
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2010

Automatic Grading of Programming Assignments
Ashlesha Patil
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Patil, Ashlesha, "Automatic Grading of Programming Assignments" (2010). Master's Projects. 51.
DOI: https://doi.org/10.31979/etd.vnt7-hgnd
https://scholarworks.sjsu.edu/etd_projects/51

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70407806?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/51?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

AUTOMATIC GRADING OF PROGRAMMING ASSIGNMENTS

A Thesis

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Computer Science

by

Ashlesha Patil

May 2010

©2010

Ashlesha Patil

ALL RIGHTS RESERVED

i

ABSTRACT

AUTOMATIC GRADING OF PROGRAMMING ASSIGNMENTS

By Ashlesha Patil

Solving practical problems is one of the important aspects of learning programming languages.
But the assessment of programming problems is not straightforward. It involves time
consuming and tedious steps required to compile and test the solution. In this project, I have
developed a online tool, Javabrat that allows the students and language learners to practice Java
and Scala problems. Javabrat automatically assesses the user's program and provides the instant
feedback to the user. The users can also contribute their own programming problems to the
existing problem set. I have also developed a plugin for a learning management system,
Moodle. This plugin allows the instructors to create the Java programming assignments in
Moodle. The Moodle plugin also facilitates automatic grading of the Java problems.

ii

ACKNOWLEDGMENTS

I owe a great many thanks to Dr. Horstmann for trusting me with his idea. This project would
not have been possible without his guidance and support. One simply could not wish for a more
knowledgeable and caring adviser.

I would also like to express my gratitude to both Dr. Jon Pearce and Dr. Chris Pollett for their
suggestions and time. I also thank them for agreeing to be on the project committee.

Last but not the least, I would like to thank my husband Nikhil whose care, love and support
has taken the load off my shoulder. I owe him a lot for his guidance and encouragement. This
journey would not have been successful without you.

iii

Table of Contents
1.Introduction..3
2.Prior Work..4

2.1.Online Programming Tools...4
2.2.Automatic Grading of Student's Programming Assignments...4
2.3. Labrat...6

3.Javabrat...7
3.1.Javabrat Work Flow:..7

3.1.1.View Problem...7
3.1.2.Check Problem...9
3.1.3.Add Problem..9

3.2.Implementation Details..11
3.2.1.Migration to JSF 2.0...11

3.2.1.1Templates with Facelets ..11
3.2.1.2Easier Navigation...11
3.2.1.3Managend Bean Annotation...11

3.2.2.Integration with Scala Problems...12
3.2.3.Integrated View of All the Problems..12

3.3.Javabrat as a Web Service ...13
3.3.1.Metadata...13
3.3.2.Check...14
3.3.3.Implementation Details..14

3.3.3.1REST...14
3.3.3.2JAX-RS..14

3.4.Problem Repository Structure...15
4.Moodle Plugin..17

4.1.Moodle Workflow ..17
4.2.Labrat Type Question ...18
4.3.Implementation Details...21

4.3.1.Database Table...21
4.3.2.Question Editing Form...21
4.3.3.Question Type Class...22

4.3.3.1Displaying Question to Students..22
4.3.3.2Handling Student's Response...22

5.Scalabrat...23
5.1.Technical Details of Scalabrat..24

5.1.1.Ant Listener Mechanism..24
5.1.2.Compilation Process...26
5.1.3.Test Cases...27

6.Evaluation...29
6.1.Draft Submission...29
6.2.Automatic Grading Vs Manual Grading..30

1

6.2.1.Javadoc Comments..30
6.2.2.Standard Coding Practices...31

6.3.Students' Understanding of the System...32
6.4.The Moodle Survey...33

7.Future Work..34
7.1.Moodle Question Import Feature..34
7.2.Scala Problem Support from Moodle..35
7.3.IDE Plugin for Javabrat Assessment..35

8.Conclusion..35
9.References ..36

2

1. Introduction

Solving practical problems is one of the important aspects of learning programming languages.
According to the author of “Teaching programming paradigms and languages for qualitative
learning” published in the proceedings of the 2nd Australasian Conference on Computer
Science, “an important observation in many programming related subjects is that major
learning takes place through practical programming assignments” [1]. There are several tools
and web applications available that are used to test as well as grade users' programming skills.
Examples are CodingBat [2] and better programmer [3]. But at the time of this writing, there is
no existing online tool that assesses Scala programming problems. A limitation of the existing
applications is that they have a fixed set of programming problems. As of December 2009,
none of these applications allowed users to contribute to the problem set (Only recently,
CodingBat has moved in this direction). One of the project goals was to develop a online
grader to address the above mentioned limitations.

Computer science educators make extensive use of programming assignments. One way to
enhance the outcomes of the learning process is to require students to solve practical coding
problems. But the evaluation of programming assignments is not straightforward. It involves
time-consuming steps for compiling answers and testing them for the various inputs. This
evaluation overhead confines the number of programming assignments an instructor can assign
during a course period. One way of reducing this overhead is to automate the evaluation
process. In this project I have developed a system that automates the grading of Java
programming assignments.

Many instructors and universities are adopting Learning Management Systems (LMS) such as
Moodle [4] or Blackboard. These tools effectively lessen the course management efforts. In this
project, I am extending Moodle to carry out a automatic grade evaluation. This would facilitate
teachers to use one integrated LMS that provides automatic grading of the programming
assignments along with the other course management aspects.

Thus, in this project work, I have addressed two different sets of users:

1. Individual programmers learning Java or Scala languages
2. Instructors who want to carry out automatic grading for the Java programming

assignments.

I started the project with a existing Java grader (Labrat) and a web interface (WebLabrat).
These applications were developed by Dr. Horstmann. I have developed the following two
different systems addressing the above mentioned user sets respectively:

1. Javabrat: A web-based grader useful for the programmers learning Java and Scala
languages. Javabrat has the following enhancements over WebLabrat:

3

i. an web interface to view the collection of existing problems
ii. assessment of Scala programs
iii. a feature that allows users to contribute their own programming exercises to the

existing problem set.
2. A Moodle plugin that facilitates instructors to grade Java assignments using Labrat.

2. Prior Work

2.1. Online Programming Tools

There are several programming tools developed as web applications, where users can exercise
their programming skills by coding a solution for the given problem. Some of these tools are
CodingBat, betterprogrammer, Practice-It [11]. One of the advantages of these systems is that
the users get instantaneous feedback about their answers. Even if a user fails to solve a problem
at the very first attempt, an accurate and detailed feedback inspires him to re-attempt the
problem until he reaches the correct solution. CodingBat permits the users to practice Java and
Python coding online. It also allows students to create accounts and save their work. Students
can share their CodingBat accounts with their teachers. It facilitates teachers to view their
student's advancement. Only recently, CodingBat has released a problem authoring feature
where users can add their own programming problems to the existing set. Practice-It is another
online tool developed by Mark Stepp to practice Java programs. It contains practice problems
from the author's book – Building Java Programs [19]. There are also some tools to conduct
online programing examinations. Roberts and Verbyla propose one such tool to securely take
programming exams for Java [10].

At the time when I decided to develop Javabrat, all of the above mentioned systems had a
closed set of questions. None of these applications provide an interface for the users to input
their own programming problems. As mentioned above, only recently (in December 2009)
some applications such as CodingBat have moved in this direction.

