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ABSTRACT 

 

 In this age of social networking, it is necessary to define the relationships among 

the members of a social network. Various techniques are already available to define user- 

to-user relationships across the network. Over time, many algorithms and machine 

learning techniques were applied to find relationships over social networks, yet very few 

techniques and information are available to define a relation directly over raw email data. 

Few educational societies have developed a way to mine the email log files and have 

found the inter-relation between the users by means of clusters. Again, there is no solid 

technique available that can accurately predict the ranking of each user within an 

organization by mining through their email transaction logs. The author in this report 

presents a technique to mine the email data log files in order to figure out the position 

wise structure of an organization. The author also discusses send-receive analysis, 

statistical analysis, semantic analysis and temporal analysis over the data, and has applied 

them to test cases. Throughout the research the author has used the Enron employees 

email log files, which was made public on 2001. 
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1.0 INTRODUCTION 

 

This is an age of the internet, particularly social networking. Mining data from 

already existing sources of information can be valuable in order to figure out an 

innovative output from the data. Advanced techniques in social network data mining has 

made it possible to convert the raw data into a useful piece of information. We can see 

many examples of integration and compaction of social networking as a result of data 

mining. There are many forms of data mining that can be used to analyze a social 

network, and one of those is data mining of email log files.  

1.1 Overview 

 Email data mining techniques are useful for figuring out how the sender/receiver 

of email is associated with each other. Because this kind of data mining is a relatively 

new field of research, there is not much progress involved in the field of email data 

mining. Some educational societies have discovered a few techniques to find a cluster of 

users that belong to the same group/team. A few educational groups have started these 

kinds of projects to find out hidden functionality and past structure of the employees of 

an organization.  

 Throughout this research work, the author has used and applied the basic 

algorithms on the Enron employees database. According to Wikipedia, 

“Enron Corporation was an American energy company based in Houston, Texas. 

Before its bankruptcy in late 2001, Enron employed approximately 22,000 and 

was one of the world's leading electricity, natural gas, pulp and paper, and 

http://en.wikipedia.org/wiki/Energy
http://en.wikipedia.org/wiki/Houston,_Texas
http://en.wikipedia.org/wiki/Texas
http://en.wikipedia.org/wiki/Bankruptcy
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communications companies, with claimed revenues of nearly $101 billion in 

2000” [25]. 

The bankruptcy of Enron occurred from institutional, systematic and 

planned accounting fraud and was given the name of Enron scandal. This dataset was 

originally made public and was posted to the web by the Federal Energy Regulatory 

Commission while an investigation was going on regarding the accounting fraud [26]. 

The data is in the form of email log files extracted directly from the pop server. It mostly 

contains the email transaction of 150 Enron employees during the time span 1998-2002.  

1.2 Email Log Mining 

 The main purpose of email data mining is to present social network relationships 

and newly emerging parts of a social network. Due to the increasing threats to national 

security, people have started to use the results of email data mining to figure out terrorist 

threats. As of now, no one has tried to figure out future relations among the employees or 

even trace the behavior of an employee. Hence using email data mining and finding out 

future and behavioral relationships among users could be extremely useful for an 

organization where the employee survey is often taking place. In some organizations, it is 

already in use to collect email statistical data and the progress of an employee compared 

to an employee sitting beside him. Many reputed companies are already in the process of 

using email log analysis to improvise spam detection, employee personalization and 

automated filling. The manager of a particular team/group would be able to analyze the 

behavioral and social relationships between the users under his/her team, by just mining 

an email archive. As more and more research is being conducted in this area, some 

http://en.wikipedia.org/wiki/Accounting_scandals
http://www.salon.com/news/feature/2003/10/14/enron/index_np.html
http://www.ferc.gov/
http://www.ferc.gov/
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fruitful results have been produced in forensic analysis and national intelligence services. 

Last but not the least, in the area of decision making systems, researchers are more 

focused on email mining to achieve future decision making results for an organization. 

 In recent years, email has become a necessary part of any organization or group of 

the similar kind of users who share their information with each other on the network. 

Since email has become a necessary tool to communicate and co-ordinate with each other 

within an organization, the mining of email is sure to give some future decision and inter-

relation based information. Let us consider an example of a software team within an 

organization. The users of the software team are constantly in touch by means of emails. 

Here, the email analysis and data mining will be helpful in determining the flow of work 

within the team and for a particular user from his/her email transactions. It is also 

possible to figure out the closeness among the users of this software team by finding 

answers to the  questions like, who is communicating more with whom in terms of 

emails? After tracing an email and pattern matching, managers will be able to determine 

a unique chain/thread for a particular employee, and that will help the manager/super-

user to estimate inter-team relations and in making future decisions. 

 Figure1 below shows the network of email users within an organization. From the 

figure we can clearly see that some groups have very dense node and edges between 

them, while some have fewer nodes and very few edges between them. This explains the 

inter-relation between users and groups of users within the software team. 
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Figure 1: A typical network graph of an email user within an organization [25] 

The very dense group on the extreme left may be the core group of software 

developers, and most of the developers in that group send and receive daily updates from 

each other via email for check-in and check-outs. Whereas, the separated and sparse 

groups on the right side of the figure might be the group of technical writers or HR who 

usually don‟t communicate with the core development team frequently.  

 Recent use of email analysis and data mining of email contents has proven to be 

useful in some sensitive places like national security agency to detect threats and fraud 

determination from terrorists. Moreover, it has been proved to be helpful for decision 

making, future team co-ordination, fraud detection and tracing the behavior of an 

employee. 
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2.0 RELATED WORK 

 

The field of email data mining is relatively new to researchers around the world. 

Because of this fact, there is not much material available for email log data mining and 

email analysis to review. After reviewing a number of IEEE journals and conference 

papers from ACM digital library and SJPL library [27], I had gained access to a few 

journals that proved to be useful for my research project. Apart from the ACM library 

journals, I got some latest information in email data analysis from the computer science 

department of a few universities including UC Berkeley, US Davis and MIT. Below is 

the list of a few helpful journals that I have used in my initial research. 

1. The paper “A Mining Algorithm for Email’s Relationships Based on Neural 

Networks” [1] from IEEE computer society, gave me the basic understanding of 

email transaction flow model, which would be my backbone throughout the 

research project. 

2.  The paper “Mining Email Social Networks” [2] from ACM digital library, gave 

me the understanding of how to remove junk data and how to unmask the aliases. 

The paper also shows few methods of data extraction and content gathering.  

3. The journal “Email Mining Toolkit Technical Manual” [28] from Department of 

Computer Science, Columbia University, helped me to understand the backend 

architecture behind the email analysis and the Clique algorithm implementation 

for email data mining to find relations between users.  

