
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2009

Online Circular Calendar
Praveen Athmanathan Panneerselvam
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Athmanathan Panneerselvam, Praveen, "Online Circular Calendar" (2009). Master's Projects. 52.
DOI: https://doi.org/10.31979/etd.mup8-9n9d
https://scholarworks.sjsu.edu/etd_projects/52

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70407807?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/52?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

1

Online Circular Calendar

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Athmanathan Panneerselvam, Praveen

Fall 2009

2

Abstract

A calendar is a system to organize days for social, commercial or administrative purpose. Many

calendar systems are available today. The calendar system helps the user in scheduling his/her

events or tasks over a time period. This period may be an hour, a day, or even months. Due to

increase in user’s activities, events that need to be scheduled in the calendar grow

tremendously. Moreover, there are events that occur every year which require a good

visualization for mental manipulation. As a result there is a difficulty in organizing these events

in the current calendar system. The main idea of this project is to provide a calendar system in

which users can organize the events easily, and to close the gap between the actual software

and the mental model of the users. None of the current calendar systems have the ability to

manipulate and plot graphs throughout the year. The data is user dependent and can be of any

sort like temperature, rainfall, stock analysis etc., Apart from this; good visualization techniques

can be used for the calendar system to make the events apparent to the users. By this way user

can view the overall picture of the events and will have clear idea about their events. This paper

describes the implementation of such a calendar system with good visualization.

3

Contents
1 Introduction ... 6

2 Project Architecture ... 7

2.1 3-Tier Architecture .. 7

2.2 Server Side Components ... 9

2.3 Client Side Components .. 9

2.3.1 Calendar .. 9

2.3.2 Calendar Events .. 14

2.3.3 Spikes .. 14

2.3.4 Call out .. 15

2.3.5 Image map .. 15

2.3.6 Rotation ... 15

2.3.7 Preferences ... 15

3 Design... 16

4 Patterns .. 18

4.1 Singleton Pattern .. 18

4.1.1 MediatorModel ... 19

4.1.2 CommonFunctions .. 19

4.2 MVC ... 19

4.2.1 User ... 19

4.2.2 Calendar .. 19

5 Event Management .. 20

5.1 Polygon Faces Created: ... 20

5.2 Mediator Model Events .. 21

5.2.1 CALENDAR_EVENTS_MODEL_COMPUTED ... 21

5.2.2 CALENDAR_EVENT_REFRESH .. 21

5.2.3 CALENDAR_SPIKE_REFRESH .. 21

5.3 ApplicationEvents ... 21

5.3.1 USER_LOGIN_SUCCESS ... 21

5.3.2 USER_LOGOUT_SUCCESS .. 22

6 Workflow ... 22

6.1 Calendar Interface ... 23

4

6.2 Plotting Rainfall ... 25

6.3 Manage activities .. 26

7 Environments ... 26

7.1 MySQL ... 26

7.2 PHP .. 26

7.3 Flex 3 ... 27

7.4 XML ... 27

8 Appendix .. 27

8.1 Table Structure .. 27

8.1.1 User table .. 27

8.1.2 Events table ... 28

8.1.3 Files table .. 28

8.2 Events .. 29

8.2.1 Calendar Component .. 29

8.2.2 Event Mediator ... 30

8.2.3 Authentication Events ... 31

8.2.4 Lines Class ... 32

8.3 Rainfall Information .. 34

8.4 Screens .. 36

8.4.1 Preferences ... 36

8.4.2 Events Uploader .. 37

8.4.3 File Uploader ... 37

9 References ... 38

5

List of figures
Figure 1: Architecture ... 7

Figure 2 Project Architecture .. 8

Figure 3: Sector ... 10

Figure 4: Sectors and Quadrants ... 10

Figure 5: Points on the circle .. 12

Figure 6: Polygon Faces of the Calendar ... 13

Figure 7: Design ... 16

Figure 8: Database design ... 17

Figure 9: Project Workflow ... 22

Figure 10: Calendar ... 23

Figure 11: Calendar with a rotation of 90 degree ... 24

Figure 12: Calendar and its Preferences ... 25

Figure 13: Preference Component .. 36

Figure 14: Event Uploader .. 37

Figure 15: File Uploader .. 37

6

1 Introduction

There are many classifications in calendar system. Solar calendar, lunar calendars, arithmetic

and astronomical calendars, Chinese, Hebrew, Hindu, Julian, Ethiopian, Thai solar, Buddhist,

Gregorian and fiscal are the few calendars that are commonly known. Out of these calendar

systems Gregorian is widely used. When these calendars are programmed in computer it is

known as electronic calendars. These electronic calendars are also called Calendaring Software.

Such software enables users to control and maintain their schedules and activities

electronically. Calendar software is further classified in to online and offline. Offline calendar

application needs to be installed in a computer like any other software and the calendar cannot

be accessed outside that computer. This drawback led to the online calendars. Online calendars

are prominent nowadays. Main advantage of the online calendar is its accessibility. It can be

accessed from any place through internet. While there are hundreds of online calendar systems

available, the calendar from Google, Yahoo and MSN dominates other online calendar systems.

This document reflects the work done for the project “Online Calendar System” during the

course work “Writing Project – CS 298.” In this system, calendar is projected in circular manner

to make good visualization of the calendar system as opposed to the traditional linear calendar

visualization. Calendars are mainly used for managing events and tasks. When such events

occur every year, circular calendar is the best way to represent the repeated events. Keeping

the calendar rotatable lets the users to visualize the event patterns when they start with

different months than January. This system integrates the calendar events with the weather

information. Weather information like temperature and rainfall data can be plotted over the

calendar. Thus providing the interface as a single point to manipulate all kinds of calendar data

the user might have. Not only events, data which are similar to events or temperature

information can be fed to this interface to visualize that information.