None of the current available tools help users to practice Scala programming problems. A
website – Simply Scala [5] allows users to test different Scala language constructs, but it does
not contain programming problems.

2.2. Automatic Grading of Student's Programming Assignments.

There are number of tools used by instructors or educational institutions that facilitate the
automatic grading of programming assignments. Some of the examples are Marmoset [18] and
WebCAT [14]. Marmoset is a framework that provides an automatic submission and testing

4

system [12] . Marmoset evaluates students submission using public tests that are visible to
students and using secret tests that are not visible to students. This system also collects a
snapshot of a students' work every time they save a file. This data is useful for the researchers
studying how students learn programming languages. [13] discusses the benefits of Marmoset
for students, instructors and researchers

Along with the automatic grading, WebCAT uses a different approach to grade the student's
code. It supports grading of the assignments where students are asked to submit their own test
cases. The WebCAT site describes WebCAT as “an advanced automated grading system that
can grade students on how well they test their own code”. It is a language independent tool that
focuses on test driven development. Edward proposes a new approach of teaching software
testing using WebCAT in [15].

In addition to the above mentioned grading tools, there are several Learning Management Tools
available. As per Suleman “Sakai and Moodle are among the most popular learning
management systems today” [17]. Sakai is a course based portal and provides all the standard
LMS features.

Moodle is a online learning and course management tool. Moodle stands for “Modular Object-
Oriented Dynamic Learning Environment”. Moodle is one of the most popular and extensively
used LMS today. At the time of this writing, Moodle has around 35 million users and 50,000
registered sites. More details about Moodle can be found in [4]. In this project, I have
developed a plugin for Moodle that facilitates the automatic grading of Java programming
assignments.

Here are the reasons why I chose Moodle for this project :

• Moodle is open source, stable and it has a good community support.
• The Moodle installation is very straightforward and it is easy to use.
• Moodle is developed on modular architecture. Hence it is easy to extend or customize

for your own needs.

As discussed in [7], the features provided by Moodle are sufficient for a standard course. But
Moodle can be further improved to provide more advanced features. Some of the possible
improvements are discussed in [8]. One of the feature that Moodle lacks is the ability to
generate and grade programming questions. Moodle has ten standard built-in question types.
But none of these standard question types provides a way to assess programming problems.

5

2.3. Labrat

Labrat automates the assessment of Java programming problems. It was authored by Dr.
Horstmann to support his text book [20]. At an abstract level, Labrat compiles the user's
program (or solution) and runs the program against test cases. Based upon the compilation
output and test cases results, Labrat generates a report that provides feedback to the user.
Labrat has two modes of operations – code completion and full program grading. In the code
completion mode, users are provided with a partial solution and they are supposed to complete
it in order to solve the problem. The full program mode requires users to provide the complete
solution for the problem. Labrat needs the following inputs to generate the report :

1. mode of the operation (code completion or full program)
2. path of the directory containing user's answer files
3. path of the directory containing the metadata of the problem
4. path of the directory containing the grader metadata such as test case specifications

Labrat generates the evaluation report in two forms – HTML and text. A typical HTML Labrat
report consists of a evaluation summary, an compilation output, an tester output and the
student's files. Figure 1 shows a sample Labrat report. Our web application Javabrat internally
calls Labrat to assess Java programming problems.

Figure 1: Labrat report

6

3. Javabrat
Javabrat provides an web interface for our system. It has been developed using Java Server
Faces. Javabrat ties together different parts of the system and provides an integrated view. At its
most basic level, Javabrat displays the programming problem, accepts user solution and shows
the feedback to the user. The following section describes the Javabrat work flow.

3.1. Javabrat Work Flow:

3.1.1. View Problem

When a user opens the Javabrat welcome page , he can see a list of problems categorized under
different sections. The user can choose to view Quick Java problems (code completion mode),
Long Java Problems (full program mode) or Quick Scala Problems (Scala code completion
mode). By default Javabrat shows Java Quick Problems. Figure 2 shows the list of problems for
the default selection. When the user selects Long Java problems or Quick Scala problems,
Javabrat fetches the corresponding problem list and refreshes the page with the new list. The
problems are further divided into chapters. They can also be divided based upon their
complexity level, language constructs or any other criteria. The following figure shows some of
the Javabrat questions from Dr. Horstmann's problem repository. He has divided the Java
problems based upon his book chapters.

Figure 2: Javabrat snapshot

7

On the front page (the one shown in Figure 2), at the most three problems are shown for each
chapter. If a user wants to see more problems from a particular chapter, he can click on the
“More...” link. The problem repository author can determine which three problems should be
displayed on the front page. He can mention his favorite problems in the favorite.properties file
kept under each chapter in the problem repository.

When a user clicks on a particular problem link, Javabrat displays the page where user can
actually attempt the problem. Figure 3 shows the page of the “Even Sum” problem. The
problem page provides a problem description and a textarea to accept the user's code. If the
problem is one of the quick types, then the text area also contains the code provided as partial
solution. The user is supposed to fill in his solution in this text area and click “Check your
work” to view the Javabrat feedback.

Figure 3: Javabrat problem page

8

3.1.2. Check Problem

When a user completes his answer, he can get it evaluated by clicking “Check your work”. At
the server side, Javabrat bundles the user's solution and other meta information into a
temperately created directory. If the problem is any of the Java types, it asks Labrat to grade the
problem. If the problem is of Scala type, Javabrat asks Scalabrat to assess the problem. Once
the assessment is done, Javabrat picks up the HTML report file generated by Labrat or
Scalabrat and sends it back as the response.

3.1.3. Add Problem

Users can contribute their own problems to the Javabrat problem repository. Once added the
new problems are treated as normal Javabrat problems and visible to all other users. This
feature is especially useful for instructors who want to create their own programming problems
and make them available to the students for practice. An instructor can add his own problems to
the Javabrat repository and ask students to practice them.

When the user clicks on the “Add you own problem” link, a blank problem is created. The user
can select the problem type he wants to add. By default the problem to be added is considered
as a quick Java problem. Figure 4 shows a Javabrat page to add a Scala problem.

The problem author has to fill in the problem details in the provided form and click on the
“Add Problem” button. I have summarized these form fields for all the three types of problems
as

1. Problem title: Title shown in the problem list

2. Problem description: A description that states and explains the problem and also
provides guideline if any to solve the problem.

3. Problem category: The user can put his problem in one of the existing categories or can
choose to put it in the “Other” category.

4. Problem contents (only for quick problem type): The problem author can provide a
partial solution to the problem when it is one of the quick problem types

5. Tests: The author should provide the test cases to evaluate the accuracy of the user's
solution. The test cases format differs for the Java and Scala problems. Section 5.1.3
describes the test case format for the Scala problems

9

Figure 4: Javabrat Add Problem page

10

3.2. Implementation Details

Javabrat has been built on the already existing web interface developed by Dr. Horstmann. It
was then called WebLabrat. Over the time WebLabrat has been evolved to accommodate the
new features. I have contributed the following modifications or features to this web interface.