The main and tedious task involved was to find the dataset that can be useful as a 

test data for the research work, and to remove junk data and redundant data that are not 

required in test dataset. 
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2.1 Related Research 

 Many researchers have been doing similar work on email analysis. Shlomo 

Hershkop et al worked on a visualization of email relationships for particular 

organization [4]. Similarly Nimish Pathak, Sandeep Mane and Jaideep Srivastava have 

done some key research on socio-cognitive analysis of email networks [10].  Nimish 

Pathak et al worked on a huge dataset to find out “who thinks who is who?” On the other 

hand, Giuseppe Carenini et al have data mined emails from large folder for scalable 

discovery of hidden emails [13]. Other researchers group, Rong Qian et al, have worked 

on an email corpus to detect a community structure based on link ranking [18]. Rong 

Qian et al focused on link mining techniques to detect community structure. Rong Qian et 

al found interesting result in the form of different teams and community for a given email 

corpus. All above listed research work has done using existing data mining techniques.   

 There was another group of researchers who worked on social network analysis to 

detect relationships. A group of Computer Science professors from University of 

California, Davis, worked on analysis of a social network. The group, Christian Bird et 

al, have chosen emails for their primary test-data to apply different mining techniques. 

Christian Bird et al used in-degree and out-degree of email sent to find relationship 

between the sender and the receiver, and they proved that an email social network is a 

typical network community [2]. R. Agrawal et al have achieved similar kind of result. R. 

Agrawal et al focused on social network for news readers. They analyzed behavior of 

news readers and derived news groups that shares similar taste.  

 Another group of researchers, Bron C et al, directly applied their algorithms on 

the email corpus [5]. They have found all the cliques of an undirected graph from the 
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email corpus. On the other hand, O. De Vel et al worked on the email corpus to detect 

author identification forensics [6]. They were only interested for the author of particular 

email for forensic purpose. Hence, they have mined contents of each email to find as 

much as possible information about the author of that email.   

 

 

Figure 2: Inter-connection among different research works 

 Figure 2 above describes the inter-connection between four kinds of research 

work. Three small circles on the right side describe three different kind of research work 

done by other researchers. Whereas, the big circle on the left side describes this research 

work. It is clear from the figure that each of the three research works on the right side 

were independent and implemented to detect relationship among users. These three 

research work belongs in Data Mining, Social Network Analysis and Email Log Analysis 

categories respectively. While exploring literature of above mentioned research works, 

the author came across an idea of merging all of them into one meaningful entity. The 

Data
Mining

Social 
Network 
Analysis

Email 
Log 

Analysis

Email Data 
Mining to 

Detect 
Organization 

Structure 
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author utilized basic techniques from each research work and planned to implement them 

over the Enron Email Corpus made public on October 2001. Since no one has ever tried 

to construct an organizations hierarchy based on employee ranking and position, the 

author has started research on it. 

 

2.2 Data Gathering 

 As mentioned above, due to relatively new field of research, there are very few 

existing resources available. Moreover, concerning the privacy and security of an 

organization and its employees, most organizations never disclose their email 

transactions or server email logs to the public. After doing a lot of research to find a test 

dataset which can be used as a backbone for my research, I found relatively huge and 

dense dataset of email transaction log files of an organization. 

 After declaring its bankruptcy in late 2001, Enron made its 150 employee‟s email 

transaction log files publicly available for research purpose. The department of computer 

science at CMU [26] helped me to find the dataset. The dataset contains more than 

500,000 email log files shared among 150 Enron employees over a period of 5 years 

starting from 1998. The dataset contains all the email transactions from each and every 

personal folder of an employee, i.e. it contains emails from the folders like inbox, sent, all 

mails etc. It also contains automatically system generated folders like discussion_threads 

and personal folders like home_mail, from_allen and many more. 
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3.0 DESIGN   

 The design part mainly consists of database table/matrix creation so that those can 

be used in the future to save I/O time. This was a very crucial phase of the research, as all 

assignments in the future would be dependent on these matrices. The database contains a 

total of 21 tables. All of these contain unique information about different parts of raw 

files. Moreover, some tables are created to support the inter-relationships between the 

tables e.g. child_parent, sub_response, timeline and many more. 

 Later, after creating these tables, four different analyses were done. These are 

summed up as send-receive analysis, statistical analysis, semantic analysis and temporal 

analysis. All of these analyses solely depend on the 21 tables.  

 

3.1 Cleaning the Junk Data  

As mentioned above, the dataset contains lots of emails for a particular employee 

from his/her mailbox folders. Hence, it can also contain lots of junk or redundant emails 

that need to be removed. Each log file has the same format; it contains header data, 

timestamp of transaction, sender and receiver, subject and content of the email itself. All 

the attachments and signatures were removed for the security and privacy of an 

employee. Using the power of PHP‟s regular expression, all the redundant mails and all 

emails that did not have either the sender or the receiver, were removed. 

 The following figure 2 shows a system diagram of the research work. There are 

mainly four kinds of analysis that will be performed over the email database corpus of 

Enron Inc. The final results will be compared with the fact sheet that came together with 

the database. 
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Besides junk mails, there were lots of employees who used to have more than one 

email ID to contact in different groups inside and outside the organization. One example 

in this case could be the CEO himself, who used to have three email IDs like 

Ken.lay@enron.com, chair.enron@enron.com and k.lay@enron.com. So determining 

alias from the database was an important task. “Mining Email Social Networks” [2] from 

ACM helped the author in that context. Another potential problem was that many emails 

did not have either a sender or a receiver, and that could become reason for chain-break, 

so no sender/receiver has been placed on those emails sender/receiver field. Moreover, 

due to system generated emails folders, there were lots of redundant emails that needed to 

be eliminated. After eliminating all such redundant emails, the size of emails in the 

dataset reached slightly more than 362,000 from 517,000 emails. 

 

3.2 Database 

 After cleaning all the redundant mails, it was time to create the MYSQL database 

of the raw mail logs to arrange in meaningful tables. User could have used the log files 

directly to program the authors work, but then it would have cost the user a lot of CPU 

power and memory for I/O operation while reading files in PHP. As it was required to 

access many records of dataset at a time, it would have almost occupied user‟s main 

memory if the user would have used log files directly. Definitely it would have reduced 

the performance dramatically, but since all log files were converted in 21 different 

meaningful MYSQL tables. Using those 21 tables the user can query large number of 

data at a given time without degrading the performance.  

mailto:Ken.lay@enron.com
mailto:chair.enron@enron.com
mailto:k.lay@enron.com
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 All 362,000 log files were modeled into meaningful MYSQL tables and each of 

them represents different parts of a log file. Some table/matrix represents a relationship 

between other tables. Tables also represent relation among the employees. Below are 

some of the examples of such tables. 

