and add their thoughts around either a previous comment or 

the actual entity. Another benefit of this feature is the ability for users to add additional 

information that may have missed regarding the entity.  

3.7 USER REPUTATION 

 This feature of the application focuses on enabling users to understand the 

reliability of a user as based by the community. As seen on many web 2.0 sites today, 

with open access to add content to a site, it’s often overwhelming for users to find the 

appropriate content without getting lost. These features enhance the ability for a user to 
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trust the content based on the rating of the author before leveraging it for their decision. 

These features are also leveraged in motivating users to interact with the application and 

get recognition for consistent positive and useful contribution. Star ratings are used to 

allow users the ability to rate authors and an average score is shown for each author rated.  

 Below is a screenshot of user reputation feature (shown in red box). Users have 

the ability to rate by clicking on the stars below the text showing the author of a feedback. 

The feedback can be viewed directly below the user reputation in the diagram below.  

 
Figure 15. A screenshot of Feedback and User reputation 

3.8 VERSIONS 

 Versions feature on the application supports the ability for a user to do a quick 

comparison between the details associated with the current entity and its predecessor and 

successor if available. The feature does a comparison across the following details: 

• Entity title 
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• Entity description 

• Entity version 

• Entity version description 

• Tags associated with the different versions 

• Entities associated with the entity (e.g. requirements associated with a system) 

By reviewing this information, the user can get an understanding of the past roadmap 

of the entity and see how well it aligns with a new prospective project that requires IT 

funding. If details show an alignment, it would be beneficial for the user to reach out to 

the responsible party and work on a possible avenue to leverage existing platforms. 

Below is a screenshot of a project versioning output. The output does a string 

comparison between the two entities to show differences between current and pre/ post 

versions. 

 
Figure 16. A screenshot of the Version feature 
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4.0 DESIGN 

 In this section of the document are details regarding the design of VAKMCS. The 

application was developed using Javascript/ HTML on client side, with PHP on the server 

side and MySQL as the backend database. The application has a presentation layer 

preparing the client side code supported by a business logic layer which performs 

activities like processing data from the database that is provided by the data layer. Below 

is a diagram that portrays the technology stack and where it resides in the application 

layer. 

 
Figure 17. Layered technology stack for VAKMCS 

 The overall software architecture for VAKCMS leverages multiple software 

components in aiding the implementation of the feature and functions realized by the 

application. Below is a software architecture diagram that depicts the software 

components and functions within the layers of the application, as mentioned above. In the 

following sections the specifics around the different layers within the application are 

described with the functions that they perform.  
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Figure 18. Software architecture of VAKMCS 
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4.1 DATABASE SCHEMA 

 Below is the table that defines database schema for the VAKMCS application. 

The application uses this schema to support all the features listed in section three of the 

document.  

Table Name Details 
Ratings This table contains the relationship between a user and the 

individual rating that he/ she received from other users of 
the tool. The cardinality of the relationship between user 
and his/ her rating is zero to many. 

tComments This table contains the relationship between a system, 
ecosystem, requirement or integration and its feedback. The 
cardinality of the relationship for each entity to its feedback 
is zero to many. 

tEcoSystems This table contains the master details associated with an 
Ecosystem. The table contains a hierarchy within itself of 
the versions and its parent’s version. 

tImageLocation This table stores details regarding an image used for image 
mapping. It contains the server location of the image once 
it has been updated by a user. The cardinality of the 
relationship for each image within tImageLocation is one to 
one for the image map information in tImages tables. 

tImages This table contains the image map (coordinates within an 
image associated with a tag) generated for an image once a 
user tags. 

tImagesTags This table contains the individual tags associated with the 
images. The cardinality of the tags is many to one with 
images.  

tIntegrations This table contains the master details associated with an 
integration. The table contains a hierarchy within itself of 
the versions and its parent’s version. 

tIntegrations_EcoSystems This table contains the integrations associated with 
ecosystems. The cardinality of this relationship is one 
ecosystem to many integrations. 