3.2.1. Migration to JSF 2.0

WebLabrat was developed using JSF 1.2. I converted the application to JSF 2.0. I have used the
following features of JSF 2.0

3.2.1.1 Templates with Facelets

With Facelets templates, one can create a common layout for a group of pages. It provides a
common place to apply styles and decide on the look and feel of the application. I have divided
the layout into two logical areas – header and contents. I have used this composition for all the
pages of Javabrat. For example, the following code is from the page that shows the problem
details to the user. The page uses a composition defined in master_layout and inserts the actual
content files in the corresponding logical group. In the listing 3-1 ui defines the Facelets
namespace.

<ui:composition template="/templates/master_layout.xhtml">
 <ui:define name="header">
 <ui:include src="/sections/codecomp/submitCode/header.xhtml"/>
 </ui:define>
 <ui:define name="contents">
 <ui:include src="/sections/codecomp/submitCode/contents.xhtml"/>
 </ui:define>
</ui:composition>

Listing 3-1: Template with Facelets

3.2.1.2 Easier Navigation

The prior version of JSF (JSF 1.2) requires navigation rules to be specified in the configuration
file faces-config.xml. But with JSF 2.0, navigation is easier and does not require to specify the
navigation rules in the configuration file. Instead, it implicitly navigates to the page by
appending .xhtml to the return value of a method or to the action attribute of a UI component.

3.2.1.3 Managend Bean Annotation

JSF 2.0 introduces annotations to use with the Java objects. It eliminates the need to configure
managed beans in the config file. When a class is annotated with the @ManagedBean annotation,
it becomes a manged bean at runtime. The scope of the managed bean is specified using the
@RequestScoped, @SessionScoped or @ApplicationScoped annotations. I have used this feature
to define all the managed beans.

11

3.2.2. Integration with Scala Problems

I have extended Javabrat to support Scala problems. To accomplish this I have created a
ScalaCodeCompletionProblem class that extends from Javabrat's Problem class. This class is
responsible for loading a Scala problem. When a user clicks on any Scala problem, the load
method of ScalaCodeCompletionProblem class is called. The load method reads all the meta
data of the problem stored in the problem repository and populates the problem object. This
class is also responsible to call the Scalabrat application to grade Scala problems. It overloads
the commandArgs method of the Problem class to bundle all the arguments required to run the
Scala grader.

3.2.3. Integrated View of All the Problems

Initially, to view a problem through WebLabrat, the user has to provide the problem identifier
with the request URL as a query parameter. For example, to view the Even Sum problem
shown in the Figure 3, a user has to request following URL specifying the problem identifier as
id parameter.

http://helsinki.cs.sjsu.edu:8080/javabrat/check.jsf?id=ch06/c06_exp_6_102

It was inconvenient for the users who did not know the exact problem identifier. To eliminate
this problem, I added a functionality where the user can choose the problem type and see the
list of all the problems under a specific category. They can choose to attempt any problem from
the list. This page is shown in Figure 2.

To develop this functionality, I have used a session scoped bean called problemList. This bean
reads all the problems of the selected type from the problem repository. Every problem
directory contains a properties file specifying the problem meta data such as name and type of
the problem. The ReadProblems method of problemList bean peeks into all the problem
directories and reads the properties file. It populates the problemList bean with the problem
details. To display the problem list, I have used dataTable tag of JSF. The following code
snippet shows the dataTable code that displays the problem list.

<h:dataTable value="#{problemList.chapters}" var="chapter"
 style="margin-left:1cm;margin-right:7cm">
 <h:column>
 <h:outputText value="Prablems from #{chapter.level}"

 style="font-weight:bold"/>
 <hr />
 <h:dataTable value="#{chapter.problems}" var="problem">
 <h:column >

 <h:link value="#{problem.title}"
 outcome="../check.jsf?id=#{problem.id}"/>

</h:column>
 </h:dataTable>
 </h:column>
</h:dataTable>

Listing 3-2: JSF data table to show the problem list

12

http://helsinki.cs.sjsu.edu:8080/javabrat/check.jsf?id=ch06/c06_exp_6_102

The outer datatable tag iterates through chapters object of problemList bean. The inner
dataTable tag iterates through the list of problems stored in the each chapter object and
displays each problem as a link. When the user clicks on this link, check.jsf page is requested
with the current problem's id. The check.jsf page displays the question details of the
requested problem.

3.3. Javabrat as a Web Service

I have exposed Javabrat's Java problem assessment service as a web service using the REST
architecture. I have also created a separate web service to fetch the problem details from the
Javabrat problem repository. My Moodle plugin uses these services to generate the question
and to grade the student's response. These web services can be used with any LMS by parsing
their outcome. The following sections explain these two services in detail:

3.3.1. Metadata

This service serves the problem metadata to the client. While requesting this service, the client
should send the id of a problem for which he wants to receive information. This problem
information (metadata) contains all the information required to generate a Javabrat type
problem. It includes the problem title, the problem description, the problem type and a few
other fields. Here is an example of the metadata service URL:

The metadata service returns the problem metadata in XML format. An example response for
the above URL is shown below:

 <?xml version='1.0'?>
 <question>
 <name>PerimeterTester</name>
 <type>fp</type>
 <description>
 <p>Write a PerimeterTester program that constructs a Rectangle object and
 then computes and prints its perimeter. Use the getWidth and getHeight
 methods. Also print the expected answer.</p>
 </description>
 <filenames>
 <file>PerimeterTester.java</file>

<data></data>
 </filenames>
 <okToAddFiles>false</okToAddFiles>
 </question>

Listing 3-3: Response from Metadata service

13

http://helsinki.cs.sjsu.edu:8080/javabrat/resources/metadata?id=ch02/c02_exp_2_2

Service url Problem id

3.3.2. Check

This web service accepts the user's solution and returns the Javabrat evaluation report. The call
to the check service should be a POST request as it involves sending the user's solution to the
web service. The check service should be invoked with the following parameters:

1. id= id of the attempted problem
2. name= name of the Java file that contains the solution
3. data=contents of the solution file

There can be multiple name and data parameters based on the number of files required for the
solution. The Check service stores all the user data in a temporary directory and asks the
Javabrat's check method to generate the report in HTML format. It then sends back this report
to the caller. The following section describes the implementation details for above two web
services

3.3.3. Implementation Details

3.3.3.1 REST

REST stands for “Representational State Transfer”and it is an architecture to develop web
services. I chose REST because it is:

• light-weight: The data that is being transferred to and from our web service is simple
and small. REST provides an easy way to transfer the data between the client and the
server by using HTTP protocol and it is suitable for the exchange of short data.

• requires only a thin client: A REST service is invoked with an HTTP request. It is very
simple to construct such a request and does not require any client side library.

• easy to build: REST is easy to understand and develop. Java provides support for
writing RESTful services.