1. Mailgraph – relates each employee‟s send/receive statistics with every other 

employee in an organization. 

2. Clique – relation between employees who share at least 5 emails interactively.  

3. Sub_response_send/receive – a matrix that contains relative weighted percent of 

each employee with other employee. 

4. Response – a matrix that contains overall weighted percentage of particular 

employee. 

5. Timeline – a matrix shows email flow of every employee, sorted by month for 

entire 5 year communication. 

6. Child-parent – a matrix shows possible child node and parent node for all 150 

employees, for which we have original ranking in Enron factsheet.  

7. Lawyer_relation – a matrix contains relation between the sender_id and 

message_id, especially for messages sent to lawyers. 

8. que_datails – a matrix contains senders and receivers information for messages 

for which sender asked questions to receiver. 

Creating a database for entire dataset has proven very time-efficient and easy to 

use throughout this research work. The relational diagram of all the matrices in the 

database is shown in figure 4. The matrices are divided into three different levels of 
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hierarchy according to their generation method, and the level showing hierarchy is shown 

in figure 5. 

Figure 4: Relational diagram of all database matrices 

Figure 5: Levels of database matrices 

Primary Tables

• all_messages

• bodies

• headers

• people

• user

• recipients

2nd level Tables

•clique

•mailgraph

•sub_response_send

•sub_response_receive

•timeline

•lawyer_relation

•que_details

3rd level Tables

• response

• child_parent
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4. ANALYSIS 

The analysis part is the core of this research work where the output is going to be 

exposed in terms of database tables and graphs. Four kind of analyses were done to 

support the thesis, these are 

a. Send-receive analysis (s-r analysis)    

b. Statistical analysis 

c. Semantic analysis 

d. Temporal analysis 

The s-r analysis was directly based on primary tables in the database whereas; the 

statistical analysis was based on outcome of s-r analysis. Hence, they were dependent on 

other source, i.e. database tables. The semantic analysis and the temporal analysis were 

done to find inter employee relationship. 

 

4.1 S-R Analysis and Statistical Analysis 

 The goal behind these two analyses was to construct an organization employee‟s 

hierarchy, so that it can show position/roll of each employee within the organization. 

Once having a hierarchy, one can apply temporal analysis together with semantic analysis 

to define a relationship between employees. An excel sheet included with the database 

has a list of employees and their actual ranking before the bankruptcy of the Enron 

empire. The author called that excel sheet a factsheet. Hence, one can compare his/her 

research results with this fact sheet to map two difference hierarchies. Overlapping part 

of proposed hierarchy will be success and the part of hierarchy that will not overlap with 

the original hierarchy will be mismatch or exception of noise value. 
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The construction of a hierarchy was divided into three different parts. These three 

parts were finding 

a. Root  

b. Second level employees, and 

c. Lower level employees. 

4.1.1 Finding the root: 

The CEO or the President of Enron organization was considered as the root of a 

hierarchy. All the VPs, directors, managing directors and managers were considered as 

second level employees. All the traders, normal employees and employees whose 

position was not available in the fact sheet were considered as lower level employees.  

  

4.1.1.1 Send-receive analysis 

  The s-r analysis was purely based on the data stored in the 1
st
 level tables. The s-r 

analysis was made in top-down pattern, but it is easier to understand it with bottom-up 

pattern. Mentioned in figure 6 are steps in bottom-up creation and analysis of hierarchy.

  

Figure 6: Bottom-up approach of finding root node 

Find root

Find child_parent relation

Find response index

Find sub_response_send/receive index

Create mailgraph

4

3

2

1
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4.1.1.1.1 Bottom-up Explanation: 

 It is natural for creating a hierarchy or a tree structure first thing anyone need is 

the root node or the base node on which other nodes relies. Hence, first step involved was 

to find the root node or the CEO/President of the organization, but from above figure it is 

clear that there were 4 steps need to be completed to reach the root node. The discussion 

given below is about top-down creation of each table/matrix that leads to creation of the 

root node of the hierarchy. 

Step 1: 

The very first step was creation of the 1
st
 level matrices. As mentioned previously 

in a design section, six 1
st
 level matrices/tables were created; and those will be used in 

every calculation needs to be done ahead in the research work. Those were very basic 

tables created directly from raw server log files by using the power of regular expressions 

in PHP. The tedious part was to create a people table. After analyzing all 362,000 emails 

in dataset, 87,475 unique email IDs were found. From those 87,475 emails, majority of 

contacts did not belong to the Enron but the outside industries and collaborative firms. 

Out of 87,475 contacts, 34,000 belonged to the Enron and the author was only interested 

in particular 150 contacts out of 34,000. The fact sheet contains information regarding 

150 employees those were believed to be actively involved in the ‘Enron Scandal‟. 

Different scripts were made for creating 1
st
 level tables. Time complexity for each of 

those tables was calculated to be O(n) , as one has to check each and every email to store 

particular detail in the table. 
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Step 2: 

After getting the 1
st
 level matrices, one needed to have a graph or a matrix that 

shows send-receive details of each user. The mailgraph table contains send-receive and 

reverse send-receive history of each user over time period of 5 years. The matrix 

mailgraph acts as a base for each second level matrix creation process.   

Step 3: 

The third step in creation of the root node was to create the sub_response_send 

and sub_response_receive matrix. Both sub_response matrixes highlight the weighted 

percentage of each employee with other employees with whom the employee has 

communicated at least once. In other words, if employee A and B have communicated at 

least once, then there should be some kind of equation/formulae that shows their 

weighted relationship in terms of send-receive. 

 Both tables, sub_response_send and sub_response_receive contain an index for 

each person_id for send and receive respectively. The number of email sent by the sender 

will become the send-index for the sender. In a similar way the number of email received 

by the receiver will become receiver-index for the receiver. 

 Let us consider another example where employee A sends 12 mails to B, and 

employee B replies back only 5 times. In this particular example send-index for A will be 

12 and a receive-index for A from B will be 5. Similarly a send-index for B will be 5 and 

receive-index for B will be 12 as opposite to A. 

 Here an assumption was made with the fact that, if an employee is receiving more 

replies than number of emails he/she is sending to other employees, then he/she will be 

considered as an irresponsive employee. Whereas, if an employee is receiving fewer 
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replies than the number of emails he/she is sending, then an employee will be considered 

more responsive. Irresponsive means an employee might have busy and was not able to 

send reply back to the sender, and responsive means an employee might have sent quick 

reply. If we think logically and apply the situation for a real organization, then only 

leaders would not reply back quickly to the followers, which mean higher level 

employees tend to reply less to the lower level employees. Hence, in above example 

employee B might be the leader of employee A and an employee A might be the follower 

of employee B. 