All of the current online systems are similar in their functionality and features. The drawbacks

of these calendars are: does not target all kinds of users, and no visualization for events that

occur every year.

7

2 Project Architecture

2.1 3-Tier Architecture

3-Tier model is incorporated for this application to support scalability and flexibility. Data Tier

handles database, and manages the persistent data. Application encapsulates the business

logic. Client tier acts as the interface between user and application tier. Application tier is split

in to two layers: layer 1 and layer2. Layer 1 interacts with the database and provides services to

layer2. Layer2 utilizes layer1 and in turn provides its services to client tier. So the

communications are occurred between client tier and layer1, layer1 and layer2, layer2 and

database.

Figure 1: Architecture

The application layer is split in to two layers to provide good scalability. The segregation of the

layers allows the total client interface to be replaced without doing any modifications in layer 2.

All the abstract functions needed to interact with the database are written in Layer 1 and the

components related with the calendar interface are implemented in layer 2. This separation of

layers not only allows scalability but also supports security, durability and data abstraction.

This project contains both server side and client side components that lie in their respective

tiers. The load is spread eventually on both sides. The client side components visualize the user

L

a

y

e

r

1

L

a

y

e

r

2

8

data over the calendar and also let the user to manage their data. These components run in

flash inside the browsers and are responsible for communicating with server side components.

Server side components answer client queries by analyzing the data from the database. The

detailed description of these components follows.

Data Tier

Application Tier

Client Tier

DB Classes

Converts data to php arrays

Data Moderator

Converts native arrays to xml

/json

Calendar Events Calendar Spikes

Numerical data

XML/JSON to

Collection

Converter

Client side

Components

Internet

Draw
Image Map

Preferences

Rotation

Call Out

Figure 2 Project Architecture

9

2.2 Server Side Components

Server side components lie in application tier and is further divided in to two layers. DB Classes

are responsible for fetching the data from the database and acts as a driver for Data moderator

to pull or push the data from or to the database. This layer is highly coupled with database and

all the transactions related with the database must pass through this class. DB classes take care

of creating and destroying connections to the database. It is designed in such a way that each

instance of the DB class has its own connection. An instance of the DB class is created for each

request and is kept alive until the response for that request is dispatched.

Data moderator acts as an interface for the calls made by client side components. All the

requests to get data for the client side components must seek Data moderator. Data moderator

analyzes the HTTPService call from client side components to determine the data it needs to

take from database using DB classes. It then fetches the actual data through DB class, process

the data and converts it to the PHP arrays. Finally, the arrays are encoded to JSON or XML

based on the client component’s request.

2.3 Client Side Components

All of these components are packed in a SWF file and sent to client browsers initially. Each

component in the package independently interacts with the Data moderator at the server.

However on the way back to its response, every component needs XML/JSON to collection

converter. Since all the responses from the server are either XML or JSON, a pass through the

converter is mandatory. The converter converts the XML or JSON to the flash native array

collections. Once the data is converted to the array of arrays, it is handed over to their

individual component to process the result.

2.3.1 Calendar

This is the first component called after the successful user authentication. It creates the basic

calendar visualization. Twelve months in the year are plotted as sectors of two concentric

circles. Each month is an instance of a polygon. At first the co-ordinates for each month are

computed and stored in their appropriate polygon objects. The co-ordinates are computed by

drawing two concentric circles, one is inner and the other is outer.

10

 The imaginary radius is drawn from the center point to the outer circle at an angle of 0 degree.

Similarly another imaginary radius is drawn at an angle of 30 degrees. The four points where

these two radius lines intersect the two circles are stored as border co-ordinates of a polygon.

Shift up the angle by 30 degrees and do the same process again to find the border co-ordinates

for the next polygon. Similarly repeat the process until the angle reaches 360 degree. Border

coordinates for twelve polygons are computed at the end of this iteration.

Computing Co-ordinates for 12th sector(Month: December)

Quadrants in Flash

C

D
A

B

O

I II

III IV

12
th

 sector

O

A
B

Angle AOB = 30 degree

Figure 3: Sector

Figure 4: Sectors and Quadrants

11

There are twelve sectors in the circle (for twelve months). The sector shown above is the last

sector

Since calendar has to start from OB, OB has to be treated as 0 degree as against 270 degree.

�Eqn 1

Hence an offset of 270 degree is added to all angle calculations

Theta’ = (Theta + 270) % 360

Let’s see the Coordinate Computations for the 12
th

 sector

Given from the picture:

points A,B,C,D

Center O(x,y)

innerRadius r1 = OC = OD

 outerRadius r2 = OA = OB

sector = 12 (coordinates for the sector to be computed)

Angle COD = 30 degree (all the sectors have the angle of 30 degree)

startAngle = (sector – 1) * 30 = 330

Angle OC is 330 degree (as per the assumption from eqn 1)

Theta’ = (330 + 270) % 360 = 240 degree

Dx = r1 * cos (theta’) + x; Dy = r1 * sin (theta’) + y

Ax = r2 * cos (theta’) + x; Ay = r2 * sin (theta’) + y

Theta’ = Theta’ + 30 degree

12

Theta’= 270 degree

Cx = r1 * cos (theta’) + x; Cy = r1 * sin (theta’) + y

Bx = r2 * cos (theta’) + x; By = r2 * sin (theta’) + y

Thus the coordinates for points A,B,C and D are computed. The above computation is done for

all the twelve sectors to find its border coordinates. The iteration starts at angle 0 degree and

progresses every 30 degree for each sector and finally ends at 330(12
th

 sector) degree. Since

the next sector is the first sector, the iteration stops at 330 degree and for this sector the above

computations were exhibited.