3.3.3.2 JAX-RS

To implement the REST services, I have used JAX-RS. JAX-RS provides APIs to implement
RESTful web services in Java. With JAX-RS standards and annotations, a simple Java object
can be exposed as a web service. The following code snippet shows the metadata web service:

@Path(value="metadata")
public class Metadata {
 …
 …
 @GET
 @Produces("text/plain")
 public String getMessage(@Context ServletContext context,

 @QueryParam("id") String id, @Context HttpServletRequest request) {
 String repositoryPath =
 context.getInitParameter("com.horstmann.labrat.repositoryPath");

14

 Problem problem = Submission.loadProblem(id, repositoryPath);
 String servername = request.getServerName();
 String contextName = request.getContextPath();
 StringBuffer sb = request.getRequestURL();
 …
 …
 return getXml(problem, url);

 }
 }

Listing 3-4:Metadata service

As shown in the above code snippet, the class Metadata is a simple Java class that acts as a web
resource. The method getMessage loads the specified problem and passes this problem to the
getXml method. The getXml method extracts the problem metadata from the problem object and
generates a xml document as shown in the listing 3-4.

Here is the description of some of the annotations used in the above code:

• @Path: a relative URI for which the Check class will serve the request

• @GET: declares that the getMessage method will serve the HTTP GET requests

• @Produces: mime type of the response created by this method

I have used a similar approach to develop the check service.

3.4. Problem Repository Structure

Each problem in the problem repository is represented by a directory in the local file system.
The two grader applications, Scalabrat and Labrat work on the problems stored in the files with
a standard directory structure. A problem contributor should adhere to this problem structure
while adding a new problem. In a whole, the Javabrat problem repository also follows a
directory structure to arrange Java and Scala problems. At the topmost level, I have divided the
problems in the following three categories:

1. Quick Java Problems (code completion mode – cc)
contains the Java problems where partial solution is provided to the user.

2. Long Java Problems (full program mode – fp)
contains the Java problems where user has to solve the problem from scratch.

3. Quick the Scala Problems (scala code completion mode - scala_cc)
contains Scala problems with their partial solutions.

At the level below this topmost categorization, the problems are grouped according to chapters.
At this level it is also possible to group the problems based on their type or any other criteria.
Here is the screen-shot of a sample problem repository:

15

http://helsinki.cs.sjsu.edu:8080/javabrat/resources/metadata?id=ch05/c05_exp_5_108

Figure 5: Problem repository structure

4. Moodle Plugin

This section describes in detail the Moodle plugin that I have developed as a part of this
project. Our system is comprised of the Moodle plugin, Javabrat and other sub modules. It
provides a setup for the instructors, students and language learners for taking or assigning
programming questions. The following diagram shows the high level overview of our system .

16

repository root

cc

scala_cc

fp

category 1

problem n

problem 2

Problem 1

category 1

category 1
...

category n

...

category n

category n

...

...

Figure 6: System Overview

4.1. Moodle Workflow

As shown in the Figure 6, students and instructors connect to Moodle through a web browser.
Our plugin ap_labrat resides in Moodle. This plugin allows the instructors to create Java
programming questions. The instructors can create a quiz comprised of these questions and
assign it as a homework to the students. The instructors create a programming question in
Moodle by providing a question URL. The question URL has been discussed in more detail in
Section 3.3. The actual questions reside in the problem repository and the assessment logic
resides in Javabrat. When a student logs in to Moodle to take the quiz, ap_labrat fetches the
question details such as the problem description and the names of the Java classes from
Javabrat and formats the question. To accomplish this task, ap_labrat calls the metadata web

17

ap_labrat

Moodle
server

client

Javabrat

Check
web service

Metadata
web service

Labrat

Scalabrat

problem
repository

student instructor

service. When a student submits his answers, ap_labrat asks Javabrat to evaluate the student's
submission. Javabrat serves this request with its check web service. The check service assesses
the student's response and returns a report based on the assessment to Moodle. Moodle stores
this report in its database. The Instructor or grader can later view this report while generating
grades for the students. In the remaining sections of this report, instead of using two separate
terms for students and/or language learners, I have used a single and more generic term – users.

The Moodle architecture is based on a modular platform and is highly customizable. Moodle
provides many features that can be extended or customized by writing a plugin. For example,
the report generation can be customized by developing a report plugin. As mentioned in the
introduction section, we wanted Moodle to handle programming assignments and also grade
them automatically. After studying the available plugin types for Moodle, I decided to create a
question type plugin.

In Moodle, questions are supposed to be used with quizzes. Questions are stored in the question
bank and can be reused. A quiz can contain any number of questions. The quiz can be assigned
to students as a homework assignment. The following section describes question type plugin
that I have developed.

4.2. Labrat Type Question

Our plugin introduces a new type of question in Moodle – Labrat questions. Labrat questions
are similar to the Javabrat questions. In fact, as discussed in Section 3.3, our plugin make use of
Javabrat web service to generate the question. The following snapshot shows a Moodle page
for creating a Labrat type question.

18

Figure 7: Creating Labrat type question

As shown in the above figure, the instructor should provide a problem URL while creating a
Labrat type question. This problem URL should invoke the metadata web service. Moodle can
create only those Labrat questions which are already present in the Javabrat problem repository.
If the instructor wants to create his own question, then he should first add the question details
to the repository and then provide it's identifier as the value of the id parameter to the problem
URL. After creating a Labrat question, the instructor can use this question in a quiz. Once the
quiz is set, the students can view the questions by attempting the quiz. The following figure
shows the student's view of a Labrat question. When a student clicks Check, the evaluation
report is displayed on the same page.

19

Figure 8: Moodle Labrat question

20

The students are supposed to generate the Javabrat report before they submit their answers.
Moodle stores this Javabrat report into the database. To generate the Javabrat report, the student
should press the “Check” button. The Javabrat report is displayed in the text panel provided
below the “Check” button. Students can generate the report as many times as they want. When
students are happy with their reports for all the questions, they can press the “Submit all and
finish” button.

4.3. Implementation Details

Moodle is open source software and it is written in PHP. It can support SQL type databases (I
used Moodle with PostgreSQL). Moodle provides a template [9] to develop a question type
plugin. I have built the Labrat question type based on this plugin. The following sections
describe it's implementation details.

4.3.1. Database Table

To store the question details, the Labrat question plugin creates a table
question_ap_labrat in the Moodle database. This table contains following columns:

• id: primary key of the table

• question id: foreign key of the table that corresponds to the primary key of the
question table of the Moolde database.

• url: to store the problem URL.

Moodle provides a abstraction layer to interact with the underlying database. This layer is
called XMLDB. It facilitates the Moodle development to be database independent. With
XMLDB, the developers create their database structures in a XML format irrespective of the
actual database being used. This file should be named as install.xml and should be kept
under the plugin_name/db directory. To create the question_ap_labrat table I have
used the XMLDB specifications.

4.3.2. Question Editing Form

The question editing form is shown in the Figure 7. It displays the question details to be filled
or edited by the problem author. This form extends from Moodle's question_edit_form.
Moodle's standard form class provides easy APIs to add or remove HTML elements. While
designing the form shown in the Figure 7, I have used these APIs to create the HTML elements.
Listing 4-1 shows a code snippet from question_edit_ap_labrat_form.php file

class question_edit_ap_labrat_form extends question_edit_form {
 function definition_inner(&$mform) {
 $mform->removeElement('generalfeedback');
 $mform->addElement('text', 'url', 'Problem URL: ','size=40');
 $mform->addRule('url', null, 'required', null, 'client');
 …

21

 }
 …
}

Listing 4-1:Labrat question form

As shown in the above code snippet, to add a text field for the problem URL, I have used the
addElement method of mForm.