tIntegrations_Projects This table contains the integrations associated with 
projects. The cardinality of this relationship is one project 
to many integrations. 

tPeople This table contains basic information regarding a user. In a 
real world situation the user information would be 
integrated with an internal directory like LDAP.  

tProjects This table contains the master details associated with a 
project. The table contains a hierarchy within itself of the 
versions and its parent’s version. 
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tProjects_People_Role This table contains a relationship between a project and the 
roles that people played within it. The cardinality is one 
project to many people to one role. 

tRequirements This table contains the master details associated with a 
requirement. The table contains a hierarchy within itself of 
the versions and its parent’s version. 

tRequirements_Integrations This table maintains the relationship between integration 
and its requirements. The cardinality between is one 
integration to many requirements. 

tRequirements_Systems This table maintains the relationship between systems and 
its requirements. The cardinality between is one system to 
many requirements. 

tRoles This table contains basic information regarding a role a 
user played with a project.  

tSystems This table contains the master details associated with a 
system. The table contains a hierarchy within itself of the 
versions and its parent’s version. 

tSystems_EcoSystems This table maintains the relationship between system and 
the ecosystems it belongs to. The cardinality between is 
one system to many ecosystems. 

tSystems_Integrations This table maintains the relationship between systems and 
its integrations. The cardinality between is one system to 
many integrations. 

tSystems_Projects This table maintains the relationship between systems and 
the projects it belongs to. The cardinality between is one 
system to many projects. 

tTags This table maintains the relationship between any entity 
(system, project, ecosystem, integration and requirement) 
and the tag as added by a user. One entity has one-to-many 
relationship with tags. 

Table 5. A table containing the details associated with the data layer of VAKMCS 
 

Below are the entity relationship (ER) diagrams for the VAKMCS. The first 

diagram depicts the relationships of the entities (users, systems, requirements, projects, 

integrations and ecosystems) to each other and second diagram depicts how the images, 

tags and feedback are related to entities. 
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Figure 19. An ER diagram of VAKMCS entities and their relationships 
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Figure 20. An ER diagram of VAKMCS entities and tags, images & feedback
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4.2 DATA ACCESS LAYER 

 Each entity (e.g. systems) uses the data access layer with a similar set of access 

functions that enable the application (VAKMCS) to acquire related data from the 

perspective of a particular entity. The set of functions that each entity leverages for 

acquiring related data is described below in the table. Each function is called by the 

business layer in response to an action by the user of VAKMCS. The table below breaks 

down the data access by function, action and definition. The italics in the function name 

are representative of where entity name is substituted within the code. E.g. 

getEntityBySearchByLimit represents getSystemBySearchByLimit, 

getIntegrationBySearchByLimit etc.  

Function Action Definition 
getEntitybySearchByLimit Search by text 

match 
Returns the entities that match the 
search string. The result set is limited 
to 30 results at a time to allow for 
paginated result display. 

getEntityDetails Get details on 
entity 

Returns the details associated with the 
entity. Depending on the entity the 
details may differ slightly. 

getEntitybyTagbyLimit Browse by tag 
match 

Returns the entities that have been 
tagged with the text that matches the 
browsed tag. The result set is limited 
to 30 results at a time to allow for 
paginated result display. 

getRelatedEntityByEntityBy
Limit 

Get details on 
entity 

Returns entities related to a specific 
entity. E.g. 
getSystemsByEcoSystemsByLimit, 
where the function returns all systems 
associated with the ecosystem.  

getTagsByEntityTag Browse by tag 
match 

Returns the tags for all entities that 
match based on the text of the tag used 
to browse. 

getTagsByEntitySearch Search by text 
match 

Returns the tags for all entities that 
match based on the text of the search 
criteria. 

getMapNamesByEntity Get details on 
entity 

Returns the map names that match a 
particular entity. This map is used to 
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render the image mapping feature. 
getImagesByEntity Get details on 

entity 
Returns images associated with an 
entity. The map names and images are 
related to enable the image mapping 
feature. 

getPreviousEntityVersion Get details on 
entity 

Returns the previous version of an 
entity if any. 

getNextEntityVersion Get details on 
entity 

Returns the next version of an entity if 
any. 

getTagsByRelatedEntityByE
ntity 

Get details on 
entity 

Returns the tags for all related entities. 

getEntityComments Get details on 
entity 

Returns the comments associated with 
entity. 

