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ABSTRACT 

RANDOMIZED GREEDY HOT-POTATO ROUTING  

ON THE MULTI-DIMENSIONAL TORUS 

 

by Raymond Y. Chi 

We present extensive simulation and analysis on a traditional, simple, efficient dynamic 

hot potato routing algorithm on a multi-dimensional torus network. These simulations are 

performed under a more recent network model than previous, more limited studies, with dynamic 

(rather than batch) models, no flow-control, and extended high dimensional scenarios. We 

collect more comprehensive statistics on system performance, and empirically show that the 

system can recover from worst-case scenarios to quickly re-achieve its standard steady-state 

delivery rates, with expected delivery time for a packet of O(n), where n is the initial packet 

distance from its destination. Experiments also show that for our model, the constant multiplier 

hidden in the O() notation decreases with higher dimensions. 
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1 Introduction 
 

Routing is the process of moving packets across a network from a source to a destination. In this 

paper, we consider Hot Potato (or deflection) routing on a synchronous network. The important 

characteristic of hot potato routing is that packets are not buffered at the node. At every time step, 

all packets arriving at a node are routed, sometimes away from their destination (deflected), 

unless the current node is the destination of the packet. 

 

A routing algorithm is considered greedy if it routes the packet in the direction of its destination, 

whenever such a link is available. The key advantages of greedy hot-potato routing algorithms 

are their simplicity. Routing choices are simple and calculated based on local states. This makes 

hardware implementation easier. 

 

In this paper, we revisit a classical greedy hot-potato routing algorithm, and present extensive 

simulation results and analysis. The algorithm we consider is memory-less, it makes routing 

decisions based on the state of the current node without regard to what is happening at other 

nodes or in past routing history of the packets.  

 

While this algorithm has been considered previously, we study it in more detail, and with more 

current models than were previously considered. Our system is dynamic, not a batch system. We 

study higher dimensions, not just 2 dimensional systems. This allows us to compare performance 

across dimensions and to see how the algorithm behaves in higher dimensions. No flow control 

is used, the system is always at the maximum capacity. We used two different methods of packet 

generation, random destination, and uniform distance destination (original here as far as the 

author knows). The latter is important, especially in high dimensional systems because the 

random destination model generates packets with a very narrow range of distances for high 

dimensional systems. 

 

In previous studies, dynamic routing problems were frequently approximated by a series of static 

routing problems. In static routing problems, all packets enter the network at time zero, and the 

running time of the algorithm is the time it takes for all packets to reach their destinations. 

Modeling dynamic routing problems this way simplifies the analysis such that performance and 

stability bounds can be more easily proven. However, this model of analysis is dated and does 

not truly represent a dynamic system. We will analyze dynamic routing problems using the 

steady state model. In this model, packets are continuously delivered and injected into the system. 

The analysis of the system is based on its performance when it reaches the steady state. 

2 Greedy Hot-Potato Routing 
 

Here we present the model which we will use to analyze the routing algorithm. We then present 

the algorithm, and discuss it in more detail. 
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2.1 Network Model 

 

We consider routing on a d-dimensional torus network. A torus is similar to a mesh, but „wraps 

around‟. A 1-dimensional torus is a ring. A 2-dimensional torus is like the surface of the donut, 

though in our case, the distance around the donut is always the same in each dimension.  

 

The torus can be generalized to d dimensions. Let d be the dimension of the torus. Let s be the 

size of each dimension. The size of the torus for a given (d, s) is s
d
. This is the number of nodes 

in the network. 

 

Each node of the network is connected to its adjacent nodes via an undirected edge. Every node 

has 2d neighbors. Therefore, each node of the network has degree 2d. Each edge represents a 

communication channel between the nodes that can be used to transmit packets.  

 

The network operates synchronously. During each cycle, every node of the network will process 

all its input packets, and send all of them out. During each cycle, only one packet can travel 

along a particular edge in a given direction. Therefore, during each clock cycle, every node sends 

exactly one packet on each of its edges. Similar to other hot potato routing algorithms, packets 

are not buffered. Every node must send every packet it receives in each round. 

 

If a packet has reached its destination, it is considered delivered. A new packet will be generated 

in its place. At every round, every node will receives 2d packets, and will send 2d packets. The 

system is always full with 2d * s
d
 packets. 

2.2 Routing Algorithm 

 

Our algorithm runs as follows. Each node will examine its input packets in some random order, 

and assign an out going edge for each packet as it is considered. It will calculate a packet‟s route 

preference based on the current node and the packet‟s destination, and assign available edges to 

packets based on its route preference, and out-going edge availability. Since only one packet can 

go out on each edge at each round, some packets may travel in the opposite direction of their 

destination.  

 

Each node has 2d outgoing edges. Therefore, every packet has 2d edges it can use. We compute 

the packet‟s route preference based on the distance it needs to go in each dimension. The first d 

choices for the packet correspond to a direction in each dimension the packet needs to go, in 

decreasing dimensional distance. The remaining d choices are the opposite of the first d choices, 

but in increasing dimensional distance order. The algorithm tries to minimize the directional 

distance differences by routing packets toward the direction the packet needs to travel the most 

to reach its destination. 

 

The first choice direction will always bring the packet closer to its destination. The 2
nd

 choice 

direction is always perpendicular to the 1
st
 choice direction. In a 3-d or higher system, the 3

rd
 

choice direction is perpendicular to the 1
st
 and 2

nd
 choice plane, etc. In a d dimensional torus 

with 2d edges, the first d-choices for the packet will generally bring the packet closer to its 
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destination, while the remaining d choices will almost always route it further away from the 

destination (except in case of wrap-around). 

 

For each time step, the first packet being processed will always get its first choice edge, since all 

the edges are available. Once that edge has been assigned, it is no longer available, and the 2
nd

 

packet will pick one of the remaining edges to travel based on its preferences. This may or may 

not correspond to its 1
st
 choice direction. The last packet will always get whatever edge is 

remaining, regardless of its routing preferences. 

 

To summarize, the input packets for a given node are processed in random order. Routing 

preferences are based on the packet‟s distance to destination for each dimension, in decreasing 

distance order. Routing preference is calculated entirely based on the packet‟s destination. All 

available edges are assigned a packet. Some packets will travel away from their destination. In 

our simulation, whenever choosing direction preferences, ties are broken randomly. This 

provides full symmetry to the system. 

2.3 Related Work and Models 

Hot-potato routing was first proposed by Baran [Bar64] as a viable packet routing 

algorithm. Later on, it was utilized in a number of notable applications, including the HEP 

multiprocessor computer system [Smi81], the Connection Machine [Hil85], and Caltech mosaic 

C [Sei92]. Hot-potato routing was used because it appears to work well in practice. As routing 

technology improved, greedy variants of hot-potato routing began to emerge. [BH85, Max89] 

confirmed that greedy hot-potato algorithms were very promising. These works led to 

development of better algorithms for addressing limitations encountered in previous work, such 

as packet collisions. 

[BHS94] was the first paper to formalize the concept of greedy hot-potato routing. Using 

potential function analysis, they authors obtained upper bounds on the running time of a variety 

of class of greedy hot-potato algorithms. For the 2-dimensional n x n mesh, they obtained an 

upper bound of O(n √k), where k is the number of packets. Extending to higher dimensions, the 

author also provided an upper bound for the d-dimensional mesh. Their work is often referenced 

for its contribution to the analysis of greedy hot-potato routing algorithms. 

[BU96] described a simple one-bend packet routing algorithm of a dynamic synchronous 

network on the n x n torus. The algorithm only knows how to route packets along a one-bend 

path. Each node is configured to randomly insert packets with some probability that is chosen 

such that the routing algorithm is stable (i.e., flow control). The algorithm achieved an expected 

delivery time per packet of O(n). It is simple and easy to analyze, however, it imposes a 

relatively high collision penalty. 

[Fei99] showed that the algorithm by [BU96] is not monotonic. The routing is monotonic if 

decreased load results in better performance. The author noted that the algorithm by [BU96] does 

not exhibit this behavior. The author goes on to show “that non-monotonicity is a common 

property of routing algorithms and not just an artifact of their analysis”. The author does present 

a monotonic, bufferless routing algorithm for the synchronous n x n mesh network. The 
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algorithm prevents conflicts by having all packets in the system make their left turn at the same 

time. 

[BHW00a] showed an improved version of randomized greedy hot-potato routing that runs in a 2 

dimensional mesh and torus by utilizing “home-runs” (or one-bend paths). Packets are assigned 

different priorities (normal, turning, walking, excited, and running) during routing based on a set 

of rules. The priorities are used to resolve conflicts. The algorithm delivers packets in 

asymptotically optimal expected O(n) steps, and delivers all packets in O(n ln n) steps with high 

probability. The algorithm is local, the nodes are stateless, and each node makes routing 

decisions independent of the state of other nodes. However, it requires some state being stored 

on the packet itself. This may not be desirable or possible in some systems. The algorithm does 

not easily generalize to higher dimensions. 

[BHW00b] improved their previous algorithm by utilizing mult-bend path instead of one-bend 

path. Packets attempts to take a multi-bend path “by choosing a logarithmic number of random 

intermediate destinations in a sequence of squares of decreasing size.” The author claims that it 

is the “first hot-potato routing algorithm [proven] for the n x n mesh whose running time on any 

„hard many-to-one‟ batch routing problem is, with high probability, within a poly-logarithmic 

factor of optimal.” 

[BCKV00] presented some experimental results on four hot potato routing algorithms using both 

the static and stochastic model for continuous packet generation on a 2 dimensional torus. The 

results showed that “although the running time for al the algorithm is close to the optimal for 

static routing problems, heavy traffic may influence differently the performance of each 

algorithm in the dynamic case”. The greedy algorithm referenced in the paper is the same as our 

algorithm. However results are limited to 2 dimensional tori, and only basic statistics are 

collected. The dynamic model uses an injection rate as flow control and buffer at nodes to store 

packets. 

[BHW01] presented what according to the author is the “first dynamic [greedy] hot-potato 

routing algorithm that does not require any form of explicit flow control” and guarantees 

asymptotically optimal performance. The performance matches the algorithm presented in 

[BU96], though the constant factors are large. The large constant term in the running time of the 

algorithm might be attributed to the fact that packets that are one step away are just as likely to 

be deflected as packets that are further away.  

3 The Simulation 
 

We implemented a program to simulate our hot potato routing algorithm on the torus network. 

The simulation allows us to analyze the runtime behavior of the system, to obtain performance 

metrics and statistics, and to see how our algorithm performs under various conditions. 

 

The simulation is implemented in C. It runs on Linux and can be easily ported to other platforms. 

The simulation supports an arbitrary number of dimensions, though in practice, this is limited by 

the amount of physical memory and the processing speed of the system. 
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We ran simulations on 1 to 6 dimensional tori. It is not practical to simulate higher dimensions 

using current hardware. The size of the torus grows exponentially with the number of dimensions. 

For lower dimensional runs, the system is CPU bound, and a moderately sized torus can be 

simulated. For higher dimensional runs, the system becomes more memory bound, only small 

torus sizes can be practically simulated. Packets and nodes take up most of the available memory. 

 

The following section describes the various options and configuration settings that can be set in 

the simulation. The various options help us better understand the behavior of the system. 

3.1 Basic Parameters 

 

The basic input parameters to the program are: 

 

 Torus dimension - d 

 Size of each dimension  - s 

 Number of rounds to simulate - n 

 

The program creates a torus of the specified size in memory, initializes the torus with packets 

(either random destination or uniform distance destination), and runs the simulation for the 

specified number of rounds, routing and delivering packets as needed. When a packet is 

delivered, a new random packet is generated in its place, and simulation continues. 

 

The program tracks a number of statistics during the simulation. The user can specify which 

statistics are to be collected. The program will output the corresponding statistics after the 

simulation. The program makes an effort not to allocate memory for statistics not requested, to 

minimize the memory footprint and leave memory for the torus and packets. 

3.2 Packet Generation 

 

Packets with random destination are generated and placed on the torus network for routing. What 

is this “random destination”? We considered 2 generation models: equal probabilistic destination, 

and uniform distance to destination. 

3.2.1 Equal Probabilistic Destination 

 

In the equal probabilistic destination model, we consider each node with equal probability, and 

randomly pick a node in the torus. This node is the destination of the packet. 

 

This is implemented using the following simple algorithm: 

 
For each dimension d 

Generate a random integer r between 1 to torus size s 

 

The packet‟s destination is the vector <r1, r2, r3, …> up to rd dimensions. 

 



 12 

This algorithm can be implemented very efficiently. The probability of a packet having a 

particular node as destination is uniformly distributed between all nodes, for all dimensions. 

Every node has an equal probability to become the destination of a packet. For example, in a 

10x10 2D system, a packet is equally likely to go to any of the 100 target destinations. 

 

The equal probabilistic destination model is the “random destination” model described in other 

studies. In the remaining sections, we‟ll continue to refer to it as equal probabilistic model to 

make it more obvious the way the destination are generated. 

3.2.1.1 Zero Distance 

 

Of all the possible destinations in the equal probabilistic destination model, one of them is a 0-

distance destination, the current node. In our simulation, we treat the packet as instantly 

delivered, regenerate the packet until a non 0-distance packet is generated. The statistics 

calculation includes these 0-distance packets. 

 

Alternatively, the simulation can be set to not generate 0-distance packets.  

 

Since these packets are independent of one another, including them or not will not affect the 

other packets in any way. It will just affect the system throughput. 

3.2.2 Uniform Distance to Destination 

 

In equal probabilistic destination, packets are not uniformly distributed by destination distance. 

This is important for comparing simulations across dimensions. 

 

Why is the distance not uniform? Let us illustrate this by using an example. If you roll a regular 

6-faced die, the probability for getting any of the 6 values are the same. However, if you roll the 

die twice, the distribution of their sum is no longer uniform. The probability of getting a 7 is six 

times the probability of getting a 2, as there is only one way to roll a 2 (1, 1). 

 

In equal probabilistic destination, the way we generate the destination is similar to throwing an s-

faced die d times, where s is the size of torus in each dimension, and d is the number of 

dimensions. The distance to destination is the sum of distance in each dimension. As the analysis 

above shows, the distance to destination is not uniform. In a 2D torus of size 10 in each 

dimension, there will be more packets with distance 7 than distance 2. 

 

This is not desirable when trying to compare results across dimensions. It skews the system by 

generating more packets having average distance and fewer packets with very short and long 

distances. The skew will be more extreme in higher dimensions. In a 6D system, most of the 

initial packet distances are concentrated on a narrow range of distances in the middle. To solve 

this problem, we came up with an alternative packet generation method. 