4.3.3. Question Type Class

Once the question form is developed, I had to write a question type class that can display this
form and handle the grading of the solution. Our question type class ap_labrat_qtype extends
from Moodle's default_questiontype class. The question type class is written in
questiontype.php file. This class is responsible for the following tasks

4.3.3.1 Displaying Question to Students

To display the question, the question type class first retrieves the problem URL from the
Moodle database. Then it calls the Javabrat metadata service and collects the problem details.
Here is the code snippet that performs the web service call and extracts the problem details

$url = urlencode($question->options->url);
$xml = simplexml_load_file($url);
$title = $xml->xpath('//name');
$type = $xml->xpath('//type');
$description = $xml->xpath('//description');
$filenames = $xml->xpath('//filenames');

Listing 4-2:Call to Metadata service

After extracting the problem metadata, PHP code generates the HTML page shown in the
Figure 8.

4.3.3.2 Handling Student's Response

When a student clicks on the “Check” button, the question type class, bundles the student's
response in a post request and asks the check service to generate it's evaluation report. I have
used the PHP fopen function to invoke the check web service.

$params = array('http' => array('method' => 'POST', 'content' => $data));
 $ctx = stream_context_create($params);
 $fp = fopen($url, 'r', false, $ctx);

Listing 4-3:Call to Check Service

22

In the above code, $param is an associative array that contains the specifications for the
context stream. This array contains another array specifying the following HTTP header
parameters:

• method: contains the type of HTTP request method. For the above request I have used
POST method.

• content: contains the data to be sent with this request. $data is an array containing
student's answers as name value pairs

The function stream_context_create creates a stream for the HTTP protocol as specified in
$params array.

To call the check service I have used the fopen function. Here are the parameters passed to the
fopen function:

• $url: url of the Javabrat's Check service

• r: open url with read mode

• false: do not search this url in the include_path

• $ctx: context stream containing the HTTP request parameters

The return value, $fp points to the file containing the evaluation report generated by Javabrat's
Check service. The question type class further extracts this report and displays the report as
shown in Figure 8.

5. Scalabrat

The primary responsibility of Scalabrat is to assess the Scala programing problems. Scalabrat
has been developed in the Java language. I have integrated Scalabrat with the Javabrat web
interface. Javabrat internally calls Scalabrat when a problem to be assessed is a Scala problem.
Scalabrat can also be used as a standalone application. It compiles the user's solution with the
Scala compiler. If the compilation succeeds, Scalabrat runs a few predefined test cases on the
user's code to assess it's correctness. Scalabrat generates a report based upon the compiler
output and the test cases results. Figure 9 shows a snapshot of a sample evaluation report
generated by Scalabrat

23

Figure 9 : Scalabrat Report

5.1. Technical Details of Scalabrat

5.1.1. Ant Listener Mechanism

Report generation was one of the important part of the Scalabrat development. As shown in the
Figure 9, a Scalabrat report contains the following segments:

• the compilation result
• the messages generated by the Scala compiler
• the results of the test cases

I have used Ant to compile the user's code and to run the test cases. I have specified these tasks
as the targets in the Ant's build file. The reason I chose Ant was that it's listener mechanism
provides a easy way to capture the messages generated during the build process. The build
process here comprises of the compiling user's code and running the test cases.

I have written an Ant build file codecomp.xml that contains the Ant targets for compiling and
running the submitted answer. Scalabrat copies this build file into the directory where the
student's submission is kept and fires the Ant build. Scalabrat invokes the build using the API's
provided by the Ant's Project class. Here is a snippet of the codecomp.xml showing some of
the important targets:

24

 <target name="compile" depends="prepare">
 <mkdir dir="${result.dir}" />
 <myscalac srcdir="${submission.dir}" classpathref="scala.classpath"

 scalacdebugging="true" failonerror="true" destdir="${result.dir}">
 <exclude name="*Tester.scala" />
 </myscalac>

 </target>

 <target name="tests" depends="compile">
 <myscalac srcdir="${submission.dir}" scalacdebugging="true"

 destdir="${result.dir}">
 <classpath>
 <path refid="scala.classpath" />

<path location="/home/ashlesha/SJSU/Project/svnSource/JavaBrat/scalabrat/
 bin" />
 </classpath>
 <include name="${testclass}.scala" />

 </myscalac>
 <java classname="scala.tools.nsc.MainGenericRunner" fork="true">

 <classpath>
 <path refid="scala.classpath" />
 <path location="${result.dir}" />

 <path location="/home/ashlesha/SJSU/Project/svnSource/JavaBrat/
 scalabrat/bin" />
 </classpath>
 <arg value="${testclass}" />
 </java>
</target>

Listing 5-1: Ant build file - codecom.xml

As shown in the Listing 5-1, the first target, compile, compiles all the Scala files from the
submission directory, except the test classes. The second target, tests, compiles and runs the
test cases. Ant provides a built-in listener mechanism. Ant listeners are alerted when the certain
events occur. For example, a listener is alerted when a build start event occurs. These events
provide useful information about the target. For example, a target finished event can be used to
check if the target was finished successfully or not. A listener should be register in order to get
informed when an event is generated. The following code show how a listener can be registered
to an Ant project.

 import org.apache.tools.ant.Project;

public class AntRunner {
 …
 …
 Project project = new Project();
 ReportBuilder reportBuilder = new ReportBuilder();
 project.addBuildListener(reportBuilder);
 …
 …

}
Listing 5-2: Registering listeners to Ant project

25

The ReportBuilder class mentioned in the above code is the listener class that implements
Ant's BuildListener interface.

The BuildListener interface declares the callback methods for each event generated by Ant.
For example, when a target finishes its execution, an event occurs and the targetFinished
method of the registered BuildListener is notified. Here is the targetFinished method of
the ReportBuilder listener that checks if the compile and tests targets executed successfully
or not.

public void targetFinished(BuildEvent event){
 String msg;
 Target target = event.getTarget();
 if (!currentDetail.targetName.equals(target.getName()))
 return;
 if (target.getName().equals("prepare"))
 return;
 currentDetail.exception = event.getException();
 msg = event.getMessage();
 if (msg != null)
 currentDetail.message.append(event.getMessage());
 if (event.getException() != null)
 currentDetail.failed = true;
 details.add(currentDetail);
}

Listing 5-3: Sample code for Ant listener

The above listener checks whether any message is generated by the event. If this message can
provide useful feedback to the user, then it is added to the report during report generation
phase. If the event has generated any exceptions, then the current target is marked as failed
target. I have also used a few other Ant events like build started, target started, message
logged, build finished to collect the information to generate the report.

5.1.2. Compilation Process

The Scala distribution provides several Ant tasks to build a Scala project. Initially I decided to
use the standard scalac task to compile the user's code. The scalac task compiles the code but
it fails to deliver the messages generated during the compilation phase to the Ant listeners. I
wanted to capture these messages as they are important for the Scalabrat report generation.
When I debugged the Scala compiler code, I found out that the standard Scala compiler uses
the ConsoleReporter class to handle the compiler output. The ConsoleReporter class
displays the messages produced by the compiler on the console but it does not save them. As a
result, it fails to deliver these messages to the Ant listener.