Table 6. A list of common functions across the entities found in the data access layer 

4.3 BUSINESS LOGIC & PRESENTATION LAYER 

The business logic and the presentation layer of the application contain the 

relationships and business rules that are not accommodated by the data layer. The 

application uses these layers to encapsulate all relevant data based on entity and action to 

render for the user. The presentation layer leverages the ExtJS JavaScript library 

functions to make asynchronous calls to the server side PHP code (business logic) which 

assimilates the data gathered from the data access layer. The PHP code performs four 

main types of functions; gather information to display on index page, gather information 

to display as part of search results on each tab (for each entity), gather information to 

display as part of a browse results on each tab (for each entity) and gather information to 

display as part of a drill down for details regarding a specific entity. 

Below is a diagram that depicts the functions of the business logic and 

presentation layer based on types of pages rendered by the application. 
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Figure 21. A block diagram of the business logic and presentation layer of VAKMCS 

4.4 VAKMCS SOFTWARE DESIGN 

VAKMCS leverages the ExtJS UI development kit to render the user interface, 

results and tagging and feedback capabilities. The basic layout of the application uses 

tabbed view of the entities (system, requirements etc.) and renders results within the 

appropriate tab. ExtJS framework supports asynchronous calls to server side code which 

VAKMCS implements for certain functionality and features. By rendering the results of a 

search/ browse or results of related entities within an ExtJS grid, VAKMCS leverages the 

framework to fire events based on the row selected. Based on the actions by the user, 

either all tabs are updated (e.g. search) or a certain tab is updated (e.g. browse and 

details). Both the feedback and tagging capabilities leverage the ExtJS forms to 

asynchronously store the details added by a user. 
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VAKMCS also integrates multiple other tools to enable features like user 

reputation, image mapping and visualization. In the following subsections of the 

document significant components and their design will be described through diagrams. 

The diagrams display key tasks performed as part of the flow, as well as, application 

layers in which the leveraged/ reused software components are used to implement 

VAKMCS features. 

4.4.1 TAG CLOUDS 

As stated in section three of this document, VAKMCS provides insight into the 

architecture information stored by providing the ability to browse by tags related to an 

entity. The design of this feature leveraged the software tool tag cloud. Tag cloud renders 

a cloud of tags based on the text and a quantity: the greater the quantity for a particular 

tag, the greater the size of the text of the tag within the cloud. The user has the option to 

click on the tag rendered to browse an entity. As an example, the diagram below depicts 

software flow for rendering top ten tags on the index page of VAKMCS. 

 
Figure 22. Top ten tags flow 
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4.4.2 SEARCH RESULTS 

 The search feature in VAKMCS renders the results for all entities in one call to 

the server. This feature is enabled by using a grid within a tabbed layout from the ExtJS 

JavaScript development kit. The search terms are matched within attributes of the 

architecture information (using data access layer) and the results are encoded using Zend 

JSON encoder (software tool). The ExtJS grid asynchronously calls the server side 

business logic to create a data store (ExtJS uses the JSON encoded data) and renders the 

results upon callback.  The diagram below displays the flow for rendering the search 

results on the search page in VAKMCS. 

 
Figure 23. Search flow 
 
4.4.3 BROWSE RESULTS 

The browse functionality provided by VAKMCS enables the user to find 

architecture information based on community driven context. This feature renders the 

results in a similar fashion to that of a search, but only updates one entity (one tab on the 

user interface) at a time with the result set. The design approach to realize this feature 
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leveraged ExtJS grid and Zend JSON encoder as used in search. The diagram below 

displays the flow for rendering the browse results on the browse page in VAKMCS. 