 

Our method works by first picking a distance uniformly among all possible distances, then 

picking a node having that distance away. 
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Here‟s the algorithm: 

 

1. Let t be the range of possible distances for the torus system (d * s/2). 

2. Generate a random distance x between 1 to t. 

3. Repeat following until all partitions are valid (less than s/2). 

o Partition x into d random segments by generating d-1 points between 1 to x. 

o The length of each segment, p, some of which may be 0, is the corresponding 

distance in each dimension. 

4. The packet‟s distance to destination vector is <p1, p2, p3, …> up to pd. 

5. Calculate the destination node from current node and <p1, p2, p3, …>. 

o For each dimension i 

 Flip a coin, representing the direction, left or right, for dimension i from 

the current node. 

 Based on direction, calculate the destination address ri based on current 

node address, and distance pi. 

o The destination node is <r1, r2, r3, …> up to rd. 

 

This approach essentially generates the destination in a top down approach. We first generate the 

desired distance, and then break the distance into its dimensional segments. It should be apparent 

from the algorithm that the total distance will be uniformly distributed. 

 

In step 3, we partition the distance x into d segments by randomly generating d-1 points along the 

line 1 to x. However, this may produce a partition that‟s longer than the maximum possible 

packet distance for a dimension. Therefore, not all partitions are valid, and the steps must be 

repeated until they are. 

 

For example, in a 3D system of size 40, the maximum distance in each dimension can be 20. 

Therefore, the range of possible distances are from 1 – 60. Let‟s say we picked distance 60. It 

should be obvious that the only target destination that will satisfy this distance is (20, 20, 20). If 

we partition the distance any other way, for example (1, 1, 58), it will not correspond to a valid 

torus address, as distance for each dimension can only be up to 20. 

 

We solve this by discarding invalid partitions, and repeating step 3 again, until we get a valid 

partition. This will work, however performance may suffer for some of the corner cases. For 

example, it will likely take many tries to generate the 20, 20, 20 partition for distance 60.  

 

We optimized this by noticing that partitions are symmetrical with respect to the middle distance. 

Using our example above, partitioning distance 60 is the inverse of partitioning 0. Partitioning 

distance 0 yields only 1 valid partition, (0, 0, 0). Simply flip the result by subtract max distance 

of each dimension (s/2) to this value, and we end up with the correct answer (20, 20, 20). 

 

In other words, we restrict our partitioning up to t/2. For distance x above t/2, we simply partition 

the distance t - x, and set s/2 - p as the distance to destination vector. The chances of producing 

an invalid partition of distance 30, where each partition can be up to 20, is significantly less than 

trying to partition distance 60. In fact, 30 becomes our worst case. Distance 60 will be 

partitioned in one round. 
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Using this method, uniform distance to destination can be generated with just a very slight 

performance hit compared to equal probabilistic destination. 

3.3 Simulation Cutoff 

 

The simulation typically runs for n iterations. At the end of the iteration, we calculate statistics 

such as delivery rate, delivery time, etc. However, at the end of the simulation, the system is still 

full of packets that need to be delivered, and they are not random packets. If these packets are 

ignored in some of the calculations, it could affect the result (since they are not delivered, they 

don‟t contribute to the delivered statistics).  

 

This could be important because packets that are left over are packets that didn‟t get delivered. 

So the statistics we collect may be skewed by packets that got delivered, but not taking into 

consideration packets that are not yet delivered. This may make our result look better than what 

it really is. We could improve the calculation if we can take these packets into consideration. 

3.3.1 Approximation 

 

The initial change we made was to estimate the delivery distance for these pending packets by 

using data from already delivered packets. If during the simulation packets that are x away got 

delivered in y steps on average, then we can estimate the delivery time for packets in the system 

at the end of the simulation by using this information. When the estimates are calculated, we 

update our average using the new estimate. 

3.3.2 Run Until Deliver 

 

While the approximation method is an improvement, it is still just an approximation. To make 

the result more precise, the simulation can be set to run until all packets at the ending iterations 

are delivered. Packets introduced after the ending iteration are routed accordingly, but will not be 

included in the statistics calculation. When all packets that were present at the ending iteration 

got delivered, the simulation ends. 

 

This way, we are essentially running the system until all useful data are gathered. We are no 

longer estimating the delivery time of pending packets, we are running the simulation until they 

are all delivered. This ensures the system is running for long enough that the simulation results 

are somewhat meaningful. 

3.4 Statistics Start 

 

By default, statistics are collected from round 1. An option exist to ignore statistics for the first n 

rounds, useful for collecting statistics after the system has reached steady state. 
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3.5 Initial Network State 

 

The torus is initialized with random packets using one of the packet generation models. This 

represents the average/normal state, i.e. all packets have some destination to go that have certain 

distribution (equal destination probability for every node, or uniform distance destination), i.e. a 

truly random system. 

 

We can also start with a different state, the “bad state”. What is a bad state? A bad state is where 

packet interference keeps packets from making good progress toward their destinations. 

 

This is very useful because knowing how the system behaves in the bad state would allow us to  

simulate what happens if the system got into the bad state by chance, however unlikely. What 

happens afterwards? Does it recover or stay in the bad state? Knowing that it recovers from the 

bad state will give us some confidence that even if it goes into some bad state, it won‟t stay there 

forever. 

3.5.1 Starting from a Bad State 

 

Let‟s first decide on what is a bad state. Let‟s analyze the 1D case. What is the worst possible 

configuration? The worst possible configuration occurs when every packet wants to go in the 

same direction. However, it doesn‟t quite work if we simply start by setting every packet to go to 

the same direction for the maximum possible distance. It may seem bad, but actually is not. 

During the 1
st
 round, half of them will get their first choice and go to the left, the other half will 

get their 2nd (wrong) choice, and go to the right. However, at the 2
nd

 round, because all packets 

start out with the maximum possible distance and the torus wraps around, all those packets that 

got their 2
nd

 choice, will “wrap-around”, having a new 1
st
 choice opposite of the packets that got 

their first choice in the 1
st
 round. In other words, all packets have non-conflicting 1

st
 choice. The 

system is in the best possible configuration, in that all packets will move closer to their 

destination (even if all packets are still far from their destinations). 

 

To ensure that the system stays in a bad state as long as possible, we cannot use the maximum 

possible distance. What we are really trying to do is, after this round, ensure that those packets 

that did not get their first choice, still have the same first choice. We want to maximize the 

number of rounds that this property is true. 

 

The distance that maximizes this property is s/4 for 1D torus. For example, if the torus size s is 

20, then every packet wants to go to the left, and is 5 away from its destination. This ensures that, 

for the first 5 steps, every packet still has the same first choice direction. 

 

This can be generalized to higher dimensions. In the 2D bad state, every packet wants to go in 

the exact same direction (having the same 1
st
 and 2

nd
 choice direction), and retains that property 

for as long as possible. For example, not only do all packets wants to go up and left, they all 

want to go up first, then left, for as many iterations as possible. 
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Let d be the torus dimension, x be the radius of the torus (s/2, the maximum distance a packet 

can go in each dimension). The distance vector pi is simply 

 

 For i = 1 to d 

  pi = i / (d + 1) * x 

 

Essentially, we place d+1 equal distance markers on x. The distance vector is simply the starting 

position to each of these markers. For 1D, this is <1/2> * x. For 2D, this is <1/3, 2/3> * x. For 3D, 

this is <1/4, 2/4, 3/4> * x. This ensures that for the first 1/d+1 rounds, no matter what choice a 

packet travels, its first d choices are exactly the same. 

 

Once the distance vector is calculated, we generate the destination address using the distance and 

a fixed random direction (same for all packets) for each dimension. 

 

This forces packets into a random walk for the first x/(d+1) steps, during which no packets can 

be delivered, and no packet choices can change. A packet gets its i-th choice if it is the i-th 

packet chosen at a node, completely random. Hence, the random walk. 

3.6 Directional Dependency 

 

The simulation starts with a random state. All packets have some destination to go that is 

independent of one another. As the simulation progresses, packets are no longer independent. 

The route a packet takes depends on its history. 

 

It would be interesting to know how much of the routing performance is changed by directional 

dependencies between neighboring nodes. Does it help, or make things worst? That is, do 

dependant packets interfere with each other‟s progress more constructively, or destructively, 

compared to independent packets?  

 

Beyond just looking at how many packets get their i-th choice directions, we also consider a 

system just for comparison, with “reset packet direction”. 

 

How do we simulate a system with no directional dependencies? We do so by forgetting our 

destination at each step, while retaining the distance to destination vector, and instead using a 

random permutation of this vector. At each step, we abandon our current destination and 

randomly pick another destination with a random permutation of the abandoned distance to 

destination vector.  

 

This ensures that for this round, the routing choices for this packet are not affected by the 

previous routes it has taken, or previous collisions with other packets. For example, if a packet 

needs to go <5, 3> to reach its destination, after the reset, it may end up with <-5, 3>, <-3, 5>, etc. 

The distance to destination and the distance vector is still the same, but the direction it needs to 

go to reach destination is completely random (independent) now. 
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Comparing this simulation result (clearly, this is not true routing, and is only for information 

collection comparison) to the original allows us to see how directional dependency affects the 

routing. 

3.7 Program Usage 

 

There is one executable for each dimension. The default compile produces executables for 1-8D. 

Higher dimensions can easily be compiled by simple makefile changes. 

 

Here‟s the output of the help screen of the 2D executable (showing an extra 2d only option, 

packet configuration count statistics). The program supports more options than those discussed 

above. The extra ones should be self explanatory. 

 
Random Torus 3.6 [Sep 27 2009 14:46:37] (X-DIM edition) 
 
Usage: bin/2d_torus [options] <torus_size> <iterations> 
 
Options: 
  -z            do not generate 0 distance packets 
  -d <dist>     only generate <d> distance packets [0: 1 to s/2 * dim] 
  -i            worst possible initial packet dependencies 
  -r            reset packet direction at each round 
  -m            do NOT randomly pick equal distance direction 
  -c            simulate until all packets at round MAX are delivered 
  -a <n>        only collect statistics starting with round n [default: 1] 
  -p <second>   progress thread sleep interval [default: 2] 
  -s <options>  statistics options 
      1         packets delivered at each round 
      2         packets with initial distance [X] delivered at each round 
      3         average delivery time for packets with initial distance [X] 
      4         % of packets getting their n-th choice at each round 
      5         % of packets moving closer to destination at each round 
      6         % of packets having only [X] direction to go at each round 
      7         packets that are [X] away from their destination at each round 
      8         packets that started [X] away from their destination at each round 
      9         average delivery time for packets with initial distance <x1,x2..> 
      a         packet configuration count 
      -         all statistics 
  -l <options>  debug output options [default: 0] 
      1         output delivered packets at each step 
      2         output torus configuration at each step 
      3         output direction reset information for -r 
      4         enable and output tracer packet 
  -x <n>        generate [n] random numbers (0-255) 
  -y <n>        generate a random permutation of 0-[n] 
  -w <n>        print [n] numbers per line for -x/-y [8, 5] 
 
Routing on 2-dimensional torus with random packets. 

3.7.1 Tracer Packets 

 

We used tracer packets to validate the correctness of the algorithm. We output the progress of the 

tracker packet to make sure the routing and delivery is performing correctly. 

 

Here‟s the output of a 2D simulation with tracer packet enabled: 

 
Initializing torus (2D x 10) ... (100 nodes) done. 

Initializing statistics ... done. 

Generating 400 packets ... done. 
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Torus size: 10, dim: 2, rounds: 10 (100 nodes, 4 packets each, 400 packets total) 

 

[1] (0, 0) tracer: [(0, 0) => (3, 1), dist=4, hops=0], id=1 ==> choice #2 (dim=2, dir=1) * 

[1] (0, 1) tracer: [(0, 0) => (3, 1), dist=3, hops=1], id=1 ==> choice #3 (dim=2, dir=0) 

[1] (0, 0) tracer: [(0, 0) => (3, 1), dist=4, hops=2], id=1 ==> choice #1 (dim=1, dir=1) * 

[1] (1, 0) tracer: [(0, 0) => (3, 1), dist=3, hops=3], id=1 ==> choice #2 (dim=2, dir=1) * 

[1] (1, 1) tracer: [(0, 0) => (3, 1), dist=2, hops=4], id=1 ==> choice #2 (dim=2, dir=1) 

[1] (1, 2) tracer: [(0, 0) => (3, 1), dist=3, hops=5], id=1 ==> choice #2 (dim=2, dir=0) * 

[1] (1, 1) tracer: [(0, 0) => (3, 1), dist=2, hops=6], id=1 ==> choice #1 (dim=1, dir=1) * 

[1] (2, 1) tracer: [(0, 0) => (3, 1), dist=1, hops=7], id=1 ==> choice #1 (dim=1, dir=1) * 

[1] (3, 1) tracer delivered: [(0, 0) => (3, 1), dist=4, hops=8] id=1 

[2] (3, 1) tracer: [(3, 1) => (4, 3), dist=3, hops=0], id=613 ==> choice #1 (dim=2, dir=1) * 

[2] (3, 2) tracer: [(3, 1) => (4, 3), dist=2, hops=1], id=613 ==> choice #4 (dim=1, dir=0) 

 

start time: 2009-09-28 13:09:05 

end time:   2009-09-28 13:09:05 

duration:   00:00:00 (0s) 

 

+ packet initial distance: average: 5.066079, min: 0, max: 10, n: 681 

  packet delivery time   : average: 5.345196, min: 0, max: 9, n: 281 

 

Freeing statistics ... done. 

Freeing torus ... done 

 

Each line of the tracer output contains: 

 

1. tracer packet # in [], incremented when delivered. 

2. current node in () 

3. packet info in [] (start node, destination, distance to destination, hops traveled) 

4. packet id 

5. choices taken (dimensions taken, directions taken) 

6. whether it got closer or not (* if it got closer). 

3.7.2 Simulation Time Estimate 

 

When simulating a large torus for extended number of rounds, the simulation time is often in the 

hours. It is useful to know how long the simulation will take under those circumstances. 

 

To better assist the user in setting up simulation runs and get an estimate of how long a particular 

simulation will take, the program uses a monitor thread to report progress on the simulation, and 

calculate an estimated simulation time. The program attempts to compute an accurate time 

estimate by timing existing simulation speed, and project simulation time based on this data. 

 

The time projection calculation is not entirely straightforward. In each round, the simulation 

engines goes through 2 stages of processing. In the 1
st
 stage it moves all packets from input 

buffer (packets received from previous round) to output buffer (to be processed/routed). In the 

2
nd

 stage, it processes all the packets on the output buffer, delivering packets that have arrived at 

destination, and routing packets as needed based on our routing algorithm, moving packets from 

the output buffer of this node to the input buffer of the node it got routed to. 

 

Intuitively we can simply record the starting time, the current round and the time, and based on 

this, calculate time needed for simulation. This works for small dimensions and small size tori, 

where every second we go through many rounds. It doesn‟t quite work for higher dimensional 
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tori, where each round can take some time, and each stage within a round can take quite a while. 