In short, the matrix sub_response_send and sub_response_receive contains send 

and receive index value for each employee as compared to every other employee in the 

organization, therefore they have a complexity of O(n
2
).  

Step 4: 

From step 3, we have got an index value for each and every employee with his/her 

communicator. As discussed above in statistical analysis, finding only an index values 

was not sufficient, it was also required having a general average index value for each 

employee. For this reason, another matrix was created with the name response, to store 

the general average value of each employee contacting every employee in the time period 

of 5 years. Here the work was easy; one just needs to calculate the average index value of 

every record attached with a particular employee as a sender from sub_response_send 

table. Let us consider in sub_response_send matrix sender 36 has contacted 5 employees 

with index value of 2, 4, 3, 6 and 1. All that one needs is to compute average index value 

by applying standard average formulae, which comes out to be = 16/5 = 3.2; the result 
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shows that an employee is more likely to fall in follower category and not in the leader 

category. Hence this employee tends to be a lower level employee in the final hierarchy.  

Step 5: 

As per our earlier discussion we know that, the aim of s-r analysis was to find out 

the root and its descendent child, so finally output results in a complete organization 

structure based on each employee‟s position. Up to this point, i.e. step 4, only relative 

index of each employee compared to all other employees was found, but still no sense of 

parent-child relationship for any two employees has been found. Hence, the next step 

involved was to find out possible immediate parent and child of each and every 

employee.  

 

4.1.1.1.2 Filtering process: 

When the user applies the algorithm to find out possible child and parent 

relationship for each employee, he/she needed to eliminate all the employees for which 

there were no solid proof to compare with the fact sheet. In other words, only consider 

those employees who were listed in the fact sheet provided by the dataset. The filtering 

process is shown below in figure 7. 
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Figure 7: Filtering of Database Matrices 

The figure 7 above illustrates the filtering process to find out interested employees 

those might be in the fact sheet to compare with. An idea started with the 150 folders that 

came with original dataset, i.e. the dataset was mostly about the communication among 

these 150 employees.  The list of 150 employees was obtained by applying regular 

expression on sender‟s field of the log itself and results were stored as email ids in the 

user table. Here a problem faced was, some users had more than one email ID, which 

needs to be taken into account too, and due to this reason there were 173 email IDs for 

total of 150 employees. 

Another problem faced was, all information related to those 173 employees were 

distributed into 3 different tables namely people, user and response. It was necessary to 

Interested Employees

User

Response

People

Emp 1

Emp 2

Emp 3

.

.

Emp 173



21 
 

filter all the three matrices using MYSQL queries and then integrate the results into a 

single hash table. The idea of filtering information is shown above in figure 7 that gives 

us a result in form of a hash table with all 173 employees and their response index along 

with their email IDs and secondary email IDs.  

After having the required employee list, it was needed to find possible parent and 

child who were immediately associated with them. Again, for finding child-parent 

relationship, the same algorithm process was used that was used for finding an index of 

each employee from the sub_response_send and sub_response_receive matrix. This 

algorithm works in the following manner; first the index of a particular employee out of 

173 employees was taken against all other 172 employees, and the maximum of 172 

send-indexes from sub_response_send was taken as a possible child and the minimum of 

172 receive-indexes from sub_response_receive as a possible parent.  After having 

possible parent and child for all 173 employees they were stored into the matrix called 

child_parent. Hence, up to this point the possible child and parent for every node has 

been found, but still the final child-parent relationship of the organization hierarchy was 

unclear. 

After completing the 5
th

 step, next task was to find the root node in the hierarchy 

or in other words, to find the CEO/President of the organization. The process involved in 

finding the root was pretty simple, we just needed to find out the employee/node that was 

voted maximum times a parent node of some child node. In fact, the voting algorithm 

was created which finds the possible root of the hierarchy.  

The easiest way to find the root in this case was simple voting algorithm. Voting 

algorithm looks into the child_parent table to search an employee that has been voted 
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maximum times as a parent. This algorithm would detect an employee who is likely to be 

the root of the tree. A simple MYSQL query was created that served this algorithm. The 

algorithm will look for every employees from the list of 173 employees and creates a list 

of each employees indexed by the number of voted as parent. The figure 8 below shows 

the proposed root node and figure 9 is the original hierarchy for the root node. 

 

Figure 8: Proposed hierarchy for root node 

 

Figure 9: Original hierarchy from fact sheet for root node 

 Until this point the first out of 3 hierarchy creation part was completed. The 

algorithm just found the root of the hierarchy, and next steps was to find out 2
nd

 level 

employees and lower level employees. So the following step was to find the second level 

node or second level employees in the hierarchy.  
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4.1.2 Finding 2
nd

 level nodes: 

 From this point onwards only statistical analysis was used to find nodes in the 

hierarchy. The basic fundamental behind this phase was to find out all the immediate 

employees in the organization to whom the root has sent a lot of emails. Why this idea 

will work? Until now we used the fact that more the send mail lower the ranking, and 

more the reply back higher the ranking, but this idea was only to find the root node or the 

president of an organization. In the second phase of hierarchy creation the user will 

consider the reverse fact, i.e. an employee with high number of sent messages will be 

placed on top level compared to an employee who received a lot of messages and will be 

placed on bottom level of the hierarchy. The reason behind this fact was logical. The root 

node was successfully found, i.e. the president of the company, now if we think logically, 

the president will only talk more with the higher level employees directly. So here we 

have to reverse our idea of high send message low position phenomenon.  

 The president would have only talked with vice presidents, MDs a lot of time 

directly compared to the lawyers and other regular employees. Moreover, the fact from 

sub_response matrixes that higher the index of the sender to the receiver, high the 

number of messages sender might has sent to the receiver. Similarly lower an index of 

sender to the receiver, less number of messages the sender might have sent to the receiver 

or in other words, higher the number of replies receiver would have gotten back.  

For finding the second level nodes directly from the root node, a function, 

getChildren, was created that takes an input as root node and finds its possible immediate 

children. From sub_response_receive matrix it was required to find the maximum index 

value among those 173 employees we are interested in. Thereafter, one will take that 
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index and finds the sender_id of matching row where parent_id is the input parent. So 

this method returns the immediately possible child of the root. In successive iteration I 

have received four nodes; 293, 1637 and 8303 for the second level employees.  

So if one looks for node 701, the CEO, in the sub_respons_receive matrix, and 

collect the higher valued index, they are likely to be the vice presidents or the second 

level employees directly below the root node. The result of above query gives us some 

high value index nodes such as node 293, 1637 and 8303.  