Next step is to find the points on the circle from point A to point B and find the coordinates of

points that lie over the arc.

Given:

Co-ordinates: A, B, C, D

Center O(x,y)

Angle COD = Angle AOB = 30 degree

Let’s assume the no of points to be computed is same as the angle of the sector i.e a point is

computed for each angle.

D

O

A

B

C

Theta

Figure 5: Points on the circle

13

noOfPoints = Angle COD = 30

Theta = 330

Theta’ = 240

arrayCoordinates = array();

STEPS = 1;

DO STEPS < 30

 angle = Theta’ + STEPS

 pointOnTheCircleX = x + r * cos(angle)

 pointOnTheCircleY = y + r * sin(angle)

 arrayCoordinates.push(pointOnTheCircleX);

 arrayCoordinates.push(pointOnTheCircleY);

END

arrayCoordinates contains the coordinates for all the points on the circle between the points A

and B. Similarly find the co-ordinates of all points between point C and point D. Once all the co-

ordinates are computed from their border coordinates store it in their polygon’s object.

Figure 6: Polygon Faces of the Calendar

14

This step is repeated for all of the twelve polygons. The ‘draw’ is a package in this application

which takes care of drawing. It has Lines, Arcs and other utils classes to support basic drawing.

Line class draws a line from one co-ordinate to the other coordinate if two points are passed. If

more than two points are passed it just connects all the points by iterating the array of points.

Lines are drawn for the computed co-ordinates of all the polygons using the Line class. Thus,

the blocks of twelve polygons arrayed in circular manner are drawn as in figure 6, which

provides the basic visualization of a calendar. These polygon blocks forms a stage for the

calendar events.

2.3.2 Calendar Events

This component is responsible for plotting events over the calendar. HTTPService call is made to

the Data Moderator to pull up the events for the authenticated user. Once this data passes

through all the stages and finally available as native arrays, the array is iterated to plot the

events. The event object in the array holds information such as start date, end date, name, and

description. To be plotted in the calendar the start and end date must be in the range 0 to 360,

this will let the event to be plotted in angle. The day in which the event start in the year is

computed from the event start date. The result is then calibrated towards the range. The same

is applied to the end date. Next step is to check for the position in the calendar the event has to

be plotted. If there is any event already added in the calendar, pad values to the height to check

an empty slot in the next level. Values are padded until an empty slot is found in that polygon.

Padding cannot be applied more than four times as there are only room for five rows of events

in a polygon. If the event under subject could not be placed under any of the five rows, then the

event is discarded. Otherwise, the coordinates are computed knowing the start and end angle

of the event and plotted in the calendar using the draw class.

2.3.3 Spikes

This component is responsible for drawing numeric data around the calendar that forms Spikes.

Things that happen throughout the year like temperature, rainfall, shares etc., are calibrated on

percent basis and drawn from the same center point as the concentric circles. The outer circle

stands as the base line for the spikes.

15

2.3.4 Call out

Call out creates name tags for the events. The number of call outs for each quarter is calculated

forehand and the distance between the call outs within the quarter is computed. This makes

the call outs to be equidistant from each other within each quarter. Call outs are drawn from

right to left for the quarters 1 & 4 and left to right for the quarters 2 & 3.The flat line of fixed

length is drawn from the other side and extends until it meets the imaginary line that is kept

close to the circles. All the call out lines stay parallel until it meet the imaginary line, after that it

start to bend up or down to meet their corresponding event start angle.

2.3.5 Image map

Image map is the basis of all these drawings. When an image is made clickable it is called image

map. The Line class is called after finding the coordinates of the polygons that makes the

polygon objects clickable by adding appropriate mouse events. Image map events look for the

actions to happen over the images. When a particular action takes place, these actions will be

captured and processed. For example, on mouse over tool tip has to be shown and mouse out

tool tip has to be disabled. Each month acts as a separate area. Any single month can be clicked

to perform action on that month.

2.3.6 Rotation

Rotation is one of the noticeable features of this calendar. When a calendar is rotated, the start

angle of the calendar is altered. The new start position of the calendar is computed from the

rotation made and the offset is added to each component in the calendar. All the coordinates

hence forth computed are recalculated using the offset and the all the components are

redrawn.

2.3.7 Preferences

Preferences appear next to the calendar and display the list of tags associated with the events,

and the files that the spike spun around the calendar. Users can control the items to be

displayed in the calendar by choosing their preferences. When a tag is chosen all the events in

the calendar are removed followed by a HTTPService call to the data moderator in the server.

Data moderator then queries the db class to find the events that belong to the selected tag or

tags. Finally, the data moderator formats the result in XML and sends it to the Calendar Events

component that again repeats the whole procedure of adding the events to the calendar.