We don‟t want to wait for a few rounds to get an estimate. 

 

To improve the estimate, we first figure out the ratio between 1
st
 stage and 2

nd
 stage through trial 

runs. This is approximately 1/3 vs. 2/3, i.e. the 2
nd

 stage is about twice as long. This initial ratio 

is hard coded into the simulation, and gets updated when real data is available. With the ratio, we 

can get a better sense of where we are in the simulation even when the 1
st
 stage within the 1

st
 

round is not finished. For example, if we are 2% into the 1
st
 stage after 2 seconds (based on 

number of nodes processed, and total number of nodes), we can estimate how long the 2
nd

 stage 

will take, and estimate how long each round will take. Based on this, we can estimate how long 

the simulation will take. Once more data are available, a updated estimate is displayed. 

 

With this method, the program can compute a fairly accurate time projection just a few seconds 

after the simulation has started. The estimate improves slightly as the simulation progresses, but 

the initial estimate generally is well within the ballpark figure. 

3.7.2.1 Time Estimate Output 

 

Here‟s the output from the monitor thread, updated every 2 seconds (configurable): 

 
68.73% [=================>        ]  660/960 [399966/512000]  14470 D/s  1199896 R/s  00:29:28 [00:13:24] 

 

1. percentage completed 

2. progress  

3. current round / set round: which round is the simulation on, how many round total. 

4. current node / total node: The current node being processed, total node in the system. 

5. deliveries / second: # of packets delivered per second 

6. routing / second : # of packets routed per second 

7. time elapsed 

8. estimated remaining time 

 

If the remaining time is more than 24 hours, instead of simply output a large H:M:S, it will 

reformat it to day, month, and year if necessary, as in “[1y 128d 13:39:12]”. 

 

When the simulation is set to continue until all packets at the ending round are delivered, the 

progress bar resets back to 0% after reaching the ending round, and remaining progress is 

calculated based on a count of the remaining number of packets that needs to be delivered. 

4 Statistics 
 

In this section, we discuss the various statistics our simulation collects. Statistics can be turned 

on/off as desired, maximizing available memory for the simulation itself. 

4.1 Packets delivered at each round 

 

This is the delivery rate. This allows us to track the system throughput. How does the system 
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perform? How does it change over time? How does it compare across dimensions? Does the 

delivery rate stabilize? We consider a stabilized delivery rate the steady state, where the number 

of deliveries per round is consistent from round to round. How long does it take to reach the 

steady state? 

4.2 Packets with initial-distance [X] delivered at each round 

 

Delivery rate but by initial distance. Are packets being delivered for all initial distances? How 

does this distribution compare with the packet generation model? At steady state, this should be 

the same as the packet generation distance distribution. 

4.3 Average delivery time for packets with initial-distance [X] 

 

This is our main delivery time metric. It allows us to answer questions such as how long does it 

take to deliver a packet? Is the delivery time linear with respect to initial distance? 

 

This calculation is affected by how the simulation is ended, whether approximation or run-until-

delivery methods are used. 

4.4 Average delivery time for packets with initial distance (x,y,z,..) 

 

Delivery time but by initial distance vector instead of initial distance. This allows us to see for 

same distance packets, whether more directions to destination translate to faster delivery time, i.e. 

packets with distance <5, 5> gets delivered faster than packets with distance <0, 10>. 

4.5 % of packets getting 1st, 2nd, etc choice direction at each round 

 

This will provide some insight into our routing. If few packets are getting their 1
st
 choice, then 

the routing is obviously bad. If most packets are getting their 1
st
 choice, then we have a good 

indication that the routing is performing well. How does 2
nd

 choice number compare to 1
st
 choice? 

Are they about the same, or different? 

 

We only consider the first d choices, as the remaining choices will generally move the packet 

further from its destination. Note, it is possible that some of the first d choices will move a 

packet further from its destination (if a packet location already matches its destination in some 

dimension), and also that if a packet is at the maximum distance in lower dimension, movement 

in one of the last d choices will actually move the packet closer (the latter happens infrequently). 

4.6 % of packets moving closer to destination at each round 

 

This metric is related to, but different from the previous one. If a packet does not get its first 

choice, it may still move closer to its destination if it gets its 2nd, or 3
rd

, etc, hence making 

progress toward its destination. Sometimes the 2
nd

 choice will not move the packet closer, if the 

packet only has 1 dimension to go to reach its destination. Therefore a different indication of 



 21 

routing performance is to see what percentage of packets are moving closer. If this number is 

high then routing is working well. If this number is low then routing is performing poorly. 

4.7 % of packets having only 1, 2, 3... directions to go at each round 

 

When a packet starts out, it may have several directions to go to get closer to its destination. 

However, when it gets closer, it may have fewer dimensions to go, and hence its route flexibility 

decreases. This metric allows us to get a sense of the overall packet route flexibility of the 

system, and how it changes over time. Do packets retain their flexibility as long as possible? Or 

does flexibility run out quickly and a lot of packets end up having only few directions to go after 

a short period of time? 

 

This is an important metric since one of the key points of our algorithm is that it retains packet 

routing flexibility as long as possible, unlike the one-bend path algorithms. 

4.8 Packets that are [X] away from their destination at each round 

 

If routing is going well, then most packets will move closer to their destination. Therefore, there 

should be more packets closer to their destination than packets that are further away. If routing is 

not working well, this may not be true. This metric allows us to see if this is the case, and gain a 

better understanding of the system and our routing. 

4.9 Packets that started [X] away from their destination at each round 

 

This is similar to the previous metric, but uses the packet‟s initial distance rather than current 

distance. If routing is going well, there should be fewer packets with short initial distance than 

long initial distances, since those packets should be delivered already. This basically brings us 

another view of steady state and how we get to it. 

4.10   Packets configuration at each round (2D-Only) 

 

The configuration of a node is the direction of the 1
st
 and 2

nd
 choice for all the packets in the 

node. That is, how many nodes have 4 packets with the same first and 2
nd

 choices, vs. those with 

4 different choices? 

 

This allows us to compare our system with that of a completely independent system. If we 

generate the packet directions randomly, we can calculate the number of configurations we have, 

and the probability of a given node to be in a specific configuration. We can see how our system 

compares with the independent system. Do more nodes end up in a particular configuration than 

it otherwise should? Or does it closely resemble the random independent system? 
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5 Results 
 

In this section we discuss the simulation results and our analysis on these results. 

 

For our analysis, we performed various simulations on 1 - 6D torus of various sizes. We hope to 

answer the following questions based on the simulation: 

 

 What happens to the system as time goes by? Are packets being delivered? Are they 

going where they needed to go? 

 Does the system reach a steady state? What % of packets are going in the right direction? 

As a packet gets closer to its destination, does it become more difficult for it to make 

progress toward its destination? 

 How long does it take for packets to be delivered? What is the expected delivery time of 

a packet with distance x to its destination? 

 How do torus size and the number of dimensions affect packet delivery time? Do higher 

dimensions imply longer delivery time? Or shorter delivery time? 

 What is the system throughput? How many packets are being delivered? How close is the 

system to the theoretical optimal? 

 

In the following data, we used abbreviations for the packet generation model. EP refers to equal 

probabilistic destination. UD refers to uniform distance to destination. 

5.1 Resource Utilization 

 

Here is some information on the resource utilization of our simulation. This will provide some 

insight into how torus dimension and size translates into memory and cpu usage, and what size 

torus can be practically simulated on current systems. 

 

Our simulation system is a 2-core hyper-threading P4 system with 2GB of RAM. Although the 

size of each dimension can be up to 65536, and the total number of nodes in the system can be 

up to 2^32, in practice it is much smaller than this limit because the packets themselves take up a 

large portion of the memory in higher dimensions, and higher dimensions do have lots of packets. 

 

 A 1-dimensional torus of size 65536 has 131072 packets and uses about 7MB of ram. 

Simulating 1000 rounds takes about a minute. 

 A 3-dimensional torus of size 128 has 12582912 packets and uses about 456MB of ram. 

Simulating 1000 rounds takes about 5 hours. 

 A 6-dimensional torus of size 11 has 21258732 packets, and uses about 1034MB of ram. 

Simulating 1000 rounds takes about 17 hours. 

 An 8-dimensional torus of size 6 has 26873856 packets, and uses about 1500MB of ram. 

Simulating 1000 rounds takes about 30 hours. 
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Each packet is 4d+7 bytes (4d bytes for the start and destination location, 7 bytes for tracking 

data such as id, hops traveled, etc). Each node is 16d + 8 bytes, essentially 2 arrays of pointers 

representing the receiving and sending buffer. 

5.2 Delivery Time 

 

The first metric we will examine is delivery time. This is the measure of how long it takes to 

deliver a packet from the source to its destination. This important metric allows us to see how 

fast packets are being delivered, what the expected packet delivery time is, and how delivery 

time changes with respect to change in initial packet distance. 

5.2.1 Simulation Setup 

 

We ran the following simulations on 1-6D tori. Both equal probabilistic destination and uniform 

distance to destination packet generation models were used. We started collecting statistics after 

120 rounds, to wait for the system to reach a stable state get a better average of the delivery time. 

The simulation ends when all the packets at the ending round are delivered. Therefore the actual 

number of rounds simulated is larger than the set round. 

 

The different torus sizes are picked so the average packet distance is the same across dimensions. 

This allows us to compare routing performance across dimensions. 

 

Here are the torus sizes we used and the simulation setup: 

 

Dimension Torus Size Average Distance Rounds 

1 60 15 360 

2 30 15 360 

3 20 15 360 

4 15 14 (UD), 14 14/15 (EP) 360 

5 12 15 360 

6 10 15 360 

 

For 4D, the torus size is an odd number. The average distance is not 15 as with the other 

dimensions where the torus size is an even number. (We can make all the torus sizes larger, 

however the larger dimensions would take too long to simulate). 

 

In 4D, the maximum distance of each dimension is 7. The maximum total distance is 28. 

Therefore, the average distance is 14, not 15, in the uniform distance to destination model. 

 

In equal probabilistic model, the average distance is 14 14/15. We pick each of the 15 nodes for 

each dimension with equal probability. This results in an average distance of  

 

4 * (0/15 + 2 * (1/15 + 2/15 + … 7/15)) = 4 * (56 / 15) = 14 14/15 = 14.933333. 

 

Because the 4D average distance is not the same as the rest of the dimensions, it will affect some 

of our results, as we will note later. 
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5.2.2 Delivery Time (Uniform Distance to Destination) 

 

We ran the simulation for delivery time using uniform distance to destination packet generation 

model. The set round is 360. 

 

This is the number of rounds the simulation actually ran to deliver all the packets in the system at 

round 360. Approximately 100 extra rounds were needed to delivery all the packets. Note the 4D 

case with average initial distance 14 instead of 15. 

 

 1D 2D 3D 4D 5D 6D 

Actual 

Round 

456 456 440 439 472 464 

Average 

Initial 

Distance 

15.045958 14.947924 
 

14.992438 
 

14.000414 
 

14.997775 
 

14.999822 
 

Average 

Delivery 

Time 

23.551943 
 

25.160409 
 

23.611064 
 

21.555919 
 

22.455879 
 

22.269574 

 

Here is the plotting of packet delivery time against its initial starting distance: 

 

Packet Delivery Time (UD)

0

5

10

15

20

25

30

35

40

45

50

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Initial Distance

D
e

li
v

e
ry

 T
im

e

1D

2D

3D

4D

5D

6D

 
 

The chart starts at initial distance 1, since 0 distance packets take 0 time to get delivered, so we 

do not include them in our chart. In addition, for 4D, the initial distance only goes up to 28 (4 * 

7). Therefore the line does not cover the entire range. 
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From the data, we can see that delivery time grows linearly with respect to initial distance, for all 

dimensions. This indicates delivery time is consistent across the entire range of packet distances 

for all dimensions without any major anomalies in its delivery time. It‟s our first indication that 

the system is behaving well. Linear delivery time is very good and the constant does not appear 

to be large either, roughly about 1.3. There does appear to be a bit of an overhead, noted by the 

non-zero intersect of about 2. 

 

For 2D to 6D, the delivery time is slightly smaller for higher dimensions. 1D does not follow this 

trend, even if we increase the number of rounds to smooth out the average. To more easily see 

the trend difference between the various dimensions, we plot the delivery time delta against a 

standard reference approximation of 4/3 initial distance. Here‟s the result: 
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The chart shows the delivery time difference from that of a reference 4/3 initial distance plot, 

which is the x-axis. From the data, we see that with the exception of 1D, higher dimensions 

contribute to lower delivery time, for packets with initial distance 7 or larger. 

 

Let us examine the same data in yet another way. We plot the delivery time of a specific distance, 

1, 5, 10, etc, for the different dimensions. (Remember the torus sizes are chosen such that the 

average and maximum distance for packets are the same). This allows us to more easily how 

dimensions affect delivery time. 
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Delivery Time of Specific Initial Distance Across Dimensions (UD)

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6

Dimension

D
e
li
v
e
ry

 T
im

e

1

5

10

15

20

25

28

 
 

The results are encouraging. We see that dimensions contribute positively to the delivery time of 

a packet, especially for longer distance packets. This makes sense if we think about it. In higher 

dimensions, there are more ways for the packet to be traveling in the „right direction‟ than it is in 

lower directions. As a result, the packet is more likely to be traveling in the right direction than 

in lower dimensions. This should result in decreased delivery time. 

 

For example, in 1-dimension, a packet is either traveling the right direction, or in the wrong 

direction, it‟s one way or the other and nothing in between. But in 2-dimension, there could be 2 

„right‟ directions, and only if both of these directions are not available does the packet go in the 

„wrong‟ direction. 

 

Note again that 1D result does not quite match the trend, with better results than the 2D system. 

5.2.3 Delivery Time (Uniform Distance to Destination, Reset Direction) 

 

To see how directional dependencies affect the delivery time, we re-ran the above simulation, but 

using the reset direction option.  

 

 1D 2D 3D 4D 5D 6D 
Actual Round 432 428 441 449 449 457 

Average Initial 

Distance 
14.921472 
 

15.022666 
 

14.982343 
 

14.003154 
 

15.002155 
 

15.000401 
 

Average Delivery 

Time 
31.470046 
 

25.631999 
 

23.64371 
 

21.529618 
 

22.449131 
 

22.255259 
 

 

Here are the results: 
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Packet Delivery Time (UD-Reset)
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Results are similar to the regular UD simulation, with 1D being higher than the other dimensions 

this time. The growth rate is linear with similar constant. 