 
Figure 24. Browse flow 
 
4.4.4 IMAGE MAPPING 

The image mapping feature of VAKMCS enables two functions: the first function 

is the ability to add an image map related to a particular entity (e.g. system or integration), 

while the second is the ability to view and interact with the image map. To enable the add 

feature required the integration of an online image map editor (software tool). To enable 

the view feature required leveraging ExtJS Window (development kit) functionality and 

thumbnail capabilities provide 

In respect to the add image functionality, the tool offers the ability to upload an 

image and associated maps and context within the image. An image is associated with a 

map of coordinates and tags. Once the user completes the image mapping process and is 

ready to save the resulting map, the integration allows the ability to store the appropriate 
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relationships, by relating to a particular entity by its ID (based on where the user chose to 

add an image) and others by tags within VAKMCS.  

To view the map, the user navigates into the details page of a system, integration 

or ecosystem and finds thumbnails (software tool) of the images. A relationship between 

the image and the entities is based on either the ID of an entity (if a user actually added a 

picture specifically for that entity) or by matching the tags associated with the image and 

the entity. Upon clicking a thumbnail, an ExtJS Window pops-up to render the image and 

the associated tags for the user. The diagram below displays the flow for adding and 

viewing image maps in VAKMCS. 

 

 

Figure 25. Image add (left) and view flow (right) 
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4.4.5 USER REPUTATION 

 User reputation as described in section three of this document is driven by 

star ratings given to users by contributors and reviewers of content within VAKMCS. 

This feature integrates the StarRating software tool and associates users with a rating.  

The ratings appear in associated with comments within VAKMCS on the details page. As 

the comments are rendered, each author’s rating (calculated as an average) is rendered 

along with the comment. The tool allows adding a rating to a user by an asynchronous 

JavaScript call to the server side, upon completion, the rating on the details page reflects 

the latest average. The diagrams below display the flow for add and viewing user 

reputation on the details page in VAKMCS. 

User lands on 
details page

Request for users’ and their ratings 
associated with an entity.

SQL call to database via PHP MySQL 
DB connection/ access functions and 

retrieve resultSet

Returns an array of users’ and 
their ratings  associated with an 

entity

Ratings displayed 
against each user

StarRating
application used 
to encode render 
rating against 
user.

Legend

Presentation layer
Business Logic layer

Data access layer

Data layer

 

Figure 26. View user reputation flow 
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Figure 27. Add user rating flow 

4.4.6 VISUALIZATION 

Visualization function in VAKMCS builds a graph based on an entity (project or 

integration) and its relationships. It offers the user an ability to review relationships in a 

moving visual format rather than a static table format. The visualization implementation 

leverages JIT (JavaScript library) to render the graph. The implementation involved 

organizing related data based on categories of relationships (e.g. for project: team 

members, systems, integrations etc.) as accessed through the data layer and then encoding 

it using Zend JSON encoder to finally rendering it using the JIT functions. The diagram 

below portrays the visualization flow. 
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Figure 28. Visualization flow 

4.4.7 VERSIONS 

 The versions feature of VAKMCS compares the current entity being viewed in 

the details page with its previous and next versions if available/ authored. The 

implementation collects all information associated with an entity and its versions into 

three separate arrays and then leverages an array comparison script to provide the 

differences. The differences are rendered on the UI through an ExtJS window upon user 

clicking the “Versions” hyperlink on the details page. The diagram below portrays the 

version feature flow. 
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Figure 29. Versions flow 
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5.0 SOFTWARE TOOLS, DEVELOPMENT KITS USED 

Below is a list of components and their sources as utilized during the implementation of 

the VAKMCS project. Also noted are the software architecture layers (as described in the 

previous section of the document) where these components are utilized. 

• Application for image uploading/ image mapping:  

http://www.maschek.hu/imagemap/imgmap 

This component is utilized in both the presentation and the business logic layers. The 

user interface for adding an image map and viewing an image map are supported 

through HTML and JavaScript while a PHP/ MySQL backend support the storage and 

retrieval of the image and map itself.   