3 Design

There are four packages in the client side namely Draw, Controls, Events, and Model. All the

components are kept under the controls package. The custom event classes that are required

for the components are placed under Events package. The necessary functions to draw the

coordinates are placed under draw. The dependency between those packages are represented

below

The database design involves three tables one for the user, one for events and the another to

track details about uploaded files. User table is indexed by the primary key userId. UserId is

referenced as a foreign key in events and files tables. Events and files tables have their own

primary key columns naming eventid and fileId. One user may have zero or more events or files

and this mapping is shown in the below figure. The functions that can be applied to the Events

model are addEvents(), editEvents() and deleteEvents(). These functi

tags. Finally, the data moderator formats the result in XML and sends it to the Calendar Events

eats the whole procedure of adding the events to the calendar.

four packages in the client side namely Draw, Controls, Events, and Model. All the

components are kept under the controls package. The custom event classes that are required

or the components are placed under Events package. The necessary functions to draw the

coordinates are placed under draw. The dependency between those packages are represented

Figure 7: Design

hree tables one for the user, one for events and the another to

track details about uploaded files. User table is indexed by the primary key userId. UserId is

referenced as a foreign key in events and files tables. Events and files tables have their own

imary key columns naming eventid and fileId. One user may have zero or more events or files

and this mapping is shown in the below figure. The functions that can be applied to the Events

model are addEvents(), editEvents() and deleteEvents(). These functions do their respective

16

tags. Finally, the data moderator formats the result in XML and sends it to the Calendar Events

eats the whole procedure of adding the events to the calendar.

four packages in the client side namely Draw, Controls, Events, and Model. All the

components are kept under the controls package. The custom event classes that are required

or the components are placed under Events package. The necessary functions to draw the

coordinates are placed under draw. The dependency between those packages are represented

hree tables one for the user, one for events and the another to

track details about uploaded files. User table is indexed by the primary key userId. UserId is

referenced as a foreign key in events and files tables. Events and files tables have their own

imary key columns naming eventid and fileId. One user may have zero or more events or files

and this mapping is shown in the below figure. The functions that can be applied to the Events

ons do their respective

operations as its name suggests. When a user uploads a file, the file is copied in to the files

repository under the name of the fileId from the files table.

operations as its name suggests. When a user uploads a file, the file is copied in to the files

repository under the name of the fileId from the files table.

Figure 8: Database design

17

operations as its name suggests. When a user uploads a file, the file is copied in to the files

18

4 Patterns

There are two patterns incorporated for this application. One is MVC Model View Controller

and another is Singleton pattern. MVC is incorporated at the full application level including

client side and server side. Singleton is only approached only in client side.

4.1 Singleton Pattern

There are few singleton classes in the client components. Only one instance of each of those

classes is alive throughout the user session. Instances for those classes cannot be created by

other classes. This behavior is essential to share some data across the application using the

same instance.

The structure of the singleton class looks like

Package {

 Class Singleton {

 Private static var _instance:Singleton = new Singleton(SingletonLock);

 Public function Singleton(lock: Class) {

 If(lock != SingletonLock) {

 Throw new Error(“Invalid Singleton Access. Use Modal.instance”);

 }

 }

 Public function get instance() : Singleton {

 Return _instance;

 }

 }

}

Class SingletonLock {

}

The object for Singleton class is created during the creation of the class using the SingletonLock

class. The created instance is returned when any other class tries to access Singleton’s object.

Without SingletonLock class Singleton cannot be instantiated. Since SingletonLock is available

only to Singleton, no other class could instantiate Singleton. The classes that are singleton in

this application are

19

4.1.1 MediatorModel

MediatorModel is used as a mediator to fire events. When two independent classes i.e., classes

with no relation needs to communicate with each other to inform the other class about some

completion of an action, either of these classes cannot create instance on each other to float

events between them. This restriction can be overcome by creating a singleton mediator class.

This class is kept public and made accessible across the application. The independent classes

register with the mediator class and one class pass the information to the other class by

informing the mediator class about the action. The mediator class in turn informs the target

class about the information it got from the source class.

4.1.2 CommonFunctions

This class holds common functions that are used throughout the drawing. Functions include

getCoordinateForAPoint(): find coordinates for a point when the angle and radius are known.

getRadians(): Get the radians from degree

converstionToActualAngle(): Offsets are used while drawing the calendar. This function returns

the actual angle when a modulated angle is sent

4.2 MVC

Model View Controller is also adopted in Client side components. Most of the controllers have

its logic separated from the view and model. Controllers are written in action script and Views

are written in mxml (Macromedia XML). Users, Polygon faces are the Models that are even

written in action script.

4.2.1 User

User class is served as a Model. Since only one user is active in the client side, this class is

created as a singleton. This class does not hold any events and just stores information about the

user.

4.2.2 Calendar

Calendar is the view as it just shows the presentation of the calendar. The logic that is needed

to draw the calendar is written in action script and acts as a controller. The view of the calendar

has the ability only to present the component and add some styles to the component if needed.

20

5 Event Management

All the components in the client side are managed using events. The components are executed

when some action in the other component happens. As the execution of the components

depends on the completion of other components, all components need to register with

appropriate events to start its execution. Few of the events in the components are created

specifically for the calendar and others are existing events in flex. The events are dispatched

using

dispatchEvent(evt);

If the event being passed is a custom event, then the object of the custom event needs to be

instantiated before passing it. The events are captured using

object.addEventListener(EventName,CallBackFunction);

object is the Object of a class which dispatches the event. The above line hooks the function to

be called with the dispatcher.

The events that happen in the calendar components are

5.1 Polygon Faces Created:

This event is represented by the constant POLYGON_FACES_CREATED and a custom class is

created for this event called PolygonFacesCreated. This event fires when the polygon faces for

the months are computed. Information about the completion of the previous task should be

passed to next task so that the next task starts. The next task is to plot events on the created

polygons using Calendar Events. The definition of this class is given in the appendix. Both the

class that triggers this event and the class that reacts to this event must register with the class

PolygonFacesCreated.