 

Here‟s the 2
nd

 plot comparing delivery time across dimensions: 
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Unlike the UD simulation, 1D does follows the trend of the remaining dimensions. The 

advantage in delivery time is still there for higher dimensions for long distance packets. 
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Let‟s now take a look at how the reset option affects delivery time, for each dimension: 

Packet Delivery Time (UD, Normal vs Reset, 1D)
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In 1D, delivery time is longer with reset direction option. This indicates directional dependency 

improves delivery time, as packet momentum helps cutting down delivery time. Reset direction 

removes any momentum from routing, therefore the delivery time is longer. 

 

Packet Delivery Time (UD, Normal vs Reset, 2D)
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In 2D, reset direction also negatively affects delivery time, however the differences are much 

less than those in 1D.  
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Packet Delivery Time (UD, Normal vs Reset, 3D)
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In 3D, the differences are minimal. 

 

Packet Delivery Time (UD, Normal vs Reset, 4D)
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4D and higher there are no difference as the 2 line tracks each other precisely. 
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Packet Delivery Time (UD, Normal vs Reset, 5D)
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Packet Delivery Time (UD, Normal vs Reset, 6D)
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As we can see directional dependency improves delivery time most notably in 1D and 2D. In 

higher dimensions, there isn‟t really a difference. Looking at the raw data, the reset direction 

delivery time is slightly larger, but the difference really is minute. 

 

It is important to note that in all cases, directional dependency helps us, i.e. the system is slightly 

better than that of a completely independent system. 
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5.2.4 Delivery Time (Equal Probabilistic Destination) 

 

Let‟s take a look at delivery time using equal probabilistic destination packet generation. We 

want to see if there are any routing performance differences using the other model. 

 

For this simulation, we set the number of rounds to be significantly higher for lower dimensions, 

to get a better average of the delivery time. 
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Note for 4D, the average initial distance is not 14 as with UD, but 14 14/15. In equal 

probabilistic destination, the simulation result confirms this. 
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The data looks very similar to uniform distance to destination model. The 1D data is a lot 

smoother now, thanks to the larger number of packets used to do the average due to the larger 

number of rounds. 
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Here‟s the delivery time delta plot comparing to 4/3 initial distance: 

Packet Delivery Time Delta (EP)
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Similar to the Packet Delivery Time Delta (UD) plot, from 2D to 6D, delivery time is lower for 

higher dimensions, for initial distance 8 and higher. The 1D data is smoother because the EP 

simulation used a significantly higher number of rounds for lower dimensions. 

 

The delivery time is linear with respect to initial distance, and higher dimensions have lower 

delivery time, as the next chart shows: 
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The above data shows routing is consistent for both of our packet generation models. This is 

good, as it says our routing is not impacted by the packet distance distribution, as in equal 

probabilistic destination model, there are significantly more packets having average distance in 

higher dimensions. 

5.2.5 2D Delivery Analysis 

 

In our analysis of delivery time above, we grouped packets by initial distance. A packet that is x 

away is expected to be delivered faster than a packet that is x+1 away. It would be interesting to 

know how change in the initial distance vector for the same packet distance affects delivery time. 

For example, is delivery time faster for packets having distance <5, 5> vs. packets of distance 

<10, 0>? 

 

The <5, 5> packets should have a more flexible route than the <10, 0> packets, since they has 2 

directions they can travel that will bring it closer to destination instead of 1 for the <10, 0> 

packets. We want to know if this analysis holds for all the combinations of distance vectors in 

general. 

 

We ran a more detailed simulation on a 2D torus of size 30 for 100,000 rounds, group packets by 

their initial distance vector, folding symmetry between x/y coordinates (for example, <2, 3> is 

considered the same as <3, 2> in our grouping). Statistics are collected after 120 rounds, to allow 

the system to reach a stable state.  

 

Here are the results in a tabular format: 

 
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0.00 2.83 5.11 7.21 9.24 11.18 13.10 14.98 16.81 18.63 20.42 22.24 24.05 25.75 27.51 28.83 

1  4.48 6.21 7.99 9.77 11.56 13.39 15.19 17.01 18.78 20.57 22.35 24.18 25.88 27.59 28.96 

2   7.74 9.31 10.92 12.55 14.27 15.93 17.64 19.35 21.08 22.85 24.60 26.31 27.99 29.28 

3    10.83 12.34 13.89 15.45 17.06 18.68 20.34 22.00 23.59 25.30 26.99 28.56 29.84 

4     13.79 15.30 16.82 18.38 19.91 21.52 23.11 24.75 26.36 27.96 29.45 30.74 

5      16.81 18.32 19.81 21.31 22.89 24.39 25.89 27.50 29.04 30.54 31.80 

6       19.73 21.29 22.77 24.27 25.75 27.28 28.81 30.36 31.75 33.02 

7        22.75 24.23 25.66 27.18 28.72 30.20 31.76 33.16 34.31 

8         25.66 27.17 28.66 30.17 31.58 33.06 34.58 35.70 

9          28.64 30.14 31.61 33.08 34.59 35.99 37.10 

10           31.57 33.09 34.53 36.05 37.39 38.61 

11            34.54 36.04 37.44 38.89 40.02 

12             37.46 38.93 40.33 41.47 

13              40.37 41.79 42.88 

14               43.09 44.14 

15                45.03 

 

The row and column heading represents the initial distance vector. The table is half empty 

because we group distance vector <x, y> and <y, x> together. The diagonal of the table, 

represented by the direction of the 2 lines of shaded cells, are packets with the same initial 

distance, but with different initial distance vectors. 
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From the shaded diagonal lines, we see that delivery time is smaller as you closer to the center, 

represents packets with more even distance distribution. Delivery time for <15, 0> is 28.83, 

delivery time for <8, 7> is 24.23, noticeably less. 

 

Here is the same data in a 3d plot: 
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The chart plots delivery time (z-axis) against the packet‟s initial distance vector (x/y-axis). Half 

of the x/y values have no data because we fold symmetrical vectors. 

 

Similar to the analysis of the table, if you visualize a line from <0, 15> to <7, 8>, you see the bar 

decreases gradually from the edge to the center. 

 

Apply this analysis to the rest of the data, we see that for the same distance, the curve slopes 

down towards the center. Packets with more evenly distributed distance vectors have a smaller 

delivery time. This trend can be observed for all distance vectors, confirming our theory that 

flexibility improves routing performance, as packets have more correct paths to travel than less 

flexible packets. 
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5.2.6 Delivery Time Trend 

 

Let‟s now take a look at the delivery time for the various dimensions while changing the torus 

size. For these simulations, we computed the overall average packet delivery time vs. the initial 

packet distance across dimensions.  

 

Here are the torus sizes we used. For most of the runs, we set the # of rounds to be 8x average 

initial distance, and run the simulation until all packets at round 8x average are delivered. 

 

1D Size 2D Size 3D Size 4D Size 5D Size 6D Size 

30 15 10 7 6 5 

60 30 20 15 12 10 

90 45 30 23 18  

120 60 40 30   

240 120 80    

 

We were not able to completely simulate some of the higher dimension sizes due to cpu/memory 

constraints. There should be enough data to see the trend. 

 

Here are the results of the simulations: 
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We see that as torus size increases, the average delivery time increases linearly as well. The data 

is very consistent and no anomalies observed, except for the 1D data, which we represented 

using dotted lines. This tells us that our routing algorithm and packet delivery seems stable, 

independent of the torus size.  

 

To better understand the difference between the various dimensions, we plot the data in a 

different format. The delivery time is linear, and the value is approximately 4/3 of initial distance. 

We plot the difference of the delivery time from this approximation. Here‟s the result: 

Delivery Time Delta as Torus Size Increases (EP)
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Ignoring the 1D data, we can clearly see a trend where higher dimensions contribute to faster 

delivery time, consistently from 2D to 6D. The 1D data difference is probably due to more 

helpful dependence between packets, as seen in section 5.2.3. 

5.2.6.1 Delivery Time Trend on 3D Tori 

 

We saw the average delivery time of the various tori in the previous section. Let‟s now take a 

look at the 3D system in more detail, tracking delivery time of each initial distance as the torus 

size increases. 

 

We ran simulation on the 3D torus system using the uniform distance to destination model. The 

number of rounds are set to 12x average distance, and continue until all packets at the ending 

round are delivered. Statistics are collected after 3x average distance rounds, to allow steady 

state to be reached for a better average. 
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Here are the simulation results, plotting the delivery time against the packet‟s initial distance for 

the various tori sizes. 
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The maximum initial distance for the various torus is 15, 30, 45, 60, and 120 respectively, 3*s/2 

in a 3D system. Therefore not all the lines are of same length. 

 

From the chart, we see the delivery rate is consistently linear for all the torus sizes. Increasing 

torus size does not really affect the packet‟s delivery time. This is good, indicating that packet‟s 

delivery time is independent of the torus size. 

 

There is one interesting observation to be made the chart. For each torus size, the delivery time 

for the upper half of the initial distance range is smaller than the delivery time in the next larger 

torus. In other words, packets that are in the upper half of the distance range, have a slightly 

shorter delivery time than they do in a larger sized torus. 

 

It is not easy to see this from the previous chart, since the lines are very close to one another. 

Here we present the data in a different way, plotting the difference between the expected delivery 

time (which is approximately 4/3 of initial distance) and the actual delivery time. 
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Variance of Delivery Time on 3D Tori of Various Sizes (UD)
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The x-axis represents the difference from a delivery time of 4/3 initial distance. From the chart, 

we observe 2 interesting points. First, for each torus, there is a peak in delivery time delta from 

our reference line, at approximately 1/3 initial distance. The higher the initial distance, the larger 

the delta. After the peak, the delivery time delta drops steadily for larger initial distance. Second, 

for the same initial distance that are in the upper 2/3 section, delivery time in the next larger 

torus is longer (larger delta value). For example, the delivery time of initial distance 26 is fastest 

in size 20 torus, followed by 30, 40, and finally size 80 torus. 

 

There are two contributing factors to this. First, the torus wraps around, therefore the delivery 

time for high distance packets would be slightly better than if the torus size is infinite. In an 

infinite torus, if higher distance packets go in the wrong direction, they will need to „undo‟ these 

steps before they can reach the destination. In our system, since the torus wraps around, these 

packets may suddenly be traveling in the right direction after a few wrong directions, reducing its 

needed delivery time. Second, for the same distance packets, they will likely have more flexible 

routes in smaller torus than they do in larger torus. For example, for distance 6, it is possible to 

have no flexibility in routing for a size 80 torus, but must have some flexibility for size 10 torus. 

More flexibility implies better delivery time. 

 

Therefore, the delivery curve for all tori have a slight bias toward faster delivery time for the 2
nd

 

half of the initial distance range. If we want to accurately simulate delivery time for distance x, 

we should simulate it on a larger size torus where x is well within the first half of the distance 

range. (In practice, this doesn‟t really make too much of a difference, since the differences are 

quite small.) 
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5.3 Delivery Rate 

 

We‟ve analyzed delivery time in detail. Now let‟s take a look at another important metric, packet 

delivery rate. This is simply a measurement of how many packets are being delivered. Of course, 

for steady state, this can be calculated from the delivery time, but it is interesting to observe this 

from initial state to steady state to see how it changes. 

5.3.1 Simulation Setup 

 

For this simulation, we used the same torus sizes as we used in the previous section, keeping the 

average initial distance same for all the dimensions.  

 

We ran simulation on 3 different scenarios: 

 Normal starting state (uniform distance to destination) 

 Starting from the bad state 

 Resetting packet directions at each round. 

 

The number of rounds is set to 360 for all dimensions for the normal starting state and the reset 

direction option. Larger rounds are used for starting from the bad state to better observe the 

delivery rate. 

 

Dimension Torus Size Average Distance Rounds Rounds (Bad State) 

1 60 15 360 960 

2 30 15 360 960 

3 20 15 360 960 

4 15 14 360 1440 

5 12 15 360 1440 

6 10 15 360 1440 

5.3.2 Delivery Rate (Normal & Starting from Bad State) 

 

Here are the results of the simulation comparing the delivery rate for 1-6D for normal and bad 

initial starting state. Although the simulation for starting with bad state contains more rounds 

than the chart below shows, the delivery rate not shown is very stable. The chart range is selected 

to maximize the transition data. 

 

The “optimal” delivery rate in the chart represents the impossible to achieve theoretical optimal 

where every packet moves closer at every time step. This is simply not possible to achieve due to 

packet route conflicts. We include this to show how the routing algorithm performs with respect 

to this theoretical optimal. 
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Delivery Rate (1D-UD)

0

2

4

6

8

10

12

14

1 24 47 70 93 116 139 162 185 208 231 254 277 300 323 346 369 392 415 438 461 484 507 530 553 576 599 622 645 668 691

Round

D
e
li

v
e
ry

1D

Bad State

Mov Avg

MA Worst

 
 

The 1D data is noisy because the number of packets we are averaging each round is small, 

around 5 for 1D torus. This number will not increase even if we uses a larger size torus. 

Therefore a moving average is provided for the data. 

 

From the chart, we see the delivery rate for the normal case is sort of stable. Delivery rate for 

starting with bad state rises up to match the normal starting state after about 250 rounds. 
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Here are the results for 2D. The data is smoother compared to 1D because we are averaging a 

larger number of packets, around 140 per round. 

 

The plot shows packet delivery rate stabilizes very quickly for the normal starting state, and 

remains consistent. The bad state approaches the same steady state after about 220 rounds. 
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For the initial x rounds in the bad state, no packets are being delivered, as all packets have the 

same distance x. After x rounds, there‟s an interesting zigzagging pattern to the delivery rate. In 

one round, the delivery rate is large, in the next round, the delivery rate is significantly smaller (0 

initially). This pattern eventually smoothes out as the delivery rate matches the normal case. 

 

The reason this occurs is because initially all the packets start out with the same distance, 15 in 

our 2D case. Assuming none of the initial packets can ever “wrap around”, then every one of 

these packets must be delivered at an odd time step. (On all even time steps, they must be an odd 

number of steps from their destination, so they cannot have arrived on that even numbered 

timestamp). If they do wrap around, then for even size torus, wrapping around doesn‟t change 

this. However, on odd sized torus, wrapping around does change this, as the packet can now be 

delivered in even time step. We will see the effect of this in 4D. 

 

Once the packet is delivered, it is replaced with a regular packet, using uniform distance to 

destination model. Therefore, some of those packets will be at even distance from its destination, 

and could be delivered in even time steps. Therefore, the top of the zigzag represents the delivery 

of initial bad packets. The bottom of zigzag represents delivery of 2
nd

 generation and later 

normal packets. Eventually all the 1
st
 generation packets are delivered, and the system is left with 

normal packets, and as we can see, this is where it matches the normal case. 
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The 3D data is even smoother. Similar to the 2D case, the delivery rate drops slightly, then 

increases consistently until hitting a peak around round 37, then drops again and reaches the 

stable point very quickly around round 60. The rate stays there for the rest of the simulation. 