To overcome this limitation, I have created a new class Myscalac that extends the Scala
compiler class Scalac. I have also created my own reporter class that extends the Scala

26

compiler's Reporter class. My reporter class is called as AshleshaReporter. This reporter
overrides the info0 method of the inner class info. The new reporter 's info method properly
formats the compilation output and stores it in a string. Myscalac and AshleshaReporter
deliver the compilation messages to the Ant listeners.

5.1.3. Test Cases

Scalabrat uses the test cases to determine if the user's program functions correctly. If the
compilation target executes successfully then as shown in the listing 5-1, the Ant builder runs
the tests target. For better evaluation, a program should be tested against varied input data.
The test cases should be simple and easy to write so that the problem author is motivated to
write more test cases. I have accomplished this by providing a base class for all the test cases.
This class is called as TestBase class. All the test cases provided for the Scalabrat problems
should extend this test base and simply call its test method with certain parameters. The
TestBase class and its test method is described in more detail in the next paragraph.

In Scala, functions are considered as objects. Hence they can be passed to another function as
an argument or can be assigned to a variable. I have used this feature in the TestBase class. The
test method of the TestBase class accepts the method to be tested from the user's code and
invokes this method dynamically irrespective of its type. As shown in the listing 5-4, the test
method accepts the function to be tested as its first parameter. The notation f: A=>R means a
function that accepts a parameter of type A and returns a value of type R. The following section
helps to understand this notation in more detail.

Scala has inbuilt support for genericity. As per [6], “Genericity is the ability to write code
parametrized by types”. Scala allows you to define generic methods. The test method
defined in the TestBase class is a generic method that accepts three parameters. The first
parameter f, is of type function that accepts a parameter of type A and returns a value of type
R. The second parameter, arg is of type A and the third parameter expected is of type R. A and
R are the generic types that can accept any value. At runtime, they are replaced with the types
specified for that method call. For example, the following call specifies that for this test call, A
and R values are of type Int.

 test[int, int](square, 2, 4)

Because of this feature, I could use a single test method to test methods without caring about
the actual types of the expected or returned values. Here is the code snippet from the TestBase
class:

27

class TestBase{

 def main(args:Array[String]){
 }

 def test[A, R](f: A=>R, arg: A, expected: R){
 var result = f(arg);
 if(result == expected)

 println("Test Successful");
else
 println("Test failed");
 println(toString(arg));
 println(toString(expected));
 println(toString(result));

}

Listing 5-4: Code snippet from TestBase class

In the above code, the test method calls the function f with a input value arg. Then it checks
if the result received from this function is as the expected result. If the result is as expected it
prints test successful otherwise prints test failed.

The above test method is useful only to test the functions that accept a single input parameter.
But the user code can have functions that accepts more than one input parameter. To address
this problem I have overridden the test method for multiple input parameters. I have provided
ten test methods that accepts up to ten input parameters. For example, the following test
method can test a function that accepts four input parameters:

def test[A1, A2, A3, A4, R](f:(A1, A2, A3, A4)=>R, arg1:A1, arg2:A2, arg3:A3,
 arg4:A4, expected:R){
 …
 …
 …
}

Listing 5-5: Code snippet from TestBase class

Here is one example of how the actual test case class looks like

 import com.ashlesha.scalabrat.TestBase;

object TupleTester extends TestBase{
 test[Int, Int, Tuple2[Int, Int]](Tuple.divmod, 4, 2,
 new Tuple2[Int, Int](2, 0))
 test[Int, Int, Tuple2[Int, Int]](Tuple.divmod, 6, 4,

 new Tuple2[Int, Int](1, 2))
}

Listing 5-6: Sample code for test cases

28

The code above calls the test method of the TestBase class to test function divmod of the
Tuple class. The input values for the first test are 4 and 2 and the expected output is a Tuple
with values (2, 0).

6. Evaluation
This section contains the evaluation of the system based on the actual statistics. Dr. Horstmann
has used Moodle with the Labrat plugin in his CS 46 course. He has been using it from the start
of the semester. But unfortunately, early versions did not contain enough information to
associate submissions with individual students. For this report, I started collecting data that
contained student IDs only recently. For this evaluation, I have collected the data from each
request of Javabrat's check web service. A call to the check web service corresponds to an
attempt by a student for a question in the homework. I have analyzed the available data with
respect to the following aspects:

6.1. Draft Submission

Dr. Horstmann uses a draft submission policy in his homeworks. He provides the questions of
the next homework with the current homework and asks the students to submit a draft of the
solution for these questions. Draft submissions are intended to make students think about the
assignment early. For the draft submissions, students are supposed to provide a compilable
class with the method stubs and Javadoc comments. Students get bonus points for the
successful draft submission. The following statistics shows how students responded for the
draft questions for Homework 18 to 20.

29

No
Homework

Question
Id

Number
of

students
submitted

draft

Number
of

students
did not
submit
draft

Number of
students

received full
grade for

draft
questions

Number of
student s

received full
grade and who
had submitted

draft

Difficulty
level of the
question

17 7_13 14 15 20 11 Difficult

17 7_15 13 16 15 8 Difficult

18 8_1 22 7 18 18 Easy

18 8_2 21 8 15 15 Easy

19 8_7 18 11 9 9 Medium

19 8_8 17 12 7 7 Difficult

20 9_4 21 7 18 17 Easy

20 9_8 18 11 20 18 Easy

20 9_9 16 13 12 11 Difficult

Table 1: Draft submission statistics

From the above table it is evident that the students are likely to get full credit for those
questions for which hey have submitted the draft. For all the questions except questions 7_13
and 7_15, more than 80% of the students who got full grade had submitted the draft. The
above statistics shows that the draft questions are helpful for students. Dr. Horstmann could
assign more draft questions without any extra overhead because Moodle plugin automates the
grading process.

6.2. Automatic Grading Vs Manual Grading

In this section, I have provided an analysis of automatically graded submissions by Javabrat
with respect to manual grading. Out of available data, I randomly selected 20 submissions for
which Javabrat had given full credit to the students. I manually graded these submissions and
compared them with the Javabrat report. Out of these 20 questions, 10 are easy to medium type
of questions and 10 are difficult questions. All of the 20 submissions that I manually assessed,
contained the valid answers for the given problems. On the whole, Javabrat did a good job in
the assessment of these submissions. But there are some areas for which a manual grader would
have done a better assessment. These areas are:

6.2.1. Javadoc Comments

Many students had not provided proper Javadoc comments in their submissions. Majority of
the students had skipped Javadoc comments for :

30

1. Java classes

2. return values

But Javabrat could not detect these mistakes and gave full credit for the submission.

One way to solve this problem is to run the static code analysis tools such as Checkstyle before
the automatic grader generates the final grade. The automatic grader should consider the output
generated by code analysis tool while calculating the grade.

6.2.2. Standard Coding Practices

Some of the submissions that I manually graded had not properly followed the coding
conventions. For example, the variable names were not relevant and getter and setter method
conventions were not properly followed. The following code snippet shows a non-standard
coding practices for which the automatic grader did not penalize the students:

 /**
 * gets a values
 * @return the value of this coin
 */
 public double getValue(){
 return howM;

 }

In the above example, variable name howM is not a relevant name and does not help the reader
to understand what value does it hold. As per the getter method conventions, the get method
name should have been getHowM instead of getValue.