Event Dispatching:

var eventObj:PolygonFacesCreated = new
PolygonFacesCreated(PolygonFacesCreated.POLYGON_FACES_CREATED);
 eventObj.polygonFaces = polygonFaces;
 dispatchEvent(eventObj);

Event Capturing:

CreateCoordinates.instance.addEventListener(PolygonFacesCreated.POLYGON_FACES
_CREATED,plotEventDetails);

Create Coordinates is the class that actually dispatches the event. CreateCoordinates.instance

gives the existing instance of the class and an event listener is added to the object.

21

5.2 Mediator Model Events

The description of this singleton class is discussed in section 4.1 This class supports the

following events.

5.2.1 CALENDAR_EVENTS_MODEL_COMPUTED

When the Calendar Events component finishes its job by plotting all the events in the calendar,

it requests the MediatorModel to fire this event. After getting the request from the Calendar

Events, MediatorModel dispatches this event. Finally, this event is captured in CallOut

component to create call outs for the created events.

5.2.2 CALENDAR_EVENT_REFRESH

When there is a change in the events that is plotted over the calendar, this event is triggered.

For example, user may delete an event through Manage Events section which is completely

independent of the Calendar Events. In order to let Calendar Events to re plot the events, the

ManageEvents have to inform CalendarEvents about the action taken. The bridge is made

through the MediatorModel’s CALENDAR_EVENT_REFRESH. When this event is triggered the

CalendarEvents remove all the existing events from the calendar and plots the events again on

the calendar.

5.2.3 CALENDAR_SPIKE_REFRESH

When a file is added or removed, this event is triggered to re draw the spike that is spinning

around the calendar.

5.3 ApplicationEvents

User authentication component is kept separate from the highly coupled drawing components.

ApplicationEvents is a singleton class that provides the bridge between the authentication components

and drawing components. Upon successful user authentication, the Calendar component is notified of

the result using this ApplicationEvents. Since Calendar is the basic component and without the

completion of it no other components initialize, it is enough to notify Calendar component alone about

the result of user authentication. The ApplicaitionEvents has the following events

5.3.1 USER_LOGIN_SUCCESS

When the user logs in successfully, Calendar component is informed about the result and it will activate

the drawing sequence discussed above.

5.3.2 USER_LOGOUT_SUCCESS

This event is triggered when the user logs out of the application successfully and the control

gets transferred to the authentication component to let the user login if necessary.

6 Workflow

Workflow involves two phases of communication. In the first phase, user initiates the request

and the server responds by providing the packaged

flash object. The application is then fully downloaded in user browser. After the download is

complete, the application initializes itself and asks the us

phase 2.

Phase 1:

Phase 2:

Client

Components

(.swf)

httpRequest

httpResponse

USER_LOGOUT_SUCCESS

This event is triggered when the user logs out of the application successfully and the control

cation component to let the user login if necessary.

Workflow involves two phases of communication. In the first phase, user initiates the request

responds by providing the packaged application embedded in the response

ject. The application is then fully downloaded in user browser. After the download is

complete, the application initializes itself and asks the user for authentication which kicks off

Figure 9: Project Workflow

XML / JSON

Internet

xmlHttpRequest

xmlHttpResponse

Server

Components

SWF

Server

Components
Internet

httpRequest

httpResponse

22

This event is triggered when the user logs out of the application successfully and the control

cation component to let the user login if necessary.

Workflow involves two phases of communication. In the first phase, user initiates the request

in the response as a

ject. The application is then fully downloaded in user browser. After the download is

er for authentication which kicks off

xmlHttpRequest

xmlHttpResponse

Components

Components

23

All connections to the server in phase 2 are taken as Flex HTTP Service which is similar to

xmlHttpRequest

6.1 Calendar Interface

The integration of client side components produces the calendar which is shown in the below

figure. The first component is the representation of twelve months. The second component

reflects events. The third component produces the call outs for the events and the last

component draws the spikes for the rainfall data. All of these components can be enabled or

disabled.

Figure 10: Calendar

24

Figure 11: Calendar with a rotation of 90 degree

Figure 3 shows the representation of the calendar controller. The months in the year are

plotted in a circular fashion as polygons. All the months together form an image and each

month acts as an individual entity. Any month can be clicked to view more information about

the activities and events on that month. The small scales over the polygons which spans across

months are events. Each event is identified through the call out lines. The length of the scale

denotes the duration of the event. Similarly the start position and end position is directly

mapped to start date and end date. If the user has more events and if he could not clearly see

the events he can hide the low priority events. User has the option to show or hide events

based on the tags. Events may or may not be associated with tags. The list of available tags is

25

shown on the preferences area from where user can select the tags whose events need to be

displayed. User can dynamically add, edit or delete events. The complete view of the calendar

interface along with its preferences is shown in the below figure.

Figure 12: Calendar and its Preferences

6.2 Plotting Rainfall

Normally, the angle is measured in anti clockwise from 0 to 360. But the drawing tools consider

the angle in clockwise direction. So 30 degrees in paper is equivalent to 330 degrees in the

drawing tool. To avoid confusions, this project measures the angle in clockwise direction and

the zero degree is equivalent to 90 degree in paper and 270 degree in the drawing tool.

Basically, this interface assumes the month January starts at an angle 0 degree, February starts

at an angle 30 degree eventually December starts at an angle 330. It takes time clock as the

metaphor to measure angle. Angle calculations are made to offset these differences.