 

Starting from bad state, we reach steady state at round 220. 
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Delivery Rate (4D-UD)
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4D stabilizes around round 80. The bad state reaches steady state at 500 rounds. Notice that the 

zigzagging is smaller in 4D, due to packets wrapping around and can be delivered in odd and 

even time steps. 
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5D, normal case stable at round 90, bad state case reaches steady state at round 250. 
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Delivery Rate (6D-UD)
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6D, normal case stable at round 90, bad state case reaches steady state at round 230. 

 

Here‟s a table showing the stable and bad state catching up points for the various simulations: 

 

 Normal case stable at round Bad state stable at round 

1d 50 250 

2d 50 220 

3d 60 220 

4d 80 500 

5d 90 250 

6d 90 230 

 

From these plots and the data, we can make several observations. 

 

 Packet delivery rate stabilizes very quickly for the normal case. 

 

From all the plots, we see that the packet delivery rate stabilizes rather quickly. After 120 rounds 

(8x average distance), all systems are stable, and remain pretty constant after stabilization. This 

is very encouraging, indicating that the system reaches a steady delivery state for all dimensions, 

and once there it stays there. This indicates the routing is performing well, there are no hidden 

cost accumulating in the system that negatively affect routing in later rounds. A steady state 

exists and is maintained. 

 

 Packet delivery rate when starting from the bad starting state stabilizes to the normal state, 

and stays at the normal rate. 
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For the system that starts with the bad state, we can see that the initial delivery rate is 

significantly lower than that of the normal state. However it slowly catches up, and matches the 

normal state at steady state. 

 

This is very important. It indicates that if the system does get into a bad state (however unlikely, 

but none the less statistically possible), it will recover, and return to the steady state.  

 

 Delivery curve for normal starting state. 

 

The shape of the curve reaching steady state also provides some insights into how the routing is 

performing. In all dimensions, the delivery rate drops significantly in the first 3 rounds, then 

increases steadily to a value higher than steady state, then gradually approaches steady state, and 

stays there. 

 

In the 1
st
 round, only zero-distant packets are delivered. In the 2

nd
 round, only packets that are 1 

away, and get their 1
st
 choice, are delivered. Number of packets that are 1 away is the same as 

number of packets that are 0 away, but those getting 1
st
 choices will be smaller. Hence the drop 

in delivery rate compare to the 1
st
 round. In the 3

rd
 round, only packets that are 2 away, and got 

their 1
st
 choice both times, are delivered. Packets that were 1 away, but didn‟t get their 1

st
 choice, 

cannot be delivered. Therefore, the delivery rate drops even further. 

 

In the 4
th

 round, delivery rate picks up because the number of “eligible” packets was increased. 

Those that were 3 away and got their 1
st
 choices 3 times, and those that started 1 away but did 

not get their 1
st
 choice in round one, can all be delivered. As the simulation progresses, there are 

more eligible packets at each round, pushing the delivery rate higher. At each round, the average 

packet distance of packets that were delivered is smaller than the average distance of packets that 

were generated, as only initially close packets can be delivered in the first few rounds Eventually 

the system runs out of these packets, and have to work on those replacement longer distance 

packets, and the rate drops. Eventually the delivery rate stabilizes at the steady state, indicating 

the packet delivery distribution and packet generation distribution match. 

 

 Delivery curve for starting from the bad state. 

 

In starting from the bad state, in the first few rounds, every packet wants to go in the same 

„direction‟, therefore as a result only few packets are making progress. Therefore, as we can see 

from the plot, the initial delivery rate is very poor. The delivery rate does catch up after a number 

of rounds, and stabilizes. The zigzagging in delivery rate during catching up is because the 

original packets can only be delivered in odd numbered steps. Replacement packets can be 

delivered in all steps. 

5.3.3 Normalized Delivery Rate 

 

We now compare the delivery rate across dimensions, to see how dimensions changes delivery 

rate.  
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The delivery rate by themselves can‟t be compared directly, as the number of packets in the 

system is different between torus of different dimensions. We normalize the data by computing 

the delivery rate in terms of percentage of the total packets, and compare the percentage across 

dimensions. 

 

Here‟s a chart showing the normalized delivery rate for each round: 
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The delivery rate is very similar, around 4%, with some differences between them. The 

calculated average for the delivery rate is: 

 

1D 2D 3D 4D 5D 6D 

4.2 3.976 4.262 4.661 4.467 4.503 

 

With the exception of 1D, the delivery rate increases steadily from 2D to 6D, with the exception 

of a big increase for 4D (resulting in a drop for 5D). The 4D delivery rate is higher and throwing 

off our number because the average packet distance is 14, not 15, as we have explained in 

previous sections. Therefore packets were being delivered faster than it would have if the 

average distance is 15. If we remove the 4D data, the rate increase will be consistent. 

 

Here‟s the chart again, but with the 1D data removed: 
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Delivery Rate (Normalized - UD)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 15 29 43 57 71 85 99 113 127 141 155 169 183 197 211 225 239 253 267 281 295 309 323 337 351

Round

D
e
li

v
e
ry

 R
a
te

2D

3D

4D

5D

6D

Optimal

 
 

Except 4D, we see increase from 2D to 6D. 

5.3.4 Delivery Rate (Normal & Reset Direction) 

 

Let‟s now take a look at the packet delivery rate with the reset direction option. Recall this 

option is used to remove the directional dependency of the packet during routing, to see how 

directional dependency affects the system. Here are the results: 
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In 1D, the reset option yields a lower delivery rate. 
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Delivery Rate (2D-UD)
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In 2D, it‟s very close. The reset‟s moving average just a bit below the not reset average. 
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Delivery Rate (4D-UD)
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In 3D and 4D, they are basically the same. 

 

Delivery Rate (5D-UD)
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In 5D and 6D, the delivery rate for the normal case is smoother and more consistent than the 

reset case, but the rate is the same. 

 

As the data shows, the delivery rate for the reset/independent system is lower in 1 and 2D, and 

identical in higher dimensions. This matches very well to our finding from the delivery time 

simulation with reset direction. Delivery rate and delivery time can be calculated from one 

another in steady state, but here we were mostly interested in the throughput while stabilizing to 

steady state. 
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5.3.5 Delivery Rate (Equal Probabilistic Destination) 

 

We now look at the delivery rate when packets are generated using the equal probabilistic 

destination method. 

 

We show the result of the 6D plot because it‟s the most interesting one. 
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In higher dimensions such as 6D, using equal probabilistic packet generation, packets will have 

distance distribution on a narrow band centered on the average, 15. In other words, most packets 

have initial distance close to 15. 

 

Initially there were no packets delivered, because there are very few packet with distance 

significantly smaller than 15. Eventually the simulation progresses enough rounds that some of 

the short distance packets are delivered. From that point on, at each round, we have more, longer 

distance packets that can be delivered. The rate reaches a peak when most of the packets at 

distance 15 or less are delivered, but replacement packets not yet close enough to be delivered, 

so after the initial packets are delivered, the rate drops until some of the 2
nd

 generation packets 

delivery rate increases. It eventually stabilizes after the packet delivery distribution matches 

packet generation distribution. 
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Here are the charts for the rest of the dimensions: 
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Delivery Rate (2D-EP)
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The trend is less obvious in lower dimensions. In 1D the data is very noisy, due to the small 

number of packets being averaged, so a moving average is provided. 

5.4 Delivery Type 

 

We now take a look at the 3
rd

, and final packet delivery metric, delivery type. That is, for packets 

that were delivered, how many started 1 away, 2 away, etc? 

 

We are generating packets with a specific distance distribution, at steady state, the delivery 

distribution should match the input distribution (otherwise there won‟t be a steady state). Let‟s 

see if this is the case. 

5.4.1 Delivery Type Analysis 

 

Here‟s the chart of packet delivery per round by its initial distance, on a 2D system with uniform 

distance distribution. 
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The x-axis is the number of rounds. The y-axis is the initial packet distance, and the z-axis is the 

actual deliveries per round. From the chart, we see that after some rounds, the delivery is 

uniform across all distances, matching the packet generation model. 

 

For comparison, here‟s a plot of the same data, but using equal probabilistic method: 
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As we can see, at steady state the delivery matches the EP generation. Because there are more 

packets generated with distance close to average, at steady state, more packets with distance 

close to average are being delivered.  

 

Let us now take a look at the same data, but in 5D: 
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The packet delivery by distance matches very well to the packet generation model. 5D torus have 

significantly more packets, therefore the data is very smooth. 

 

Here‟s the result for 5D with equal probabilistic model: 
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Although a bit hard to see, there are more delivery for packets with initial distance 15 than those 

of 1 or 30, which is very close to 0, matching our packet generation model. 

5.4.2 Delivery Type Charts 

 

Here are the charts for the remaining dimensions: 
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4D (UD) 



 55 

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0

0

1
1

1

1
2

2

1
3

3

1
4

4

1
5

5

1
6

6

1
7

7

1
8

8

1
9

9

2
1

0

2
2

1

2
3

2

2
4

3

2
5

4

1

10

20

30

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

P
a

c
k

e
ts

Round

Packets with Initial Distance X Delivered at Each Round (4D-UD)

1

5

10

15

20

25

30

 
 

4D (EP) 

1

1
7

3
3

4
9

6
5

8
1

9
7

1
1

3

1
2

9

1
4

5

1
6

1

1
7

7

1
9

3

2
0

9

2
2

5

2
4

1

1
5

10
15

20
25

30

0

1000

2000

3000

4000

5000

6000

7000

P
a

c
k

e
ts

Round

Packets with Initial Distance X Delivered at Each Round (4D-EP)

1

5

10

15

20

25

30

 
 

6D (UD) 
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As expected, in the steady state, the delivered packet distribution matches the generated packet 

distribution. 
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5.5 Routing Choices 

 

Now we know that the routing is performing well, packets are being delivered in linear time with 

respect to initial distance, and the system reaches a steady state after a set number of rounds. Let 

us now take a look in detail the routing itself. That is, what % of packets are moving closer to 

destination? What routing choices are packets getting? 

 

We ran simulations similar to the previous section, but with number of rounds set to 128, roughly 

the point where all systems reached steady state. 

5.5.1 Packets Moving Closer 

 

We first take a look at the percentage of packets that are moving closer to their destination. In 

other words, packets that are making progress. 
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Packets Moving Closer to Destination (UD)
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As we can see, about 80-85% of the packets are moving closer to destination. This is very good, 

indicating that the routing is working well for majority of the packets. 

 

Furthermore, we notice that in higher dimensions, slightly higher percentage of packets are 

traveling in the right direction. This makes sense, as higher dimensions allows for more flexible 

packet routes. In 1D for example, you are either traveling in the right direction, or the wrong 

direction. In 6D, you‟ll be only traveling in the wrong direction if all your first 6 choices are 

taken (assuming the packets have some distance to go in each dimension). 

 

The change between 2D and 3D is quite significant, indicating the extra dimension contributes 

significantly to the packet flexibility. The change between 5d and 6d is a lot smaller, indicating 

that the extra dimension helps, but we are reaching a diminishing point of returns, especially 

since, with a fixed average distance to destination, higher dimensional systems will likely have 

packets that already match their destination in some dimensions. 

5.5.2 Routing Choices 

 

Now that we know most packets are getting closer to their destination, we want to know what 

choices these packets take. That is, what % of packets are getting their 1
st
 choice, 2

nd
, choice, etc. 

This would be a very good indicator of how our routing algorithm is performing. 

5.5.2.1 Routing Choices Calculation 
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Before we present the routing choices data, it‟ll be interesting to analyzing the routing choices 

from a theoretical standpoint. That is, what is the expected probability of getting the 1st choice, 

the 2
nd

 choice, etc, in a d dimensional torus? Analyzing the full probability of the choices in our 

system is difficult, since packets have dependencies among them. Therefore, we consider a 

slightly different model where the packets and choices are independent from one another. This 

allows us to calculate some results and compare it with our system. Although the model is 

different from our system, it should be somewhat close, and the result and comparison will 

provide some insights into our system. 

 

In our system, packets are not independent from one another. They are on the very first time 

stamp, but are not afterwards due to the way packets are being routed. In our calculation, we first 

make the assumption that packets are independent from one another. Second, packet choices are 

not independent. A packet‟s 2
nd

 choice is perpendicular to the 1
st
 choice in our system. In our 

model, we make the additional assumption that a packet‟s choices are independent from each 

other. That is, the 1
st
 choice is independent of the 2

nd
 choice, etc. We assume the choices are a 

random permutation. 

 

Given these two assumptions, we can calculate the probability of a packet getting its nth choice 

directions. Here are the results of our calculation. We will explain the calculations later. 

 

Calculated Result: 
Choices 1D 2D 3D 4D 5D 6D 

1 3/4 5/8 7/12 9/16 11/20 13/24 

2 1/4 5/24 7/36  3/16 11/60 13/72 

3  5/48 7/72 3/32 11/120 13/114 

4  1/16 7/120 9/160 11/200 13/240 

5   7/180 3/80 11/300 13/360 

6   1/36 3/112 11/420 13/504 

7    9/448 11/560 13/672 

8    1/64 11/720 13/864 

9     11/900 13/1080 

10     1/100 13/1320 

11      13/1584 

12      1/144 
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Actual Simulation Result 
Choices 1D 2D 3D 4D 5D 6D 

1 0.8524 0.6239 0.5826 0.5615 0.5497 0.5415 

2 0.1476 0.2099 0.1937 0.1865 0.1827 0.1799 

3  0.1045 0.0963 0.0931 0.0911 0.0897 

4  0.0616 0.0603 0.0557 0.0545 0.0538 

5   0.0392 0.0396 0.0363 0.0358 

6   0.0279 0.0275 0.0277 0.0256 

7    0.0203 0.0203 0.0205 

8    0.0157 0.0156 0.0157 

9     0.0124 0.0112 

10     0.0100 0.0100 

11      0.0083 

12      0.0070 

 

Result Difference Normalized ((Actual – Calculated) / Calculated) 

Choices 1D 2D 3D 4D 5D 6D 

1 0.136533 -0.001760 -0.001257 -0.001778 -0.000545 -0.000308 

2 -0.409600 0.007520 -0.003829 -0.005333 -0.003455 -0.003631 

3  0.003200 -0.009486 -0.006933 -0.006182 -0.213400 

4  -0.014400 0.033714 -0.009778 -0.009091 -0.006769 

5   0.008000 0.056000 -0.010000 -0.008615 

6   0.004400 0.026667 0.057636 -0.007508 

7    0.010489 0.033455 0.059692 

8    0.004800 0.021091 0.043446 

9     0.014545 -0.069538 

10     0.000000 0.015385 

11      0.011323 

12      0.008000 

 

From the data, we see that except for 1D, the actual simulation choices are slightly lower than 

the calculated result for the first d choices. 1D is better by dependencies in section 5.2.3.  
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Here are the delta plot for each dimension: 
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6D Choices Normalized Delta
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3D Choices Normalized Delta
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We now take a look at how we obtained the results for the first d choices of each dimension. 