 After getting proposed second level nodes from the root node, it was time to 

compare those nodes with the original hierarchy of Enron. Below figure 10 shows 

proposed second level nodes and figure 11 shows original hierarchy for second level 

nodes in the Enron.  

 

Figure 10: Proposed hierarchy with top 2nd level nodes 

 

Figure 11: The Enron 2nd level hierarchy with some of the VPs 
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From the figure 11 above, one can clearly see that a hierarchy successfully 

matched the President and two vice president nodes with the original 2
nd

 level hierarchy 

of the fact sheet. So, nodes 293, 1637 and 8303 were successfully classified as the 

President, VP and VP node respectively in the hierarchy. 

Then it was time to go further deep in to the 2nd level hierarchy to find out other 

nodes like Vice Presidents, director, managing director and managers. Starting with node 

293, two top indexed nodes 185 and 1492 were found. Afterwards for node 1637 node 

2537 found as top indexed node. Finally for node 8303, nodes 1672 and 1903 were 

found. After having completed statistical analysis on all of 5 listed nodes against their 

parents, the hierarchy that was found is shown in figure 12 below. 

Figure 12: Proposed 2
nd

 level hierarchy for Enron 

 Up to this point the 2
nd

 level of the hierarchy was almost covered which is shown 

in the figure 12 above. As seen from the figure the nodes with red outline shows correctly 

matched nodes with original hierarchy. We can also see some nodes in black outline, e.g. 
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node 1672 and 1093, which shows that employees have been found, but at wrong 

position. 

 4.1.3 Finding lower level nodes: 

 The final and third step was to find the lower level employee of the hierarchy. The 

idea was simple compared to the first two level of hierarchy. To find out the lower level 

employee one just needed to find the descendents of the last level nodes of 2
nd

 level 

hierarchy. Below listed are the steps to find out lower level employees from the 2
nd

 level 

hierarchy. 

1. Take 2
nd

 level employee from the last row. 

2. Look for this employee in sub_response_send matrix to get maximum index 

3. Look in to the sub_response_receive matrix and response matrix 

After applying the above mentioned steps for each of the last level nodes of 2
nd

 

level hierarchy, all nodes those were normal employee were found. In other words, the 3
rd

 

level of hierarchy only contained the nodes those were with the high index value against 

their parent in the last raw of 2
nd

 level hierarchy. For example, let us consider 185, last 

raw node in 2
nd

 level hierarchy. When the above mentioned steps were applied, the 

highest index node found and it was 22786. When the employee 22786 was compared, 

after querying the people table, it was found as normal employee. Likewise, those 3 steps 

were applied for all last level nodes in 2
nd

 level hierarchy and the results found was as 

shown in the figure 13 below. 
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Figure 13: Overall Enron hierarchy with 3
rd

 level nodes 

The figure 13 above shows the partially complete hierarchy for the Enron 

Incorporation which has derived using this research work. After comparing it with the 

original hierarchy from fact sheet; most of the time proposed nodes in figure 13 above 

and their level matched with the original hierarchy. There were some exception and noise 

nodes in the hierarchy. Two noise nodes that were present in the above hierarchy were 

1093 and 1672. These noise and exception nodes cases were covered in the experimental 

results‟ section 
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4.2 SEMANTIC ANALYSIS 

 The meaning of semantic analysis is to find out the results from the meaning of 

words and sentences in the document. In this paper the semantic analysis was applied to 

the content of an email itself. The following section discusses reasons for this analysis, 

how it works and specific case of semantic analysis. 

4.2.1 Need for Semantic Analysis 

  In the previous analysis, the statistical analysis, the partial hierarchy of an 

organization has found but there were no unyielding proof for that. Because each and 

every email has its body or content, an idea of applying semantic analysis to the content 

came into the picture. Semantic analysis could make the results of statistical analysis 

more solid and acceptable.  

4.2.2 Methodology 

  The basic idea behind semantic analysis was to find important keywords, 

sentences or even some symbols that might able to reveal some critical information. For 

example user A and user B were having lot of communication through an email 

exchange; in this particular communication there might some keywords or symbols 

available that can reveal information regarding those users. Each email has its content in 

the corpus of 517,000 emails; hence the semantic analysis has applied on the content 

itself rather than headings or message lines.  

  Another essence behind the semantic analysis was to add more sense to the results 

of statistical analysis in terms of users. So if semantic analysis can have better results, it 

can make significant impact on the results of statistical analysis while merging both 

results together.  With the fact that there were lots of communication were going on 
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between the same level of employees and between the different levels of employees, 

users should have been asking lot of questions to each other. Taking this fact in mind the 

semantic analysis has applied to find out “who asked questions to whom and in what 

amount”? The simplest solution was to mine each and every email's content and figure 

out how many questions were asked in that particular email. Every time it‟s not necessary 

that an email has '?' in its content so it should be considered to mine that email for further 

information.  

  So some criteria has applied in order to find out a perfect sentence which contains 

the '?' plus the necessary information and words that makes the sentence an interrogatory 

sentence.  Those criteria includes some basic words in an interrogatory sentence followed 

by the '?'. To implement this structure in programming language, two arrays were used so 

one of them contained important words of the first part of an interrogatory sentence like 

how, what, can, could etc. Whereas the second array contained some important words of 

the second part of an interrogatory sentence like I, you, much, many etc. The function 

that checks for these conditions is described below for the reference.  

protected function analyzeMailBody($body){ 
 
     $arrSentances = explode('?', $body); $cnt = 0; 
 
     if (count($arrSentances) == 1) return false; 
 
     $arrWords = array('what', 'how', 'when', 'whose', 'should', 'would', 'can', 'could',        
                        'please', 'is', 'are', 'do', 'did', 'have', 'has', 'was', 'were'); 
 
     $arrPronoun = array('i', 'we', 'you', 'they', 'do', 'does', 'are', 'there', 'can',  
                          'much', 'many', 'this', 'that'); 
 
     foreach ($arrSentances as $sentance){ 
      if(preg_match('/^[a-zA-Z0-9\$_\-@!#%&\. ]*(' . implode('|', $arrWords) . ')+ 
                             (' . implode('|', $arrPronoun) . ')+ 
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                             [a-zA-Z0-9 ]*/i', $sentance, $match 
                          ) == true){ 
       $cnt++; 
      }else{ 
       continue; 
      } 
      $match = ''; 
     } 
     if ($cnt >= 1){ 
      return true; 
     }else{ 
      return false; 
     }    
} 

Figure 14: code snippet displaying method to find root 

  

The code snippet above in figure 14 determines whether the content of an email 

has any interrogatory sentence or not? Two arrays arrWords and arrPronoun contained 

necessary words to make an interrogatory sentence. If any sentence with the '?' found 

then PHP regular expression would check for it. With this analysis every sentence in each 

and every email has checked for potential interrogatory sentence.  