Plotting the rainfall information for a particular day needs the angle the current day is away

from the day one. Once the angle is determined the pointer will go to the outer region of the

calendar at that angle from the center point. From that point it will find the co ordinate for the

rainfall data which will lie in the same line at some distance. Once the coordinate is found, a

line will be drawn from the previous day’s rainfall coordinate to the current pixel position.

26

The outer region of the calendar is considered as the zero line for plotting rainfall information.

For example if the rainfall value for a day is 3 inches, the zero point for this day will be the pixel

at the outer region of the calendar at an angle of theta degrees from the day one with respect

to center. The value for each date is taken from the XML file and the corresponding coordinate

for each date will be computed.

User can add as many cities as he/she wants for the rainfall data to be displayed over the

calendar. All the cities will be displayed in the preference list and will let the user to hide/show

any of the cities rainfall.

6.3 Manage activities

The events and the spikes that appear in the calendar are managed separately. Event uploader

is a component that manages the events. It provides a way to take input from the user to add

an event and displays the list of existing events in a table. User can delete the events by

selecting the event and click delete to make that operation. Spikes are handled in a different

way. It asks the user to input the xml file that contains data throughout for a year. The files are

directly uploaded in the server and tagged with userId. Similar to Event uploader, it shows the

list of files already uploaded. User can select the files and delete those if they do not want

those files.

In the back end the user data is organized in three tables

7 Environments

7.1 MySQL

MySQL is an open source relational database system (RDBMS) and is used widely because of its

fast performance, high reliability and ease of use. MySQL is used in this project as a database

for data persistence. SQL Structured Query Language needs to be used to manipulate the data.

7.2 PHP

PHPs are used to perform business logic. Layer 1 and Layer 2 of the server side components are

fully written using PHP. Since PHP supports Object Oriented Programming System, a good level

of abstraction is provided. The class that deals with database provides such abstraction. As

27

there are multitudes of library functions available in PHP, many tasks are achieved in an easiest

way.

7.3 Flex 3

It is the technology from Adobe Systems for the development and deployment of Rich Internet

Applications. The applications built over flex 3 uses adobe flash player to run in the browser.

Flex files uses MXML, a XML based user interface markup language to layout controls and

graphics, and uses action script to perform scripting. Flex 3 and action script is used to perform

the graphical part of this project. Basically flex 3 lies in the presentation layer of the project.

7.4 XML

XML is an Extensible Markup Language. Data is transferred as XML between layers in the

application tier, and also between the application tier and presentation tier. This data structure

facilitates sharing of data between other applications too.

8 Appendix

8.1 Table Structure

8.1.1 User table

DROP TABLE IF EXISTS calendar.user;

CREATE TABLE user (

 userId int(5) unsigned NOT NULL AUTO_INCREMENT,

 firstName varchar(20) NOT NULL,

 lastName varchar(20) NOT NULL,

 email varchar(30) DEFAULT NULL,

 password varchar(200) DEFAULT NOT NULL,

 city varchar(20) DEFAULT NULL,

 state varchar(20) DEFAULT NULL,

 country varchar(20) DEFAULT NULL,

 zipcode varchar(20) DEFAULT NULL,

28

 PRIMARY KEY (userId)

) ENGINE ENGINE=InnoDB DEFAULT CHARSET=utf8

8.1.2 Events table

DROP TABLE IF EXISTS calendar.events;

CREATE TABLE events (

 eventId int(5) NOT NULL AUTO_INCREMENT,

 userId int(11) unsigned NOT NULL,

 name varchar(20) DEFAULT NULL COMMENT ‘Event Name’,

 startDate datetime DEFAULT NULL COMMENT ‘Event start date in mm/dd/yy hh:mm:ss’,

 endDate datetime DEFAULT NULL,

 repeatEvent tinyint(4) DEFAULT NULL COMMENT ‘1 yearly 2 monthly 3 weekly 4 daily ’,

 tags varchar(20) DEFAULT NULL,

 PRIMARY KEY (eventId)

) ENGINE ENGINE=InnoDB DEFAULT CHARSET=utf8

8.1.3 Files table

DROP TABLE IF EXISTS calendar.files;

CREATE TABLE files (

 fileId int(5) unsigned NOT NULL AUTO_INCREMENT,

 name varchar(20) NOT NULL COMMENT ‘Name of the file’,

 description varchar(200) DEFAULT NULL,

 userId int(11) unsigned DEFAULT NULL COMMENT ‘uploaded by the user’,

 ext varchar(4) NOT NULL COMMENT ‘File Extension’,

 dateAdded timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,

 color varchar(8) DEFAULT '0x000000',

 type tinyint(10) DEFAULT NULL,

 PRIMARY KEY (fileId)

29

) ENGINE ENGINE=InnoDB DEFAULT CHARSET=utf8

8.2 Events

8.2.1 Calendar Component

<?xml version="1.0" encoding="utf-8"?>
<mx:Canvas xmlns:mx="http://www.adobe.com/2006/mxml"
creationComplete="init()" xmlns:controls="sjsu.ccalendar.controls.*"
 xmlns:LibControls="flexlib.controls.*">
<mx:Script>
 <![CDATA[
 import sjsu.ccalendar.events.PolygonFacesCreated;
 import flexlib.controls.*;
 import sjsu.ccalendar.CommonProperties;
 import sjsu.ccalendar.controls.Polygon;
 import mx.core.UIComponent;
 import sjsu.ccalendar.controls.CreateCoordinates;
 import mx.controls.Alert;
 import sjsu.ccalendar.controls.LoadXMLData;

 public var objCreateCoordinates:CreateCoordinates;
 public var objPolygon:Polygon;
 public var circle1:UIComponent;
 private var polygonCoordinates:Array = new Array();

 private function init():void {
 objCreateCoordinates = CreateCoordinates.instance;

objCreateCoordinates.addEventListener(PolygonFacesCreated.POLYGON_FACES_CREAT
ED,plotSectors);
 objCreateCoordinates.createFaces();
 }

 public function rotateBy(angle:int) : void {

 imgMap.map = null ;
 objPlotEvents.rotateBy(angle);
 objFaceTexts.canvasTextFields.removeAllChildren();
 objCreateCoordinates.rotateBy(angle);