Some of the submissions had the poor code organization that can lead to the lack of readability
and maintainability. Some of the submissions had very long functions ignoring the modular
approach. For example, one student had written the main function that contained about 80% of
the total code. The automatic grader ignored these violations of coding standards and the gave
full credit.

From the above facts it is clear that though automatic grading reduces the grading efforts, it has
certain limitations and it can not totally replace the manual grading. Labrat uses a intermediate
approach to handle this limitation. Labrat includes the student answers in the evaluation report
along with the automatically calculated grades. The instructor or the grader can have a look at
these answers before finalizing the students' grades. They can manually analyze the students'
solutions with respect to the above mentioned factors and provide the right feedback and
grades to the students. This approach is also useful to verify that a student has actually solved
the problem and he has not cheated by tweaking the code for the few test cases.

31

6.3. Students' Understanding of the System

The goal of this analysis is to find out whether the students are using the grading system as
intended. Students should not use the Moodle plugin as a code development tool. Students
should prepare and test their answers outside Moodle in an IDE. When they are satisfied about
their answers only then they should paste the answer into Moodle. I have provided the
“Check” button just to give the students a chance to rectify the minor mistakes in their final
submission. For example, using “Check” button, the students can verify that they have not
made any mistake while copy pasting the answer in to the Moodle. The students should not use
the “Check” button to verify that their answer compiles successfully or the test cases run as
expected. To impose this desired behavior, I have made the editing of solutions tedious in
Moodle. To accomplish this, I reduce the the size of the textarea (where students are supposed
to provide answer) once the students press the “Check” button.

In this analysis, I found out that some of the students are using the system as intended but some
of the students perform many attempts before submitting the final solution. The following
graph shows the average number of attempts made by the students for a subset of the questions
they have attempted.

Listing 6-1: Average attempts per students

32

The above graph shows the statistics of 25 students from Dr. Horstmann's CS 46 class. On an
average 14 students made 4 attempts before submitting the final solution. Remaining 11
students had more that 4 average attempts. 2 students with IDs 16 and 21 had average number
of attempts as high as 9.75 and 8.78 respectively.

To find out why some of the students required such a high number of attempts, I analyzed their
each attempt in the chronological order for a subset of the problems. I found out that they were
not using the system as intended. Here are some of the most common reasons why the students
required multiple attempts:

• The students started with non-compiling code.

• The students introduced major code changes in the consecutive attempts.

• The students resubmitted the assignment by adding Javadoc comments after they got full
credit

Thus, the students who have very high average attempts were using Moodle as a code
development tool. It implies that they were not using the efficient development tools (IDEs)
and instead relying on Moodle to check their solution during the development phase. They
were using a tedious and a time consuming way to solve the problem. One way to stop the
students from using Moodle as an IDE is to impose a restriction on the number of times a
student can check his answer in Moodle.

6.4. The Moodle Survey

With the help of Dr. Horstmann, I conducted a survey for Moodle plugin in the CS 46 class.
Out of 25 students 14 students participated in the survey. Here are the survey questions and
summary of the responses we received from students

Q1. Please compare taking assignments through Moodle with the traditional way of submitting
solutions by email. (1=Much prefer Moodle, 5=much prefer email submission)

number of students answered 1= 8
number of students answered 2= 2
number of students answered 3= 1
number of students answered 4= 2
number of students answered 5= 1

Q2. Please compare old Moodle where you have to see the question from Javabrat and copy
paste the report back to Moodle with the new one that shows the report in Moodle itself
(1=Much prefer copy/paste, 5=much prefer integrated report feature)

33

number of students answered 1= 1
number of students answered 2= 2
number of students answered 3= 2
number of students answered 4= 4
number of students answered 5= 5

Q3. The draft submissions are intended to make you think about the assignments early. How
useful do you find this feature? (1=Draft feature very useful, 5 = Draft feature not useful at all)

number of students answered 1= 5
number of students answered 2= 2
number of students answered 3= 5
number of students answered 4= 2
number of students answered 5= 0

Q4. What do you submit for the draft question most of the time?

number of students who submit complete solution = 5
number of students who submit class template and method stub = 1
number of students who submit class template and method stub with partial solution = 8
number of students who submit who do not attempt draft questions = 0

Q5. How do you rate the Moodle interface? (1=very clear, 5=very confusing)

number of students answered 1= 1
number of students answered 2= 7
number of students answered 3= 6
number of students answered 4= 0
number of students answered 5= 0

7. Future Work
The developed system can be further enhanced by providing support for the following features:

7.1. Moodle Question Import Feature

With the current Moodle Labrat plugin, the instructors have to manually create each question.
This job is tedious if the number of questions to be created are more . Moodle provides a
question import feature that facilitates importing questions in bulk into the question bank.
Moodle supports number of formats for importing questions. With the Moodle XML format,
instructors can specify the problem information in an XML document and import multiple

34

questions into Moodle. Currently Labrat plugin does not support the import feature. The system
can be further improved by providing support for importing Labrat type questions.

7.2. Scala Problem Support from Moodle

Currently, Labrat plugin allows only to create the Java programming questions in Moodle.
Javabrat's web services used by Moodle plugin provide support only for the Java questions.
This plugin and web services can be extended to provide support for the Scala programming
problems within Moodle.

7.3. IDE Plugin for Javabrat Assessment

Ideally while working on Moodle programming quizzes, the students should use their IDE to
develop the solution and paste their final solution into the Moodle form. They should use the
check button only to rectify the minor mistakes. But while evaluating the project uses, I found
out that many students use the Moodle form as an IDE and use the check button until they
develop their final solution. If a student's IDE can generate the Javabrat report, it might help the
student to anticipate his actual Moodle report. With this enhancement, students can take
advantage of their IDE and also see the final report. This can be achieved by developing a IDE
plugin that produces the Javabrat report based on the student's current code.

8. Conclusion

In this project, I have developed a system that reduces the efforts required to assess the
programming assignment from the instructor's perspective. At the same time I have focused on
providing a simple and useful tool that allows the students or the language learners to practice
more programming problems. I have used the existing system Moodle, to reuse already
available features for the course management. I have also analyzed the students' responses to
evaluate the system usage.

The work was challenging because the Moodle extension framework does not have a sound
base. Initially, I thought that as Moodle is based on a modular design, extending it would be a
straightforward task. I found it difficult because PHP does not encourage abstraction very well
and the Moodle extension points are very poorly designed. One may say that it is a good
example of how not to design the extension framework.

Moodle is very incompetent in handling the character entities of the different text formats. The
core code of Moodle does not take care of this issue. Every module uses a different approach

35

and it is not well documented. I had to spent a lot of time figuring out why the plugin is
behaving weird with the input text. For example, why is it eating space or the text after every
“< “character.

Apart from Moodle, I faced few challenges while developing the Javabrat web services. I was
trying hard to use already developed blackened infrastructure of Javabrat for the web services.
But I found out that fundamentally it was not possible to create a web service for the POST
request with the existing JSF application. JSF framework assumes that any POST request is a
reaction from a prior JSF page. With the JSF 2.0 it is possible to handle the GET request
parameters, but it does not work with the POST request. To overcome this limitation, I used
JAX-RS to expose the Javabrat methods as the web services.