 The next step was to determine the number of questions asked by each employee 

to every other employee. That part was easy because all the questions asked were already 

there in the database. Those questions were found using the PHP regular expressions and 

applying the logic for simple interrogatory sentence.  So it just needed to find who asked 

whom and how frequently?  

4.2.3 Inspection of Questions 

 All the questions asked were present but it was required to find the sender and the 

receiver of that particular email sent in which a particular question asked. Again this was 

an easy part as in the header table all the recipient and sender were stored along with 
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their message id. So after mapping message id in 'question found' email to the message id 

in header table, the receiver and sender has identified. After this point, it was required to 

calculate who asked most questions to whom and who replied back in either very number 

of time or very frequently. After applying a MYSQL query the number of question sent 

by a particular sender and the number of question received by particular receiver has 

determined. Now next step involved was to determine who sent highest number of 

question and who replied back very less.  

 

 The result of this step revealed a lot of significant information that can be 

associated with the results of statistical analysis. Employee who asked high number of 

questions belonged to the normal employees or workers. Whereas, employee who replied 

back very less to the question asked compared to the number of question he/she asked to 

other belonged to high level of employees on the tree. The figure 15 below explains a 

basic logic of employee's position on a tree according to the number of question asked. 
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Figure 15: Number of questions asked at each level of hierarchy for the Enron 

 

4.2.4 Integration with the Statistical Analysis 

 

 Statistical analysis reveals the partial hierarchy of an organization particularly in 

three different levels first roots level; second middle level and third the lower level with 

normal employees and workers. Whereas the semantic analysis reveals the information 

about “who asked questions to whom”? Having both partial results, the effort of 

integrating both results has made to gain superior and significant results. The idea was 

simple, just compare all employees who asked high number of questions with the 

hierarchy of the statistical analysis and in the same way compare all employees who 

replied back minimum number of question with different position in the hierarchy.  
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4.2.5 Result of Semantic Analysis 

  

 The results from integration of both types of analysis were very productive. 

Employees who asked lot of questions were tend to stay in lower part of the tree, that is 

in lower level, whereas employees who asked relatively very less questions were tend to 

stay in middle and root level of the tree. Second noteworthy information found after the 

integration was the ratio of more question asked and less question asked at two different 

level of the hierarchy. Particularly the ratio found between lower level and middle level 

was 1:5 whereas the ration between middle level and root level was 1:10. Now what does 

these numbers in ratio means? A ratio of 1:5 between lower and middle level means, in 

general, an employee from middle level asked only once in every 5 questions asked from 

lower level. In another words, from every 5 question asked from lower level employees 

to the middle level, i.e. their managers and team leaders, only one question asked from 

middle level employee. Similarly the ratio between middle level and root level was 1:10 

means the root employee asked only once of every 10 question asked from the middle 

level employees. In other words, managers and team leaders asked 10 questions to root 

level employee and in contrast, only one question asked from root level employees to 

middle level employees. 

 The question is why the numbers in the two ratios are important? Those numbers 

are important because they are directly related to the position/level of employees in the 

organization hierarchy created from statistical analysis. The figure 15 will clear the 

picture of ratio and hierarchy. As seen from the figure 15, even though the number of 

email transferred between the lower level and the middle level was high, and it was high 
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as 1:5. Whereas the amount of email transferred between the middle level and the root 

level was less compared to middle and lower level, and the ratio was as less as 1:10. 

Again these ratio numbers are related to position of employees in the hierarchy. The less 

ratio of 1:5 itself says that there was heavy question transaction between middle and 

lower employees whereas the high ratio of 1:10 says there was less question transaction 

between root and middle employees. This is exactly matches with the results of statistical 

analysis that higher level employees replied/sent less mails compared to the lower/middle 

level employees.      
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4.3 TEMPORAL ANALYSIS 

4.3.1 Need for Temporal Analysis 

  

 This analysis is independent of previous three analyses. After reading lot of 

literature of the Enron scandal, the author came across the fact that Enron got bankrupt in 

December 2001. Aim behind this analysis was to figure out some details that might give 

some clue for ‘Enron Scandal’ or „Enron Fraud’.  

This was the last analysis of this research work that has performed over the 

content of an email.  The idea behind this analysis was to find out some relationship 

between employee and how their behavior changes over the time. Main focus was on the 

lawyer-employee relationship at some particular period of time throughout the time-line 

of the Enron Inc. In fact there were few lawyers and traders involved in the list of 

employees. Hence, it might have possible that before the company filed bankruptcy, 

suddenly some employees have tried to talk to the lawyers with a lot of emails or on other 

hand some have stopped talking at all. So the idea was to figure out when the first peak 

occurred in the time-line of email communication with the lawyers.   

 

4.3.2 Methodology 

 As the email database corpus contains emails from 1998 to 2002, and with the 

fact that Enron was bankrupted in December 2001, there should be an instance before 

December 2001 when the graph for communication between lawyer and other employees 

should have been at peak. In other words, try to find when the first peak occurred in the 

graph of email communication between the lawyers and other employees. The fact-sheet 
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that came along with the database contains 3 lawyers in it who served the company. Now 

the challenge was to figure out when the first peak occurred in graph for communication 

with lawyers and traders?   

 The first task to be completed was to find all the lawyers and traders in the 

organization and check for every other employee who has sent an email to any one of 

lawyers or traders.  

The table lawyer_relation has created which kept all the necessary data relates 

every employee to every lawyer or traders in the form of number of emails sent. So the 

task of figuring out number of email sent by the lawyers and received by the lawyers in 

different years has completed first. Definitely this data has proven very useful in further 

investigation of email communication. The figure 16 below shows such data of two years 

namely 2000 and 2001. Table contains the number of emails sent/received by the 

lawyers/traders in year 2000 and 2001.  

 2000 2001 

Sent Received Sent Received 

Lawyers 72.00% 28.00% 52.00% 48.00% 

Traders 62.00% 38.00% 32.00% 68.00% 

 

Figure 16: comparison of sent and received emails with lawyers/traders 

 The Figure 16 above shows clear distinction between the number of email 

exchange between employees and lawyers/traders in the year 2000 and 2001. The 

percentage of emails sent and received has a big difference in both years. In year 2000 

lawyers, in general, sent 72% compared to 52% in the year 2001, whereas in year 2000 

lawyers received 28% emails compared to 48% in 2001. So there was clearly about 40% 
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increase of receiving emails to lawyers in year 2001 compared to in year 2000. In other 

words, employees sent approximately 40% more emails to lawyers in 2001 compared to 

year 2000.  