 }

 private function
plotSectors(event:PolygonFacesCreated):void {
 var polygonFaces:Array = event.polygonFaces;
 var mapArray:Array = new Array();
 for (var k:int;k<polygonFaces.length;k++) {
 objPolygon = polygonFaces[k];
 polygonCoordinates[k] =
objPolygon.getPointsInAllSides();
 var singleArea:area = new area();
 singleArea.href = "" ;
 singleArea.alt = objPolygon.getName();

30

 singleArea.coords =
objPolygon.getPointsInAllSides().toString();
 singleArea.target = "_blank" ;
 singleArea.shape = "POLY" ;
 singleArea.fillColor = objPolygon.color;
 mapArray.push(singleArea);
 }
 imgMap.map = mapArray;
 //shapeClick="navigateToURL(new URLRequest(event.hr ef),
event.linkTarget)" fillColor="0x009dff"
 }

]]>
 </mx:Script>

 <LibControls:CalendarImageMap scaleContent="true" id="imgMap"
 source=""
 outlineAlpha="1" outlineColor="0x0000ff"
 fillAlpha=".3"
 showToolTips="true" width="100%" maxWidth="554"
 shapeClick="mx.controls.Alert.show('hi' +imgMap.toolTipField)"
x="0" y="0" >
 </LibControls:CalendarImageMap>
 <controls:FaceTexts id="objFaceTexts"/>
 <controls:PlotEvents id="objPlotEvents" />
 <controls:DrawNumerics />
 <controls:CallOut />
</mx:Canvas>

8.2.2 Event Mediator

package sjsu.ccalendar.model
{
 import flash.events.Event;
 import flash.events.TextEvent;

 import mx.collections.ArrayCollection;

 [Bindable]
 [Event (name = "calendarEventsModelComputed" , type="flash.types.Event")
]
 [Event (name = "calendarEventRefresh" , type="flash.types.TextEvent")]
 [Event (name = "calendarSpikeRefresh" , type="flash.types.TextEvent")]

 public class MediatorModel
 {
 public static var CALENDAR_EVENTS_MODEL_COMPUTED:String =
"calendarEventsModelComputed" ;
 public static var CALENDAR_EVENT_REFRESH:String =
"calendarEventRefresh" ;
 public static var CALENDAR_SPIKE_REFRESH:String =
"calendarSpikeRefresh" ;

 private static var _instance: MediatorModel = new MediatorModel (
SingletonLock);

31

 public static function get instance () : MediatorModel { return
_instance; }
 public function MediatorModel(lock: Class) {
 // Verify that the lock is the correct class refere nce.
 if (lock != SingletonLock) {
 throw new Error("Invalid Singleton access. Use
Model.instance.");
 }
 }

 public var allEventsCollection: ArrayCollection = new
ArrayCollection();

 public function fireCalendarEventsModelCreated() : void {
 var evt:Event = new Event(CALENDAR_EVENTS_MODEL_COMPUTED);

 dispatchEvent(evt);
 }

 public function fireEventsRefresh(tags:String = "") : void {
 var evt:TextEvent = new TextEvent(CALENDAR_EVENT_REFRESH);
 evt.text = tags;
 dispatchEvent(evt);
 }
 public function fireSpikeRefresh(tags:String = "") : void {
 var evt:TextEvent = new TextEvent(CALENDAR_SPIKE_REFRESH);
 evt.text = tags;
 dispatchEvent(evt);
 }

 }
}
class SingletonLock
{
} // end class

8.2.3 Authentication Events

package sjsu.ccalendar.events
{
 import flash.events.Event;

 import mx.collections.ArrayCollection;

 [Bindable]
 [Event (name = "loginSuccess" , type="flash.types.Event")]
 [Event (name = "logoutSuccess" , type="flash.types.Event")]

 public class ApplicationEvents
 {
 public static var USER_LOGIN_SUCCESS:String = "loginSuccess" ;
 public static var USER_LOGOUT_SUCCESS:String = "logoutSuccess" ;
 private static var _instance: ApplicationEvents = new
ApplicationEvents (SingletonLock);

32

 public static function get instance () : ApplicationEvents {
return _instance; }

 public function ApplicationEvents(lock: Class) {
 // Verify that the lock is the correct class refere nce.
 if (lock != SingletonLock) {
 throw new Error("Invalid Singleton access. Use
Model.instance.");
 }
 }

 public var allEventsCollection: ArrayCollection = new
ArrayCollection();

 public function fireLoginSuccess() : void {
 var evt:Event = new Event(USER_LOGIN_SUCCESS);
 dispatchEvent(evt);
 }

 public function fireLogoutSuccess() : void {
 var evt:Event = new Event(USER_LOGOUT_SUCCESS);
 dispatchEvent(evt);
 }

 }
}
class SingletonLock
{
} // end class

8.2.4 Lines Class
package sjsu.ccalendar.draw
{
 import flash.display.Graphics;

 import mx.core.UIComponent;
 import mx.styles.CSSStyleDeclaration;
 import mx.styles.StyleManager;