5.5.2.1.1 1D Calculation 

 

The probability of a packet getting its first choice in 1D is: 

 

1/2 * (2/2 + 1/2) = 75% 

 

The first multiplier, 1/2, is the probability of being the i-th packet. 1D torus have 2 packets at 

each node, therefore, probability of being first is the same as being 2nd, 1/2. The equation inside 

the parenthesis represents the probability of the packet getting its first choice, given that it‟s the 

i-th packet. If it‟s the first packet, it must have gotten its first choice, hence 1. If its‟ the 2
nd

 

packet, then with 50% probability its first choice would be available, hence 1/2. 

5.5.2.1.2 2D Calculation 

 

Applying similar logic, here is the first choice equation for 2d: 

1/4 * (4/4 + 3/4 + 2/4 + 1/4) = 62.5% 
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Here‟s the equation for 2
nd

 choice: 

1/4 * (0 + 1/4 + 2/4 * 2/3 + 3/4 * 1/3) = .208333% 

5.5.2.1.3 3D Calculation 

 

First Choice: 

1/6 * (6/6 + 5/6 + 4/6 + 3/6 + 2/6 + 1/6) = 58.333% 

 

Second Choice: 

1/6 * (0 + 1/6 + 2/6 * 4/5 + 3/6 * 3/5 + 4/6 * 2/5 + 5/6 * 1/5) = 19.444% 

 

3
rd

 choice: 

1/6 * (0 + 0 + 2/6 * 1/5 * 4/4 + 3/6 * 2/5 * 3/4 + 4/6 * 3/5 * 2/4 + 5/6 * 4/5 * 1/4) = 9.7222% 

5.5.2.1.4 4D Calculation 

 

First Choice: 

1/8 * (8/8 + 7/8 + 6/8 + 5/8 + 4/8 + 3/8 + 2/8 + 1/8) = 56.25% 

 

Second Choice: 

1/8 * (0 + 1/8 + 2/8 * 6/7 + 3/8 * 5/7 + 4/8 * 4/7 + 5/8 * 3/7 + 6/8 * 2/7 + 7/8 * 1/7) = 18.75% 

 

Third Choice 

1/8 * (0 + 0 + 2/8 * 1/7 + 3/8 * 2/7 * 5/6 + 4/8 * 3/7 * 4/6 + 5/8 * 4/7 * 3/6 + 6/8 * 5/7 * 2/6 + 

7/8 * 6/7 * 1/6) = 9.375% 

 

Fourth Choice 

1/8 * (0 + 0 + 0 + 3/8 * 2/7 * 1/6 + 4/8 * 3/7 * 2/6 * 4/5 + 5/8 * 4/7 * 3/6 * 3/5+ 6/8 * 5/7 * 4/6 * 

2/5+ 7/8 * 6/7 * 5/6 * 1/5) = 5.625% 

5.5.2.1.5 5D Calculation 

First Choice: 

1/10 * ((10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1)/10) = 55% 

 

Second Choice: 

1/10 * (0 + 1/10 + 2/10 * 8/9 + 3/10 * 7/9 + 4/10 * 6/9 + 5/10 * 5/9 + 6/10 * 4/9 + 7/10 * 3/9 + 

8/10 * 2/9 + 9/10 * 1/9) = 18.333% 

 

Third Choice: 

1/10 * (0 + 0 + 2/10 * 1/9 + 3/10 * 2/9 * 7/8 + 4/10 * 3/9 * 6/8 + 5/10 * 4/9 * 5/8 + 6/10 * 5/9 * 

4/8 + 7/10 * 6/9 * 3/8 + 8/10 * 7/9 * 2/8 + 9/10 * 8/9 * 1/8) = 9.1666% 

 

Fourth Choice: 

1/10 * (0 + 0 + 0 + 3/10 * 2/9 * 1/8 + 4/10 * 3/9 * 2/8 * 6/7 + 5/10 * 4/9 * 3/8 * 5/7 + 6/10 * 5/9 

* 4/8 * 4/7 + 7/10 * 6/9 * 5/8 * 3/7 + 8/10 * 7/9 * 6/8 * 2/7 + 9/10 * 8/9 * 7/8 * 1/7) = 5.5% 
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Fifth Choice: 

1/10 * (0 + 0 + 0 + 0 + 4/10 * 3/9 * 2/8 * 1/7 + 5/10 * 4/9 * 3/8 * 2/7 * 5/6 + 6/10 * 5/9 * 4/8 * 

3/7 * 4/6 + 7/10 * 6/9 * 5/8 * 4/7 * 3/6 + 8/10 * 7/9 * 6/8 * 5/7 * 2/6 + 9/10 * 8/9 * 7/8 * 6/7 * 

1/6) = 3.6666% 

5.5.2.1.6 6D Calculation 

 

First Choice: 

1/12 * ((12 + 11 + 10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1)/12) = 54.1666% 

 

Second Choice: 

1/12 * (0 + 1/12 + 2/12 * 10/11 + 3/12 * 9/11 + 4/12 * 8/11 + 5/12 * 7/11 + 6/12 * 6/11 + 7/12 * 

5/11 + 8/12 * 4/11 + 9/12 * 3/11 + 10/12 * 2/11 + 11/12 * 1/11) = 18.0555% 

 

Third Choice: 

1/12 * (0 + 0 + 2/12 * 1/11 + 3/12 * 2/11 * 9/10 + 4/12 * 3/11 * 8/10 + 5/12 * 4/11 * 7/10 + 6/12 

* 5/11 * 6/10 + 7/12 * 6/11 * 5/10 + 8/12 * 7/11 * 4/10 + 9/12 * 8/11 * 3/10 + 10/12 * 9/11 * 

2/10 + 11/12 * 10/11 * 1/10) = 9.02777% 

 

Fourth Choice: 

1/12 * (0 + 0 + 0 + 3/12 * 2/11 * 1/10 + 4/12 * 3/11 * 2/10 * 8/9 + 5/12 * 4/11 * 3/10 * 7/9 + 

6/12 * 5/11 * 4/10 * 6/9 + 7/12 * 6/11 * 5/10 * 5/9 + 8/12 * 7/11 * 6/10 * 4/9 + 9/12 * 8/11 * 

7/10 * 3/9 + 10/12 * 9/11 * 8/10 * 2/9 + 11/12 * 10/11 * 9/10 * 1/9) = 5.41666% 

 

Fifth Choice: 

1/12 * (0 + 0 + 0 + 0 + 4/12 * 3/11 * 2/10 * 1/9 + 5/12 * 4/11 * 3/10 * 2/9 * 7/8 + 6/12 * 5/11 * 

4/10 * 3/9 * 6/8 + 7/12 * 6/11 * 5/10 * 4/9 * 5/8 + 8/12 * 7/11 * 6/10 * 5/9 * 4/8 + 9/12 * 8/11 * 

7/10 * 6/9 * 3/8 + 10/12 * 9/11 * 8/10 * 7/9 * 2/8 + 11/12 * 10/11 * 9/10 * 8/9 * 1/8) = 3.6111% 

 

Sixth Choice: 

1/12 * (0 + 0 + 0 + 0 + 0 + 5/12 * 4/11 * 3/10 * 2/9 * 1/8 + 6/12 * 5/11 * 4/10 * 3/9 * 2/8 * 6/7 + 

7/12 * 6/11 * 5/10 * 4/9 * 3/8 * 5/7 + 8/12 * 7/11 * 6/10 * 5/9 * 4/8 * 4/7 + 9/12 * 8/11 * 7/10 * 

6/9 * 5/8 * 3/7 + 10/12 * 9/11 * 8/10 * 7/9 * 6/8 * 2/7 + 11/12 * 10/11 * 9/10 * 8/9 * 7/8 * 1/7) = 

2.57936% 

5.5.2.1.7 General Formula 

 

The general formula for calculating the probability of the i-th packet being routed j-th choice in a 

d dimensional torus: 

 

d = dimension 

i = i-th packet 

j = j-th choice 

 

f1(d, i, j) = [ ∏ (k=0 to j-2) ((i – 1 – k) / (2d – k)) ] * (1 – (i – j) / (2d – j +1)) 
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For the 1
st
 choice, the formula is simply (2d + 1) / 4d. 

 

The general formula for calculating the j-th choice in d dimension is: 

 

f(d, j) = 1/(2d) * ∑ (i=1 to 2d) f1(d, i, j) 

5.5.2.2 Routing Choices Per Round 

 

We present the data in 2 forms. First we show the packet choices per round for the different 

dimensions. Then we show a histogram of the average. 

 

Here are the routing choices per round for 1-6D, with both EP/UD models: 
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Packet Routing Choices (1D-UD)
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In 1D, this plot corresponds exactly to the plot for moving closer, as the 2

nd
 choice will not bring 

you closer in 1D, except in the wrap-around case. 
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Packet Routing Choices (2D-EP)
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Packet Routing Choices (2D-UD)
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In 2D, the data becomes more interesting, we see that more than 60% of the packets are getting 

their 1
st
 choice, and about 20% are getting 2

nd
 choice. The 1

st
 and 2

nd
 choice added together 

should correspond to the packets moving closer plot for 2D. 
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Here are the remaining plots: 

Packet Routing Choices (3D-EP)
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Packet Routing Choices (3D-UD)
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Packet Routing Choices (4D-EP)
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Packet Routing Choices (4D-UD)
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Packet Routing Choices (5D-EP)
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Packet Routing Choices (6D-EP)
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Packet Routing Choices (6D-UD)
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We can see from the plot that the 1
st
 choice packets are more than 50% for all these case, 

generally close to the (2d+1)/4d expected in an independent system. The 2
nd

 choice is less than 

half, the 3
rd

 choice half of 2
nd

, etc. 

 

We can also see the routing choices are very consistent across rounds, with very little fluctuation. 

This is another indication that the system is very stable. 

5.5.2.3 Routing Choices Comparison 

 

Let us now present the data in a slightly different form. We plot a histogram of the choices for 

each dimension. This allows us to more easily see the relative proportion of the choices compare 

to one another. 
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Packet Routing Choices (EP)
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Packet Routing Choices (UD)
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Each bar represents packets that are moving closer for that dimension. The bar is further divided 

among the various routing choices, those getting 1
st
 choice, 2

nd
 choice, etc. The section from the 

top of the bar to 100% would represent the packets that are going in the wrong direction. (Of 

course, for some packets, even the 2
nd

 choice might be a wrong direction, for instance, packets 1 

away from their destination). 
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We notice that for all dimensions, 1
st
 choice packets are the majority of the packets. I.e. number 

of packets getting 2
nd

 choice is significantly less than those getting 1
st
 choice. This is very good, 

as first choice represents the preferred route, and knowing most packets are getting the preferred 

route is a good indication that the routing is going well. 

 

Let us now take a look at the change in routing choices for each dimension: 

 

Packet Routing Choices for Each Dimension (EP)
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Packet Routing Choices for Each Dimension (UD)
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As it is more apparent from this plot, the packet choices drop significantly for the 1
st
 three 

choices, and levels off for the remaining choices.  
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This is very good. It confirms that packet routing is working well. More than half of the packets 

are getting their 1
st
 choice route, and in every case, higher preferences occur significantly more 

often than lower preferences. 

5.5.3 Packet Route Flexibility 

 

Another interesting metric to consider when evaluating routing performance is the packet‟s route 

flexibility. For the discussion, we consider packets with x+1 directions to go to be more flexible 

than packets with x directions to go, simply because the packet will have less chance of traveling 

in the wrong direction. 

 

For our system, we want to the percentage breakdown of packets by their flexibility ranking. 

That is, what % of packets have 1 directions to go, 2 directions, 3, etc. 

 

We present the data in 2 forms similar to the choices data. 

5.5.3.1 Route Type Histogram 

 

We first show the route type data in a histogram. Unlike the choices plot which does not reach 

100%, the bar does reach 100%, as we are plotting everything. 
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Packet's Dimensions To Destination for 1-6D Torus (UD)
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From the chart, we can see that a large percentage of packets, more than 50% in many cases, 

have the maximum number of dimensions it can go. This implies those packets will have a 

higher degree of flexibility. If one of their preferred directions is taken, they still have other 

directions to take to get closer to their destination. Only if all its preferred directions are taken 

will they go in the wrong direction. The probability of this happening is low. 

 

The 2
nd

 observation we can make is the percentage of inflexible packets, that is, those having 

only one direction to go, is very low. Roughly around 10%. These are the packets that if they 

don‟t get to go where they want to go, will be traveling in the wrong direction. Since there are 

only 10% of them, the penalty they may incur is offset by the positive routing on the other 

packets. Of course, we can not get rid of these, as all packets one step before delivery are only 1 

dimensional off. With a 4% delivery rate, we have a lower bound on 1D packets: at each time 

step, 4% of packets were 1D packets 1 step before delivery. 

 

In addition, the breakdown indicates that the routing should be pretty close to the optimal. For 

example, in the 4D case, the % of packets having 4 direction to go is more than 50%, the % of 

packets having 3 direction to go is 25%, 2 direction to go is 12%, etc. This implies the packets 

have a very high degree of flexibility. 3 dimensional packets have less „flexibility‟ than 4 

dimensional packets, but they are only half as many of them. Although this doesn‟t quite 

generalize to 5-6 dimensions, it nonetheless is an indication that the packets in the system retains 

a high degree of flexibility and the routing is performing well. (In 5-6D systems, size of the torus 

is a limiting factor. Any packet within 5 of destination can‟t be a 6D packet). 
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5.5.3.2 Route Type Chart 

 

We now present the data in a slightly different form, to allow us to better see the change in route 

type for a particular dimension. 
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The data indicates that for each dimension, the most flexible packets are significantly higher than 

the rest of the packets, especially for lower dimensions. Changes between packets having (d-1) 

dimensions to 1 dimension are not as dramatic. The difference between the number of d 

dimension packets compare to (d-1) dimensions seems to drop as dimensions increase. Perhaps 

for larger dimensions, the distribution looks like it will be uniform. 

5.5.3.3 Route Type Per Round 

 

Let‟s now take a look at how the route type changes during the simulation. 
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6D Torus Packet Type (UD)

0

10

20

30

40

50

60

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116

Round

P
e
rc

e
n

t 
(%

)

1D Route

2D Route

3D Route

4D Route

5D Route

6D Route

 



 76 

The curve for each packet type is similar to the delivery curve examined in previous sections. It 

indicates the various types do change initially, and reach a stable ratio just like delivery rate. 