• Application for ratings: http://boedesign.com/posts/23.html 

This component is utilized in both the presentation and the business logic layers. The 

user interface for viewing and adding a rating are supported through JavaScript while 

a PHP/ MySQL backend support the storage and retrieval of ratings. 

• Application for building tag-clouds based on tagging parameters: 

 http://www.lotsofcode.com/php/tutorials/tag-cloud 

This component is utilized in both the presentation and the business logic layers. The 

user interface for viewing the tag clouds provides a style sheet and logic for rendering 

the HTML cloud with varying sizes based on count, while the backend PHP/ MySQL 

supports the retrieval of the tags themselves. 

• JavaScript UI SDK: http://www.extjs.com 

This user interface framework is utilized to render the layout and many of the input 

and output user interface components of the presentation layer of VAKMCS.  The 
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framework supports rendering output based on asynchronous calls to the PHP/ 

MySQL backend for retrieval of data in JSON format. The framework supports 

storing user inputs through forms by sending asynchronous calls to the PHP/ MySQL 

backend. The framework provides a vast library of out of box user interface 

components including grids, forms, tabs and layouts as implemented within 

VAKMCS for several features. 

• Visualization JavaScript graphing library: http://thejit.org 

This component is utilized in the presentation layer. The user interface for viewing 

and interacting with the graph is supported by JavaScript fed through the backend 

data by PHP/ MySQL in JSON format. 

• Application for creating image thumbnails: authored by Ian Selby (ian@gen-x-

design.com) 

This component is utilized in both the presentation and the business logic layers. The 

user interface for viewing the thumbnail provides a style sheet and logic for rendering 

the HTML and images while the backend PHP/ MySQL supports the resizing of the 

images themselves. 

• Application for encoding and decoding JSON: http://www.zend.com 

This component is utilized in the business logic layer. The library enables data to be 

encoded into JSON based on nested array definition. VAKMCS utilizes this feature to 

render data in the requested format of the other software components used in the 

implementation including visualization library and ExtJS framework. 
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• Application for version difference annotation: authored by Daniel Unterberger 

(d.u.diff@holomind.de)  

This component is utilized in the business logic layer. The library enables the 

evaluation of the difference of two arrays by annotating the differences. This feature 

is used as part of the versioning function of VAKMCS. 
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6.0 VAKMCS VS. PAKME 

 This section of the document will disclose the implementation and design 

differences between PAKME and VAKMCS. By providing a concise breakdown of the 

differences, this paper will provide insight into the innovative aspects of VAKMCS. 

Though multiple architecture knowledge management solutions were reviewed during the 

discovery phase of the project, the paper focuses on PAKME for comparison as it was 

one of the most complete implementations.  

In the following sections significant differences in approach and function will be 

discussed to provide a comparison. 

6.1 SOFTWARE COMPONENTS 

 The PAKME solution is built on top of an open source groupware platform, 

Hipergate [1] that is extended to provide features for architecture knowledge storage and 

retrieval. VAKMCS is built ground up leveraging and integrating existing point solutions 

(e.g. star rating)/ frameworks to provide multiple perspectives into architecture data. 

VAKMCS was built from scratch to allow freedom for implementation limitations found 

in leveraging open source platforms. Another reason for choosing a bottom up route was 

to change the perspective of the application functionality from technology centric 

information to business centric information. 

6.2 KNOWLEDGE DEFINITION 

 One of the core differences between PAKME and VAKMCS is the way that 

architecture knowledge is defined within the tool. PAKME defines knowledge by 

scenarios, requirements, quality factors, analysis model, patterns, architecturally 

significant requirement, architecture decision, alternative decision and findings. 
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VAKMCS defines knowledge by systems, requirements, integrations, ecosystems and 

projects. The differentiation in approach is to accommodate different utilizations of the 

knowledge. PAKME focuses more on providing access to technology centric information, 

by enabling designers to use accumulated “wisdom” from different projects when 

devising or analyzing architectural decisions [1], while VAKMCS focuses on business 

centric information by providing search friendly access to existing solutions to decide 

whether spending is needed for a new IT project.   