The work was ambitious because I wanted to create a system that is intuitive and clear enough
for the students to attempt online assignments without putting much effort to understand the
system.

Dr. Horstmann has been using Moodle with Labrat plugin for his CS46 course for one semester.
Automatic grading of the programming assignments has certain limitations, but it is certainly
effective to reduce the evaluation efforts.

36

9. References

[1] Maheshwari, P. 1996. Teaching programming paradigms and languages for qualitative
learning. In Proceedings of the 2nd Australasian Conference on Computer Science
Education (The Univ. of Melbourne, Australia). ACSE '97, vol. 2. ACM, New York, NY,
3239. DOI= http://doi.acm.org/10.1145/299359.299365

[2] CodingBat, Java practice problems.Web site: http://codingbat.com/

[3] better programmer. Web site: http://www.betterprogrammer.com/

[4] Moodle. Web site: http://moodle.org/

[5] Simply Scala, Web site: http://www.simplyscala.com/

[6] Scala, Web site http://www.scala-lang.org/

[7] Corbera, F., Gutiérrez, E., Ramos, J., Romero, S., and Trenas, M. A. 2008. Development
of a new MOODLE module for a basic course on computer architecture. In Proceedings
of the 13th Annual Conference on innovation and Technology in Computer Science
Education (Madrid, Spain, June 30 - July 02, 2008). ITiCSE '08. ACM, New York, NY,
349-349. DOI= http://doi.acm.org/10.1145/1384271.1384391

[8] Rößling, G. and Kothe, A. 2009. Extending moodle to better support computing
education. In Proceedings of the 14th Annual ACM SIGCSE Conference on innovation
and Technology in Computer Science Education (Paris, France, July 06 - 09, 2009).
ITiCSE '09. ACM, New York, NY, 146-150. DOI=
http://doi.acm.org/10.1145/1562877.1562926

[9] Moodle plugin template source code
http://moodle.cvs.sourceforge.net/moodle/contrib/plugins/question/type/TEMPLATE/

[10] Roberts, G. H. and Verbyla, J. L. 2003. An online programming assessment tool. In
Proceedings of the Fifth Australasian Conference on Computing Education - Volume 20
(Adelaide, Australia). T. Greening and R. Lister, Eds. Conferences in Research and
Practice in Information Technology Series, vol. 140. Australian Computer Society,
Darlinghurst, Australia, 69-75.

[11] Practice-It. Web site: http://webster.cs.washington.edu:8080/practiceit/

[12] Spacco, J., Hovemeyer, D., Pugh, W., Emad, F., Hollingsworth, J. K., and Padua-Perez,
N. 2006. Experiences with marmoset: designing and using an advanced submission and
testing system for programming courses. In Proceedings of the 11th Annual SIGCSE
Conference on innovation and Technology in Computer Science Education (Bologna,
Italy, June 26 - 28, 2006). ITICSE '06. ACM, New York, NY, 13-17. DOI=
http://doi.acm.org/10.1145/1140124.1140131

[13] Spacco, J., Pugh, W., Ayewah, N., and Hovemeyer, D. 2006. The Marmoset project: an

37

http://webster.cs.washington.edu:8080/practiceit/
http://moodle.cvs.sourceforge.net/moodle/contrib/plugins/question/type/TEMPLATE/
http://www.scala-lang.org/
http://www.simplyscala.com/
http://moodle.org/
http://www.betterprogrammer.com/
http://codingbat.com/

automated snapshot, submission, and testing system. In Companion To the 21st ACM
SIGPLAN Symposium on Object-Oriented Programming Systems, Languages, and
Applications (Portland, Oregon, USA, October 22 - 26, 2006). OOPSLA '06. ACM, New
York, NY, 669-670. DOI= http://doi.acm.org/10.1145/1176617.1176665

[14] Web-CAT home page. Web site: http://web-cat.cs.vt.edu/WCWiki

[15] Edwards, S. H. 2003. Teaching software testing: automatic grading meets test-first
coding. In Companion of the 18th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications (Anaheim, CA, USA,
October 26 - 30, 2003). OOPSLA '03. ACM, New York, NY, 318-319. DOI=
http://doi.acm.org/10.1145/949344.949431

[16] Sakai project. Web site: http://sakaiproject.org/

[17] Suleman, H. 2008. Automatic marking with Sakai. In Proceedings of the 2008 Annual
Research Conference of the South African institute of Computer Scientists and
information Technologists on IT Research in Developing Countries: Riding the Wave of
Technology (Wilderness, South Africa, October 06 - 08, 2008). SAICSIT '08, vol. 338.
ACM, New York, NY, 229-236. DOI= http://doi.acm.org/10.1145/1456659.1456686

[18] Marmoset project. Web site: http://marmoset.cs.umd.edu/

[19] Reges S. and Stepp M. (March 2010). Building Java Programs: A Back to Basics
Approach. Parson Education

[20] Cay Horstmann. Big Java. Wiley Plus
[21] Checkstyle. Web site: http://checkstyle.sourceforge.net/

38

http://checkstyle.sourceforge.net/
http://marmoset.cs.umd.edu/
http://sakaiproject.org/
http://web-cat.cs.vt.edu/WCWiki

	San Jose State University
	SJSU ScholarWorks
	2010

	Automatic Grading of Programming Assignments
	Ashlesha Patil
	Recommended Citation

	1. Introduction
	2. Prior Work
	2.1. Online Programming Tools
	2.2. Automatic Grading of Student's Programming Assignments.
	2.3. Labrat

	3. Javabrat
	3.1. Javabrat Work Flow:
	3.1.1. View Problem
	3.1.2. Check Problem
	3.1.3. Add Problem

	3.2. Implementation Details
	3.2.1. Migration to JSF 2.0
	3.2.1.1 Templates with Facelets
	3.2.1.2 Easier Navigation
	3.2.1.3 Managend Bean Annotation

	3.2.2. Integration with Scala Problems
	3.2.3. Integrated View of All the Problems

	3.3. Javabrat as a Web Service
	3.3.1. Metadata
	3.3.2. Check
	3.3.3. Implementation Details
	3.3.3.1 REST
	3.3.3.2 JAX-RS

	3.4. Problem Repository Structure

	4. Moodle Plugin
	4.1. Moodle Workflow
	4.2. Labrat Type Question
	4.3. Implementation Details
	4.3.1. Database Table
	4.3.2. Question Editing Form
	4.3.3. Question Type Class
	4.3.3.1 Displaying Question to Students
	4.3.3.2 Handling Student's Response

	5. Scalabrat
	5.1. Technical Details of Scalabrat
	5.1.1. Ant Listener Mechanism
	5.1.2. Compilation Process
	5.1.3. Test Cases

	6. Evaluation
	6.1. Draft Submission
	6.2. Automatic Grading Vs Manual Grading
	6.2.1. Javadoc Comments
	6.2.2. Standard Coding Practices

	6.3. Students' Understanding of the System
	6.4. The Moodle Survey

	7. Future Work
	7.1. Moodle Question Import Feature
	7.2. Scala Problem Support from Moodle
	7.3. IDE Plugin for Javabrat Assessment

	8. Conclusion
	9. References