Here are the remaining dimensions: 
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5D Torus Packet Type (UD)
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4D Torus Packet Type (EP)
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4D Torus Packet Type (UD)
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3D Torus Packet Type (EP)
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3D Torus Packet Type (UD)
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2D Torus Packet Type (EP)
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2D Torus Packet Type (UD)
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In lower dimensions, the route type does not change as much compared to the stable state. In 

higher dimensions, there‟s more oscillation during the rounds. 

5.6 Steady State Configuration 

 

In previous sections, we examined the delivery time, delivery rate, and routing choices. From 

this data, we gained some understanding of the system and the routing performance. 

 

In this section, we take a look at the configuration of the system in steady state to gain a better 

understanding of the steady state itself. We examine two important metrics, packets that are X 

away from destination, and packets that started X away. 
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5.6.1 Packets X Away 

 

Let‟s first take a look at packets that are X away at steady state. That is, at steady state, what 

percent of packets are 1 away, 2 away, 3 away, etc. The data are the average of 40 rounds at 

steady state. 
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Packets X Away at Steady State (EP)
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The chart indicates there are more packets that are closer to its destination than there are packets 

that are further away. However the plot is not completely linear, with peaks at 3. (In a system 

with perfect routing, the graph would be completely linear). 
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When the system starts out, the number of packets at each distance is the same. This would result 

in a flat line. The routing is not perfect, so at each time step, some packets move closer, and 

some packets move further from its destination. Let‟s say on average, 80% of the packets are 

moving closer at each time step. At the next time step, 80% of packets at distance x move to x-1, 

while 20% move to distance x+1. Over time, this would result in packets shifting from higher 

distance to lower distance, and we have the general shape of the curve sloping downward to the 

right of higher distance.  

 

As packets get closer however, it is harder to make progress, due to decreased flexibility in its 

route (fewer dimensions to go). As a result, the percentage of packets moving closer decreases as 

well. This may explain, at least in part, the increase in slope from 7 to 4. At the minimum 

distance 1 however, we simply have less packets, because whatever percentage that is moving 

closer, is delivered, and removed from the system. So packets at 1 away are significantly lower 

than packets that are 2 away (We don't have distance 0 packets that can travel in the wrong 

direction to contribute to distance 1 packets. Fewer distance 1 packets also means fewer distance 

2 packets since less packets will travel in the wrong direction.) This results in a similar drop in 

number of packets at 2 from 3. From our simulation, we see that distance 3 packets have the 

highest count, indicating this is the transition point which packet count for a particular distance 

starts to drop due to decreasing number of packets at distance 1 and 2. Distance 4 and above, the 

flexibility increases, more packets moves closer, and the packet count delta decreases until it 

reaches a stable rate for all higher distances. 

5.6.1.1 Packets X Away per Round 

 

We now know what the system looks like at steady state, how does it get there? 
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3D-EP 
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6D-UD 
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6D-EP 

Packets X Away from Destination at Each Round (6D-EP)
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As we see, there are some oscillations initially, but the type stabilizes pretty fast just like the 

delivery rate, and does not change after that. 

5.6.2 Packets Started X Away 

 

Let‟s take a look at the slightly different metrics of packets started X away at steady state. That is, 

how many packets were started 1 away, how many packets were started 2 away. 

 

Naturally, we expect there will be fewer packets in the system that started 1 away than 15 away, 

as short packets would be delivered while longer packets need longer to be delivered. Therefore 

we expect the system would contain more packets which started further away than started closer. 

 

Here are the charts. The data are the average of 40 rounds at steady state. 
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Packets Started X Away at Steady State (UD)
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The chart indicates there are more packets that started further away in the system than there are 

packets that started closer to its destination. This makes perfect sense as packets that started 

closer got delivered faster, so over time, the system is left with more packets that started further 

than packets that started closer. 
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Packets Started X Away at Steady State (EP)
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With EP packet generation, the chart looks quite different. It no longer shows a linear increase 

for packets with higher distance than lower distance like the UD, except in 1D (in 1D, UD and 

EP are the same). In higher dimensions, most of the packets have average distance, matching the 

packet generation model. Here, we see the tight distribution of packet generator, with just a small 

shift upward for longer packets staying the system longer. 

5.6.2.1 Packets Started X Away per Round 

 

Let us now take a look at the same data but by round, to observe how it changed over time. For 

the UD graph, we show a 3D chart, as it shows the data fairly well. For the EP chart, we show a 

2D chart, as the data is hard to visualize in 3D. 
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From high to low: [15], [20], [10], [25], [5], [30], [1]. 
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As we can see, similar to the packets X away data, there are some oscillations initially, but the 

system quickly gets to the stable state, and does not change after that. 

5.7 2D Configuration 

 

We did some calculations on the packet configuration of a node on the 2D torus system to help 

us understand the system better. We only analyzed 2D system to this level of detail. 

5.7.1 First Choice Configuration 

 

Each node of the 2D system has 4 packets. Each packet has a 1
st
 choice direction, and a 2

nd
 

choice direction perpendicular to the first choice. Looking only at the first choice of the 4 

packets, how many possible configurations are there? What are the probabilities of each 

configuration, if every packet is independent? 

 

Table 1 lists all the possible configurations, and their probabilistic distribution assuming packets 

are independent (as they are on the first time step). In calculating the number of configurations, 

specific directions are not relevant and are grouped together. For example, all packets having ↑ 

as their 1
st
 preference is the same as all packets preferring ←, etc. Directions are only relevant 

with respect to one another, the actual direction is not important. In other words, we categorize 

configuration as the same if they are equivalent by reflection or rotation. 

 

Table 1: 

 Direction Description Prob 

1 ↑ ↑ ↑ ↑ All packets have the same first choice direction. 1/64 

2 ↑ ↑ ↓ ↓ Two packets have the opposite first choice direction of the other two. 3/64 

3 ↑ ↑ ↑ ↓ One packet has the opposite first choice direction of the other three. 4/64 

4 ↑ ↑ → → Two packets have the same first choice direction, perpendicular to the 

other two. 

6/64 

5 ↑ ↓ ← → Every packet has a different first choice direction. 6/64 

6 ↑ ↑ ← → Two packets have opposite first choice directions, perpendicular to the 

direction of the other two. 

12/64 

7 ↑ ↑ ↑ → One packet has a first choice direction perpendicular to the other three. 8/64 

8 ↑ ↑ ← ↓ Only one packet has same first choice direction as another packet, 

another has the opposite 1
st
 choice, and the last is perpendicular 

24/64 

 

The 4 packets‟ first and 2
nd

 choices belong to one of these configurations. In a completely 

independent system, the expected probability of a particular configuration is given above. It 

should be intuitive to see that the probability of all packets having the same 1
st
 choice preference 

is a lot smaller than all packets having different 1
st
 choice preferences. 

 

We will show how each of these probabilities are calculated. In the following analysis, all 

directions are taken with respect to the 1
st
 packet‟s direction. 
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1. ↑ ↑ ↑ ↑ (All packets have the same first choice direction) 

 

The 2
nd

 packet with probability 1/4 picks the same direction as the 1
st
 packet. Similarly for the 3

rd
 

and 4
th

 packet. 

 

Therefore, 1 x 1/4 x 1/4 x 1/4 = 1/64. 

 

2. ↑ ↑ ↓ ↓ (Two packets have the opposite first choice direction of the other two) 

 

The 2
nd

 packet with probability 1/4 has the same 1
st
 choice as the 1

st
 packet. The 3

rd
 and 4

th
 

packets, with probability 1/4 each, have the opposite 1
st
 choice. 1 x 1/4 x 1/4 x 1/4 = 1/64. It may 

seem at this point that the same logic can be applied to all of the above configurations, but this is 

clearly incorrect, as we only have 8 configurations, not 64. The sum of the probability of all the 

configurations must be 1. 

 

The key is, not only is the relative direction important, but the ordering of the packets is also 

important. ↑ ↓ ↑ ↓ is the same configuration as ↑ ↑ ↓ ↓, yet it is not included in the above 

calculation. We must count the number of distinct configurations. 

 

In counting the number of configurations, remember that specific directions and the orderings are 

not important. Two configurations are the same if rotation or reflection will yield one another. 

Only the relative directions with respect to one another and its orderings are important. For 

example, ↑ ↑ ↓ ↓ and ↓ ↓ ↑ ↑ are the same configuration because one can be obtained from the 

other by rotating rotation. However, ↑ ↓ ↑ ↓ is a different configuration, because the relative 

ordering is different, and you can‟t get this one by either rotation or reflection. 

 

With that in mind, we count the number of configurations. They are: 

 

↑ ↑ ↓ ↓ = ↑ ↓ ↑ ↓ = ↑ ↓ ↓ ↑. 

 

Therefore, the correct probability is what we calculated above, multiply by the number of 

configurations: 1/64 * 3 = 3/64. 

 

3. ↑ ↑ ↑ ↓ (One packet has the opposite first choice direction of the other three) 

 

Same as #2, but the number of configurations is different. 

 

↑ ↑ ↑ ↓ = ↑ ↓ ↑ ↑ = ↑ ↑ ↓ ↑ = ↓ ↑ ↑ ↑ 

 

Therefore, 4 * (1/4 * 1/4 * 1/4) = 4/64 

 

4. ↑ ↑ → → (Two packets have the same first choice direction, perpendicular to the other 

two) 
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The 2
nd

 packet has probability 1/4 of matching the first, but the 3
rd

 packet has probability 1/2, as 

either of the perpendicular directions works, and the 4
th

 packet has probability 1/4 of matching 

the 3rd. Therefore, 1/4 * 1/2 * 1/4 = 2/64. 

 

The number of configurations is 3: ↑ ↑ → → = ↑ → ↑ → = ↑ → → ↑. 

 

Therefore, probability is 3 * 2/64 = 6/64 

 

5. ↑ ↓ ← → (Every packet has a different first choice direction) 

 

The 2
nd

 packet has probability 3/4 to have its first choice not match the first packet‟s first choice. 

Similarly, the 3
rd

 packet has probability 2/4 of not matching the 1
st
 and 2

nd
. The last packet has 

probability 1/4. 

 

Therefore, 3/4 * 2/4 * 1/4 = 6/64. 

 

6. ↑ ↑ ← → (Two packets have opposite first choice directions, perpendicular direction of 

the other two) 

 

The 2
nd

 packet has probability 1/4 to match the first packet. The 3
rd

 packet has probability 1/2 to 

pick either of the perpendicular directions, and the 4
th

 packet picks the opposite perpendicular 

with probability 1/4. 

 

Therefore, 1/4 * 1/2 * 1/4 = 2/64, same as #4. 

 

However, the number of configurations is not the same. There are 6 of them instead of 3, since 

left and right can be distinguished now. 

 

↑ ↑ ← → = ↑ ← ↑ → = ↑ ← → ↑ = ← ↑ ↑ → = ← → ↑ ↑ = ↑ → ↑ ← = ← ↑ → ↑ 

 

Therefore, probability is 2/64 * 6 = 12/64 

 

7. ↑ ↑ ↑ → (One packet has a first choice direction perpendicular to the other three) 

 

The 2
nd

 & 3
rd

 packets have probability 1/4 to have its first choice match the first packet. The 4
th

 

packet has probability 1/2 for either of the perpendicular directions. Therefore, 1/4 * 1/4 * 1/2 = 

2/64. 

 

The number of configurations is 4: 

 

↑ ↑ ↑ → = ↑ → ↑ ↑ = ↑ ↑ → ↑ = → ↑ ↑ ↑ 

 

Therefore, probability is 4 * 2/64 = 8/64. 

 

8. ↑ ↑ ← ↓ (Only one packet has the same first choice direction as another packet, and one 

has the opposite direction) 
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The 2
nd

 packet has probability 1/4 to match the 1
st
 packet. The 3

rd
 packet has probability 1/2 for 

either of the perpendicular directions. 4
th

 packet has 1/4 probability to pick the remaining edge. 

Therefore, it is 1/4 x 1/2 x 1/4 = 2/64. 

 

The number of equivalent configurations is fairly large, as this particular configuration offers the 

maximum amount of “flexibility”. 

 

↑ ↑ ← ↓ = ↑ ↑ ↓ ← = ↑ ← ↑ ↓ = ↑ ← ↓ ↑ = ↑ ↓ ← ↑ = ↑ ↓ ↑ ← =  

← ↑ ↓ ↑ = ← ↓ ↑ ↑ = ← ↑ ↑ ↓ = ↓ ← ↑ ↑ = ↓ ↑ ← ↑ = ↓ ↑ ↑ ← 

 

Therefore, the probability is 2/64 * 12 = 24/64. 

 

As a sanity check, the sum of all the probabilities is 

 

(1 + 3 + 4 + 6 + 6 + 12 + 8 + 24) / 64 = 1. 

5.7.2 Full Configuration 

 

In a 2D system, every packet has a 1
st
 and 2

nd
 choice. By definition, the 2

nd
 choice is 

perpendicular to the first choice. We will now analyze the probability of the full configuration, 

first choice plus second choice. 

 

Given a particular 1
st
 choice configuration, not all possible configurations are valid for the 2

nd
 

choice configuration, since the 1
st
 choice and 2

nd
 choice are not independent, but perpendicular to 

one another. For example, if all packets have the same direction as first choice, then their 2
nd

 

choice cannot be one in each different direction, since two of those directions are not 

perpendicular to the first choice. Note that for a particular 1
st
 choice configuration, the same 

configuration (rotated and perhaps flipped) is always a valid second choice configuration. 

 

Given these restriction, the following table lists the possible 2
nd

 choice configuration for each 1
st
 

choice configuration, and the probability of each of them, if all packets are independent. 

 

Table 2 (row = 1
st
 choice, column = 2

nd
 choice) 

1
st
/2

nd
 ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↓ ↑ ↑→ → ↑↓← → ↑ ↑← → ↑ ↑ ↑ → ↑ ↑ ← ↓ 

↑ ↑ ↑ ↑ 1/512 3/512 4/512      

↑ ↑ ↓ ↓ 3/512 9/512 12/512      

↑ ↑ ↑ ↓ 4/512 12/512 16/512      

↑ ↑→ →    12/512 12/512 24/512   

↑↓← →    12/512 12/512 24/512   

↑ ↑← →    24/512 24/512 48/512   

↑ ↑ ↑ →       16/512 48/512 

↑ ↑ ← ↓       48/512 144/512 

 

Each row and each column sums up to the probability calculated in Table 1. In all, there are 22 

unique 1
st
 + 2

nd
 choice configurations in the 2D system. 
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Let us now show how these probabilities are calculated. An interesting observation can be made 

from Table 2. The 8 configurations form 3 distinct groups with respect to first and second 

choices. If a packet has a specific 1
st
 choice configuration, then its 2

nd
 choice configuration only 

comes from the group it is in. 