6.3 FEATURE COMPARISON 

 Below are a set of features that differentiate PAKME and VAKMCS. Features for 

search, versions are common to both platforms, however their implementations differ. 

Features for browse, feedback, user reputation, image tagging and visualization are not 

found in PAKME, but implemented in VAKMCS. Details regarding the VAKMCS 

features lacking in PAKME have already been provided in section three, hence, a brief 

outline of the implementation difference on shared features is provided in the following 

subsections.  

Feature PAKME VAKMCS 
Motivation: enable functions that motivate users to 
participate and author content within architecture system. 

  

Search: enable text based search of stored architecture 
knowledge. 

  

Textual Tagging: enable community driven context of 
stored architecture knowledge. 

  

Image Tagging: enable community driven context of 
images. 

  

Visualization: enable visual and graphical representation of 
architecture knowledge and its relationships. 

  

Feedback: enable user feedback for architecture 
knowledge. 

  

User Reputation: enable rating system to understand 
contributor of knowledge. 

  

Versions: enable comparison of past and future iterations   
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of architecture knowledge. 
Browse: enable category based search of architecture 
knowledge. 

  

Table 7. Basic comparison of VAKMCS and PAKME 
 
6.3.1 SEARCH / BROWSE 

PAKME and VAKMCS both perform search by text matches, however, PAKME 

provides the ability to search by selecting the data element (e.g. title within a general 

scenario) while VAKMCS searches the title and description fields of the entities. 

PAKME also has a slightly more intelligent search functionality that allows the ability to 

search by using bitwise logic. VAKMCS did not implement this functionality as it could 

be tackled with search engine integration.  

PAKME does not support categorized browse functionality, this limits the ability 

for users to have both community driven context, as well as, the ability to have some 

“hints” in how to search for a particular knowledge. VAKMCS leverages tagging to 

provide users with a starting point for their search and should help the user find relevant 

information more easily than PAKME. 

6.3.2 VERSIONS 

 Both PAKME and VAKMCS provide the ability to track versions, however, 

PAKME does not provide a quick view into the differences between two versions. This 

feature allows users to have an insight into the past and future roadmap of an entity and 

hence give some idea regarding possible alignment between business functions and lead 

to leveraging existing solution rather than investing on a new implementation. 
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7.0 VAKMCS VS. ADDSS 

 This section of the document will disclose the implementation and design 

differences between ADDSS and VAKMCS. By providing a concise breakdown of the 

differences, this paper will provide insight into the innovative aspects of VAKMCS. Over 

all, ADDSS falls short in its implementation of the proposed features. The tool is not 

intuitive in usage and still has many features not implemented. Based on the available 

literature and some hands on usage the following sections will show the differences in 

approach and function between the two systems. 

7.1 SOFTWARE COMPONENTS 

 Both ADDSS and VAKMCS are built ground up, and use PHP and MySQL. 

While VAKMCS leverages ExtJS framework for its layout, ADDSS does not use any UI 

framework. Both ADDSS and VAKMCS have used thumbnail libraries for images, 

however the purposes of the images are different.  

7.2 KNOWLEDGE DEFINITION 

As with PAKME, one of the core differences between ADDSS and VAKMCS is 

type of architecture knowledge stored within the tool. ADDSS focuses on storing 

information regarding design decisions and iterations in the decision making process, 

while VAKMCS caters to knowledge by systems, requirements, integrations, ecosystems 

and projects. The differentiation in approach is to accommodate different utilizations of 

the knowledge. Like PAKME, ADDSS focuses more on providing access to technology 

centric information, by enabling designers to use accumulated “wisdom” from different 

projects when devising or analyzing architectural decisions [1], while VAKMCS focuses 
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on business centric information by providing search friendly access to existing solutions 

to decide whether spending is needed for a new IT project.   