The same fact is true in case of traders as well. It is clear that number of received 

email to traders is high in year 2001 compared to year 2000 from the table. In other 

words, employees have sent more emails (68%) to traders in 2001 compared to year 2000 

(38%). With these two facts in mind, it was obvious that something big happened in the 

year 2001 because more and more employees were talking to lawyers and traders with 

emails than ever before. So the next step involved was to figure out when particularly in 

year 2001 that big thing occurred. The chart below in figure 17 shows monthly email 

transaction of year 2000 and 2001 particularly those were sent to lawyers and traders. 
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FIGURE 17 
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The figure 17 describes number of emails sent to either lawyers or traders for 

particular month of year 2000 and 2001. The two lowest peaks in the chart for each year 

are January and February that can be counted as vacation period. The highest first peak 

was in October 2001 and this was the same month when Securities and Exchange 

Commission (SEC) has started an investigation into Enron for possible accounting fraud. 

So the employees might have started talking with the company lawyers a lot in the month 

of October 2001 by email exchange. The market share value for Enron went below $1 

from 52 weak highest $85 in the month November 2001. In order to compensate the 

losses of hundreds of millions, Enron eventually filed bankruptcy in December 2001 that 

can be seen as an email communication with second highest peak after October 2001. 
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5.0 SOFTWARE AND TOOLS USED 

 

 In this research work XAMPP 1.7.2 [29] stack has been used for the development 

and storage purposes. XAMPP 1.7.2 provides PHP 5.2.9, Apache server 2.2.9 and 

MYSQL 5.0.67. PHPs regular expression functionality is used in this research for most of 

the time while creating primary level table and stored them into MYSQL database. An 

extremely good speed and performance of PHPs regular expression and ease of scripting 

are the reasons for choosing PHP 5. Apache server provided the required platform to run 

the application and test cases over localhost on author‟s PC. Furthermore Net-beans 6.7.1 

[30] has used as a scripting platform, which is really good for handling a lot of client 

libraries and classes in a single package. 

 For GUI purpose Jpgraph [31] PHP client library has been used which is freely 

available for commercial and non-commercial usage. In this proposed research work 

graphs are used to plot the relationship between sender and receiver over the period of 5 

years ranging from 1998-2002. The graph shows users email communication frequency 

separated by each month in 5 years. Last but not the least, Microsoft® word 2007 is used 

for the report creation and it truly provided the best possible graphics and charts for 

hierarchy structures.    
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6.0 EXPERIMENTAL RESULTS AND TEST CASES 

6.1 Related experiments:  

 As mentioned earlier in the report, the topic of email log data mining is relatively 

new to the research group among researchers and students. There are only a few related 

experiments that have been done over email log data mining. For example, Ziv Bar-

Yossef et al [19] has put some work on email cluster ranking based on a particular 

organization. Rong Qian, Wei Zhang, Bingru Yang [18] has put their efforts in 

experiments for community structure detection. Whereas, Anton Timofieiev et al [12] has 

done similar research over email mining as Rong Qian et al, but Anton Timofieiev has 

used H-index to determine communities in email corpus. On the other hand Nishith 

Pathak, Sandeep Mane and  Jaideep Srivastava has done socio-gognitive analysis of an 

email corpus in their paper „Who thinks Who knows Who?‟ [10]. In the paper 

„MODELING INTERACTIONS FROM EMAIL COMMUNICATION‟ [14] by Dong 

Zhang et al, the authors have shown the methods to learn the topic based interaction 

between a pair of email users. Giuseppe Carenini, Raymond T. Ng and Xiaodong Zhou 

have presented the paper „Scalable Discovery of Hidden Emails from Large Folders‟ 

[13], and also proposed a method of reconstructing hidden relationships from the 

communication between the users in an organization. 

 Although there were quite a few past projects that have been done on the email 

data mining field in order to determine community detection, hidden emails, topic based 

interaction and many more, no one has really tried to propose a position wise or ranking 

wise structure of an organization. 
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 6.2 Experimental results: 

 In the research work the goal was to create a partial position wise hierarchy of the 

Enron employee mainly in three divisions. Another goal was to find some relation 

between the employees using the semantic analysis and temporal analysis. Concerning 

the earlier goal, the first part was to find the root, i.e. President/CEO of an organization. 

The second phase finds immediate second level employees to the root, and those include 

vice president, director, managing director etc. Final phase finds the lower level 

employees, in other words a regular employees that might be listed in fact sheet.  

 Together with the Enron dataset, an excel sheet has received that shows the actual 

ranking of senior level management employees of Enron before it filed bankruptcy. So in 

this research work as each phase results were obtained, they were compared with original 

results and then kept going ahead.  Below mentioned figures 18, 19 and 20 which 

describe author‟s experimental results of all 3 phase accordingly. Figure 18 shows result 

of first phase, i.e. finding root node, figure 19 shows the combined result of first phase 

and second phase to find VPs, MDs and directors. Figure 20 shows the complete 

hierarchy structure along with phase 3 result involved to find lower level employees. 

 

Figure 18: Proposed root node  
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Figure 19: Proposed 2
nd

 level nodes

Figure 20: Final hierarchy with exception nodes in black box 

All of the above displayed figures show the correct, exceptions and noise node all 

over the hierarchy. In both phase 1 and phase 2, a success ratio of 100% was obtained; 
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that means the root and second level nodes were correctly predicted. However, in the 

third phase few exceptions at node 1093 and node 1672 were obtained. Below is given 

the explanation of these exceptions in section 6.3. 

Semantic analysis was intended to get inter relation among employees. The case 

of interrogatory sentences proved that the higher-level employees were asked very few 

questions compared to middle level, and middle level employees asked fewer questions 

compared to the lower level employees. As mentioned previously in case of S-R analysis 

and statistical analysis there were two exceptions, those will be mentioned in next 

section, but with semantic analysis there was no case of exception because the average 

ratio for questions asked between lower level and middle level employees  was 1:5 

whereas it was 1:10 for root level and middle level employees. So these ratios were 

persistent throughout all the employees. To summarize, by merging the result of semantic 

analysis with the result of S-R analysis more significant and accurate results have been 

achieved compared to just S-R analysis. 

The combined results of S-R analysis and Statistical analysis were 86% accurate. 

Somehow remaining 14% were not correct results because of the presence of exception 

nodes. One essence behind semantic analysis was to improve the accuracy of the previous 

results. 