 

1. ↑ ↑ ↑ ↑, ↑ ↑ ↓ ↓, ↑ ↑ ↑ ↓ (#1, #2, #3) 

 

If the 1st choice configuration is ↑ , then the 2nd choice configuration must be either ← or →. 

Rotate this 90 degrees and it becomes ↑ or ↓ . Therefore, the only possible 2
nd

 choice 

configuration for the above 3 configurations are those having opposite choices of each other, 

namely #1, #2, and #3. (All other configurations have choices that are perpendicular to one 

another, therefore are not valid 2
nd

 choice configuration for #1, #2, and #3.) 

 

#2 and #3 have more than one equivalent configuration, as we have shown. Therefore, we 

expect the probability of 2
nd

 choice having configuration #2 and #3 to occur more often than 

2
nd

 choice having configuration #1. Does the probability of these happening correspond to 

the number of equivalent configurations between #1, #2, and #3? If so, then calculating this 

is relatively simple. 

 

However, as we will see later, not all possible equivalent configurations are valid for a 

specific instance of the 1
st
 choice configuration. Therefore, a different approach is needed. 

 

1. 1
st
 choice configuration is ↑ ↑ ↑ ↑ 

 

 ↑ ↑ ↑ ↑ x ↑ ↑ ↑ ↑ 

 

If the 1
st
 choice configuration is ↑ ↑ ↑ ↑, then the 2

nd
 choice configuration is either 

←←←←, or →→→→. Both of them are configuration #1. 

 

The probability of either of them happening is 1/2 x 1/2 x 1/2 x 1/2 = 1/16, therefore 

the probability of the 2
nd

 choice configuration is 2 x 1/16 = 1/8. 

 

 ↑ ↑ ↑ ↑ x ↑ ↑ ↓ ↓ 

 

2
nd

 choice configurations are either  

 

← ← → →, → → ← ←, 

← → ← →, → ← → ←, 

← → → ←, → ← ← →. 

 

Each of them happens with probability 1/16, as calculated above. 

 

Therefore, the probability of the 2
nd

 choice configuration is 6 * 1/16 = 3/8. 

 

 ↑ ↑ ↑ ↑ x ↑ ↑ ↑ ↓ 
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2
nd

 choice configurations are either  

 

← ← ← →, → → → ← 

← → ← ←, → ← → → 

← ← → ←, → → ← → 

→ ← ← ←, ← → → → 

 

Each of them happens with probability 1/16, as calculated above. 

 

Therefore, the probability is 8 * 1/16 = 4/8. 

 

2. 1
st
 choice configuration is ↑ ↑ ↓ ↓ 

 

 ↑ ↑ ↓ ↓ x ↑ ↑ ↑ ↑ 

 

The 2
nd

 choice configuration is either ← ← ← ←, or → → → →. Both of them are 

configuration #1.  

 

The probability of either of them happening is 1/2 x 1/2 x 1/2 x 1/2 = 1/16, therefore 

the probability of the 2
nd

 choice configuration is 2 x 1/16 = 1/8. 

 

 ↑ ↑ ↓ ↓ x ↑ ↑ ↓ ↓ 

 

The analysis is identical to when the 1
st
 choice is ↑ ↑ ↑ ↑, since all equivalent 

configurations are valid. Therefore, the probability of the 2
nd

 choice configuration is 6 

* 1/16 = 3/8. 

 

 ↑ ↑ ↓ ↓ x ↑ ↑ ↑ ↓ 

 

Again, all equivalent configurations are valid, therefore the probability is 8 * 1/16 = 

4/8. 

 

3. 1
st
 choice configuration is ↑ ↑ ↑ ↓ 

 

 ↑ ↑ ↑ ↓ x ↑ ↑ ↑ ↑ 

 

Same as analysis for #2 above. Therefore the probability of the 2
nd

 choice 

configuration is 2 x 1/16 = 1/8. 

 

 ↑ ↑ ↑ ↓ x ↑ ↑ ↓ ↓ 

 

The analysis is identical to when the 1
st
 choice is ↑ ↑ ↑ ↑, since all equivalent 

configurations are valid. Therefore the probability of the 2
nd

 choice configuration is 6 

* 1/16 = 3/8. 
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 ↑ ↑ ↑ ↓ x ↑ ↑ ↑ ↓ 

 

Again, all equivalent configurations are valid, therefore, probability is 8 * 1/16 = 4/8. 

 

It just happened that in group #1, all the equivalent configurations are possible for each of the 

configurations. Regardless of whether the 1
st
 choice is ↑ ↑ ↑ ↑ , ↑ ↑ ↓ ↓ , or ↑ ↑ ↑ ↓ , the 2

nd
 

choice analysis is the same. Therefore, the probability of the 1
st
+2

nd
 choice is probability of 

the 1
st
 choice * probability of the 2

nd
 choice. The result is what we have in Table 2. 

 

2. ↑ ↑ → →, ↑ ↓ ← →, ↑ ↑ ← → (#4, #5, #6) 

 

For each case, we will list all the instance of the configuration of the 2
nd

 choice. Since each 

instance of the configuration occurs with probability 1/16, the probability of the 

configuration is just # of instance * 1/16. 

 

 ↑ ↑ → → x ↑ ↑ → → (4) =  ← ← ↑ ↑, ← ← ↓ ↓, → → ↑ ↑, → → ↓ ↓ 

 

 ↑ ↑ → → x ↑ ↓ ← → (4) = ← → ↑ ↓, ← → ↓ ↑, → ← ↑ ↓, → ← ↓ ↑ 

 

↑ ↑ → → x ↑ ↑ ← → (8) =  ← → ↑ ↑, ← → ↓ ↓, → ← ↑ ↑, → ← ↓ ↓ 

← ← ↑ ↓, ← ← ↓ ↑, → → ↑ ↓, → → ↓ ↑ 

 

 ↑ ↓ ← → x ↑ ↑ → → (4) =  ↑ → ↑ →, ↑ ← ↑ ←, ↓ → ↓ →, ↓ ← ↓ ← 

 

 ↑ ↓ ← → x ↑ ↓ ← → (4) =  ↑ → ↓ ←, ↑ ← ↓ →, ↓ → ↑ ←, ↓ ← ↑ → 

 

↑ ↓ ← → x ↑ ↑ ← → (8) = ↑ ← ↑ →, ↑ → ↑ ←, ↓ ← ↓ →, ↓ → ↓ ← 

↑ ← ↓ ←, ↑ → ↓ →, ↓ ← ↑ ←, ↓ → ↑ →  

 

 ↑ ↑ ← → x ↑ ↑ → → (4) =  ↑ → → ↑, ↓ → → ↑, ↑ ← ← ↑, ↓ ← ← ↓ 

 

 ↑ ↑ ← → x ↑ ↓ ← → (4) =  ↑ → ← ↓, ↑ ← → ↓, ↓ → ← ↑, ↓ ← → ↑ 

 

↑ ↑ ← → x ↑ ↑ ← → (8) =  ↑ ← → ↑, ↑ → ← ↑, ↓ ← → ↑, ↓ ← → ↓ 

↑ → → ↓, ↑ ← ← ↓, ↓ → → ↑, ↓ ← ← ↑ 

 

The number of instances * 1/6 * prob[1st choice] gives the result in Table 2. 

 

3. ↑ ↑ ↑ →, ↑ ↑ ← ↓ (#7, #8) 

 

 ↑ ↑ ↑ → x ↑ ↑ ↑ → (4) =  ← ← ← ↑, ← ← ← ↓, → → → ↑, → → → ↓ 

 

 ↑ ↑ ↑ → x ↑ ↑ ← ↓ (12) =   

← ← → ↑, ← ← → ↓, ← → → ↑, ← → → ↓, ← → ← ↑, ← → ← ↓ 

→ ← ← ↑, → ← ← ↓, → ← → ↑, → ← → ↓, → → ← ↑, → → ← ↓ 
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 ↑ ↑ ← ↓ x ↑ ↑ ↑ → (4) =  ← ← ← ↑, ← ← ← ↓, → → → ↑, → → → ↓. 

 

This is a clear example where not all the possible equivalent configurations of ↑ ↑ ↑ → 

are valid, for example, ↑ → ↑ ↑ is not a valid 2
nd

 choice for ↑ ↑ ← ↓. 

 

 ↑ ↑ ← ↓ x ↑ ↑ ← ↓ (12) =  

← ← → ↑, ← ← → ↓, ← → → ↑, ← → → ↓, ← → ← ↑, ← → ← ↓ 

→ ← ← ↑, → ← ← ↓, → ← → ↑, → ← → ↓, → → ← ↑, → → ← ↓ 

 

(Same as ↑ ↑ ↑ → x ↑ ↑ ← ↓). 

 

The above calculations confirm the result in Table 2. 

5.7.3 Comparing to our System 

 

Given the probability of the 1
st
 choice configuration, and the 1

st
 + 2

nd
 choice configuration in an 

independent system, we want to compare it with the result from our simulation to see how they 

differ. To enable this analysis, we updated our simulation to count the number of occurrences for 

each configuration during the simulation. 

 

For each node, we look at the 1
st
 choice configuration of all 4 packets, and assign it configuration 

1 to 8 based on their first choices. Next, we look at the 2
nd

 choice configuration, and again assign 

it configuration 1-8 based on their second choices. We then count the occurrences of 1
st
 choice, 

and 1
st
 choice + 2

nd
 choice configuration (64 total). Even though the system tracks all 64 

configurations, we don‟t expect to see data in all but 22 of them, as not all 1
st
 choice and 2

nd
 

choice configuration are valid combinations. 

 

Here are the results of the simulation on a 2D torus of size 30. The uniform distance to 

destination model is used. Statistics are collected after 120 rounds, for a total of 1000 rounds. 

 

We first take a look at the 1
st
 choice configuration: 

 

Config1 Count Calculation Delta Normalized Delta % 

[1] 13076 0.015625 686.9375 5.544709295 

[2] 37806 0.046875 638.8125 1.718753941 

[3] 50851 0.0625 1294.75 2.612687602 

[4] 76351 0.09375 2016.625 2.712910413 

[5] 71460 0.09375 -2874.375 -3.86681801 

[6] 147424 0.1875 -1244.75 -0.837264052 

[7] 102557 0.125 3444.5 3.475343675 

[8] 293375 0.375 -3962.5 -1.332660697 

 

Count is the occurrences of the specific configuration during the simulation. Calculation is the 

percentage the configuration occurs in our calculation. The delta and the normalized percentage 

((simulation - calculation) / calculation) shows how our system differ from the calculated 

independent result. 
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Here‟s a plot of the data: 
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Our system differs from the calculated result by about +6 to -4 percent. The delta and percentage 

is normalized by the expected number of occurrences of each configuration, because some 

configurations occur much more often than others, an absolute delta is not very useful. 

 

We now take a look at the 1
st
 and 2

nd
 choice configuration differences. Here are the data: 

 

Config2 Count Calculated Delta Normalized  Delta % 

[1][1] 1262 0.001953125 -286.6328125 -18.50876529 

[1][2] 5180 0.005859375 534.1015625 11.4961954 

[1][3] 6634 0.0078125 439.46875 7.094463362 

[2][1] 3441 0.005859375 -1204.898438 -25.9346702 

[2][2] 15286 0.017578125 1348.304688 9.673799414 

[2][3] 19079 0.0234375 495.40625 2.665825871 

[3][1] 4753 0.0078125 -1441.53125 -23.27103039 

[3][2] 20726 0.0234375 2142.40625 11.52848194 

[3][3] 25372 0.03125 593.875 2.396771346 

[4][4] 17397 0.0234375 -1186.59375 -6.385168369 

[4][5] 21250 0.0234375 2666.40625 14.34817337 

[4][6] 37704 0.046875 536.8125 1.444318325 

[5][4] 16325 0.0234375 -2258.59375 -12.1536974 

[5][5] 19795 0.0234375 1211.40625 6.518686678 

[5][6] 35340 0.046875 -1827.1875 -4.91613066 

[6][4] 33571 0.046875 -3596.1875 -9.675705217 

[6][5] 41115 0.046875 3947.8125 10.62176819 

[6][6] 72738 0.09375 -1596.375 -2.147559591 

[7][7] 22032 0.03125 -2746.125 -11.08286039 

[7][8] 80525 0.09375 6190.625 8.328078362 

[8][7] 63190 0.09375 -11144.375 -14.99222264 

[8][8] 230185 0.28125 7181.875 3.220526618 
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Here‟s a plot of the data: 

 

Normalized 1st & 2nd Choice Delta (Simulation - Calculation)

-30

-25

-20

-15

-10

-5

0

5

10

15

20

[1][1] [1][2] [1][3] [2][1] [2][2] [2][3] [3][1] [3][2] [3][3] [4][4] [4][5] [4][6] [5][4] [5][5] [5][6] [6][4] [6][5] [6][6] [7][7] [7][8] [8][7] [8][8]

1st & 2nd Choice Configuration

D
e

lt
a

 (
%

)

 
 

From the data, we see our system differs from the calculated result by about -25 to 15 percent.  

This is larger than the 1
st
 choice only configuration differences. There are some patterns to be 

observed. For example, for configurations of type [1] for 1
st
 choice, the shape of the chart is very 

similar to configurations of type [2] as 1
st
 choice, and [3] as 1

st
 choice. I.e. the 2

nd
 choice 

configuration [1] is negative while 2
nd

 choice configurations [2] and [3] are positive, and [2] is 

higher than [3]. Similar patterns can be observed for all the different 1
st
 choice configurations. 

  

This interesting pattern deserves further investigation, beyond this work. It is worth considering 

differences with the independent system, as the independent system is relatively easy to analyze, 

and we can prove expected linear delivery time for it. 

 

6 CONCLUSION 
 

We‟ve presented our algorithm and analyzed the results from various simulation runs in detail. 

From the simulation results, we can see that packets are being delivered in linear O(n) time with 

respect to their initial distance. We see that the system reaches a steady state fairly quickly, even 

if it starts from a state where many collisions guaranteed, and stays at the steady state. We see 

that not only does initial distance affect delivery time, but the initial distance vector does too. 

Our simulation showed that delivery time is faster in higher dimensions, indicating the algorithm 

performs better with more dimensions.  

 

Our simulation result also showed that in the system, the majority of the packets, between 80 to 

85%, are moving closer to their destination at each time step. Furthermore, packets retain their 

route flexibility. There are consistently more packets which have i dimensions to move toward 

their destination than i-1 dimensions, for all i and for all dimensions. These all contributed to the 

system throughput, and delivery time. 
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Through our simulation and analysis, we have shown that the simple greedy hot potato routing 

algorithm performs well, delivering packets in linear time, and works better in higher dimensions. 

We hope our results will help future studies of the system where theoretical bounds, rather than 

empirical bounds, can be found. 
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