7.3 FEATURE COMPARISON 

 Below are a set of features that differentiate ADDSS and VAKMCS. Features for 

versions and browse are common to both platforms, however their implementations differ. 

Features for search, feedback, textual tagging, user reputation, image tagging and 

visualization are not found in ADDSS, but implemented in VAKMCS. Details regarding 

the VACKMS features lacking in ADDSS have already been provided in section three, 

hence, a brief outline of the implementation difference on shared features is provided in 

the following subsections.  

Feature ADDSS VAKMCS 
Motivation: enable functions that motivate users to 
participate and author content within architecture system. 

  

Search: enable text based search of stored architecture 
knowledge. 

  

Textual Tagging: enable community driven context of 
stored architecture knowledge. 

  

Image Tagging: enable community driven context of 
images. 

  

Visualization: enable visual and graphical representation of 
architecture knowledge and its relationships. 

  

Feedback: enable user feedback for architecture 
knowledge. 

  

User Reputation: enable rating system to understand 
contributor of knowledge. 

  

Versions: enable comparison of past and future iterations 
of architecture knowledge. 

  

Browse: enable category based search of architecture 
knowledge. 

  

Table 8. Basic comparison of VAKMCS and ADDSS 
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7.3.1 BROWSE 

Like PAKME, ADDSS does not support categorized browse functionality, and 

thus limits the ability for users to have both community driven context, as well as, the 

ability to have some “hints” in how to search for a particular knowledge.  

7.3.2 VERSIONS 

  Version management feature of ADDSS has better capabilities than VAKMCS. 

The application provides multiple characteristics by which to differentiate a version. The 

application also provides a means to view a chronological breakdown of the version from 

inception. VAKMCS only uses simple descriptions and relationships to measure version 

changes at time, as described in future project sections, there are opportunities for 

enhancements in the future.  
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8.0 POSSIBLE FUTURE WORKS 

8.1 CHAT & EMAIL  

Allow the ability for a user to connect directly through the tool to a project team 

member. By incorporating the communication between the team member of the project 

and the user within the application we can capture the details of the communication and 

make them another source of knowledge.  

8.2 SEARCH ENGINE 

 By adding a search engine layer between the data access and the database layer 

one can improve the performance of the data access. Indexes can be built on new 

relationships that are currently not functions in VAKMCS, e.g. mapping multiple search 

terms (criteria) to multiple related entities at once. Other benefits of implementing a 

search engine integration would include, but not be limited to, content generated 

categories (e.g. search by common words within title and/ or description for certain 

entities), and bitwise search.  

8.3 VERSIONS 

Versioning functions can be extended to have intelligence to add multiple features 

and knowledge that can be leveraged outside of what VAKMCS offers. One of the key 

areas of versioning that might be helpful for users of the system would be an intelligent 

crawler that can use knowledge semantics to decide to relate entities that are not 

explicitly connected, i.e. enhance versioning software to do intelligent difference 

calculations to find newer versions of a particular entity. Another feature related to 

versioning that might be helpful would be allowing the ability to compare images that are 
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related to see visually the changes in a particular entity over time. This feature could help 

to architecturally understand the roadmap of the ecosystems. 

8.4 VISUALIZATION 

Currently visualization feature in VAKMCS provides the ability to access only 

immediately related information regarding projects. An extension of this feature would be 

to allow the visualization to change perspective by allowing multiple actions e.g. a user 

should be allowed to change the diagram by entering search terms and perspective (e.g. 

system, integration etc.). 

8.5 REPORTING 

Adding a function to generate reports (e.g. PDF format) with consolidated details 

regarding an entity would be helpful in understanding the complete solution. Enhancing 

VAKMCS with such a feature would also help users communicate outside of the tool by 

printing such a report, or leveraging it for a presentation.  