Last but not the least, the result of temporal analysis was also significantly 

fruitful. By analyzing the email exchange pattern between employees with lawyers and 

traders, it was possible to find a major event in an organization that lead the Enron to 

bankruptcy. Using temporal analysis it was possible to find the particular month of 
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October 2001, in which the news made public for major fraud scandal going on in the 

organization.  The figure 21 below explains ratios as each level. 

 

  

 

      

 

 

 

 

 

 

 

 

 

 

 

Figure 21: Ratio of question asked at each level 

 

6.3 Test cases: 

 In the construction of ranking wise hierarchy of an organization some nodes that 

should not be there at that position were plotted. Most noticeable nodes were node 1093 

and node 1672 in the 2
nd

 level. Below is the description and reason behind these two test 

cases. 

 

CEO/President 

MD/Manger VP 

Emp1 Emp2 Emp3 Emp4 

Ratio 1:10 

Ratio 1:5 
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6.3.1 Case 1: node 1093 shouldn’t be at top level in 2
nd

 phase 

 From the figure 26 above, we can see the node 1093 is directly below the VP 

node 8303. So what does that mean? What is the relation between these two nodes? 

Simply that means the node which is a children of VP node 8303 should be VP, MD, 

director or any second level employee in the hierarchy as per the algorithm, but it is not! 

In fact from statistical analysis it was clear that node 1093 was a normal employee, and it 

should resides on lower part of the hierarchy. 

 From the table mailgraph lookup has made to find the details. It made clear that 

the number of messages sent by 8303 were very few, in fact just 1, compared to the 

number of messages he received from node 1093, and that was 33. So what do those 

numbers suggest? Well in that case the table sub_response_send and response were not 

useful enough, because they were already used to locate those two nodes. Some analysis 

has to be done over the period of time due to this, or in other words it was required to 

compare the communication in terms of function of time. For timely inspection a table 

called timeline, was created which stores the monthly communication between any two 

employees over the period of 5 years. When the lookup was made for transaction from 

node 8303 to node 1093, just one email sent found! On the other side when the lookup 

was made for transaction from node 1093 to node 8303 total of 33 emails were found. 

That was a huge gap between those two nodes.  

From the timeline table it was found that node 1093 sent 33 emails to 8303 over a 

period of 5 years. The interesting fact is the node 1093 was only active for 4 months out 

of 5 years. Does that make any difference? Yes, because the other calculations for node 
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8303 says that he only sent 7 messages over the period of 5 months starting from January 

2001 to May 2001. This fact can also be obtained from mailgraph matrix that was created 

previously. Further analysis of node 8303 showed that he only sent 7 messages to total of 

4 employees and out of those four we already got two node 1093 and node 1672. The 

other two nodes were not identified in the fact sheet. Moreover when the lookup for node 

1093 in mailgraph was made, it was found that the node 1093 has sent a lot of emails to a 

lot of other employee, this shows that node 1093 was working with company for long 

time compared to the node 8303. 

From the timeline table, it was clear that the node 1093 worked for Enron from 

June 2000 to January 2002, which was after bankruptcy. To put in the nutshell, VP node 

8303 contacted very few people for little time with few emails, literally just 7. So it might 

be possible that node 8303 has sent one email directly to node 1093, and node 1093 has 

replied it. So due to less distribution of email among the user for long time, the node 

1093 has been taken as a second level employee but not lower level employee. 

6.3.2 Case 2: node 1672 shouldn’t be at top level in 2
nd

 phase 

 This case was very shocking as it says that node 1672, is at 2
nd

 level. This is 

exactly the same problem as case 1. From the final proposed hierarchy it can be seen that 

both nodes 1672 and 1093 are at the same level below node 8303. Interesting thing found 

was both were elected as an Employee node at 2
nd

 level. In the case 1, I described why 

the node 1093 is at 2
nd

 level of hierarchy. Same procedure was followed for node 1672 

and the same reason found as of case 1. 



48 
 

 So from both of these test cases, it was proven that both exception nodes were 

misplaced because of node 8303. The node 8303 was VP of the company and he was 

active for very short time period, literally 4 months. In his position as a Vice President, 

he had sent only 7 emails in 4 months and out of those 7 emails one email sent to 1903 

and 1672 each. And again timeline table shows that both node 1903 and 1672 were 

actively involved in email reply. Hence, the algorithm chooses the node 8303 as a parent 

of both node 1903 and 1672. 
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7.0 CONCLUSION 

After a threat to an organization in terms of accounting fraud in recent years, the 

future decision making and study of employee relationships within an organization 

becomes more focused on an email data mining and analysis [32]. One reason for 

increasing trends toward an email analysis and mining is that, email becomes a central 

tool for an information exchange at most of the levels in a professional hierarchy. This 

paper presents an analysis of email log files that gives position-wise organization 

hierarchy as an output and highlights behavioral-relations among the employees. From 

the research work, a conclusion is made that, it is possible to carve out the ranking of 

employees and an organization structure based just on server email log files. This kind of 

research can be helpful to figure out a question like “who was who”?, who was an expert 

within the group, what happened in a given particular span of time, progress difference 

between two users as a function of time, behavioral study of an employee and even future 

decision making.  
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8.0 FUTURE WORK 

The research work included four types of analysis: first, send-receive (s-r 

analysis), second statistical analysis, third semantic analysis over email content and 

fourth temporal analysis. The current research work has involved mainly statistics and 

analyzed only the Enron dataset as of now, but future research is intended to work with 

any kind of email log dataset.  

The test case in this research exhibits exceptions and noise nodes in the hierarchy; 

those should not be there. As part of future work, the project could improve the exception 

and noise by performing high level semantic analysis together with time series as a 

function. 

As Enron has filed bankruptcy in late 2001 due to systematic and intentional 

account fraud at higher level management, I would like to find out the cause of that kind 

of fraud. Who were the employees who may have started some email that contains 

suspicious keywords or some encoded codename? Moreover, it is also possible to cluster 

out different teams within Enron, based on email communication. If it is possible to 

differentiate the teams and their team members, then it is also possible to predict the 

inter-team and intra-team employee relations that would help management employees to 

see the future relation among the teams and among the employees. 

This research work has found some important statistics including ratio of email 

sent between two levels of an employee hierarchy. Ratios 1:10 and 1:5 were discovered 

for top-to-middle level and middle-to-lower level respectively. These ratios were 

obtained solely from the Enron email database, and only applied on Enron employees.  
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As a future work in this particular issue, I would like to combine management theory, if 

available, with the ratios discovered from this research work. Applying these ratios to 

other organizations‟ email log would give some fruitful information. If the result of this 

analysis matches with any available management theory of employee relationships from 

emails, it would be a great discovery to figure out email communication at each level of 

hierarchy.       
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