 [Style (name="outlineThickness" , type="Number" , format="Length" ,
inherit="no")]
 [Style (name="outlineColor" , type="uint" , format="Color" , inherit="no")]
 [Style (name="outlineAlpha" , type="Number" , format="Length" ,
inherit="no")]
 [Style (name="fillColor" , type="uint" , format="Color" , inherit="no")]
 [Style (name="fillAlpha" , type="Number" , format="Length" , inherit="no")]

 public class Lines extends UIComponent
 {
 private var sprite:UIComponent = new UIComponent();
 private var g:Graphics = sprite.graphics;
 public var outlineThickness:Number;// =
getStyle("outlineThickness");
 public var outlineColor:uint ;// = getStyle("outlineColor");
 private var outlineAlpha:Number;// = getStyle("outlineAlpha");

33

 private var fillColor:uint;// = getStyle("fillColor");
 private var fillAlpha:Number;// = getStyle("fillAlpha");
 private var _coords:Array = new Array();
 private var _shape:String;
 //public var id:int;

 //private static var stylesInitialised:Boolean = in itStyles();
 /**
 * @private
 *
 * The default styes are defined here.
 */
 private static function initStyles():Boolean {
 var sd:CSSStyleDeclaration =
 StyleManager.getStyleDeclaration("Lines");

 if (!sd)
 {
 sd = new CSSStyleDeclaration();
 StyleManager.setStyleDeclaration("Lines" , sd, false);
 }

 sd.defaultFactory = function ():void
 {
 this .outlineColor = 0xFF0000;
 this .outlineAlpha = 1;
 //this.outlineThickness = 1;
 this .fillColor = 0xff0000;
 this .fillAlpha = 0;
 }
 return true ;
 }

 public function Lines(shapeType:String="open")
 {
 //this.outlineColor = 0xFF0000;
 this .outlineAlpha = 1;
 this .outlineThickness = 1;
 this .fillColor = 0xFF0000;
 this .fillAlpha = 0;
 _shape = shapeType;

 }

 public function set coords(value:Array):void { _coords = value;
}
 public function set shape(value:String):void { _shape = value; }

 //public function set

 public function drawLine() : void {
 // this.outlineColor = getStyle("outlineColor");
 g.lineStyle(outlineThickness, outlineColor, outlineAlpha);

 if (_shape == "close")
 drawPoly();

34

 else if (_shape == "open")
 drawLinesFromCoords();

 this .addChild(sprite);
 }

 private function drawPoly():void {
 g.beginFill(fillColor, fillAlpha);
 g.moveTo(_coords[0], _coords[1]);

 //since we moved to the first point, we loop over a ll
points starting on the second point
 for (var i:int=2; i<_coords.length; i+=2) {
 g.lineTo(_coords[i], _coords[i+1]);
 }
 //got to remember to reconnect from the last point to the
first point
 g.lineTo(_coords[0], _coords[1]);
 g.endFill();
 }
 public function drawLinesFromCoords():void {
 g.moveTo(_coords[0], _coords[1]);

 //since we moved to the first point, we loop over a ll
points starting on the second point
 for (var i:int=2; i<_coords.length; i+=2) {
 if (_coords[i] != -1 && _coords[i+1] != -1)
 g.lineTo(_coords[i], _coords[i+1]);
 else
 g.moveTo(_coords[i+2], _coords[i+3]);
 }
 //Just don't connect the last & first point
 }

 }
}

8.3 Rainfall Information

Rainfall information for the month January 2008 is shown below, this file actually continues for

all the months.

<?xml version="1.0"?>

<result>

<data>

<no>50</no>

<no>50</no>

<no>70</no>

<no>80</no>

<no>90</no>

<no>80</no>

35

<no>70</no>

<no>50</no>

<no>55</no>

<no>55</no>

<no>50</no>

<no>55</no>

<no>0</no>

<no>0</no>

<no>5</no>

<no>5</no>

<no>5</no>

<no>5</no>

<no>5</no>

<no>5</no>

<no>5</no>

<no>0</no>

<no>5</no>

<no>0</no>

<no>5</no>

<no>5</no>

<no>5</no>

<no>5</no>

<no>5</no>

<no>35</no>

.

.

.

</data>

</result>

36

8.4 Screens

8.4.1 Preferences

Figure 13: Preference Component

37

8.4.2 Events Uploader

Figure 14: Event Uploader

8.4.3 File Uploader

Figure 15: File Uploader

38

9 References

[1] Arrington, M. Calendar comparisons.http://www.techcrunch.com/2007/01/04/online-

calendar-wiars/

[2] DynaCal. (2008). http://www.dynacal.com/

[3] Event keeper. (2008). http://www.eventkeeper.com/

[4] Family planner. (2008). http://www.familytimeplanner.com/

[5] Google calendar. (2008). http://www.calendar.google.com.libaccess.sjlibrary.org

[6] LoCalendar. (2008). http://www.localendar.com/

[7] Null, J. Weather services.http://ggweather.com/

[8] Schedule organizer.http://www.schedule-organizer.de/en/

[9] Weather. (2008). http://www.wrh.noaa.gov.libaccess.sjlibrary.org

[10] Yahoo calendar., 2008, from http://www.calendar.yahoo.com/

	San Jose State University
	SJSU ScholarWorks
	2009

	Online Circular Calendar
	Praveen Athmanathan Panneerselvam
	Recommended Citation

	tmp.1295901364.pdf.QuYvy