8.6 USER & IMAGE PERSPECTIVE 

Currently VAKMCS does not afford the feature to search browse and perform 

other functions on image and user functions like the entities. By enabling the image 

perspective functionality, users would have a broader range of perspectives to choose 

from and may decide to begin their search from a visual context (mapped images) rather 

than a textual context. The user perspective feature would cater allowing the community 

to track user participation within VAKMCS which could lead building features that help 

to understand a user’s subject matter expertise and allow further opportunities to 

collaborate. 
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9.0 POSSIBLE REAL WORLD IMPLEMENTATION 

 As the purpose of this project is to meet the Masters’ requirements for graduation, 

the VAKMCS solution is a standalone approach to accommodate architecture knowledge 

management. In the real world data may not be stored in a single source of truth but 

rather spread across the enterprise. To support VAKMCS features in an enterprise would 

require more than just systems integration but also process, governance and 

administration. Below is diagram that depicts a possible approach for Cisco’s integration 

of VAKMCS. 

 
Figure 30. A possible VAKMCS integration at Cisco 

 As depicted in the diagram, Cisco already stores architecture information in 

various forms and tools. The data layer above shows some of these tools (left to right) as 

wiki, blog, document repository, forums, quality center for test cases and portfolio 

management tool. The storage and retrieval of the architecture knowledge from within 

one tool maybe incomplete or outdated, however, aggregating this knowledge in a 
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meaningful would be the benefit of integrating VAKMCS.  It is at this level that process 

and governance would be required to mandate certain data be recorded for existing and 

new projects so that the information is utilized in a meaningful manner. More details on 

the process, governance and administration are provided in the subsections. 

 The data access layer would consist of web services and search engine based 

integration to enable architecture information consumption and utilization by VAKMCS. 

There are multiple ways that Cisco can enable the access to content stored in the 

independent sources; however, standard practices include RSS and web service with 

XML/ JSON over HTTP.  

 The business logic layer would consist of the features provided by VAKMCS and 

support building meaning relationships and an aggregated knowledge of related entities. 

Unlike the implementation for the purposes of the Masters’ requirements for graduation, 

in the real world, we could enhance VAKMCS to leverage only the business logic layer 

and interact directly with existing data and data access layers. We could also enhance 

VAKMCS to render the features as decoupled user interface elements (e.g. portlets, 

widgets) to be consumed by an external presentation layer. 

 The presentation layer could continue to leverage the user interface as 

implemented for this project; however, most enterprise’s today use portals and mash-ups 

for presenting aggregated data across multiple sources. Based on experience, it is 

probable that Cisco would lean in the same direction when integrating VAKMCS.  

 The following subsections identify some others aspects of success for integrating 

VAKMCS into an enterprise like Cisco.  
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9.1 PROCESS 

 Building meaningful relationships utilizing VAKMCS would require an enterprise 

to set up a process for indentifying and enforcing standard criteria for architecture 

knowledge. The enterprise would need to regularly update these standards to support 

changes. The kinds of standards that an enterprise like Cisco may chose to categorize and 

relate their architecture data would include, but not be limited to, common terminology to 

identify system details, integration details, requirements, application service providers vs. 

internal applications etc. Enterprise evolution would constitute continued evolution and 

growth of VAKMCS and would require building a process for managing changes and 

release cycles for enhancements.  

9.2 GOVERNANCE 

 A key factor to the success of integrating VAKMCS would be the governance and 

“top down” support from management. Initiating a significant change such as integrating 

VAKMCS would require education and adoption mandates from senior IT management 

to the individual contributors. Some of the appropriate actions that would be required by 

management include: 

• A clear message on updating existing and creating new project documentation with 

standardized criteria would be required of all IT personnel.  

• A mandate should be set by management to first review possible internal solutions 

leveraging VAKMCS before proposing a solution to meet the business needs.  

• A program manager should be assigned to plan phases and updates for the VAKMCS 

features.  
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• A council of architects and knowledge management experts would be appropriate for 

updating standards as the enterprise evolves.  

• A reward system should be implemented for recognizing positive contribution as 

determined through ratings.  
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